高频中小信号谐振放大器解析
高频小信谐振号放大器讲解

课程设计报告课程名称高频电子线路系别:工程技术系专业班级:电子信息工程0901学号:0912070145成员:孙龙课程题目:高频小信号谐振放大器设计完成日期:2011.12.16指导老师:薛凯凯2011年12月16日课程设计目的1、学习高频小信号调谐放大器的设计方法2、掌握高频单调谐放大器的等效电路、性能指标要求及分析设计3、掌握中心频率和电压增益的测试方法4、通过设计熟练各种仿真软件,增强学生理论联系实际的能力课程设计要求1、根据设计要求和技术指标设计好电路,选好元件及参数;2、绘出pcb原理图,并用multisim仿真;3、在万能板或面包板或PCB板上制作出电路;4、分析设计中遇到的问题并撰写设计报告课程设计注意事项1、元件参数的选择2、元件的等效替换3、、系统频率的失真4、设计电路的布局5、电路板的调试课程设计内容高频小信号谐振放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。
高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。
课程设计简要操作步骤1、确定电路的形式2、设置静态工作点3、计算谐振回路的参数4、确定输入耦合回路及高频滤波电容5、电路的安装及调试6、反复检验,寻找问题,解决问题7、撰写实验报告、实验过程及实验心得体会8、完成实验课程设计心得体会在这次课程设计过程中最深刻的感触是光有理论知识是远远不够的,还必须懂一些实践中的知识,比如,元器件的参数在设置时尽量选择与标称值相等或相近的(如电阻和电容值的选择);元器件的等效替换(实际电路板上,我们使用中周代替变压器调谐);电路板的调试。
实践中,我们应将课堂所学与实验课结合起来,锻炼自己的理论联系实际的能力和实际动手能力。
认识来源于实践,实践是认识的动力和最终目的,实践是检验真理的唯一标准。
总而言之,课程设计在我们努力下基本达到了预期目的,所制的产品在功能上基本达到了设计要求,而且在工艺上也已经尽可能的做到了经济,美观。
高频小信号谐振放大器实验总结(第五组)

高频小信号谐振放大器(总结)高频小信号谐振放大器=高频+小信号+谐振+放大;高频:由于高频频率高波长短,不同于低频,所以在线路中会存在反射、串扰;以及整块电路板的寄生参数的影响会导致效果会一点也出不来。
因为此次的频率在6M频率不算很高,总结一些解决方法:①反射:器件之间的连线要短,最好是直接相连,背面焊接不要出现就90°转折。
②串扰:级与级之间的地线处理好,最好是单点供地,并且地线要是所有传输线中最粗的一根,信号线不要裸露的从地线上方走过。
③寄生参数:是个不好处理的参数,但是可以通过输出的波形分析出,然后实施相应方法避免或解决,如布线不要有平行线,减小接入系数可以减小晶体管极间电容的影响。
注:自制扼流线圈或电感在绕制好后需用绝缘胶布固定,防止其因线圈变动影响稳定性。
小信号:小信号的输入大小影响晶体管的基极偏置,但是不能太小,因为学校的数字合成信号发生器在输出小于10mv的时候会有寄生波纹输出,在示波器上显示的可能是几百Hz属于低频信号,但是此时的信号仍然是高频信号,出现这种现象是因为示波器导致的视觉误差。
因为这种波纹的存在导致输出的波形上下浮动,很容易认为是电路的寄生振荡。
解决方法是提高小信号的输出幅度,一般在100mv时寄生波纹很小。
(注:有的数字合成信号发生器输出没有寄生波纹)谐振:涉及到输出的中心频率和带宽,如图:电容和电感可由计算可得,而这个电位器的作用是在输出带宽窄的情况下,调节电位器,减小其接入阻值,可以增加带宽。
放大:此次的核心是放大,其他的工作做的再好,不放大就是做无用功,只有放大了,再出现问题就好解决。
出现不放大的情况有以下几种:①输出增益为负值②增益不够高③输出波形失真,如图:解决方法:①静态工作点没有设置好,基极偏置跟低频不一样,经验值为+5V左右;②增益不够高很大程度上是因为晶体管的截止频率不够(静态工作点合理),可以尝试换截止频率高的晶体管,如9018 的截止频率为1G,足够放大。
收音机中的信号放大解读

电压增益:
U Au o U i
U 分贝表示: Au 20 lg o U i
收音机中的信号放大
2.通频带 放大器的电压增益下降到最大值的0.707(即1 2 )倍
时,所对应的频率范围称为放大器的通频带,用
BW 2f0.7 表示,如图所示。2f0.7 也称为3dB分贝带 宽。
为晶体管的输出端短路时的正向传输导纳。它反 映了晶体管输入电压对输出电流的控制能力
I Y fe c U b
0 U C
I Yre b U c
Yoe I c U c
0 U b
为晶体管的输入端短路时的反向传输导纳。它反 映了晶体管输出电压对输入电流的控制能力。
5.能对放大器在实际应用中出现波形失真、工作不稳定、 增益或通频带不满足要求现象进行判断和处理
收音机中的信号放大
2.1 收音机采用什么放大器放大信号 2.2 晶体管高频Y参数等效电路 2.3 单调谐回路放大器 2.4 双调谐回路放大器 2.5 小信号调谐放大器的稳定性 2.6 集中选频放大器 本章小结 例题
0 U b
为晶体管的输入端短路时的输出导纳。它反映了 晶体管输出电压对输出电流的影响。
收音机中的信号放大
注意:
1. Yfe反映输入端对输出端的控制作用, Yfe越大,晶体 管的放大能力越强; 2. Yre反映输出端对输入端的反作用,这个反作用是由 晶体管的内部反馈引起的,内部反馈越强, Yre越大, 对晶体管的危害越大; 3. 晶体管的Y参数与频率有关,当工作频率在较宽的 范围类变化时,晶体管的Y参数亦会随之而变化,因 此,Y参数的获取,应注意工作条件和工作频率。
矩形系数定义为电压增益 下降到0.1时的带宽与下降到 0.7时的带宽之比,用Kr表示。 Kr愈接近于1越好。
高频小信号单调谐振放大器

本次电子线路设计对高频调谐小信号放大器,LC振荡器,高频功放电路设计原理作了简要分析,研究了各个电路的参数设置方法。
并利用其它相关电路为辅助工具来调试放大电路,解决了放大电路中经常出现的自激振荡问题和难以准确的调谐问题。
同时也给出了具体的理论依据和调试方案,从而实现了快速、有效的分析和制作高频放大器,振荡器和功放电路。
高频小信号谐振放大电路是将高频小信号或接收机中经变频后的中频信号进行放大,已达到下级所需的激励电压幅度。
LC振荡器的作用是产生标准的信号源。
高频功放的作用是以高的效率输出最大的高频功率。
三部分都是通信系统中无线电收发信机所用到的技术,所以在现实生活中具有着相当广泛的应用。
关键词:高频小信号放大器;LC振荡器;高频功放电路;放大电路The electronic circuit design of high-frequency tuned small-signal amplifier, LC oscillator, h igh-frequency power amplifier circuit design principles briefly analyzed to study the various circuit parameters to set methods. And to use other related tools to debug the circuit for the auxiliary amplifier circuit solve the amplifier circuit that often appear in self-oscillation problems and difficult to accurately tuning problems. Also given in detail the theoretical basis and debug programs in order to achieve a rapid, effective analysis and production of high-frequency amplifiers, oscillator and power amplifier circuits.High-frequency small-signal amplification circuit is the resonant frequency small-signal or a receiver through the frequency of IF signals, after amplification, has reached the lower the required excitation voltage amplitude. The role of the LC oscillator is to generate a standard signal source. The role of high-frequency power amplifier's efficiency is the largest high-frequency power output. Three parts are the communication systems used by the radio transceiver technology, so in real life, with a fairly wide range of applications.Key words: high-frequency small-signal amplifier; LC oscillator; high-frequency power amplifier circuit; amplifier circuit目录1 设计任务与总体方案 (1)1.1设计任务 (1)1.2总体方案简述 (2)2 电路的基本原理 (3)2.1电路的基本原理 (3)2.2 主要性能指标及测试方法 (5)3 电路的设计与参数的计算 (8)3.1电路的确定 (8)3.2参数计算 (8)4 电路的仿真 (10)4.1 电路仿真 (10)5实物的制作与调试 (12)5.1元件的焊接 (12)5.2电路板的调试 (12)结束语 (13)致谢 (14)参考文献 (15)附录 A电路原理图 (16)附录B PCB图 (17)附录C 实物图 (18)附录D 元器件清单 (19)1 设计任务与总体方案1.1 设计任务一.设计要求要求有课程设计说明书,并制作出实际电路。
chap3高频小信号放大器详解

图 3-11 集成选频放大器应用举例
I b I S YS U b I c YL U c
. Ib + . IS YS . Ub - Yie
(3-6a) (3-6b)
. Ic + Yo e . YfeUb . Uc - YL ′
. YreUc
图 3-3 图3-1高频小信号放大器的 高频等效电路
(1) 电压放大倍数K
G2 G1
V
D S C2 C3
C1
AGC Ec
图 3-9电视机高频放大器的简化电路
宽 带 放大器 (a) 前 置 放大器 集 中 滤波器 (b)
集 中 滤波器
宽 带 放大器
图3-10 集中选频放大器组成框图
图 3-11示出了Mini Circuits公司生产的一集成放 大器MRA8的应用电路, MRA8是硅单片放大器, 其 主要指标见表3-3。
(a)
3 5 2 L 4 1 RL
V
C
(b)
图 3-1 (a) 实际线路; (b) 交流等效电路
附加内容:
滤波电容:用在电源整流电路中,用来滤除交流成分。使输 出的直流更平滑。 去耦电容:在放大电路中不需要交流的地方,用来消除自激, 使放大器稳定工作。 旁路电容:有电阻连接时,接在电阻两端使交流信号顺利通 过,传递信号。
(3-5a) (3-5b)
c Yce e
b
+ . Ub e Yie . YreUce . YfeUb e Yo e
高频小信号调谐放大器实验结论

高频小信号调谐放大器实验结论高频小信号调谐放大器是一种常见的电路,在无线通信中起到了至关重要的作用。
我们进行了一系列实验,研究了这种电路的性能和特点,得出了以下结论。
首先,高频小信号调谐放大器的主要作用是放大高频小信号。
在实验中,我们使用了两个变容二极管,一个电感和一个晶体管来构建这个电路。
当输入的高频小信号经过变容二极管调谐后,经由电感和晶体管放大后输出。
其次,调谐电路的参数非常重要,对电路性能有重要影响。
我们通过改变两个变容二极管的电容值和电感器的电感值,调整电路的谐振频率,从而得到最佳的放大效果。
在调整电路参数时,我们需要注意电路共振的问题,以防止电路失稳。
第三,晶体管的选择也非常关键。
我们选择了高频放大器专用的双极晶体管,能够提供更高的放大倍数和更好的线性度。
在实验中,我们还尝试了改变晶体管的偏置电压和失谐度对电路性能的影响。
第四,我们还研究了高频小信号调谐放大器的频率响应特性。
实验结果表明,电路在其工作频率范围内,输出信号的增益随着频率的变化而变化。
我们根据实验结果绘制了频率响应曲线,从而对电路的性能有了更深刻的了解。
最后,我们还针对不同的应用场景,进行了一系列的实际测试。
实验结果表明,在不同的频段和输入信号功率下,电路的增益和性能均有不同程度的变化。
因此,在实际应用中,需要根据具体情况进行参数调整和电路优化。
总之,高频小信号调谐放大器是一种非常实用的电路,在无线通信、雷达和电视等行业有着广泛的应用。
通过本次实验,我们对这种电路的特点、性能和应用有了更深入的了解,并可以为实际应用提供指导意义。
高频小信号谐振放大器

任务一高频小信号谐振放大器任务引入我们知道,无线通信接收设备的接收天线接收从空间传来的电磁波并感应出的高频信号的电压幅度是(μV)到几毫伏(mV),而接收电路中的检波器(或鉴频器)的输入电压的幅值要求较高,最好在1V左右。
这就需要在检波前进行高频放大和中频放大。
为此,我们就需要设计高频小信号放大器,完成对天线所接受的微弱信号进行选择并放大,即从众多的无线电波信号中,选出需要的频率信号并加以放大,而对其它无用信号、干扰与噪声进行抑制,以提高信号的幅度与质量。
在此,首先引入应用广泛的高频小信号谐振放大器。
任务分析高频小信号谐振放大器的作用、电路组成、及工作原理,与低频小信号放大电路是基本一致的。
不同的是:一是在高频小信号谐振放大器中,所放大信号的频率远比低频放大电路信号频率高;二是高频小信号谐振放大器的频宽是窄带(要求只放大某一中心频率的载波信号)。
因此,首先在电路组成上应将低频放大电路中的低频三极管换成具有更高截止频率的高频三极管,将集电极负载换成了LC选频网络;再是在电路分析与设计中,应重点考虑电路的高频特性与选频特性。
高频小信号谐振放大器的核心元件是高频小功率晶体管和LC并联谐振回路。
相关知识一、高频小功率晶体管与LC并联谐振回路1.高频小功率晶体管高频小信号放大电路中采用的高频小功率晶体管与低频小功率晶体管不同,主要区别是工作截止频率不同。
低频晶体管只能工作在3MHz以下的频率上,而高频晶体管可以工作在几十到几百兆赫兹,甚至更高的频率上。
目前高频小功率晶体管工的作频率可达几千兆赫,噪声系数为几个分贝。
高频小功率晶体管的作用与低频小功率晶体管一样,工作在甲类工作状态,起电流放大作用。
2.LC并联谐振回路在接收机的各级高频小信号放大器中,利用LC并联谐振回路的选频作用,对谐振点频率的电流信号呈现较大的阻抗,而且是纯电阻性的,将电流信号转换成电压信号输出,而对失谐点频率的电流信号呈现很小的阻抗,抑制失谐点频率电流信号的输出,起到选择出所需接收的信号,抑制无用的信号和干扰的目的。
高频小信号谐振放大器实验报告

高频小信号谐振放大器实验报告1. 引言本实验旨在研究高频小信号谐振放大器的工作原理和性能参数。
通过实验,我们将评估谐振放大器的放大增益、带宽、输入阻抗和输出阻抗等关键参数,并通过实际测量数据进行分析。
2. 实验装置和方法2.1 实验装置本实验所使用的装置包括: - 高频信号发生器 - 谐振放大器电路板 - 示波器 - 负载电阻 - 多用表2.2 实验方法1.搭建谐振放大器电路,连接信号发生器、示波器和负载电阻。
2.调节信号发生器的频率,使其工作在谐振放大器的谐振频率附近。
3.测量输入和输出电压,并计算放大倍数。
4.调节信号发生器的频率,测量放大倍数与频率之间的关系,绘制特性曲线。
5.测量输入和输出阻抗,并计算实际数值。
6.记录实验数据并进行分析。
3. 实验结果和分析3.1 放大倍数与频率特性曲线通过调节信号发生器的频率并测量输入和输出电压,得到如下数据:频率 (MHz) 输入电压 (mV) 输出电压 (mV) 放大倍数1.00 0.50 1.002.001.50 0.80 1.50 1.882.00 1.00 1.80 1.802.50 1.20 2.00 1.67据此数据,我们可以绘制出放大倍数与频率的特性曲线。
根据拟合曲线,可以估计谐振放大器的带宽。
3.2 输入阻抗和输出阻抗通过测量输入和输出电压,并使用Ohm’s Law计算电流,我们可以得到输入和输出阻抗的实际数值。
频率(MHz) 输入电压(mV)输出电压(mV)输入电流(mA)输出电流(mA)输入阻抗(Ω)输出阻抗(Ω)1.00 0.50 1.00 0.10 0.20 500 5001.50 0.80 1.50 0.16 0.30 500 5002.00 1.00 1.80 0.20 0.36 500 500 2.50 1.20 2.00 0.24 0.40 500 500根据以上数据,我们可以得到谐振放大器的输入阻抗和输出阻抗的平均值。
高频小信号调谐放大器工作原理

高频小信号调谐放大器工作原理高频小信号调谐放大器是一种常见的电子元器件,广泛应用于各种无线通信设备和电路中。
其主要作用是放大高频小信号,使其能够被接收器或者其他设备处理。
在本文中,我们将详细介绍高频小信号调谐放大器的工作原理。
需要了解高频小信号调谐放大器的基本结构。
它由三个主要部分组成:输入端、输出端和放大器。
输入端通常是一个天线或者其他接收器,用于接收高频小信号。
输出端则将放大后的信号传递给其他设备或者处理器。
放大器是整个电路的核心部件,它能够将输入信号放大到足够的程度,以便被其他设备或者处理器处理。
接下来,我们来了解高频小信号调谐放大器的工作原理。
在工作时,输入端接收到高频小信号后,会将其传递到放大器。
放大器将信号放大到足够的程度后,再将其传递到输出端。
在这个过程中,放大器通常会使用一些特殊的电子元器件,如晶体管等。
这些元器件能够将信号放大到足够的程度,并且能够对信号进行调谐,以适应不同的频率。
为了让放大器能够对信号进行调谐,通常会使用一些特殊的电子元器件,如电容器和电感器。
这些元器件能够对信号的频率进行调整,以适应不同的信号。
例如,当输入端接收到一个低频信号时,放大器会将电容器调整到一个较小的值,以便能够更好地放大这个信号。
当输入端接收到一个高频信号时,放大器会将电容器调整到一个较大的值,以便能够更好地放大这个信号。
需要注意的是,高频小信号调谐放大器的工作原理相对复杂,需要仔细的设计和调整。
在实际应用中,需要根据具体的需求和信号特性来选择合适的元器件和调谐方式,以达到最佳的效果。
此外,还需要注意一些其他因素,如噪声、失真等,以保证信号的质量和稳定性。
高频小信号调谐放大器是一种非常重要的电子元器件,其能够将高频小信号放大到足够的程度,以便被其他设备或者处理器处理。
在实际应用中,需要根据具体的需求和信号特性来选择合适的元器件和调谐方式,以达到最佳的效果。
希望本文能够对读者了解高频小信号调谐放大器的工作原理有所帮助。
3、高频小信号放大器解析

•
Av
V
•
2
V1
yfe yoe YL
yre表示输出电压对输入电流的控制作用(反向控制); yfe表示输入电压对输出电流的控制作用(正向控制)。 yre越大表示晶体管的内部反馈越强;yfe越大表示晶体管
的放大能力越强。
yre的存在, 对实际工作带来很大危害, 是谐振放大器自激的
根源, 同时也使分析过程变得复杂, 因此应尽可能使其减小
p22 gie2
则可得最大功率增益为:
p1 yfevbe
11
放大器输入导纳Yi
•
I1
•
yie V1
•
yre V2
•
I2
•
yfe V1
•
yoe V2
•
•
I2 YL V2
Yi
yie
yre yfe yoe YL
图 3.2.3 晶体管放大器及其y参数等效电路
12
放大器输出导纳Yo
I•1
•
yie V1
•
yre V2
I•2
y fe
•
V1
•
yoe V2
不稳定状态的极端情况是放大器自激(主要由晶体管内反馈 引起),使放大器完全不能工作。
6
4) 工作稳定性:指放大器的工作状态(直流偏置)、晶体管 参数、电路元件参数等发生可能的变化时,放大器的主要特 性的稳定。
F
A
低频小信号模型
A
高频小信号模型
出于分析的方便,将把稳定性问题及其改善放至最后讨论。
7
高频小信号放大器的分析方法
p1 p2 yfe
jwC
1
jwL
谐振时
Av 0
08-第二章——高频小信号放大器解析

第二章 高频小信号放大器
1. Y参数等效电路
设电压u1和u2为自变量, 电流i1和i2为参数量,
可得Y参数系的约束方程:
I1 y11 U 1 y12 U 2
I 2 y21 U 1 y22 U 2
i1
+
I1 yi U 1 yr U 2
U1
I 2 y f U 1 yo U 2
-
i1 + u1
yf越大, 表示晶体管的放大能力越强;
yr越大, 表示晶体管的内部反馈越强。 yr的存在, 对实际工作带来很大危害, 是谐振放大器自激 的根源, 同时也使分析过程变得复杂, 因此应尽可能使其减小, 或削弱它的影响。
第二章 高频小信号放大器
Y参数的物理意义
yie
Ib Ub
UC 0
输入导纳
yi yru2
第二章 高频小信号放大器
放大器 特点
工作频率高,中心频率几百KHz-几百MHz
具有选频特性,一般负载采用谐振回路 晶体管工作在线性区,可看成线性元件,可用双端网 络参数微变等效电路来分析。
按所用负载的性质分为谐振放大器和非谐振放大器。 谐振放大器——采用谐振回路作为负载的放大器,具有放
大、滤波和选频的作用。 非谐振放大器——由阻容放大器和各种滤波器组成,其机
Ie yibUeb yrbUcb
Ic y U fb eb yobUcb
*对于共集接法,y参数用 yic、yrc、y fc、yoc 表示,则:
Ib yicUbc yrcUec
Ie y U fc bc yocUec
第二章 高频小信号放大器
Y参数法从测量和使用的角度出发, 把晶体管作为一个有 源线性双口网络, 用一组网络参数构成其等效电路。
高频电路小信号谐振放大器

信息工程学院
6
1 BJT、FET器件的混合π型等效模型及其参数
ib
ube
ic
I2
uce
(a) 共发射极接法
b
rbb/ b/
Cb/c
c
ib
ube
r g u C b/e
b/e
m b/e
Au
Uo
(2-3-5)
由图2-3-2 c中 U i
Y L/ 先求T 1
n 1 1 2(gpj 的集电极电压 U
C 1j1Ln2 2Y ie)2
,由图2-3-2 c中
c
IcU cY o1eU iY fe U cY L /
Uc
Yfe Ui Yoe1 YL/
I2
U2
U10
称为输出短路时的输入导纳 称为输出短路时的正向传输导纳 称为输入短路时的反向传输导纳
称为输入短路时的输出导纳
信息工程学院
14
Y11Yie1rb g/b b(/eg b/ejC jb/eCb/e)
Y12Yre1rb/b (gjb /eC b/cjCb/e)
26
1. 放大器的输入导纳
Ib Yre1 U c Yfe1 Ui Ic
n1
3 2
由图2-3-2 b可得到:
Ui
Yie1
Yoe1 Uc
L1 1
g C1
p n22Yie2
高频实验:小信号调谐放大器实验报告

高频实验:小信号调谐放大器实验报告实验目的:1. 掌握小信号调谐放大器的原理、特点和设计方法。
2. 熟悉集成运算放大器的使用方法。
实验器材:1. 功率供应器。
2. 调谐放大器电路板。
3. 频谱分析仪。
4. 示波器。
5. 信号发生器。
6. 电压表和电流表。
7. 切割器。
8. DMM数字万用表。
实验原理:调谐放大器是指在特定频率下具有较大的放大倍数的放大器,是一种具有选择性放大作用的放大器。
当输入信号频率和特定放大器谐振频率相等时,输出信号强度达到最大值,这种现象称为谐振。
实验步骤:1. 按照电路图连接电路,检查电路连接是否正确。
2. 将调谐电容器的电容值调至最小,即使谐振频率接近1kHz。
3. 将信号发生器设置为100Hz正弦波,300mVpp的幅值,连接到调谐放大器的输入端。
4. 连接万用表测量调谐放大器的输出电压。
5. 使用信号发生器逐步调整频率,记录最大输出幅值的频率。
6. 依次将信号发生器设置为200Hz、500Hz、1kHz、2kHz和5kHz的正弦波。
7. 针对每个频率,记录输出电压,并绘制输出电压随频率变化的曲线图。
实验结果:1. 频率为1kHz时的输出幅值最大,达到4.5V。
2. 随着频率的增加或减小,输出电压下降。
3. 输出电压随着频率变化的曲线呈现出谐振现象。
本实验采用调谐放大器电路进行测试,结果表明,在1kHz的频率下,该电路有最佳的选择性放大功能。
根据测试结果,该电路可以广泛应用于频率选择放大器等领域。
高频小信号调谐放大器工作原理

高频小信号调谐放大器工作原理
高频小信号调谐放大器是一种常用于无线电通信系统中的放大器。
其主要作用是放大接收机输入的微弱信号,以便能够有效地处理和解调信号。
这种放大器结构简单、性能稳定、功耗低,因此被广泛应用。
该放大器的基本组成部分包括一个共射放大电路、一个高Q值谐振电路、一个变压器和一个输出耦合电路。
共射放大电路是整个放大器的核心部分,它能够将输入信号经过放大后输出到谐振电路中。
高Q值谐振电路是一个能够选择特定频率的电路,其主要作用是滤除其他频率的干扰信号,只保留需要的信号频率。
这种电路可以采用多种形式,如LC谐振电路、单谐振放大电路等。
变压器是为了提高电路的输入输出阻抗匹配而设置的。
通过变压器的调节,可以使得电路的输入阻抗与输出阻抗匹配,从而使得信号能够更加稳定地传输。
输出耦合电路是将谐振电路产生的信号经过放大后输出到外部设备的电路。
它主要作用是将电路内部的信号传输到外部设备,从而实现信号的传输。
综上所述,高频小信号调谐放大器是一种非常重要的电路,其基本原理是通过放大输入信号并滤除其他频率干扰信号以提高信号质量。
同时,这种放大器具有结构简单、性能稳定、功耗低等特点,因此广泛应用于无线电通信系统中。
第1章 小信号放大器1LC选频网络讲解

第1章 高频小信号谐振放大器
1.0 高频电路中的元件、器件和组件 1.1 LC 选频网络
第1章 高频小信号谐振放大器
1.0 高频电路中的元件、 器件和组件
各种高频电路基本上是由有源器件、无源元件和无源 网络组成的。元器件与在低频电路中使用的元器件基 本相同, 但要注意它们在高频使用时的高频特性。高频 电路中的元件主要是电阻(器)、 电容(器)和电感(器), 它 们都属于无源的线性元件。 1. 高频电路中的元件 1) 电阻
令式(1-9)等于 1 2 , 则可推得ξ=±1, 从而可得带宽为.
B ? 2? f ? f0 Q
(1-10)
I
I0
Q1>Q2
Q2
Q1
?0
?
图 1-7串联谐振回路的谐振曲线
?
?U I0 ?
r
(1-3
?
在任意频率下的回路电流 I 与谐振电流之比为
第1章 高频小信号谐振放大器
?
U
?
I
?
I0
?
ZS
?
U
?
r ZS
?
1
1
?L?
1
? 1?
j ? 0L ( ?
? ?0)
r
1? j
?C
r
r ?0 ?
1
? 1?
jQ( ?
? ?0)
?0 ?
(1-4)
其模为 其中,
?
I
?
?
I0
1
1 ? Q 2( ? ? ? 0 )2 ?0 ?
第1章 高频小信号谐振放大器
2) 电容 由介质隔开的两导体即构成电容。 一个电容器的 高频等效电路如图1-2(a)所示。 理想电容器的阻抗 1/(jωC), 如图1- 2(b)虚线所示, 其中, f为工作频率。
高频实验小信号调谐放大器实验报告范文

高频实验小信号调谐放大器实验报告范文一实验目的1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。
2.掌握高频小信号调谐放大器的调试方法。
3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。
二、实验使用仪器1.小信号调谐放大器实验板2.200MH泰克双踪示波器3.FLUKE万用表4.模拟扫频仪(安泰信)5.高频信号源三、实验基本原理与电路1、小信号调谐放大器的基本原理所谓“小信号”,通常指输入信号电压一般在微伏毫伏数量级附近,放大这种信号的放大器工作在线性范围内。
所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC调谐回路)。
这种放大器对谐振频率f0及附近频率的信号具有最强的放大作用,而对其它远离f0的频率信号,放大作用很差,如图1-1所示。
10.707图1.1高频小信号调谐放大器的频率选择特性曲线小信号调谐放大器技术参数如下:1.增益:表示高频小信号调谐放大器放大微弱信号的能力2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。
衡量放大器的频率选择性,通常引入参数——矩形系数K0.1。
2.实验电路原理图分析:In1是高频信号输入端,当信号从In1输入时,需要将跳线TP1的上部连接起来。
In2是从天线接收空间中的高频信号输入,电感L1和电容C1,C2组成选频网络,此时,需要将跳线TP1的下部连接起来。
电容C3是隔直电容,滑动变阻器RW2和电阻R2,R3是晶体管基极的直流偏置电阻,用来决定晶体管基极的直流电压,电阻R1是射极直流负反馈电阻,决定了晶体管射极的直流电流Ie。
晶体管需要设置一个合适的直流工作点,才能保证小信号谐振放大器正常工作,有一定的电压增益。
通常,适当的增加晶体管射极的直流电流Ie可以提高晶体管的交流放大倍数,增大小信号谐振放大器的放大倍数。
但Ie过大,输出波形容易失真。
高频实验报告实验二 单调谐高频小信号谐振放大器

单调谐高频小信号谐振放大器目录一、实验原理 (2)二、仿真分析 (8)2.1 实验一 (8)2.2 实验二 (14)三、单调谐放大电路设计实例 (22)3.1电路选择与参数计算 (23)3.1.1选定电路形式 (23)3.1.2设置静态工作点 (24)3.1.3谐振回路参数计算 (24)3.1.4确定耦合电容与高频滤波电容: (24)一、实验原理调谐放大器的主要特点是晶体管的集电极负载不是纯电阻,而是由 L 、C 组成的并联谐振回路,由于L 、C 并联谐振回路的阻抗随频率而变化,在谐振频率处、其阻抗是纯电阻,且达到最大值。
因此,用并联谐振回路作集电极负载的调谐放大器在回路的谐振频率上具有最大的放大系数,稍离开此频率放大系数就迅速减小。
因此用这种放大器就可以只放大我们所需要的某些频率信号,而抑止不需要的信号或外界干扰信号。
正因如此,调谐放大器在无线电通讯等方面被广泛地用作高频和中频选频放大器。
调谐放大器的电路形式很多,但基本的电路单元只有两种:一种是单调谐放大器,一种是双调谐放大器。
这里先讨论单调谐放大器。
(—) 单调谐放大器的基本原理典型的单调谐放大器电路如图1.1所示。
图中R 1, R 2 是直流偏置电阻;LC 并联谐振回路为晶体管的集电极负载,R e 是为提高工作点的稳定性而接入的直流负反馈电阻, C b 和C e 是对信号频率的旁路电容。
输入信号V s ’经变压器耦合至晶体管发射结,放大后再由变压器耦合到外接负载R L ,C L 上。
为了减小晶体管输出导纳对回路的影响,晶体管T 1采用抽头接入。
L LV s ’图1.1高频小信号谐振放大器电路在低频电子电路中,我们经常采用混合π模型来描述晶体管。
把晶体管内部的物理过程用集中元器件RLC 表示。
用这种物理模型的方法所涉及到的物理等效电路就是所谓的π参数等效电路。
混合π 参数是晶体管物理参数,与频率无关,物理概念清楚。
但是由于输入输出相互牵制,在高频分析时不太方便。
小信号谐振放大器..课件

调整参数
根据实验要求,调整 小信号谐振放大器的 增益、频率等参数。
开始实验
开启电源,调节信号 源,记录示波器上的 输出波形及数据。
数据处理
对实验数据进行处理 ,计算放大倍数、频 率响应等指标。
仿真分析方法与结果展示
建立模型
根据小信号谐振放 大器的原理,建立 相应的仿真模型。
运行仿真
运行仿真程序,观 察输出波形及数据 。
输入信号经过输入匹配网络后,进入谐振腔进行选频放大,然后经过输出匹配网络 输出到负载上。
谐振腔通过电磁场的相互作用,将输入信号的频率范围压缩到所需频段,实现高频 率、高放大倍数的放大效果。
输入和输出匹配网络的作用是减小信号源和负载对放大器性能的影响,提高整体性 能。
性能指标
增益
小信号谐振放大器对输入信号 的放大倍数。
适用于低频、宽带、高输入阻抗的场 合。
共基放大器
适用于高频、宽带、低输出阻抗的场 合。
确定放大器的增益和带宽
增益
通常由晶体管的增益决定,需要 考虑输入和输出阻抗以及电路的 拓扑结构。
带宽
由晶体管的特征频率和电路的RC 时间常数决定,需要考虑信号频 率范围和噪声性能。
选择合适的电阻器和电容器
电阻器
小信号谐振放大器的组成及
工作原理
组成
01
02
03
输入匹配网络
减小输入阻抗,实现信号 源与放大器之间的阻抗匹 配,减小信号源的负担。
谐振放大器
通过谐振腔的选频作用, 将输入信号频率范围压缩 到所需频段,提高信号增 益。
输出匹配网络
提高输出阻抗,实现放大 器与负载之间的阻抗匹配 ,减小负载的负担。
工作原理
温度稳定性考虑
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
3
参数合并后的谐振回路的等效电路
GT
GP
Goe
n
2 1
GL n22
CT
C
Coe n21
EXIT
高频电子线路
2.2 小信号谐振放大器
三、单调谐放大器的电压增益、选择性和通频带 -gm
.
.
U
' o
.
I
' s
Z
( gm Ui n1
) GT (1
1 jQT
2-fg)m f0
C
gmU i / n1 GT CT
2.2 小信号谐振放大器
二、单调谐放大器的等效电路
自耦变压器匝比
n1
N 13 N 12
B
C1
+
L
U–C iie Gie
gmU
Goe
i
C Coe
2 3
E
5
RL
U+– o
变压器初次级匝比 根据功率相等得
n2
N 13 N 45
4
( gmU i )U12 I s'U13
.
放大器的Y参数等效电路
C
1
.
I
' s
混合π型参数与频率无关, Y参数与频率有关. 在窄带放大器中,可以近似 认为晶体管Y参数与频率无 关。
EXIT
高频电子线路
2.2 小信号谐振放大器
高频管的rbb’ 很小,通常可略。 实用中要采取措施使内部反馈很小,故分析时看成 Yre=0 Y参.
Ib B
+
U be
.
.
.
.
AuΣ (dB) Au1 (dB) Au2 (dB) Aun (dB)
一、同步调谐放大器
A u A u0
1.0
级数越多,则谐振增益越大,
0.707级数
增多
选择性越好,通频带越窄。 总通频带窄于各级的。
f O
EXIT
高频电子线路
2.2 小信号谐振放大器
二、双参差调谐放大器
ui
Au1
f1= f0 + f
高频电子线路
2.2 小信号谐振放大器
2.2 小信号谐振放大器
以谐振回路为选频网络的高频小信号放大器 称为小信号谐振放大器或小信号调谐放大器。
作用:选出有用频率信号并加以放大,而对无用频率 信号予以抑制。
构成:小信号放大器 + LC谐振回路
EXIT
高频电子线路
2.2 小信号谐振放大器
2.2 小信号谐振放大器
G’oe
C
C’oe
Gp L13
+
U 'o
G’L –
因此
.
I
' s
gm Ui n1
由阻抗变换得
C
' oe
Coe n12
G
' oe
Goe n12
U’o=n2Uo
3
谐振回路的等效电路
G
' L
GL n2
而 Gp=1/Rp EXIT
高频电子线路
2.2 小信号谐振放大器
C
1
gmU i / n1 GT CT
+
L13 n2U o
–
gb'e
Cb'e
.
gm U be
E
.
C Ic
gce
+
Cb'c
U ce
–
简化高频小信号等效电路
EXIT
高频电子线路
2.2 小信号谐振放大器
小结:实用的高频小信号等效电路
.
IbB
+
.
C Ic
+
U be
–
Yi e
.
Yfe U be Yoe
U ce
–
E 用Y参数表示
.
Ib B
.
C Ic
+
G ie
G oe
B
C1
5
自耦变压器匝比
n1
N 13 N 12
+
U–C iie Gie
gmU
Goe
i
C Coe
L
2
3
RL
4
U+
–
o
变压器初次级匝比
n2
N 13 N 45
E
放大器的Y参数等效电路
有时把 P1=1/n1 ,称为晶体管输出端对谐振回路的接入系数 把 P2=1/n2 ,称为负载对谐振回路的接入系数
EXIT
高频电子线路
Au2
uo
f2= f0 – f
A u A u2
对小信号
Y参数通过仪器测量,或查手册,或由混合π型等效电路求取
EXIT
高频电子线路
2.2 小信号谐振放大器
rbb’—基区的体电阻
晶体管混合π型等效电路
1 gb' e rb' e
rb‘e —发射结电阻re折算到基极回路的电阻
rbe
(1
)re
(1
)
UT IE
gm —低频互导或低频跨导
gm
rbe
IE UT
iC f (uBE , uCE )
称为晶体管输出端交流短路时的输入导纳
称为晶体管输出端交流短路时的正向传输导纳
称为晶体管输入端交流短路时的反向传输导纳
称为晶体管输入端交流短路时的输出 导纳
EXIT
高频电子线路
2.2 小信号谐振放大器
2.2.1 晶体管的Y参数等效电路
iB f (uBE , uCE ) 对小信号 iC f (uBE , uCE )
EXIT
高频电子线路
2.2 小信号谐振放大器
作业
P34 2.8
EXIT
高频电子线路
2.2 小信号谐振放大器
2.2.3 多级单调谐回路谐振放大器
同步调谐放大器 — 每级谐振回路均调谐在同一频率上
参差调谐放大器 — 各级谐振回路调谐在不同频率上
总电压放大倍数
A uΣ A u1 A u2 A un
C
3
2L
1
5 4
+VCC
RL
U+
–
o
RB1
+ –
+ –
U i
RB2
3
2L
1
+VCC
RE
RB2
CB RE CE
直流通路
保证晶体管工作在甲类状态
C1
5
B
U+
–
i
C
E
L
2
3
RL
+U
–
o
晶体管的输出及负载电阻
4
均通过阻抗变换电路接入。
交流通路
EXIT
高频电子线路
2.2 小信号谐振放大器
二、单调谐放大器的等效电路
1 re
rce—晶体管输出电阻 UA 为厄尔利电压
rce
UA ICQ
Cbe —发射结电容 Cbc —集电结电容
Cbe
gm
2f
Cbc 和 fT 从手册中查出
EXIT
高频电子线路
2.2 小信号谐振放大器
晶体管混合π型等效电路 根据混合π型等效电路,由Y参数的定义可得
EXIT
高频电子线路
2.2 小信号谐振放大器
+
U be – Cie
.
Yfe U be
U ce Coe –
E
用电导、电容等表示
.
Ib B
.
C Ic
+
gb'e
gce
+
U be
–
Cb'e
.
gm U be
Cb'c
U ce
–
E
用混合π型参数表示
EXIT
高频电子线路
2.2 小信号谐振放大器
2.2.2 单调谐回路谐振放大器
一、 放大电路及其工作原理
RB1
主要要求:
理解晶体管Y参数等效电路及其意义和应用
掌握单调谐回路谐振放大器的组成、工作原理 和主要性能指标的计算。
了解多级谐振放大器
了解谐振放大器的稳定性
EXIT
高频电子线路
2.2 小信号谐振放大器
2.2.1 晶体管的Y参数等效电路
一、 晶体管的Y参数等效电路
iB f (uBE , uCE )
对小信号
E
1
L13
+
n2U o
–
3
参数合并后的谐振回路的等效电路
EXIT
高频电子线路
2.2 小信号谐振放大器
三、单调谐放大器的电压增益、选择性和通频带
-gm
-gm
因此
-gm
归一. 化电压增益的幅频特性为
Au
.
Auo
BW0.7
BW0.1
1.0 0.707
0.1 f
O
BW0.7
f0 QT
K 0.1 10
选择性较差