二叉树的类型定义及创建 七
scratch二叉树定义
Scratch二叉树定义1. 什么是二叉树二叉树是一种常见的数据结构,它由一组节点和连接节点的边组成。
每个节点最多有两个后继节点,通常称其为左子节点和右子节点。
这种树状结构可以用于表示树形的数据关系,例如家族关系、文件系统等等。
2. Scratch中的二叉树在Scratch编程语言中,二叉树是一种用于组织和操作程序代码的数据结构。
通过使用二叉树,可以更好地组织和管理程序的逻辑结构,提高代码的可读性和可维护性。
2.1 二叉树节点在Scratch中,二叉树的节点表示程序中的每个逻辑单元。
每个节点包含以下几个重要属性:•代码块:节点中存储的具体代码块,可以是一条命令、一个条件、一个循环等等。
•左子节点:指向节点左边的子节点。
•右子节点:指向节点右边的子节点。
2.2 创建二叉树在Scratch中,可以通过以下步骤创建一个二叉树:1.创建根节点:首先,创建一个节点作为二叉树的根节点,这个节点可以是任何代码块。
2.添加子节点:在根节点的基础上,可以继续添加更多的子节点,形成树状结构。
3.组织节点顺序:可以通过调整每个节点的左右子节点,来改变它们在树中的位置。
2.3 遍历二叉树在Scratch中,可以通过遍历二叉树来执行其中的代码块。
遍历二叉树的过程可以简单描述为:1.从根节点开始遍历。
2.执行当前节点的代码块。
3.如果当前节点有左子节点,继续遍历左子树。
4.如果当前节点有右子节点,继续遍历右子树。
3. 二叉树的应用3.1 条件判断二叉树可以用于实现条件判断。
例如,我们可以使用二叉树来判断一个数字是否为偶数:1.创建一个根节点,并设置代码块为”判断数字是否为偶数”。
2.添加两个子节点,分别表示”是”和”否”的情况。
3.在”是”节点下添加一个代码块,用于执行偶数情况下的逻辑。
4.在”否”节点下添加一个代码块,用于执行奇数情况下的逻辑。
通过这种方式,当输入一个数字时,程序会根据二叉树的结构来执行对应的逻辑。
3.2 循环结构二叉树还可以用于实现循环结构。
数据结构实验报告 二叉树
数据结构实验报告二叉树数据结构实验报告:二叉树引言:数据结构是计算机科学中的重要基础,它为我们提供了存储和组织数据的方式。
二叉树作为一种常见的数据结构,广泛应用于各个领域。
本次实验旨在通过实践,深入理解二叉树的概念、性质和操作。
一、二叉树的定义与性质1.1 定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树可以为空树,也可以是由根节点和左右子树组成的非空树。
1.2 基本性质(1)每个节点最多有两个子节点;(2)左子树和右子树是有顺序的,不能颠倒;(3)二叉树的子树仍然是二叉树。
二、二叉树的遍历2.1 前序遍历前序遍历是指首先访问根节点,然后按照先左后右的顺序遍历左右子树。
在实际应用中,前序遍历常用于复制一颗二叉树或创建二叉树的副本。
2.2 中序遍历中序遍历是指按照先左后根再右的顺序遍历二叉树。
中序遍历的结果是一个有序序列,因此在二叉搜索树中特别有用。
2.3 后序遍历后序遍历是指按照先左后右再根的顺序遍历二叉树。
后序遍历常用于计算二叉树的表达式或释放二叉树的内存。
三、二叉树的实现与应用3.1 二叉树的存储结构二叉树的存储可以使用链式存储或顺序存储。
链式存储使用节点指针连接各个节点,而顺序存储则使用数组来表示二叉树。
3.2 二叉树的应用(1)二叉搜索树:二叉搜索树是一种特殊的二叉树,它的左子树上的节点都小于根节点,右子树上的节点都大于根节点。
二叉搜索树常用于实现查找、插入和删除等操作。
(2)堆:堆是一种特殊的二叉树,它满足堆序性质。
堆常用于实现优先队列,如操作系统中的进程调度。
(3)哈夫曼树:哈夫曼树是一种带权路径最短的二叉树,常用于数据压缩和编码。
四、实验结果与总结通过本次实验,我成功实现了二叉树的基本操作,包括创建二叉树、遍历二叉树和查找节点等。
在实践中,我进一步理解了二叉树的定义、性质和应用。
二叉树作为一种重要的数据结构,在计算机科学中有着广泛的应用,对于提高算法效率和解决实际问题具有重要意义。
二叉树概述
=0.xx =1; 若结点个数n=3,则有深度k=1,满足k=lb(3+1)-1=1。
二叉树概述
1.二叉树的定义
一、二叉树:是n(n≥0)个结点的有限集合。n=0的树称为空二叉树;n>0的二叉树由 一个根结点以及两棵互不相交的、分别称为左子树和右子树的二叉树组成 。
逻辑结构: 一对二(1:2) 基本特征: ① 每个结点最多只有两棵子树(不存在度大于2的结点); ② 左子树和右子树次序不能颠倒。所以下面是两棵不同的树 注意:二叉树不是有序树
3.二叉树的性质
性质1 在一棵非空二叉树的第i层上至多有2i个结点(i≥0)。
性质2 深度为k的二叉树至多有2k+1-1个结点。 说明:深度k=-1,表示没有一个结点;深度k=0,表示只有一个根结点。
性质3 对于一棵非空的二叉树,如果叶结点个数为n0,度为2的结点数为n2, 则有 n0= n2+1。 证明:设n为二叉树的结点总数,n1为二叉树中度为1的结点个数,则有: n = n0 + n1 + n2
A
B
C
D
E
F
G
H I J K L MN O
A
B
C
D
E
F
G
H IJ
(a)满二叉树
(b)完全二叉树
问题:一个高度为h的完全二叉树最多有多少个结点?最少有多少个结点?
《二叉树的概念》课件
05
二叉树的应用
Chapter
在数据结构中的应用
二叉搜索树
二叉搜索树是一种特殊的二叉树,它的每个节点的左子树上的所有元素都小于 该节点,右子树上的所有元素都大于该节点。这种数据结构可以用于快速查找 、插入和删除操作。
AVL树和红黑树
这两种二叉树都是自平衡二叉搜索树,它们通过调整节点的左右子树的高度来 保持树的平衡,从而在插入、删除等操作时具有较好的性能。
VS
详细描述
平衡二叉树的特点是,它的左右子树的高 度差不会超过1,且左右子树都是平衡二 叉树。平衡二叉树的性质还包括,它的所 有叶节点的层数相等,且所有非叶节点的 左右子树的高度差不超过1。平衡二叉树 的查找、插入和删除操作的时间复杂度为 O(log n),其中n为节点数。
04
二叉树的遍历
Chapter
决策树
在机器学习和人工智能领域,决策树 是一种重要的分类和回归方法。其基 础结构就是二叉树,通过构建决策树 ,可以解决分类和回归问题。
THANKS
感谢观看
代码表示法
总结词:严谨规范
详细描述:使用编程语言的语法结构来表示二叉树,每个节点用对象或结构体表示,节点间的关系通 过指针或引用表示,严谨规范,易于编写和调试。
03
二叉树的性质
Chapter
深度最大的二叉树
总结词
深度最大的二叉树是指具有最大 可能深度的二叉树。
详细描述
在二叉树中,深度最大的二叉树 是满二叉树,即每个层级都完全 填满,没有空缺的节点。满二叉 树的深度等于其节点总数减一。
02
二叉树的表示方法
Chapter
图形表示法
总结词:直观明了
详细描述:通过图形的方式展示二叉树的结构,每个节点用圆圈或方框表示,节 点间的关系用线段表示,直观易懂,易于理解。
二叉树的定义及基本操作
二叉树的定义及基本操作二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点,并且子节点被分为左子节点和右子节点。
根节点是二叉树的唯一一个没有父节点的节点。
每个节点可以包含一个值,这个值可以是任何类型的数据。
二叉树的基本操作包括创建、插入、删除、遍历等。
1.创建二叉树:创建一个二叉树,首先需要创建根节点。
然后,可以通过插入节点的方式构建二叉树。
创建节点时需要指定值,并为左右子节点指定引用(可以是空)。
2.插入节点:在一棵二叉树中插入一个节点,需要找到一个合适的位置,使得新节点成为一个叶子节点或者替换已有的叶子节点。
可以按照一定的规则遍历树来寻找合适的位置,并将新节点插入。
3.删除节点:删除二叉树中的节点,需要首先找到要删除的节点,并找到一个合适的替代节点来取代被删除的节点。
可以按照一定的规则遍历树来找到要删除的节点,并将其替换为合适的节点。
4.节点:在二叉树中一个节点,可以按照一定的规则遍历二叉树,比较每个节点的值来确定方向。
如果找到了要的节点,返回该节点,否则返回空。
5.遍历二叉树:遍历二叉树的方式有三种:前序遍历、中序遍历和后序遍历。
- 前序遍历(Preorder Traversal):先访问根节点,然后递归遍历左子树,最后递归遍历右子树。
- 中序遍历(Inorder Traversal):先递归遍历左子树,然后访问根节点,最后递归遍历右子树。
- 后序遍历(Postorder Traversal):先递归遍历左子树,然后递归遍历右子树,最后访问根节点。
以上就是二叉树的基本定义和基本操作。
二叉树在计算机科学中有广泛的应用,例如在、排序和存储等领域使用频繁。
对二叉树的理解和掌握,对于有效解决相关问题非常重要。
二叉树的定义
⼆叉树的定义
⼆叉树结构最简单,规律性最强;
可以证明,所有的书都能转为未对应的⼆叉树,不是⼀般性。
普通树(多叉树)若不转化为⼆叉树,则运算很难实现
⼆叉树在树结构的应⽤中起着⾮常重要的作⽤,因为对⼆叉树的许多操作算法简单,
⽽任何树都可以与⼆叉树相互转换,这样就解决了树的存储结构及其运算中存在的复杂性。
⼆叉树的定义:⼆叉树是 n(n≥0)个结点的有限集,它或者是空集(n = 0),
或者由⼀个根节点及两棵互不相交的分别称作这个根的左⼦树和右⼦树的⼆叉树组成。
特点:
①每个结点最多有俩孩⼦(⼆叉树中不存在度⼤于2的结点)
②⼦树有左右之分,其次序不能颠倒(如果次序颠倒,则是另⼀棵树)
③⼆叉树可以是空集合,根可以有空的左⼦树或空的右⼦树
注意:⼆叉树不是树的特殊情况,它们是两个概念。
⼆叉树结点的⼦树要区分左⼦树和右⼦树,即使只有⼀颗⼦树也要进⾏区分,说明它是左⼦树还是右⼦树。
树当结点只有⼀个孩⼦时,就⽆须区分它是做还是右的次序。
因此⼆者是不同的,这是⼆叉树与树的最主要的差别。
也就是⼆叉树每个结点位置或者说次序都是固定的,可以是空,但是不可以说它没有位置,⽽树的结点位置是相对于别的结点来说的,没有别的结点时,它就⽆所谓左右了。
⼆叉树的五种基本形态:
注:虽然⼆叉树与树的概念不同,但有关树的基本术语对⼆叉树都适⽤。
数据结构——- 二叉树
证明: 5.1 二叉树的概念
(1)总结点数为 ●二叉树的主要性质 n=n0+n1+n2 (2)除根结点外,每个 ●性质3: 结点都有一个边e进入 任何一棵二叉树,若其终端结点数为n0, n=e+1 度为2的结点数为n2,则n0=n2+1 (3)边e又是由度为1或2 A 的点射出,因此 e=n1+2n2 G B (4)由(2)(3) F C D n=n1+2n2+1 (5)由(4)-(1)可得 G n0=n2+1
《数据结构与算法》
★★★★★
第五章 二叉树
廊坊师范学院 数学与信息科学学院
树型结构--实例:五子棋
A
B
D
E
F
C
…...........
…...........
第五章 二叉树
本章重点难点
重点: 二叉树的定义,性质,存储结 构以及相关的应用——遍历,二叉搜 索树,堆优先 队列,Huffman树等 难点: 二叉树的遍历算法及相关应用
证明: 5.1 二叉树的概念
(1)总结点数为 ●二叉树的主要性质 n=n0+n1+n2 (2)除根结点外,每个 ●性质3: 结点都有一个边e进入 任何一棵二叉树,若其终端结点数为n0, n=e+1 度为2的结点数为n2,则n0=n2+1 (3)边e又是由度为1或2 A 的点射出,因此 e=n1+2n2 G B (4)由(2)(3) F C D n=n1+2n2+1 (5)由(4)-(1)可得 G n0=n2+1
A B C E D F G
证明: 由性质4可推出
由性质2(深度为k的 二叉树,至多有2k+1-1 个结点)可知,高度 为h(k+1)的二叉树,其 有n (n>0)个结点的完全二叉树的高度为 结点个数n满足: 「log2(n+1) ,深度为「log2(n+1) -1 2h-1-1<n<=2h-1 高度:二叉树中最大叶结点的层数+1 2h-1<n+1<=2h 取对数得到: 0层 1 h-1<log2(n+1)<=h 3 1层 2 因为h是整数,所以 h= log2(n+1) 5 2层 4
数据结构入门-树的遍历以及二叉树的创建
数据结构⼊门-树的遍历以及⼆叉树的创建树定义:1. 有且只有⼀个称为根的节点2. 有若⼲个互不相交的⼦树,这些⼦树本⾝也是⼀个树通俗的讲:1. 树是有结点和边组成,2. 每个结点只有⼀个⽗结点,但可以有多个⼦节点3. 但有⼀个节点例外,该节点没有⽗结点,称为根节点⼀、专业术语结点、⽗结点、⼦结点、根结点深度:从根节点到最底层结点的层数称为深度,根节点第⼀层叶⼦结点:没有⼦结点的结点⾮终端节点:实际上是⾮叶⼦结点度:⼦结点的个数成为度⼆、树的分类⼀般树:任意⼀个结点的⼦结点的个数都不受限制⼆叉树:任意⼀个结点的⼦结点个数最多是两个,且⼦结点的位置不可更改⼆叉数分类:1. ⼀般⼆叉数2. 满⼆叉树:在不增加树层数的前提下,⽆法再多添加⼀个结点的⼆叉树3. 完全⼆叉树:如果只是删除了满⼆叉树最底层最右边的连续若⼲个结点,这样形成的⼆叉树就是完全⼆叉树森林:n个互不相交的树的集合三、树的存储⼆叉树存储连续存储(完全⼆叉树)优点:查找某个结点的⽗结点和⼦结点(也包括判断有没有⼦结点)速度很快缺点:耗⽤内存空间过⼤链式存储⼀般树存储1. 双亲表⽰法:求⽗结点⽅便2. 孩⼦表⽰法:求⼦结点⽅便3. 双亲孩⼦表⽰法:求⽗结点和⼦结点都很⽅便4. ⼆叉树表⽰法:把⼀个⼀般树转化成⼀个⼆叉树来存储,具体转换⽅法:设法保证任意⼀个结点的左指针域指向它的第⼀个孩⼦,右指针域指向它的兄弟,只要能满⾜此条件,就可以把⼀个⼀般树转化为⼆叉树⼀个普通树转换成的⼆叉树⼀定没有右⼦树森林的存储先把森林转化为⼆叉树,再存储⼆叉树四、树的遍历先序遍历:根左右先访问根结点,再先序访问左⼦树,再先序访问右⼦树中序遍历:左根右中序遍历左⼦树,再访问根结点,再中序遍历右⼦树后续遍历:左右根后续遍历左⼦树,后续遍历右⼦树,再访问根节点五、已知两种遍历求原始⼆叉树给定了⼆叉树的任何⼀种遍历序列,都⽆法唯⼀确定相应的⼆叉树,但是如果知道了⼆叉树的中序遍历序列和任意的另⼀种遍历序列,就可以唯⼀地确定⼆叉树已知先序和中序求后序先序:ABCDEFGH中序:BDCEAFHG求后序:这个⾃⼰画个图体会⼀下就可以了,⾮常简单,这⾥简单记录⼀下1. ⾸先根据先序确定根,上⾯的A就是根2. 中序确定左右,A左边就是左树(BDCE),A右边就是右树(FHG)3. 再根据先序,A左下⾯就是B,然后根据中序,B左边没有,右边是DCE4. 再根据先序,B右下是C,根据中序,c左下边是D,右下边是E,所以整个左树就确定了5. 右树,根据先序,A右下是F,然后根据中序,F的左下没有,右下是HG,6. 根据先序,F右下为G,然后根据中序,H在G的左边,所以G的左下边是H再来⼀个例⼦,和上⾯的思路是⼀样的,这⾥就不详细的写了先序:ABDGHCEFI中序:GDHBAECIF已知中序和后序求先序中序:BDCEAFHG后序:DECBHGFA这个和上⾯的思路是⼀样的,只不过是反过来找,后序找根,中序找左右树简单应⽤树是数据库中数据组织⼀种重要形式操作系统⼦⽗进程的关系本⾝就是⼀棵树⾯向对象语⾔中类的继承关系哈夫曼树六、⼆叉树的创建#include <stdio.h>#include <stdlib.h>typedef struct Node{char data;struct Node * lchild;struct Node * rchild;}BTNode;/*⼆叉树建⽴*/void BuildBT(BTNode ** tree){char ch;scanf("%c" , &ch); // 输⼊数据if(ch == '#') // 如果这个节点的数据是#说明这个结点为空*tree = NULL;else{*tree = (BTNode*)malloc(sizeof(BTNode));//申请⼀个结点的内存 (*tree)->data = ch; // 将数据写⼊到结点⾥⾯BuildBT(&(*tree)->lchild); // 递归建⽴左⼦树BuildBT(&(*tree)->rchild); // 递归建⽴右⼦树}}/*⼆叉树销毁*/void DestroyBT(BTNode *tree) // 传⼊根结点{if(tree != NULL){DestroyBT(tree->lchild);DestroyBT(tree->rchild);free(tree); // 释放内存空间}}/*⼆叉树的先序遍历*/void Preorder(BTNode * node){if(node == NULL)return;else{printf("%c ",node->data );Preorder(node->lchild);Preorder(node->rchild);}}/*⼆叉树的中序遍历*/void Inorder(BTNode * node){if(node == NULL)return;else{Inorder(node->lchild);printf("%c ",node->data );Inorder(node->rchild);}}/*⼆叉树的后序遍历*/void Postorder(BTNode * node){if(node == NULL)return;else{Postorder(node->lchild);Postorder(node->rchild);printf("%c ",node->data );}}/*⼆叉树的⾼度树的⾼度 = max(左⼦树⾼度,右⼦树⾼度) +1*/int getHeight(BTNode *node){int Height = 0;if (node == NULL)return 0;else{int L_height = getHeight(node->lchild);int R_height = getHeight(node->rchild);Height = L_height >= R_height ? L_height +1 : R_height +1; }return Height;}int main(int argc, char const *argv[]){BTNode * BTree; // 定义⼀个⼆叉树printf("请输⼊⼀颗⼆叉树先序序列以#表⽰空结点:");BuildBT(&BTree);printf("先序序列:");Preorder(BTree);printf("\n中序序列:");Inorder(BTree);printf("\n后序序列:");Postorder(BTree);printf("\n树的⾼度为:%d" , getHeight(BTree));return 0;}// ABC##DE##F##G##。
二叉树的创建与遍历的实验总结
二叉树的创建与遍历的实验总结一、实验目的二叉树是一种重要的数据结构,本实验旨在通过编写程序实现二叉树的创建和遍历,加深对二叉树的理解,并掌握二叉树相关算法。
二、实验原理1. 二叉树的定义:每个节点最多有两个子节点的树结构。
2. 二叉树的遍历方式:前序遍历、中序遍历、后序遍历和层次遍历。
3. 二叉树的创建方式:递归创建和非递归创建。
三、实验内容1. 实现递归创建二叉树:通过输入节点值,按照前序遍历方式逐个创建节点,直到输入结束符号为止。
2. 实现非递归创建二叉树:通过输入节点值,按照层次遍历方式逐个创建节点,直到输入结束符号为止。
3. 实现前序遍历、中序遍历、后序遍历和层次遍历函数,并输出结果。
四、实验步骤1. 定义节点结构体Node,包含数据域和左右子节点指针域。
2. 实现递归创建函数createTreeRecursion():读入一个字符,如果是结束符号,则返回NULL;否则新建一个节点,并依次读入左右子节点值并分别递归调用createTreeRecursion()函数,将左右子节点指针指向返回值。
3. 实现非递归创建函数createTreeNonRecursion():读入一个字符,如果是结束符号,则返回NULL;否则新建一个节点,并将其加入队列中。
在队列不为空的情况下,取出队首元素并分别读入左右子节点值并新建节点加入队列中,将左右子节点指针指向新建的节点。
4. 实现前序遍历函数preorderTraversal():输出当前节点数据,递归调用preorderTraversal()函数遍历左子树和右子树。
5. 实现中序遍历函数inorderTraversal():递归调用inorderTraversal()函数遍历左子树,输出当前节点数据,再递归调用inorderTraversal()函数遍历右子树。
6. 实现后序遍历函数postorderTraversal():递归调用postorderTraversal()函数遍历左子树和右子树,输出当前节点数据。
二叉树 c语言
二叉树 c语言在计算机科学领域中,树型数据结构是一种非常重要的数据结构,在实际开发中也得到了广泛的应用。
其中,二叉树又是一种非常常见的树型结构。
二叉树在很多情况下都能够提供更好的算法效率,同时也易于理解和实现,因此我们可以通过通过学习和掌握二叉树的特点以及优点,来更好的应用到实际开发中。
一、二叉树的定义二叉树是一种树型结构,树型结构是由节点构成的。
二叉树与一般的树型结构不同,它的每个节点最多只有两个子节点,分别称为左子树和右子树。
它们可以为空或者不为空,其子节点的数量时不固定且没有任何限制的。
二叉树的定义如下:(1)空树是树的一种特殊的状态。
我们可以把它称为二叉树;(2)若不是空树,那么它就是由一个称为根节点(root)的元素和左右两棵分别称为左子树(left subtree)和右子树(right subtree)的二叉树组成。
二、二叉树的特性(1)每个节点最多只有两个子节点,分别称为左子节点和右子节点;(2)左子树和右子树是二叉树;(3)二叉树没有重复的节点。
三、二叉树的应用二叉树是一种非常实用的数据结构,因为它可以模拟很多实际生活中的情况。
例如,我们可以利用二叉树来对某些数据进行分类和排序。
在二叉树的基础上,我们还可以构造二叉堆、哈夫曼树等更高级的数据结构。
除此之外,二叉树还可以应用到程序设计中。
例如,我们可以构造一个二叉树来表示某个程序的控制流,这个程序在执行时可以沿着二叉树的各个节点进行分支和选择,实现不同的功能。
此外,我们还可以利用二叉树来加快某些算法的执行效率,比如二分查找算法等。
四、二叉树的遍历方式对于二叉树的遍历,有三种基本方式,即前序遍历、中序遍历、后序遍历。
它们的遍历顺序不同,因此也得到了不同的称呼。
下面我们来简要介绍一下这三种遍历方式的特点和应用。
(1)前序遍历前序遍历是指首先访问树的根节点,然后按照从左到右的顺序依次遍历左子树和右子树。
前序遍历的应用非常广泛,可以用于生成表达式树、构造二叉树等等。
二叉树实验报告
二叉树实验报告1. 引言二叉树是一种常用的数据结构,广泛应用于计算机科学和信息技术领域。
本实验旨在通过对二叉树的理解和实现,加深对数据结构与算法的认识和应用能力。
本报告将介绍二叉树的定义、基本操作以及实验过程中的设计和实现。
2. 二叉树的定义二叉树是一个有序树,其每个节点最多有两个子节点。
树的左子节点和右子节点被称为二叉树的左子树和右子树。
3. 二叉树的基本操作3.1 二叉树的创建在实验中,我们通过定义一个二叉树的节点结构来创建一个二叉树。
节点结构包含一个数据域和左右指针,用于指向左右子节点。
创建二叉树的过程可以通过递归或者迭代的方式来完成。
3.2 二叉树的插入和删除二叉树的插入操作是将新节点插入到树中的合适位置。
插入时需要考虑保持二叉树的有序性。
删除操作是将指定节点从树中删除,并保持二叉树的有序性。
在实验中,我们可以使用递归或者循环的方式实现这些操作。
3.3 二叉树的遍历二叉树的遍历是指按照某种次序访问二叉树的所有节点。
常见的遍历方式包括前序遍历、中序遍历和后序遍历。
前序遍历先访问根节点,然后按照左孩子-右孩子的顺序递归遍历左右子树。
中序遍历按照左孩子-根节点-右孩子的顺序递归遍历左右子树。
后序遍历按照左孩子-右孩子-根节点的顺序递归遍历左右子树。
3.4 二叉树的查找查找操作是指在二叉树中查找指定的值。
可以通过递归或者循环的方式实现二叉树的查找操作。
基本思路是从根节点开始,通过比较节点的值和目标值的大小关系,逐步向左子树或者右子树进行查找,直到找到目标节点或者遍历到叶子节点。
4. 实验设计和实现在本实验中,我们设计并实现了一个基于Python语言的二叉树类。
具体实现包括二叉树的创建、插入、删除、遍历和查找操作。
在实验过程中,我们运用了递归和迭代的方法实现了这些操作,并进行了测试和验证。
4.1 二叉树类的设计我们将二叉树的节点设计为一个类,其中包括数据域和左右子节点的指针。
另外,我们设计了一个二叉树类,包含了二叉树的基本操作方法。
【数据结构】二叉树
【数据结构】⼆叉树【⼆叉树】 ⼆叉树是最为简单的⼀种树形结构。
所谓树形结构,其特征(部分名词的定义就不明确给出了,毕竟不是学术⽂章。
)在于: 1. 如果是⾮空的树形结构,那么拥有⼀个唯⼀的起始节点称之为root(根节点) 2. 除了根节点外,其他节点都有且仅有⼀个“⽗节点”;除此外这些节点还都可以有0到若⼲个“⼦节点” 3. 树中的所有节点都必须可以通过根节点经过若⼲次后继操作到达 4. 节点之间不会形成循环关系,即任意⼀个节点都不可能从⾃⾝出发,经过不重复的径路再回到⾃⾝。
说明了树形结构内部蕴含着⼀种“序”,但是不是线性表那样的“全序” 5. 从树中的任意两个节点出发获取到的两个任意⼦树,要不两者⽆交集,要不其中⼀者是另⼀者的⼦集 限定到⼆叉树,⼆叉树就是任意⼀个节点⾄多只能有两个⼦节点的树形结构。
也就是说,某个节点的⼦节点数可以是0,1或2。
由于可以有两个⼦节点,所以区别两个⼦节点可以将其分别定义为左⼦节点和右⼦节点。
但是需要注意的是,若⼀个节点只有⼀个⼦节点,那么也必须明确这个⼦节点是左⼦节点还是右⼦节点。
不存在“中⼦节点”或者“单⼦节点”这种表述。
由于上述规则对所有节点都⽣效,所以⼆叉树也是⼀个递归的结构。
事实上,递归就是⼆叉树⼀个⾮常重要的特点,后⾯还会提到很多通过递归的思想来建⽴的例⼦。
对于左⼦节点作为根节点的那颗⼆叉树被称为相对本节点的左⼦树,右⼦树是同理。
■ 基本概念 空树 不包含任何节点的⼆叉树,连根节点也没有 单点树 只包含⼀个根节点的⼆叉树是单点树 ⾄于兄弟关系,⽗⼦关系,长辈后辈关系是⼀⾔既明的就不说了。
树中没有⼦节点的节点被称为树叶(节点),其余的则是分⽀节点。
⼀个节点的⼦节点个数被称为“度数”。
正如上所说,⼆叉树任意节点的度数取值可能是0,1或2。
节点与节点之间存在关联关系,这种关联关系的基本长度是1。
通过⼀个节点经过若⼲个关联关系到达另⼀个节点,经过的这些关联关系合起来被称为⼀个路径。
第六章-树和二叉树
之
树 和 二 叉 树 13
1 2 3 A B C
4 5 6 7 0 D E F
8 0
9 10 0 G
¾ 二叉树顺序存储的算法描述
数 据 结 构
¾ 初始化二叉树
之
树 和 二 叉 树 14
#define Max_Size 100 typedef int TElemType; typedef TElemType SqBT[Max_Size+1]; void InitBT(SqBT bt){//设置空树 int i; for(i=1;i<=Max_Size;i++) bt[i]=0; }
数 据 结 构
之
树 和 二 叉 树 19
¾ 后序遍历顺序二叉树算法 void PostBT(SqBT bt,int i){ if(i>Max_Size||!bt[i]) return; PostBT(bt,2*i); PostBT(bt,2*i+1); printf("%3d ",bt[i]); }
数 据 结 构
之
树 和 二 叉 树 4
5. 孩子结点、双亲结点、兄弟结点、堂兄弟 结点、祖先结点、子孙结点…… 6. 结点的层次从根开始,根为第一层,根的 孩子为第二层;若某结点在第L层,则其 子树的根就在第L+1层。 7. 树的深度或高度:树中结点的最大层次。 8. 有序树:如果将树中结点的各子树看成是 从左至右有次序的;反之,则是无序树。 9. 森林:是m棵互不相交的树的集合。
数 据 结 构
之
树 和 二 叉 树 25
¾ 打印一维数组 void printSq(SqBT bt){ int i; printf("\nSeqArray:"); for(i=1;i<=Max_Size;i++) printf("%3d ",bt[i]); }
05二叉树
}
if (Parent->Lchild == NULL) /* Parent所指结点左子树为空 */ Parent->Lchild = ptr;
else
{
/* Parent所指结点左子树非空 */
ptr->Lchild = Parent->Lchild;
Parent->Lchild = ptr;
}
二叉树可以是空的,空二叉树没有任何结 点; 二叉树上的每个结点最多可以有两棵子树, 这两棵子树是不相交的; 二叉树上一个结点的两棵子树有左、右之 分,次序是不能颠倒的。
图5-2 两棵不同的二叉树
从二叉树中的一个结点往下,到达它的 某个子、孙结点时所经由的路线,称为一条 “路径”。对于路径来说,从开始结点到终 止结点,中间经过的结点个数,称为路径的 “长度”。从根结点开始、到某个结点的路 径长度,称为该结点的“深度”。
一棵一般的二叉树,是由如下的3类结点组成的: 根结点——二叉树的起始结点; 分支(或内部结点)——至少有一个非空子树 (即度为1或2)的结点 叶结点——没有非空子树(即度为0)的结点。 有两种特殊的二叉树:满二叉树和完全二叉树。
所谓“满二叉树”,是指该二叉树的每 一个结点,或是有两个非空子树的结点,或 是叶结点,且每层都必须含有最多的结点个 数。
性质5-2 树高为k(k≥0)的二叉树, 最多有2k+1−1个结点。 【证明】由性质5-1可知,在树高为k的 二叉树里,第0层有20个结点,第1层有21个 结点,第2层有22个结点,„„,第k层有2k 个结点。因此,要求出树高为k的二叉树的 结点个数,就是求和:
20 + 21 + 22 +„+ 2k
二叉树的创建与应用实例
二叉树的创建与应用实例一、引言二叉树是一种非常常见的数据结构,它在很多领域都有着广泛的应用,如文件系统、计算机科学、数据挖掘等。
了解和掌握二叉树的结构和应用,对于深入理解数据结构和算法是非常有帮助的。
本篇文档将详细介绍二叉树的创建以及应用实例。
二、二叉树的基本概念二叉树是一种递归定义的数据结构,它由一个根节点和两个子节点(分别称为左子树和右子树)组成。
二叉树的每个节点最多有两个子节点,这使得二叉树具有高度优化和紧凑性的特点。
三、二叉树的创建创建二叉树通常有两种方式:手动创建和通过算法创建。
1.手动创建:手动创建二叉树需要按照二叉树的定义规则,逐个创建节点并连接它们。
这种方式的优点是直观易懂,缺点是手动创建大量的节点会比较繁琐。
2.算法创建:算法创建二叉树通常使用递归的方式,通过特定的算法步骤逐个构建节点。
这种方式可以自动化地创建大量的二叉树,而且效率较高。
四、二叉树的应用实例1.文件系统:文件系统中的目录结构可以看作是一种特殊的二叉树,其中根节点是整个文件系统的入口,左子节点表示子目录,右子节点表示文件。
通过二叉树可以方便地管理和查找文件。
2.计算机科学:在计算机科学中,二叉树常用于表示程序的执行路径,如决策树、堆栈等。
此外,二叉树也常用于数据压缩和哈希算法等。
3.数据挖掘:在数据挖掘中,二叉树常用于分类和聚类算法,如决策树、k-means等。
通过构建二叉树,可以将数据集划分为不同的类别,从而更好地理解和分析数据。
五、应用实例代码展示下面是一个简单的Python代码示例,展示了如何手动创建一个简单的二叉搜索树(BinarySearchTree,BST):```pythonclassNode:def__init__(self,key):self.left=Noneself.right=Noneself.val=keydefinsert(root,key):ifrootisNone:returnNode(key)else:ifroot.val<key:root.right=insert(root.right,key)else:root.left=insert(root.left,key)returnrootdefinorder(root):ifroot:inorder(root.left)print(root.val),inorder(root.right)r=Node(50)r=insert(r,30)r=insert(r,20)r=insert(r,40)r=insert(r,70)r=insert(r,60)r=insert(r,80)print("Inordertraversalofthegiventree")inorder(r)#Output:20304050607080```六、总结本篇文档详细介绍了二叉树的创建以及应用实例,包括二叉树的基本概念、创建方式以及在文件系统、计算机科学、数据挖掘等领域的应用。
二叉树
例.设结点的权集W ={10,12,4,7,5,18,2},建立一棵 哈夫曼树,并求出其带权路径长度。
5.什么是哈夫编码? 在数据通讯中,经常需要将传送的文字转换成由二进制 字符0,1组成的二进制代码,称之为编码。 如果在编码时考虑字符出现的频率,让出现频率高的字 符采用尽可能短的编码,出现频率低的字符采用稍长的编 码,构造一种不等长编码,则电文的代码就可能更短。哈 夫曼编码是一种用于构造使电文的编码总长最短的编码方 案。 6.求哈夫曼编码的方法 (1)构造哈夫曼树 设需要编码的字符集合为{d1,d2,…,dn},它们在电文 中出现的次数集合为{w1,w2,…,wn},以d1,d2,…, dn作为叶结点,w1,w2,…,wn作为它们的权值,构造 一棵哈夫曼树。
6.Insert操作 二叉树的插入操作与查找操作类似,为了将X插入到树 中,实际上就是先对二叉树进行查找操作。如果找到X,则 什么也不做或做一些“更新”。否则,将X插入到遍历路径 的最后一个节点上。 7.Delete操作 删除操作要比插入操作困难,主要是因为其要考虑的 情况比插入多。 如果要删除的节点是一片树叶,那么可以直接删除。 如果节点有一个儿子,则该节点可以在其父节点调整指针 绕过该节点后被删除。复杂的情况是处理有两个儿子的节 点。一般的删除策略是用其右子树的最小数据代替该节点 的数据并递归地删除那个节点。因为有子树中的最小节点 不可能有左儿子,所以第二次Delete要容易。
例.设有A,B,C,D,E,F 6个数据项,其出现的频度分别 为6、5、4、3、2、1,构造一棵哈夫曼树,并确定它们的 哈夫曼编码。
(2)在哈夫曼树上求叶结点的编码。 规定哈夫曼树中的左分支代表0,右分支代表1,则从根 结点到每个叶结点所经过的路径分支组成的0和1的序列便 为该结点对应字符的编码,上图编码为: A=11;B=01;C=00;D=100;E=1011;F=1010。 在哈夫曼编码树中,树的带权路径长度的含义是各个字 符的码长与其出现次数的乘积之和,也就是电文的代码总 长。采用哈夫曼树构造的编码是一种能使电文代码总长为 最短的、不等长编码。 求哈夫曼编码,实质上就是在已建立的哈夫曼树中,从 叶结点开始,沿结点的双亲链域回退到根结点,每回退一 步,就走过了哈夫曼树的一个分支,从而得到一位哈夫曼 码值,由于一个字符的哈夫曼编码是从根结点到相应叶结 点所经过的路径上各分支所组成的0,1序列,因此先得到 的分支代码为所求编码的低位码,后得到的分支代码为所 求编码的高位码。
二叉树
7.1.2
二叉树的五种基本形态
Ф
左子树
(a) (b) (c)
右子树
(d)
左子树
(e)
右子树
7.1.3
两种特殊形态的二叉树
结点拥有的子树数称为该结点的度(degree)。度为零的结点称 为叶子(leaf),其余结点称为分支结点(branch)。树中结点的最大的 度称为树的度。显然,二叉树结点的度可能为0、1或2。 根结点的层次(level)为1,其余结点的层次等于该结点的双亲结 点的层次加1。树中结点的最大层次称为该树的高度或深度。 1.满二叉树 2.完全二叉树
7.6
本章小结
本章讨论了二叉树数据类型的定义以及实现方法。二叉树是 以两个分支关系定义的层次结构,结构中的数据元素之间存在着一 对多的关系,因此它为计算机应用中出现的具有层次关系或分支关 系的数据,提供了一种自然的表示方法。 二叉树是有明确的左子树和右子树的树形结构,因此当用二 叉树来描述层次关系时,其左孩子表示下属关系,而右孩子表示的 是同一层次的关系。 二叉树的遍历算法是实现各种操作的基础。遍历的实质是按 某种规则将二叉树中的数据元素排列成一个线性序列,二叉树的线 索链表便可看成是二叉树的一种线性存储结构,在线索链表上可对 二叉树进行线性化的遍历,即不需要递归,而是从第一个元素起, 逐个访问后继元素直至后继为空止。因此,线索链表是通过遍历生 成的,即在遍历过程中保存结点之间的前驱和后继的关系。
7.1.4
二叉树的几个特性
由二叉树的定义、形态,我们很容易的得出下面二叉树的 一些特性。 性质1 在二叉树的第i 层上至多有 2i-1 个结点(i≥1)。 性质2 深度为k的二叉树中至多含有2k-1 个结点(k≥1)。 性质3 对任何一棵二叉树 T,如果其终端结点数为,度为 2的结点数为,则。 性质4 具有n个结点的完全二叉树的深度为 log2n+1。 性质5 如果对一棵有 n 个结点的完全二叉树(其深度为 log2n+1)的结点按层序(从第1层到第 log2n+1 层,每层从左到 右)从1起开始编号。
二叉树的基本定义
二叉树的基本定义二叉树的基本定义2.树的深度——组成该树各结点的最大层次,如上图,其深度为3;3.森林——指若干棵互不相交的树的集合,如上图,去掉根结点A,其原来的二棵子树T1、T2、T3的集合{T1,T2,T3}就为森林;4.有序树——指树中同层结点从左到右有次序排列,它们之间的次序不能互换,这样的树称为有序树,否则称为无序树。
树的表示方法有许多,常用的方法是用括号:先将根结点放入一对圆括号中,然后把它的子树由左至右的顺序放入括号中,而对子树也采用同样的方法处理;同层子树与它的根结点用圆括号括起来,同层子树之间用逗号隔开,最后用闭括号括起来。
如上图可写成如下形式:(A(B(E(K,L),F),C(G),D(H(M),I,J)))二叉树基本形态二叉树也是递归定义的,其结点有左右子树之分,逻辑上二叉树有五种基本形态:(1)空二叉树——(a);(2)只有一个根结点的二叉树——(b);(3)只有左子树——(c);(4)只有右子树——(d);(5)完全二叉树——(e)注意:尽管二叉树与树有许多相似之处,但二叉树不是树的特殊情形。
(1)完全二叉树——若设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层有叶子结点,并且叶子结点都是从左到右依次排布,这就是完全二叉树。
(2)——除了叶结点外每一个结点都有左右子叶且叶子结点都处在最底层的二叉树,。
(3)深度——二叉树的层数,就是高度。
(1) 在二叉树中,第i层的结点总数不超过2^(i-1);(2) 深度为h的二叉树最多有2^h-1个结点(h>=1),最少有h个结点;(3) 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;(4) 具有n个结点的完全二叉树的深度为int(log2n)+1(5)有N个结点的完全二叉树各结点如果用顺序方式存储,则结点之间有如下关系:若I为结点编号则如果I1,则其父结点的编号为I/2;如果2*IN,则无左儿子;如果2*I+1N,则无右儿子。
树、二叉树、查找算法总结
树、⼆叉树、查找算法总结树的定义形式化定义树:T={D,R }。
D是包含n个结点的有限集合(n≥0)。
当n=0时为空树,否则关系R满⾜以下条件:l 有且仅有⼀个结点d0∈D,它对于关系R来说没有前驱结点,结点d0称作树的根结点。
l 除根结点外,每个结点有且仅有⼀个前驱结点。
l D中每个结点可以有零个或多个后继结点。
递归定义树是由n(n≥0)个结点组成的有限集合(记为T)。
其中:l 如果n=0,它是⼀棵空树,这是树的特例;l 如果n>0,这n个结点中存在⼀个唯⼀结点作为树的根结点(root),其余结点可分为m (m≥0)个互不相交的有限⼦集T1、T2、…、Tm,⽽每个⼦集本⾝⼜是⼀棵树,称为根结点root的⼦树。
ð 树中所有结点构成⼀种层次关系!树的基本术语度结点的度:⼀个结点的⼦树的个数树的度:各节点的度的最⼤值。
通常将度为m的树成为m次树或m叉树结点分⽀结点:度不为0的结点(也称⾮终端结点)度为1的结点成为单分⽀结点,度为2的结点称为双分⽀结点叶结点:度为0的结点路径与路径长度路径:两个结点di和dj的结点序列(di,di1,di2,…,dj)。
其中<dx,dy>是分⽀。
路径长度:等于路径所通过的结点数⽬减1(即路径上的分⽀数⽬)结点的层次和树⾼度层次:根结点层次为1,它的孩⼦结点层次为2。
以此类推。
树的⾼度(深度):结点中的最⼤层次;有序树和⽆序树有序树:若树中各结点的⼦树是按照⼀定的次序从左向右安排的,且相对次序是不能随意变换的⽆序树:和上⾯相反森林只要把树的根结点删去就成了森林。
反之,只要给n棵独⽴的树加上⼀个结点,并把这n棵树作为该结点的⼦树,则森林就变成了⼀颗树。
树的性质性质1:树中的结点数等于所有结点的度数之和加1。
证明:树的每个分⽀记为⼀个度,度数和=分⽀和,⽽再给根节点加个分⽀性质2:度为m的树中第i层上⾄多有mi-1个结点(i≥1)。
性质3 ⾼度为h的m次树⾄多有个结点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二叉树的类型定义及创建七#include<stdlib.h>#include<stdio.h>#include<malloc.h>//函数状态码定义#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define OVERFLOW -1#define INFEASIBLE -2#define NULL 0typedef int Status;//以下为二叉树的类型定义及创建、销毁、遍历、求树深、求结点数、叶结点数、复制、左右互换、查找、定位双亲、删除、凹式输出等操作实现//树中元素类型定义与二叉链表存储结构定义typedef char TElemType;typedef struct BiTNode{TElemType data;struct BiTNode *lchild, *rchild;} BiTNode, *BiTree;Status CreateBiTree(BiTree &T){//先序创建二叉树各结点,注意输入时空指针不要丢TElemType e;scanf("%c",&e);if(e==' ')T=NULL;else{T=(BiTree)malloc(sizeof(BiTNode));if(!T)exit(OVERFLOW);T->data=e;CreateBiTree(T->lchild);CreateBiTree(T->rchild);}return OK;}int TreeDepth(BiTree T){//递归法求树的深度//思路:如果树为空树则深度为0,否则,先递归计算出左子树的深度,再计算出右子树的深度,最后,树的深度为两子树深度的最大值加1int d;int d1,d2;if(T==NULL)d=0;else{d1=TreeDepth(T->lchild);d2=TreeDepth(T->rchild);if(d1>d2)d=d1+1;else d=d2+1;}return d;}int LeafCount(BiTree T){//递归法统计叶子结点的个数//思路:如果树为空树则叶子结点的个数0,如果树为一个结点树则叶子结点的个数1,否则,先递归计算出左子树的叶子结点的个数,//再计算出右子树的叶子结点的个数,最后,树的叶子结点的个数为两子树叶子结点的个数和加int d;if(T==NULL)d=0;else if(T->lchild==NULL&&T->rchild==NULL)d=1;elsed=LeafCount(T->lchild)+LeafCount(T->rchild);return d;}int NodeCount(BiTree T){//递归法统计所有结点的个数//思路:如果树为空树则叶子结点的个数0,否则,先递归计算出左子树的叶子结点的个数,再计算出右子树的叶子结点的个数,//最后,树的叶子结点的个数为两子树叶子结点的个数和加1int n;if(T==NULL)n=0;else n=1+NodeCount(T->lchild)+NodeCount(T->rchild);return n; }Status PrintTElem(TElemType e){printf("%c",e);return OK;}Status PreOrderTraverse(BiTree T,Status(*visit)(TElemType)){//算法思路:定义输出函数PrintElem,调用树的先序遍历函数,并将其传递给先序遍历函数中的参数visit即可,假设元素为字符型if(T){if( (*visit)(T->data) ) //s1if( PreOrderTraverse(T->lchild,(*visit))) //s2if( PreOrderTraverse(T->rchild,(*visit))) //s3return OK;return ERROR; //只要有一次访问失败则必执行此语句}else return OK; //树空时返回OK}Status InOrderTraverse(BiTree T,Status(*visit)(TElemType)){//算法思路:定义输出函数PrintElem,调用树的中序遍历函数,并将其传递给中序遍历函数中的参数visit即可,假设元素为字符型if(T){if( InOrderTraverse(T->lchild,(*visit))) //s1if( (*visit)(T->data) ) //s2if( InOrderTraverse(T->rchild,(*visit))) //s3return OK;return ERROR; //只要有一次访问失败则必执行此语句}else return OK; //树空时返回OK}Status PostOrderTraverse(BiTree T,Status(*visit)(TElemType)){if(T){if( InOrderTraverse(T->lchild,(*visit))) //s1if( InOrderTraverse(T->rchild,(*visit))) //s2if( (*visit)(T->data) ) //s3return OK;return ERROR; //只要有一次访问失败则必执行此语句}else return OK; //树空时返回OK}Status ExchangeBiTree(BiTree &T){//二叉树用二叉链表存储,左右互换BiTNode *temp;if(T==NULL)return OK;else{temp=T->lchild;T->lchild=T->rchild;T->rchild=temp;ExchangeBiTree(T->lchild);ExchangeBiTree(T->rchild);return OK;}}void main(){BiTree BiT;CreateBiTree(BiT);printf("二叉树BiT的先序输出序列为:"); PreOrderTraverse(BiT,PrintTElem);printf("\n");printf("二叉树BiT的中序输出序列为:"); InOrderTraverse(BiT,PrintTElem);printf("\n");printf("二叉树BiT的后序输出序列为:"); PostOrderTraverse(BiT,PrintTElem);printf("\n");printf("二叉树BiT树深:%d\n",TreeDepth(BiT));printf("二叉树BiT结点总数:%d\n", NodeCount(BiT)); printf("递归求得二叉树BiT叶子结点数为:%d\n",LeafCount(BiT));ExchangeBiTree(BiT);printf("二叉树BiT的先序输出序列为:"); PreOrderTraverse(BiT,PrintTElem);printf("\n");printf("二叉树BiT的中序输出序列为:"); InOrderTraverse(BiT,PrintTElem);printf("\n");printf("二叉树BiT的后序输出序列为:"); PostOrderTraverse(BiT,PrintTElem);printf("\n");}60设计算法统计孩子兄弟表示的树或森林的叶子结点数(提示:用递归,仿照求森林的深度。
叶子意味着firstchild为空,注意第一棵树的叶子数如何求)作业:求哈夫曼编码,A-H出现频率(%)7,19,2,6,32,3,21,10#include<stdio.h>#include<stdlib.h>#include<string.h>#define N 100// 赫夫曼树和赫夫曼编码的存储表示typedef struct{char ch;unsigned int weight;unsigned int parent,lchild,rchild;}HTNode,*HuffmanTree;typedef char * *HuffmanCode;int min(HuffmanTree &HT,int i){ // 函数void select()调用int j,flag;int k=65535;for(j=1;j<=i;j++)if(HT[j].weight<k&&HT[j].parent==0)k=HT[j].weight,flag=j;HT[flag].parent=1;return flag;}void Select(HuffmanTree &HT,int i,int &s1,int &s2){s1=min(HT,i);s2=min(HT,i);}//构造赫夫曼树HT , 并求出n 个字符的赫夫曼编码HCvoid HuffmanCoding(HuffmanTree &HT,HuffmanCode &HC,int *w, char *cha,int n){char c;int f,i,start,m,s1,s2;HTNode *p;if(n<=1) return ;m=2*n-1;HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode)); for(p=HT,++p,i=1;i<=n;++i,++p){ p->ch=cha[i];p->weight=w[i];p->parent=0;p->lchild=0;p->rchild=0;}for(;i<=m;++i,++p){p->weight=0;p->parent=0;p->lchild=0;p->rchild=0;}for(i=n+1;i<=m;++i){Select(HT,i-1,s1,s2);HT[s1].parent=i;HT[s2].parent=i;HT[i].lchild=s1;HT[i].rchild=s2;HT[i].weight=HT[s1].weight+HT[s2].weight;} HC=(HuffmanCode)malloc((n+1)*sizeof(char *));char *cd=(char *)malloc(n*sizeof(char));cd[n-1]='\0';for(i=1;i<=n;++i){start=n-1;for(c=i,f=HT[i].parent;f!=0;c=f,f=HT[f].parent)if(HT[f].lchild == c) cd[--start]='0';else cd[--start]='1';HC[i]=(char *)malloc((n-start)*sizeof(char));strcpy(HC[i],&cd[start]);printf("字符为%c",HT[i].ch);printf("的编码是%s\n ",HC[i]);}free(cd);}// 赫夫曼译码函数void DeCoding(HuffmanTree &HT,HuffmanCode &HC,int n){char f[N];printf("请输入一串字符串:\n");getchar();gets(f);int i;int m,k=0;while(f[k]!='\0')for(i=1;i<=n;i++){m=strlen(HC[i]);if(strncmp(HC[i],f+k,m)==0){ k=k+m;printf("输出%s的字符是",HC[i]);printf("%c\n",HT[i].ch);}}}void displayHT(HuffmanTree &HT,int n,int m){ int i;printf("打印赫夫曼HC存储结构\n");printf("编号字符权重双亲左孩子右孩子\n");printf("%d\t%c\t%d\t%d\t%d\t%d\n",i,HT[i].ch,HT[i].weight, HT[i].parent,HT[i].lchild,HT[i].rchild);for(i=n+1;i<=m;i++)printf("%d\t\t%d\t%d\t%d\t%d\n",i,HT[i].weight,HT[i].parent,HT[i].lchild,HT[i]. rchild);}main(){HuffmanTree HT;HuffmanCode HC;int n,i;printf("*********建赫夫曼树,编码和译码程序*************");printf("\n输入建赫夫曼树元素的个数:");scanf("%d",&n);int m=2*n-1;char cha[9];int w[9];{printf("第%d个元素=>字母和权重:\n",i); getchar();scanf("%c %d",&cha[i],&w[i]);}HuffmanCoding(HT,HC,w,cha,n);displayHT(HT,n,m);DeCoding(HT,HC,n);return 0;}。