分层抽样方法-高中数学知识点讲解

合集下载

分层抽样的方法

分层抽样的方法

即25,56,19。
总结归纳: 分层抽样的特点: (1)每个个体被抽取的可能性是相同的; (2)每一层中抽取的样本数与这一层中的个体数的比等于样 本容量与总体中个体数的比; (3)若在按比例计算所得的个体数不是整数,可作适当的近似 处理.
分层抽样的优点: 使样本具有较强的代表性,而且在各层抽样时,又可以使用不 同的方法进行抽样.因此分层抽样应用也比较广泛.
1简单随机抽样2系统抽样当总体的个数较多时采用简单随机抽样太麻烦这时将总体分成均衡的部分然后按照预先定出的规则在每一部分中抽取1个个体得到所需要的样本这种抽样称为系统抽样
分层抽样的方法
高中数学 金冶
知识点: 人教A版 必修三 统计第1节 随机抽样
掌握分层抽样的方法和步骤,学会利用分层抽样抽取 样本,掌握简单随机抽样、系统抽样、分层抽样的区 别。
祝学员们学习进步!
(1)确定样本容量与总体的个体数之比 100:500=1:5 (2) 利用抽样比确定各年龄段应抽取的个体数,依次为 2.确定各层抽取数 3.各层中抽取个体并合并 (3)利用简单随机抽样或系统抽样的方法,在各年龄段分别抽取 25,56,19人, 然后合在一起,就是所要抽取的样本。
125 280 95 , , 5 5 5
知识讲解:
1、 分层抽样概念: • 一般地,在抽样时,将总体分成互不交叉的层,然后按照一定 的比例,从各层独立地抽取一定数量的个体,将各层取出的个 体合在一起作为样本,这种抽样的方法叫分层抽样。
说明:
1、总体个体差异明显,每层的差别比较大,而层内个体间的差别较小. 2、每层可以抽取多少样本,要根据它在总体中占的比例来抽取. 3、在每层中抽取样本时,采用简单随机抽样或系统抽样.
知识回顾:
1、简单随机抽样 一般地,设一个总体的个体数为 N,如果通过逐个不放回地抽取的 方法从中抽取一个样本,且每次抽取时每个个体被抽到的概率相等,就 称这样的抽样为简单随机抽样. 2.系统抽样

高中数学必修三2.2分层抽样

高中数学必修三2.2分层抽样
编号范围内的数取出,编号范围外的数去掉,直到取满n个号码
为止,就得到一个容量为n的样本.
2.系统抽样的操作步骤是什么?
第一步,将总体的所有个体编号. 第二步,平均分成n组,每组k个个体。(k为间距) 第三步,在第1组用简单随机抽样确定起始个体编号L. 第四步,按照一定的规则抽取样本,即L+K,L+2K,…, L+(n-1)k.
④各层分别按简单随机抽样(个体较少)或系统抽样(个体 较多)的方法抽取样本; ⑤综合每层抽样,组成样本
总体 样本
乘以抽样比
展示
例1
G1
变式1
பைடு நூலகம்
G2
例2
G3
变式2
G4
例3
G5
(写明样本中每
层人数)
点评 G6 G7 G8 G9
方法 类别
简单 随机 抽样
系统 抽样
共同 特征 等可 能性
不放 回
抽样特征 相互联系 适用范围
复习回顾
1.简单随机抽样有哪两种常用方法?其步骤分别如何?
(1)抽签法: 第一步: 将总体中的所有个体编号,并把号码写在形状、大小相
同的号签上. 第二步: 将号签放在一个容器中,并搅拌均匀. 第三步: 每次从中抽取一个号签,连续抽取n次,就得到一个容
量为n的样本. (2)随机数表法: 第一步: 将总体中的所有个体编号. 第二步: 在随机数表中任选一个数作为起始数. 第三步: 从选定的数开始依次向右(向左、向上、向下)读,将
• 假设某地区有高中生2400人,初中生 10900人,小学生11000人,为了了解本地 区中小学生的近视情况及其形成原因,要 从本地区的中小学生中抽取1%的学生进行 调查。若用上一节课所学的随机抽样方法, 会有什么结果?

高中数学(人教B版)必修第二册:分层抽样【精品课件】

高中数学(人教B版)必修第二册:分层抽样【精品课件】
10
2.下列试验中最适合用分层抽样法抽样的是( ) A.从一箱 3 000 个零件中抽取 5 个入样 B.从一箱 3 000 个零件中抽取 600 个入样 C.从一箱 30 个零件中抽取 5 个入样 D.从甲厂生产的 100 个零件和乙厂生产的 200 个零件中抽取 6 个入样 D [D 选项中甲、乙生产的零件有差异,最适合分层抽样.]
160 [男生人数为 560×5602+80420=160.]14源自合 作探究
释 疑

15
分层抽样的概念 【例 1】 (1)下列各项中属于分层抽样的特点的是( ) A.从总体中逐个抽取 B.将总体分成几层,分层进行抽取 C.将总体分成几部分,按事先确定的规则在各部分中抽取 D.将总体随意分成几部分,然后进行随机抽取
(2)分成的各层互不交叉;
(3)各层抽取的比例都等于样本容量在总体中的比例,即Nn ,其中 n 为样本容量,N 为总体容量.
31
2.计算各层所抽取个体的个数时,若 Ni·Nn 的值不是整数怎么 办?
[提示] 为获取各层的入样数目,需先正确计算出抽样比Nn,若 Ni·Nn 的值不是整数,可四舍五入取整,也可先将该层等可能地剔除多 余的个体.
21
(1)④ (2)分层抽样 [(1)①中对四个饲养房抽取的白鼠平均分, 但由于各饲养房所养数量不一,反而造成了每个个体入选的可能性 不相等,是错误的方法.②中保证了每个个体入选的可能性相等, 但由于没有注意到处在四个不同环境会产生不同差异,不如采用分 层抽样可靠性高,且统一编号、统一选择加大了工作量.③中总体 采用了分层抽样,但在每个层次中抽取时有一定的主观性,貌似随 机,实则每个个体被抽到的可能性无法保证相等.
11
3.甲校有 3 600 名学生,乙校有 5 400 名学生,丙校有 1 800 名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取 一个容量为 90 的样本,应在这三校分别抽取学生( )

(完整版)高中数学概率统计知识点总结

(完整版)高中数学概率统计知识点总结

高中数学概率统计知识点总结一、抽样方法1.简单随机抽样 2.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法.3.系统抽样:K (抽样距离)=N (总体规模)/n (样本规模)4.分层抽样:二、样本估计总体的方式1、用样本的频率分布估计总体分布(1)频率分布直方图的画法;(2)频率的算法;(3)频率分布折线图;(4)总体密度曲线;(5)茎叶图。

化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。

2、用样本的数字特征估计总体的数字特征(1)众数、中位数、平均数的算法;(2)标准差、方差公式.3、样本均值:nx x x x n +++= 21 4、.样本标准差:n x x x x x x s s n 222212)()()(-++-+-==三、两个变量的线性相关1、正相关2、负相关正相关:自变量增加,因变量也同时增加(即单调递增) 负相关:自变量增长,因变量减少(即单调递减)四、概率的基本概念(1)必然事件(2)不可能事件(3)确定事件(4)随机事件(5)频数与频率(6)频率与概率的区别与联系必然事件和不可能事件统称为确定事件1他们都是统计系统各元件发生的可能性大小;2、频率一般是大概统计数据经验值,概率是系统固有的准确值; 3频率是近似值,概率是准确值4、频率值一般容易得到,所以一般用来代替概率进行定量分析,首先要知道系统各元件发生故障的频率或概率.事件的频率与概率是度量事件出现可能性大小的两个统计特征数.频率是个试验值,或使用时的统计值,具有随机性,可能取多个数值。

因此,只能近似地反映事件出现可能性的大小概率是个理论值,是由事件的本质所决定的,只能取唯一值,它能精确地反映事件出现可能性的大小虽然概率能精确反映事件出现可能性的大小,但它通过大量试验才能得到,这在实际工作中往往是难以做到的.所以,从应用角度来看,频率比概率更有用,它可以从所积累的比较多的统计资料中得到需要指出的是用频率代替概率,并不否认概率能更精确、更全面地反映事件出现可能性的大小,只是由于在目前的条件下,取得概率比取得频率更为困难。

高中数学《分层抽样 》课件

高中数学《分层抽样 》课件
第四步:将所抽取的个体组合在一起构成样本.
29
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修3
拓展提升 (1)简单随机抽样、系统抽样和分层抽样是三种常用的 抽样方法,在实际生活中有着广泛的应用. (2)三种抽样的适用范围不同,各自的特点也不同,但 各种方法间又有密切联系.在应用时要根据实际情况选取合 适的方法. (3)三种抽样中每个个体被抽到的可能性都是相同的.
30
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修3
【跟踪训练 3】 某初级中学共有学生 270 人,其中一 年级 108 人,二、三年级各 81 人,现要利用抽样方法抽取 10 人进行某项调查,考虑选用简单随机抽样、分层抽样和 系统抽样三种方案.使用简单随机抽样和分层抽样时,将学 生按一、二、三年级依次统一编号为 001,002,003,…,270; 使用系统抽样时,将学生统一随机编号为 001,002,003,…, 270,并将整个编号平均分为 10 段.如果抽得的号码有下列 四种情况:
体占 05 总体 的比例确定.
□ (3)各层分别按 06 简单随机抽样 的方法抽取.
(4)综合每层抽样,组成样本.
4
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修3
1.判一判(正确的打“√”,错误的打“×”) (1)分层抽样实际上是按比例抽样.( √ ) (2)分层抽样中每个个体被抽到的可能性不一样.( × ) (3)分层抽样中不能用简单随机抽样或系统抽样.( × )
课后课时精练
数学 ·必修3
(3)(教材改编 P64T5)某学校有教师 132 人,职工 33 人, 学生 1485 人.为了解食堂情况,拟采用分层抽样的方法从 以 上 人 员 中 抽 取 50 人 进 行 抽 查 , 则 在 学 生 中 应 抽 取 ___4_5____人.

数学教材梳理分层抽样

数学教材梳理分层抽样

庖丁巧解牛知识·巧学一、分层抽样的概念当已知总体由差异明显的几部分组成时,不宜用简单随机抽样和系统抽样,为了使样本更能充分地反映总体的情况,应将总体分成互不交叉的几部分,然后按照各部分所占的比例,从各部分中独立抽取一定数量的个体,再将各部分抽出的个体合在一起作为样本,这种抽样方法叫做分层抽样。

其中所分成的每一部分叫层.根据定义可知,分层抽样使用的前提是总体可以分层,层与层之间有明显的区别,互不重叠,而层内个体间差异很小,每层中所抽取的个体数可按各层个体数在总体中所占的比例抽取,也就是各样本容量。

这样抽取层抽取的比例都等于样本容量在总体中的比例,即总体容量能使所得到的样本结构与总体结构基本相同,可以提高样本对总体的代表性.深化升华分层抽样具有以下主要特点:(1)适用于总体由差异明显的几部分组成的情况;(2)在每一层进行抽样时,采用简单随机抽样或系统抽样;(3)它能充分利用已掌握的信息,使样本具有良好的代表性;n。

而且在(4)它也是等可能性抽样,每个个体被抽到的可能性都是N每层抽样时,可以根据具体情况采用不同的抽样方法.二、分层抽样的一般步骤分层抽样的操作步骤是:(1)分层:将总体按某种特征分成若干部分。

(2)确定比例:计算各层的个体数与总体的个体数的比。

样本容量计算出抽样比k=总体容量(3)确定各层应抽取的样本容量。

(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.(5)汇合成样本.学法一得①分层抽样时,各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;每一层抽样中采用简单随机抽样或系统抽样。

②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用。

三、三种抽样方法的比较在具体情景中,需要我们准确地选择适当的抽样方法进行抽样。

高中数学必修3第二章:2.1.3 分层抽样

高中数学必修3第二章:2.1.3 分层抽样
解:抽样比是5268000=210,则应在专科生中抽取 1 300 ×210=65(人),在本科生中抽取 3 000×210=150(人),在 研究生中抽取 1 300×210=65(人).
归纳升华 一个总体中有 N 个个体,用分层抽样的方法从中
抽取一个容量为 n(n<N)的样本,某层的个体数为 Nk,该 层应抽取的个体数为 nk,则 nk=总样体本个容体量数nN×Nk.
A.抽签法
B.系统抽样法
C.分层抽样法
D.随机数法
(2)下列问题中,最适合用分层抽样抽取样本的是 ()
A.从 10 名同学中抽取 3 人参加座谈会 B.某批零件共 120 个,其中一级品 35 个,二级品 65 个,三级品 20 个,从中抽取一个容量为 40 的样本 C.从 1 000 名工人中,抽取 100 名调查上班途中所 用时间 D.从生产流水线上,抽取样本检查产品质量
类型 2 确定各层抽取的个体数 [典例 2] 某全日制大学共有学生 5 600 人,其中专 科生有 1 300 人,本科生有 3 000 人,研究生有 1 300 人, 现采用分层抽样的方法调查学生利用因特网查找学习资 料的情况,抽取的样本为 280 人,则应在专科生、本科 生与研究生这三类学生中分别抽取多少人?
[变式训练] 某校老年、中年和青年教师的人数见下
表.采用分层抽样的方法调查教师的身体状况,在抽取
的样本中,青年教师有 320 人,则该样本中的老年教师
人数为(
)
类别 老年教师 中年教师 青年教师
合计
人数/人 900 1 800 1 600 4 300
A.90
B.100
C.180
D.300
解析:设该样本中的老年教师人数为 x,由题意及分 层抽样的特点得90x0=1362000,故 x=180.

《高三数学分层抽样》课件

《高三数学分层抽样》课件
感谢您的观看
高三数学分层抽样
contents
目录
• 分层抽样的概念 • 分层抽样的方法 • 分层抽样的步骤 • 分层抽样的优缺点 • 分层抽样的案例分析
01 分层抽样的概念
分层抽样的定义
分层抽样是一种统计学方法,其基本思想是将总体分成若干层,然后从各层中独立抽取样本。在每一 层中,样本是从该层的总体中随机抽取的。分层抽样通常用于当总体包含具有不同特征或不同行为的 子集时,为了使样本更具代表性,需要从每个子集中抽取样本。
特点
适用于群体内部差异较小、群体间差异较大的情况。
实例
在某地区的高中生中,按照学校进行分层,然后在每个学校内按照 一定的规则抽取若干个班级作为样本。
03 分层抽样的步骤
确定研究总体和样本
研究总体
在分层抽样中,首先需要明确研 究的目标总体,即所有可能被抽 取的个体集合。
样本
从研究总体中抽取的一部分个体 ,用于代表总体进行研究。
确定分层标准并进行分层
分层标准
根据研究目的和总体特征,选择适当 的分层标准,如性别、年龄、地域等 。
分层
将总体按照分层标准划分为若干个子 集,每个子集称为一层。
在各层中独立抽取样本
独立抽取
在每一层中,独立进行样本的抽取,确保各层之间的样本相 互独立。
样本量
根据各层在总体中的比例,确定各层的样本量,确保样本的 代表性。
分层抽样的关键在于将总体分成不同的层,每一层包含具有相似特征或行为的个体。在每一层中,随 机抽样的方法与简单随机抽样类似。通过分层抽样,可以更准确地估计总体参数,并减少由于样本偏 差引起的误差。
分层抽样的特点
01
提高样本代表性
分层抽样能够提高样本对总体的代表性,特别是在总体结构复杂、差异

高一数学分层抽样知识点

高一数学分层抽样知识点

高一数学分层抽样知识点高一数学是学生们接触到的第一门高级数学课程,也是他们进入数学学习的重要阶段。

为了帮助学生更好地理解和掌握数学知识,教师们引入了分层抽样的概念。

本文将介绍高一数学分层抽样的一些知识点,帮助学生更好地了解这一概念。

一、什么是分层抽样分层抽样是一种统计学中常用的抽样方法,它将总体分为若干层次,然后从每一层中抽取一部分样本进行研究。

在高一数学中,教师们将数学知识点划分为不同的层次,然后根据学生的掌握情况,选择适合不同层次的题目进行练习和测试。

二、为什么采用分层抽样采用分层抽样的好处是能够更好地针对学生的掌握情况进行教学和辅导。

不同层次的学生可以根据自己的实际情况选择相应的题目来练习,这样可以提高学习效果,避免了过低或过高的难度对学生学习的不利影响。

三、分层抽样的具体应用在高一数学中,分层抽样主要应用于以下几个方面:1. 知识点的层次划分教师根据教学大纲和学生的学习情况,将数学知识点划分为不同的层次。

例如,在函数的学习中,可以将相关概念、性质和应用划分为初级、中级和高级层次。

这样,学生就可以根据自己的实际情况选择适合自己的题目进行练习。

2. 阶段性测试为了评估学生的学习情况,教师可以根据知识点的层次,进行阶段性测试。

通过对不同层次题目的抽取,可以更准确地了解学生的掌握情况,并对不同层次的学生进行相应的指导。

3. 学习计划的制定分层抽样还可以帮助学生制定学习计划。

学生可以根据自己的实际情况,选择适合自己的练习题目,从而制定合理的学习计划,提高学习效果。

总之,高一数学分层抽样是一种有效的教学辅助方法。

它能够根据学生的实际情况进行个性化教学,提高学习效果。

通过分层抽样,学生可以更有针对性地进行练习和测试,从而更好地掌握数学知识。

同时,分层抽样还可以帮助学生制定学习计划,提高学习效率。

因此,学生们应该充分利用分层抽样的优势,积极参与练习和测试,提高数学能力。

只有这样,才能在高一数学学习中取得良好的成绩。

高中数学2-1-3分层抽样课件2新人教A版必修

高中数学2-1-3分层抽样课件2新人教A版必修
分层抽样的有关概念 (1)一般地,在抽样时,将总体分成_________的层,然后按 照一定的_____,从各层独立地抽取一定数量的个体,将各层取 出的个体合在一起作为样本,这种抽样方法称为分层抽样. (2)每个个体被抽中的可能性_____.
互不交叉
比例
相同
分层抽样的总体具有什么特性?
提示:分层抽样的总体由差异明显的几部分构成,也就是说当已知总体由差异明显的几部分组成时,为了使样本充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样.
第二种方式抽样的步骤如下:
各个班的学生按1,2,3,…编号;
在第一个班中,用简单随机抽样法任意抽取某一学生,记其编号为a;
02
03
04
所以在每个层次抽取的个体数依次为
第三种方式抽样的步骤如下:
确定各个层次抽取的人数.因为样本容量与总体个体数的比为100∶1 000=1∶10,
分层.若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,总体由差异明显的三部分组成,所以在抽取样本时,应把全体学生分成三个层次.
为了保证每个个体等可能入样,所有层应采用同一抽样比等可能抽样.
在每层抽样时,应采用简单随机抽样或系 统抽样的方法进行抽样.
01
03
02
【变式训练】某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人,上级机关为了了解他们对政府机构的改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,并写出具体实施抽取的步骤.
即15,60,25.
按层次分别抽取.在优秀生中用简单随机抽样法抽取15人;在良好生中用简单随机抽样法抽取60人;在普通生中用简单随机抽样法抽取25人.

高中数学知识点:分层抽样

高中数学知识点:分层抽样

高中数学知识点:分层抽样1、分层抽样的概念:当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,可将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样.2、分层抽样的特点:(1)适用于总体是由有明显差别的几部分组成时的情况;(2)分层抽样对各个个体来说被抽取的可能性相同.3、分层抽样的优点:(1)样本具有较强的代表性;(2)在各层抽样时,可灵活地选用不同的抽样方法.4、分层抽样的步骤:(1)将总体按一定的标准分层;(2)计算各层的个体数与总体的个体数的比;(3)按各层个体数占总体的个体数的比确定各层应抽取的样本容量;(4)在每一层进行抽样(各层可以按简单随机抽样或系统抽样的方法抽取)要点诠释:1、应用分层抽样应遵循以下要求:(1)分层:将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则.(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.2、分层抽样是当总体有差异明显的几部分组成时采用的抽样方法,进行分层抽样时应注意以下几点:(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是,层内样本的差异要小,而层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层应采用同一抽样比等可能抽样.(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样.3、分层抽样的优点是:使样本具有较强的代表性,并且抽样过程中可综合选用各种抽样方法,因此分层抽样是一种实用、操作性强、应用比较广泛的抽样方法.。

【高中数学】高中数学知识点:分层抽样

【高中数学】高中数学知识点:分层抽样

【高中数学】高中数学知识点:分层抽样分层抽样:
当已知种群由几个有明显差异的部分组成时,通常将种群分成几个部分,然后根据每个部分的比例进行抽样。

这种抽样被称为分层抽样,它被分成的部分被称为分层抽样。

利用分层抽样抽取样本,每一层按照它在总体中所占的比例进行抽取。

非回归抽样和回归抽样:
在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.
随机抽样、系统抽样和分层抽样不属于后验抽样
分层抽样的特点:
(1)分层抽样适用于有明显差异的几个部分的构成;
(2)在每一层进行抽样时,在采用简单随机抽样或系统抽样;
(3)分层抽样充分利用现有信息,使样本具有良好的代表性;
(4)分层抽样也是等概率抽样,而且在每层抽样时,可以根据具体情况采用不同的抽样方法,因此应用较为广泛。

它们的抽样方法及其差异

类别
共同点
各自的特点
相互联系
适用范围
简单随机抽样
在抽样过程中,每个个体被抽样的概率是相同的
从总体中逐个抽取
人口中的个体数量很少
系统抽样
将整体均匀地分成几个部分,并根据预先确定的规则从每个部分中提取在起始部分抽样时采用简单随机抽样
人口中有许多个体
分层抽样
将整体划分为几层,并逐层提取
各层抽样时采用简单抽样或者相同抽样
整体由几个明显不同的部分组成。

分层抽样的方法课件

分层抽样的方法课件
2.系统抽样
当总体的个数较多时,采用简单随机抽样太麻烦,这时将总体分成均 衡的部分,然后按照预先定出的规则,在每一部分中抽取1个个体得到所 需要的样本,这种抽样称为系统抽样。
学习交流PPT
3
知识讲解:
1、 分层抽样概念: • 一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的 比例,从各层独立地抽取一定数量的个体,将各层取出的个体合 在一起作为样本,这种抽样的方法叫分层抽样。
解:采用分层抽样抽取。过程如下:
1.确定比例
(1)确定样本容量与总体的个体数之比 100:500=1:5
(2) 利用抽样比确定各年龄段应抽取的个体数,依次为 2.确定各层抽取数
125, 280, 95 即25,56,19。 5 55
(3)利用简单随机抽样或系统抽样的方法,在各年龄3.各段层分中别抽抽取取个25体,并56合,并19人, 然后合在一起,就是所要抽取的样本。
说明:
1、总体个体差异明显,每层的差别比较大,而层内个体间的差别较小.
2、每层可以抽取多少样本,要根据它在总体中占的比例来抽取.
3、在每层中抽取样本时,采用简单随机抽样或系统抽样.
学习交流PPT
4
2、 分层抽样的抽取步骤: (1)确定总体与样本容量抽取的比例。
抽取比例 样本容量 总体个数
(2)由分层情况,确定各层抽取的样本数。
学习交流PPT
6
总结归纳: 分层抽样的特点: (1)每个个体被抽取的可能性是相同的; (2)每一层中抽取的样本数与这一层中的个体数的比等于样
本容量与总体中个体数的比; (3)若在按比例计算所得的个体数不是整数,可作适当的近似
处理.
分层抽样的优点: 使样本具有较强的代表性,而且在各层抽样时,又可以使用不

高考数学一轮复习分层抽样知识点

高考数学一轮复习分层抽样知识点

高考数学一轮复习分层抽样知识点
高考数学一轮复习分层抽样知识点
一.分层抽样(类型抽样):
先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

二.两种方法:
1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

三.分层标准:
(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。

3.分层的比例问题:
(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的'比重来抽取子样本的方法。

(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。

如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分层抽样方法
1.分层抽样方法
【知识点的认识】
1.定义:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比例进行抽样,这种抽样叫做分层抽样,其中所分的各部分叫“层”.
2.三种抽样方法比较
类别共同点各自特点相互联系适用范围
简单随机抽样抽样过程中每个从总体中逐个抽总体中的个体数
个体被抽取的概取较少
率是相同的
系统抽样将总体均匀分成在起始部分抽样总体中的个体数
几个部分,按事时采用简单随机较多
先确定的规则在抽样
各部分抽取
分层抽样将总体分成几各层抽样时采用总体由差异明显
层,分层进行抽简单随机抽样或的几部分组成
取系统抽样
【解题方法点拨】
分层抽样方法操作步骤:
(1)分层:将总体按某种特征分成若干部分;
(2)确定比例:计算各层的个体数与总体的个体数的比;
(3)确定各层应抽取的样本容量;
(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.
【命题方向】
(1)区分分层抽样方法
例:某交高三年级有男生 500 人,女生 400 人,为了解该年级学生的健康情况,从男生中任意抽取 25 人,从女生中任意抽取 20 人进行调查.这种抽样方法是()
1/ 2
A.简单随机抽样法B.抽签法C.随机数表法D.分层抽样法
分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样
解答:总体由男生和女生组成,比例为 500:400=5:4,所抽取的比例也是 5:4.
故选D
点评:本小题主要考查抽样方法,属基本题.
(2)求抽取样本数
例 1:某校高三一班有学生 54 人,二班有学生 42 人,现在要用分层抽样的方法从两个班抽出 16 人参加军训表演,则一班和二班分别被抽取的人数是()
A.8,8
B.10,6
C.9,7
D.12,4
分析:先计算每个个体被抽到的概率,再用每层的个体数乘以每个个体被抽到的概率,即得到该层应抽取的个体数.
16
解答:每个个体被抽到的概率等于
54+42=1
6
,54 ×
1
6= 9,42 ×
1
6= 7.
故从一班抽出 9 人,从二班抽出 7 人,
故选C.
点评:本题考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数.
例 2:某单位有职工 750 人,其中青年职工 350 人,中年职工 250 人,老年职工 150 人,为了解该单位职工的健康
情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为 7 人,则样本容量为()
A.35
B.25
C.15
D.7
分析:先计算青年职工所占的比例,再根据青年职工抽取的人数计算样本容量即可.
解答:青年职工、中年职工、老年职工三层之比为 7:5:3,
7
7
所以样本容量为
15
= 15.
故选C.
点评:本题考查分层抽样的定义和方法,求出每个个体被抽到的概率,用个体的总数乘以每个个体被抽到的概率,就得到样本容量n 的值.
2/ 2。

相关文档
最新文档