离散数学第二章作业
离散数学课后习题答案(第二章)
b) 他是田径或球类运动员。 解:设 S(x) :x 是田径运动员。B(x) :x 是球类运动员。h:他 则有 S(h)∨B(h) c) 小莉是非常聪明和美丽的。 解:设 C(x) :x 是聪明的。B(x) :x 是美丽的。l:小莉。 则有 C(l)∧ B(l) d)若 m 是奇数,则 2m 不是奇数。 解:设 O(x) :x 是奇数。 则有 O(m)→¬ O(2m) 。 e)每一个有理数是实数。 解:设 R(x) :x 是实数。Q(x) :x 是有理数。 则有 (∀x) (Q(x)→R(x) ) f) 某些实数是有理数。 解:设 R(x) :x 是实数。Q(x) :x 是有理数。 则有 (∃x) (R(x)∧Q(x) ) g) 并非每个实数都是有理数。 解:设 R(x) :x 是实数。Q(x) :x 是有理数。 则有 ¬(∀x) (R(x)→Q(x) ) h)直线 A 平行于直线 B,当且仅当直线 A 不相交于直线 B。 解:设 P(x,y) :直线 x 平行于直线 y,G(x,y) :直线 x 相交于直线 y。 则有 P(A,B)�¬G(A,B) (2) 找出以下十二个句子所对应的谓词表达式。 a) 所有的教练员是运动员。 (J(x),L(x)) 解:设 J(x):x 是教练员。L(x):x 是运动员。 则有 (∀x) (J(x)→L(x) ) b) 某些运动员是大学生。 (S(x)) 解:设 S(x):x 是大学生。L(x):x 是运动员。 则有 (∃x) (L(x)∧S(x) ) c) 某些教练是年老的,但是健壮的。 (O(x),V(x) ) 解:设 J(x):x 是教练员。O(x):x 是年老的。V(x) :x 是健壮的。 则有 (∃x) (J(x)∧O(x)∧V(x) ) d) 金教练既不老但也不健壮的。 (j) 解:设 O(x):x 是年老的。V(x) :x 是健壮的。j:金教练 则有 ¬ O(j)∧¬V(j) e) 不是所有的运动员都是教练。 解:设 L(x):x 是运动员。J(x):x 是教练员。 则 ¬(∀x) (L(x)→J(x) ) f) 某些大学生运动员是国家选手。 (C(x) )
离散数学第二章练习题
第二章习题1 填空题(每小题5,共30分)⑴设A 为含命题变项p、q、r 的重言式,则公式A Ú((p∧q)®r)的类型为__________⑵设B为含命题变项p、q、r 的矛盾式,则公式B∧((p«q)®r)的类型为_________⑶设p、q为命题变项,则有(Øp«q)的成真赋值为________⑷设p、q为真命题,r、s为假命题,则复合命题(p«r)«(Øq®s)的真值为_________⑸矛盾式的主析取范式为_________⑹设公式A含命题变项p、q、r,又已知A的主合取范式为M O∧M2∧M3∧M5,则A的主析取范式为_________2 用等值演算法求公式的主析取范式或主合取范式(每小题10,共30分)⑴求公式p®((q∧r)∧(pÚ(Øq∧Ør)))的主析取范式⑵求公式Ø(Ø(p®q)) Ú(Øq®Øp)的主取合范式⑶求公式((pÚq) ∧(p®q)) «(q®p)的主析取范式,再由主析取范式求出主合取范3 用真值表求公式(p®q) «r的主析取范式(10分)4 将公式p®(q®r)化成与之等值且仅含{Ø,∧}中的联结词的公式(10分)5 用主析取范式判断Ø(p «q)与((pÚq) ∧Ø (p∧q))是否等值(10分)6 用消解原理证明p∧(ØpÚq) ∧(Ør) ∧(ØpÚØqÚr)是矛盾式(10分)。
2023学堂在线网课《离散数学》课后作业单元考核答案
2023学堂在线网课《离散数学》课后作业单元考核答案第一单元答案1.1题目:在集合 {1, 2, 3, 4} 上定义一个二元关系 R,其中 R = {(1,1), (2,2), (3,3), (4,4), (1,4), (4,1)}。
给出 R 的自反、对称、反对称和传递性特点。
•自反特性:对于任意元素x ∈ {1, 2, 3, 4},都存在 (x, x) ∈ R。
所以,R 是自反的。
•对称特性:对于任意的(x, y) ∈ R,都存在(y, x) ∈ R。
所以,R 是对称的。
•反对称特性:对于任意的(x, y) ∈ R,如果存在 (y, x) ∈ R,那么 x = y。
所以,R 是反对称的。
•传递性特性:对于任意的(x, y) ∈ R 和(y, z) ∈ R,都存在(x, z) ∈ R。
所以,R 是传递的。
1.2题目:在集合 {1, 2, 3, 4} 上定义一个二元关系 R,其中 R = {(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)}。
给出 R 的自反、对称、反对称和传递性特点。
•自反特性:对于任意元素x ∈ {1, 2, 3, 4},都存在 (x, x) ∈ R。
所以,R 是自反的。
•对称特性:对于任意的(x, y) ∈ R,都存在(y, x) ∈ R。
所以,R 是对称的。
•反对称特性:对于任意的(x, y) ∈ R,如果存在 (y, x) ∈ R,那么 x = y。
所以,R 是反对称的。
•传递性特性:对于任意的(x, y) ∈ R 和(y, z) ∈ R,都存在(x, z) ∈ R。
所以,R 是传递的。
第二单元答案2.1题目:证明或给出一个反例:若 R 是集合 A 上的一个等价关系,且对于任意 a, b ∈ A,有 (a, b) ∈ R 或 (b, a) ∈ R,那么 A 必然可以划分为若干等价类。
假设 R 是集合 A 上的一个等价关系,且对于任意a, b ∈ A,有(a, b) ∈ R 或(b, a) ∈ R。
离散数学作业
-离散数学 专业班级 学号 姓名 第一章 命题逻辑的基本概念一、单项选择题1.下列语句中不是命题的有( ).A 9+5≤12 B. 1+3=5 C. 我用的电脑CPU 主频是1G 吗?D.我要努力学习。
2. 下列语句是真命题为( ).A. 1+2=5当且仅当2是偶数B. 如果1+2=3,则2是奇数C. 如果1+2=5,则2是奇数D. 你上网了吗?3. 设命题公式)(r q p∧→⌝,则使公式取真值为1的p ,q ,r 赋值分别是( ) 0,0,1)D (0,1,0)C (1,0,0)B (0,0,0)A ( 4. 命题公式q q p →∨)(为 ( )(A) 矛盾式 (B) 仅可满足式 (C) 重言式 (D) 合取范式5. 设p:我将去市里,q :我有时间.命题“我将去市里,仅当我有时间时”符号化为为( )q p q p q p p q ⌝∨⌝↔→→)D ()C ()B ()A (6.设P :我听课,Q :我看小说. “我不能一边听课,一边看小说”的符号为( )A. Q P ⌝→ ;B. Q P →⌝;C. P Q ⌝∧⌝ ;D. )(Q P ∧⌝二、判断下列语句是否是命题,若是命题是复合命题则请将其符号化(1)中国有四大发明。
(2)2是有理数。
(3)“请进!”(4)刘红和魏新是同学。
(5)a+b(6)如果买不到飞机票,我哪儿也不去。
(8)侈而惰者贫,而力而俭者富。
(韩非:《韩非子∙显学》)(9)火星上有生命。
(10)这朵玫瑰花多美丽啊!二、将下列命题符号化,其中p:2<1,q:3<2(1)只要2<1,就有3<2。
(2)如果2<1,则3≥2。
(3)只有2<1,才有3≥2。
(4)除非2<1,才有3≥2。
(5)除非2<1,否则3≥2。
(6)2<1仅当3<2。
离散数学专业班级学号姓名三、将下列命题符号化(1)小丽只能从筐里拿一个苹果或一个梨。
电大离散数学作业2
离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.设集合{1,2,3},{1,2}A B==,则P(A)-P(B )= {{3}, {1,2,3}, {1, 3 }, {2,3}} ,A⨯B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,R⋂∈y∈x<且=且>∈x{B,,AAyyBx}则R的有序对集合为{<2, 2>,<2, 3>,<3, 2>},<3, 3> .4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}x∈y∈><y=2,,,{ByxAx那么R-1={<6,3>,<8,4>} .5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是反自反性,反对称性.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c, b>, <d, c>,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|x∈A,y∈A, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>} .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1, 1>, <2, 2>, <3, 3> 等元素.10.设A={1,2},B={a,b},C={3,4,5},从A到B的函数f ={<1, a>, <2, b>},从B到C的函数g={< a,4>, < b,3>},则Ran(g︒ f)= {3,4} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R={<1, 1>,<2, 2>,<1, 2>},则(1) R是自反的关系;(2) R是对称的关系.解:(1)错误,R不是自反关系,因为没有有序对<3,3>.(2)错误,R不是对称关系,因为没有有序对<2,1>2.设A={1,2,3},R={<1,1>, <2,2>, <1,2> ,<2,1>},则R是等价关系.解:错误, 即R不是等价关系.因为等价关系要求有自反性x R x, 但<3, 3>不在R中.3.若偏序集<A,R>的哈斯图如图一所示,则集合A的最大元为a,最小元不存在.οοοοab cd图一οοοg e fh ο解:错误.集合A的最大元不存在,a是极大元.4.设集合A={1, 2, 3, 4},B={2, 4, 6, 8},,判断下列关系f是否构成函数f:A→,并说明理由.B(1) f={<1, 4>, <2, 2,>, <4, 6>, <1, 8>};(2) f={<1, 6>, <3, 4>, <2, 2>};(3) f={<1, 8>, <2, 6>, <3, 4>, <4, 2,>}.解:(1) f不能构成函数.因为A中的元素3在f中没有出现.(2) f不能构成函数.因为A中的元素4在f中没有出现.(3) f可以构成函数.因为f的定义域就是A,且A中的每一个元素都有B中的唯一一个元素与其对应,满足函数定义的条件.三、计算题1.设}4,2{=CB==E,求:A},5,4,3,2,1{=},5,2,1{4,1{},(1) (A⋂B)⋃~C;(2) (A⋃B)-(B⋂A) (3) P(A)-P(C);(4) A⊕B.解:(1)因为A∩B={1,4}∩{1,2,5}={1},~C={1,2,3,4,5}-{2,4}={1,3,5}所以(A∩B ) ⋃~C={1}⋃{1,3,5}={1,3,5}(2)(A⋃B)-(B⋂A)= {1,2,4,5}-{1}={2,4,5}(3)因为P(A)={φ,{1}, {4}, {1,4}}P(C)={φ,{2},{4},{2,4}}所以P(A)-P(C)={ φ,{ 1},{ 4},{ 1,4}}-{φ,{ 2},{ 4},{2,4 }}(4) 因为A⋃B={ 1,2,4,5}, A⋂B={ 1}所以A⊕B=A⋃B-A⋂B={1,2,4,5}-{1}={2,4,5}2.设A={{1},{2},1,2},B={1,2,{1,2}},试计算(1)(A-B);(2)(A∩B);(3)A×B.解:(1)A-B ={{1},{2}}(2)A∩B ={1,2}(3)A×B={<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,<{2},{1,2}>,<1,1>,<1,2>,<1, {1,2}>,<2,1>,<2,2>,<2, {1,2}>}3.设A={1,2,3,4,5},R={<x,y>|x∈A,y∈A且x+y≤4},S={<x,y>|x∈A,y∈A且x+y<0},试求R,S,R•S,S•R,R-1,S-1,r(S),s(R).解:R={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}, \R-1={<1,1>,<2,1>,<3,1>,<1,2 >,<2,2>,<1, 3>}S=φ, S-1 =φr(S)={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s(R)= {<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}R •S=φS •R=φ4.设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6}.(1) 写出关系R 的表示式; (2 )画出关系R 的哈斯图;(3) 求出集合B 的最大元、最小元.解:R={<1,1>,<1,2>,<1,3>,<1,4,<1,5>,<1,6>,<1,7>,<1,8>,<2,2>,<2,4>,<2,6>,<2,8>,<3,3>,<3,6>,<4,4>,<4,8>,<5,5>,<6,6>,<7,7>,<8,8>}(2)关系R 的哈斯图如图(3)集合B 没有最大元,最小元是:2四、证明题1.试证明集合等式:A ⋃ (B ⋂C )=(A ⋃B ) ⋂ (A ⋃C ).证明:设,若x ∈A ⋃ (B ⋂C ),则x ∈A 或x ∈B ⋂C , 即 x ∈A 或x ∈B 且 x ∈A 或x ∈C .即x ∈A ⋃B 且 x ∈A ⋃C ,即 x ∈T =(A ⋃B ) ⋂ (A ⋃C ),所以A ⋃ (B ⋂C )⊆ (A ⋃B ) ⋂ (A ⋃C ).反之,若x ∈(A ⋃B ) ⋂ (A ⋃C ),则x ∈A ⋃B 且 x ∈A ⋃C ,即x ∈A 或x ∈B 且 x ∈A 或x ∈C ,即x ∈A 或x ∈B ⋂C ,7即x∈A⋃ (B⋂C),所以(A⋃B) ⋂ (A⋃C)⊆ A⋃ (B⋂C).因此.A⋃ (B⋂C)=(A⋃B) ⋂ (A⋃C).2.试证明集合等式A⋂ (B⋃C)=(A⋂B) ⋃ (A⋂C).证明:设S=A∩(B∪C),T=(A∩B)∪(A∩C),若x∈S,则x∈A且x∈B∪C,即x∈A且x∈B或x∈A且x∈C,也即x∈A∩B或x∈A∩C,即x∈T,所以S⊆T.反之,若x∈T,则x∈A∩B或x∈A∩C,即x∈A且x∈B 或x∈A且x∈C也即x∈A且x∈B∪C,即x∈S,所以T⊆S.因此T=S.3.对任意三个集合A, B和C,试证明:若A B = A C,且A,则B = C.证明:设x∈A,y∈B,则<x,y>∈A⨯B,因为A⨯B = A⨯C,故<x,y>∈ A⨯C,则有y∈C,所以B⊆ C.设x∈A,z∈C,则<x,z>∈ A⨯C,因为A⨯B = A⨯C,故<x,z>∈A⨯B,则有z∈B,所以C⊆B.故得B=C.4.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.证明:R1和R2是自反的,∀x∈A,<x, x> ∈R1,<x, x> ∈R2,则<x, x> ∈R1∩R2,所以R1∩R2是自反的.。
离散数学-第二章命题逻辑等值演算习题及答案
第二章作业 评分要求:1. 每小题6分: 结果正确1分; 方法格式正确3分; 计算过程2分. 合计48分2. 给出每小题得分(注意: 写出扣分理由)3. 总得分在采分点1处正确设置.一. 证明下面等值式(真值表法, 解逻辑方程法, 等值演算法, 三种方法每种方法至少使用一次):说明证1. p ⇔(p ∧q)∨(p ∧¬q)解逻辑方程法设 p ↔((p ∧q)∨(p ∧¬q)) =0, 分两种情况讨论:⎩⎨⎧=⌝∧∨∧=0)()(1)1(q p q p p 或者 ⎩⎨⎧=⌝∧∨∧=1)()(0)2(q p q p p (1)(2)两种情况均无解, 从而, p ↔(p ∧q)∨(p ∧¬q)无成假赋值, 为永真式.等值演算法(p ∧q)∨(p ∧¬q)⇔ p ∧(q ∨¬q)∧对∨的分配率⇔ p ∧1 排中律⇔ p 同一律真值表法用真值表法和解逻辑方程法证明相当于证明为永真式1. (¬p→q)→(¬q∨p)解(¬p→q)→(¬q∨p)⇔(p∨q)→(¬q∨p)蕴含等值式⇔(¬p∧¬q)∨(¬q∨p)蕴含等值式, 德摩根律⇔(¬p∧¬q)∨¬q ∨p结合律⇔p∨¬q吸收律, 交换律⇔M1因此, 该式的主析取范式为m0∨m2∨m32. (¬p→q)∧(q∧r)解逻辑方程法设(¬p→q)∧(q∧r) =1, 则¬p→q=1且q∧r=1,解得q=1, r=1, p=0 或者q=1, r=1, p=1, 从而所求主析取范式为m3∨m7, 主合取范式为M0∧M1∧M2∧M4∧M5∧M6等值演算法(¬p→q)∧(q∧r)⇔ (p∨q)∧(q∧r) 蕴含等值式⇔ (p∧q∧r)∨(q∧r) ∧对∨分配律, 幂等律⇔ (p∧q∧r) ∨ (p∧q∧r)∨(⌝p∧q∧r) 同一律, 矛盾律, ∧对∨分配律⇔m7∨ m3主合取范式为M0∧M1∧M2∧M4∧M5∧M63. (p↔q)→r解逻辑方程法设(p↔q)→r =0, 解得p=q=1, r=0 或者p=q=0, r=0, 从而所求主合取范式为M0∧M6, 主析取范式为m1∨m2∨m3∨m4∨m5∨m7等值演算法(p↔q)→r⇔ ((p→q)∧(q→p))→r 等价等值式⇔⌝((p→q)∧(q→p))∨r 蕴含等值式⇔ (p∧⌝q)∨(q∧⌝p)∨r 德摩根律, 蕴含等值式的否定(参见PPT)⇔ (p∨q∨r)∧(⌝q∨⌝p∨r) ∨对∧分配律, 矛盾律, 同一律⇔M0∧ M6主析取范式为m1∨m2∨m3∨m4∨m5∨m74. (p→q)∧(q→r)解等值演算法(p→q)∧(q→r)⇔ (⌝p∨q)∧(⌝q∨r) 蕴含等值式⇔ (⌝p∧⌝q)∨(⌝p∧r)∨(q∧r) ∧对∨分配律, 矛盾律, 同一律⇔ (⌝p∧⌝q∧r)∨(⌝p∧⌝q∧⌝r) ∨ (⌝p∧q∧r)∨(⌝p∧⌝q∧r) ∨ (p∧q∧r)∨(⌝p∧q∧r)⇔m1∨ m0∨ m3∨ m7主合取范式为M2∧ M4∧ M5∧ M6.解逻辑方程法设(p → q) ∧ (q → r) = 1, 则p → q =1 且q → r =1.前者解得: p=0, q=0; 或者p=0, q=1; 或者p=1, q=1.后者解得: q=0, r=0; 或者q=0, r=1; 或者q=1, r=1.综上可得成真赋值为000, 001, 011, 111, 从而主析取范式为m0∨ m1∨ m3∨ m7, 主合取范式为M2∧ M4∧ M5∧ M6.真值表法公式(p → q) ∧ (q从而主析取范式为m0∨ m1∨ m3∨ m7, 主合取范式为M2∧ M4∧ M5∧ M6.。
离散数学 杨圣洪等著第二章习题三解答
第二章习题三一、证明如下推理式1、∃xF(x)→∀y((F(y)∨G(y))→R(y)),∃xF(x) ⇒∃xR(x)(1)∃xF(x) 前提条件(2)∃xF(x) →∀y((F(y) ∨G(y)) →R(y)) 前提条件(3)∀y((F(y) ∨G(y)) →R(y)) (1)(2)假言推理(4)F(c) (1)存在量词指定(5)F(c) ∨G(c) (4)及析取的定义(6)(F(c) ∨G(c)) →R(c) (3)全称量词指定(7)R(c) (5)(6)假言推理(8)∃xR(x) (7)存在推广2、∀x(F(x)→(G(a) ∧R(x))),∃xF(x) ⇒∃x(F(x) ∧R(x))(1)∃xF(x) 前提条件(2)F(c) (1)存在量词指定(3)∀x(F(x)→G(a) ∧R(x))) 前提条件(4)F(c)→G(a)∧R(c)) (3)全称指定,尤其x=c应成立(5)G(a)∧R(c) (2)(4)假言推理或分离原则(6)R(c) (5)与合取的定义(2)(6)与合取的定义(7)F(c)∧R(c)(8)∃x(F(x)∧R(x) (7)存在推广3、∀x(F(x)∨G(x)),¬∃xG(x) ⇒∃xF(x)(1)¬∃xG(x) 前提条件(2)∀x¬G(x) (1)的等值(3)¬G(x0) (2)全称指定,x0为任意变元(4)∀x(F(x) ∨G(x)) 前提条件(4)全称指定为x0(5)(F(x0) ∨G(x0))(6)¬G(x0) →F(x0) (5)等值变换(7)F(x0) (3)(6)分离原则或假言推理(8)∃xF(x) (7)存在推广4、∀x(F(x) ∨G(x)),∀x(¬R(x) ∨¬G(x)),∀xR(x) ⇒∃xF(x)(1)∀x(F(x) ∨G(x)) 前提条件(2)(F(x0) ∨G(x0)) (1)全称指定,x0为任意变元(3)∀x(¬R(x) ∨¬G(x)) 前提条件(4)(¬R(x0) ∨¬G(x0)) (3)全称指定,变元x指定为(2)中确定的变元x0,即是同一个x0(5)∀xR(x) 前提条件(6)R(x0) (5)全称指定,与(2)中的x0为同一个(4)的等值变换(7)R(x0) →¬G(x0)(8)¬G(x0) (6)(7)分离原则或假言推理(9)¬G(x0) → F(x0) (2)的等值变换(10)F(x0) (8)(9)分离原则或假言推理(11)∃xF(x) (10)存在推广。
离散数学 第2章习题答案
第2章习题答案1. 解 (1)设F(x)表示“x犯错误”,N(x)表示“x为人”,则此语句符号化为:⌝∃x(N(x)∧⌝F(x))。
(2)设F(x)表示“x是推理”,M(x)表示“x是计算机”,H(x,y)表示“x能由y完成”,则此语句符号化为:⌝∀x(F(x)→∃ y M(y)∧H(x,y))。
(3)设C(x)表示“x是计算机系的学生”,D(x)表示“x学习离散数学”,则此语句符号化为:∀x(C(x)→D(x))。
(4)因原语句与“一切自然数x,都有一个自然数y,使得y是x的后继数;并且对任意自然数x,当y 和z都是x的后继时,则有y=z”的意思相同,所以原语句可符号化为:∀x(N(x)→∃ y(N(y)∧M(x,y)))∧∀x∀y∀z(N(x)∧N(y)∧N(z)→(M(x,y)∧M(x,z)→( y=z))) 其中N(x)表示x是自然数,M(x,y)表示y是x的后继数。
(5)设S(x,y,z)表示“x+y=z”,则此语句符号化为:∀x∀y∃z S(x,y,z)。
(6)设Z(x)表示“x是整数”,S(x,y)表示“xy=0”,T(x,y)表示“x=y”,则此语句符号化为:∀x∀y(Z(x)∧Z(y)→(S(x,y)→ T(x,0)∨T(y,0)))。
(7)设E(x)表示“x是偶数”,P(x)表示“x是素数”,S(x,y)表示“x=y”,则此语句符号化为:∀x(E(x)∧P(x)→∀y(E(y)∧P(y)→ S(x,y)))。
(8)设E(x)表示“x是偶数”,O(x)表示“x是奇数”,N(x)表示“x是自然数”,则此语句符号化为:⌝∃x(E(x)∧O(x)∧N(x))。
(9)设R(x)表示“x是实数”,Q(x)表示“x是有理数”,Z(x)表示“x是整数”,则此语句符号化为:∃x(R(x)∧Q(x)∧⌝Z(x))。
(10)设R(x)表示“x是实数”,Q(x,y)表示“y大于x”,则此语句符号化为:∀x(R(x)→∃⌝y(R(y)∧Q(x,y)))。
离散数学(屈婉玲版)第二章习题答案
2.13 设解释I为:个体域D I ={-2,3,6},一元谓词F(X):X≤3,G(X):X>5,R(X):X≤7。
在I下求下列各式的真值。
(1)∀x(F(x)∧G(x))解:∀x(F(x)∧G(x))⇔(F(-2) ∧G(-2)) ∧(F(3) ∧G(3)) ∧(F(6) ∧G(6))⇔((-2≤3) ∧(-2>5)) ∧((3≤3) ∧(3>5)) ∧((6≤3) ∧(6<5))⇔((1 ∧0))∧((1 ∧0)) ∧((0 ∧0))⇔0∧0∧0⇔0(2) ∀x(R(x)→F(x))∨G(5)解:∀x(R(x)→F(x))∨G(5)⇔(R(-2)→F(-2))∧ (R(3)→F(3))∧ (R(6)→F(6))∨ G(5)⇔((-2≤7) →(-2≤3))∧ (( 3≤7) →(3≤3))∧ (( 6≤7) →(6≤3)) ∨ (5>5)⇔(1 →1)∧ (1 →1)∧ (1→0) ∨ 0⇔1∧ 1∧ 0 ∨ 0⇔0(3)∃x(F(x)∨G(x))解:∃x(F(x)∨G(x))⇔(F(-2) ∨ G(-2)) ∨ (F(3) ∨G(3)) ∨ (F(6) ∨G(6))⇔((-2≤3) ∨ (-2>5)) ∨ ((3≤3) ∨ (3>5)) ∨ ((6≤3) ∨ (6>5))⇔(1 ∨ 0) ∨ (1 ∨ 0) ∨ (0 ∨ 1)⇔1 ∨ 1 ∨ 1⇔12.14 求下列各式的前束范式,要求使用约束变项换名规则。
(1)⌝∃xF(x)→∀yG(x,y)(2) ⌝(∀xF(x,y) ∨∃yG(x,y) )解:(1)⌝∃xF(x)→∀yG(x,y)⇔⌝∃xF(x)→∀yG(z,y) 代替规则⇔∀x⌝F(x)→∀yG(z,y) 定理2.1(2 )⇔∃x(⌝F(x)→∀yG(z,y) 定理2.2(2)③⇔∃x∀y(⌝F(x)→G(z,y)) 定理2.2(1)④(2)⌝(∀xF(x,y) ∨∃yG(x,y) )⇔⌝(∀zF(z,y) ∨∃tG(x,t)) 换名规则⇔⌝(∀zF(z,y) )∧⌝(∃tG(x,t) )⇔∃z⌝F(z,y) ∧∀t⌝G(x,z)⇔∃z (⌝F(z,y) ∧∀t⌝G(x,z))⇔∃z ∀t(⌝F(z,y) ∧⌝G(x,t))2.15 求下列各式的前束范式,要求使用自由变项换名规则。
离散数学答案第二章习题解答
离散数学答案第二章习题解答第二章谓词逻辑习题与解答1、将下列命题符号化:(1) 所有的火车都比某些汽车快。
(2) 任何金属都可以溶解在某种液体中。
(3) 至少有一种金属可以溶解在所有液体中。
(4) 每个人都有自己喜欢的职业。
(5) 有些职业就是所有的人都喜欢的。
解 (1) 取论域为所有交通工具的集合。
令x x T :)(就是火车, x x C :)(就是汽车, x y x F :),(比y 跑得快。
“所有的火车都比某些汽车快”可以符号化为))),()(()((y x F y C y x T x ∧?→?。
(2) 取论域为所有物质的集合。
令x x M :)(就是金属, x x L :)(就是液体, x y x D :),(可以溶解在y 中。
“任何金属都可以溶解在某种液体中” 可以符号化为))),()(()((y xD y L y x M x ∧?→?。
(3) 论域与谓词与(2)同。
“至少有一种金属可以溶解在所有液体中” 可以符号化为))),()(()((y x D y L y x M x →?∧?。
(4) 取论域为所有事物的集合。
令x x M :)(就是人, x x J :)(就是职业, x y x L :),(喜欢y 。
“每个人都有自己喜欢的职业” 可以符号化为))),()(()((y x L y J y x M x ∧?→?(5)论域与谓词与(4)同。
“有些职业就是所有的人都喜欢的”可以符号化为))),()(()((x y L y M y x J x →?∧?。
2、取论域为正整数集,用函数+(加法),?(乘法)与谓词<,=将下列命题符号化:(1) 没有既就是奇数,又就是偶数的正整数。
(2) 任何两个正整数都有最小公倍数。
(3) 没有最大的素数。
(4) 并非所有的素数都不就是偶数。
解先引进一些谓词如下:x y x D :),(能被y 整除,),(y x D 可表示为)(x y v v =??。
离散数学答案第二章习题解答
第二章 谓词逻辑习题与解答1、 将下列命题符号化:(1) 所有的火车都比某些汽车快。
(2) 任何金属都可以溶解在某种液体中。
(3) 至少有一种金属可以溶解在所有液体中。
(4) 每个人都有自己喜欢的职业。
(5) 有些职业就是所有的人都喜欢的。
解 (1) 取论域为所有交通工具的集合。
令x x T :)(就是火车, x x C :)(就是汽车, x y x F :),(比y 跑得快。
“所有的火车都比某些汽车快”可以符号化为))),()(()((y x F y C y x T x ∧∃→∀。
(2) 取论域为所有物质的集合。
令x x M :)(就是金属, x x L :)(就是液体, x y x D :),(可以溶解在y 中。
“任何金属都可以溶解在某种液体中” 可以符号化为))),()(()((y x D y L y x M x ∧∃→∀。
(3) 论域与谓词与(2)同。
“至少有一种金属可以溶解在所有液体中” 可以符号化为))),()(()((y x D y L y x M x →∀∧∃。
(4) 取论域为所有事物的集合。
令x x M :)(就是人, x x J :)(就是职业, x y x L :),(喜欢y 。
“每个人都有自己喜欢的职业” 可以符号化为))),()(()((y x L y J y x M x ∧∃→∀(5)论域与谓词与(4)同。
“有些职业就是所有的人都喜欢的”可以符号化为))),()(()((x y L y M y x J x →∀∧∃。
2、 取论域为正整数集,用函数+(加法),•(乘法)与谓词<,=将下列命题符号化:(1) 没有既就是奇数,又就是偶数的正整数。
(2) 任何两个正整数都有最小公倍数。
(3) 没有最大的素数。
(4) 并非所有的素数都不就是偶数。
解 先引进一些谓词如下:x y x D :),(能被y 整除,),(y x D 可表示为)(x y v v =•∃。
x x J :)(就是奇数,)(x J 可表示为)2(x v v =•⌝∃。
习题(第二章一阶逻辑)080923
第二章 一阶逻辑(习题)
4) D:R,F(x,y) :x>y, xyF(x,y) :存在实数x,对任意的实数y,使得x>y。假 yxF(x,y) :对任意的实数y,存在实数x,使得x>y。真 所以, x yF(x,y) yxF(x,y) 为真。 D:N,F(x,y) :x<y, xyF(x,y) :存在自然数x,对任意的自然数y,使得 x < y。真 yxF(x,y) :对任意的自然数y,存在自然数x,使得 x < y。假 所以, x yF(x,y) yxF(x,y) 为假。 综上,x yF(x,y) yxF(x,y)是可满足的。
2014-11-8
计算机科学与工程系14
第二章 一阶逻辑(习题)
解: 1) P (Q P) P Q P 1 , 用F(x,y) 代替上式中的P,用代替上式中的Q,得 F(x,y) (G(x,y) F(x,y) ) 是永真的。 2)因为 F(x) F(x) F(x) F(x) 1 ,
第二章 一阶逻辑(习题)
12、证明下列各式既不是永真的也不是永假的: 1) x(F(x) y(G(y)∧H(x,y)) )。 2) x y(F(x) ∧ G(y) H(x,y))。
2014-11-8
计算机科学与工程系20
ቤተ መጻሕፍቲ ባይዱ
第二章 一阶逻辑(习题)
1) D:N,F(x) :x是偶数, G(x) :x是奇数, H(x,y):x≥y。 x(F(x) y(G(y)∧H(x,y)) ):对任意的自然数x,如 果x是偶数,则存在奇数 y,使得x≥y。假 D:N,F(x) :x是偶数, G(x) :x是奇数, H(x,y):x≠y。 x(F(x) y(G(y)∧H(x,y)) ):对任意的自然数x,如 果x是偶数,则存在奇数 y,使得x ≠ y。真 综上, x(F(x) y(G(y)∧H(x,y)) )既不是永真的 也不是永假的。
2022学堂在线网课《离散数学》课后作业单元考核答案 (2)
2022学堂在线网课《离散数学》课后作业单元考核答案第一单元:命题逻辑1.1 命题与命题公式1. 命题的定义命题是陈述一个能真假判断的陈述句,它要么是真的,要么是假的,不能既真且假。
2. 命题公式的定义命题公式是由命题变元和逻辑连接词组成的公式。
3. 简述命题公式中的逻辑连接词命题公式中的逻辑连接词包括合取(∧)、析取(∨)、条件(→)和双条件(↔)等。
1.2 命题的逻辑运算1. 合取运算合取运算表示为∧,表示两个命题的并集。
2. 析取运算析取运算表示为∨,表示两个命题的交集。
3. 条件运算条件运算表示为→,表示若前件成立,则推导出后件成立。
4. 双条件运算双条件运算表示为↔,表示前件成立当且仅当后件成立。
1.3 命题公式的真值表1. 真值表的定义真值表是用来表示命题公式在不同命题变元取值情况下的真假值。
2. 举例说明真值表的用途例如,对于命题公式 P ∧ Q,可以通过真值表确定当 P 和 Q 取不同的真假值时,P ∧ Q 的真假值。
第二单元:谓词逻辑2.1 命题与谓词1. 谓词的定义谓词是带有一个或多个变元的陈述句,它的真假值依赖于变元的取值。
2. 简述谓词中的变元和量词谓词中的变元是谓词的参数,它们可以是常量、变量或者表达式。
量词用于表示对谓词中的变元的范围。
2.2 谓词公式的定义与举例1. 谓词公式的定义谓词公式是由谓词和量词组成的公式。
2. 举例说明谓词公式的用途例如,对于谓词公式∃x.(P(x) ∧ Q(x)),可以表示存在一个变元 x,使得 P(x) 和 Q(x) 同时成立。
2.3 谓词公式的真值表1. 真值表的定义谓词公式的真值表用于表示谓词公式在不同变元取值情况下的真假值。
2. 举例说明谓词公式的真值表例如,对于谓词公式∀x.(P(x) → Q(x)),可以通过真值表确定当 P(x) 和 Q(x) 取不同的真假值时,谓词公式的真假值。
第三单元:集合论3.1 集合与运算1. 集合的定义集合是指具有共同特征的对象的总体。
离散数学(微课版) 第2章习题答案
离散数学(微课版)第2章习题答案2.1 集合与运算习题1给定两个集合A={1,3,5,7,9}和B={2,4,6,8,10},求A∪B和A∩B。
解答:集合A和B的并集(A∪B)是包含了A和B中所有元素的集合。
根据题目给出的集合A和B,可以得到并集A∪B={1,2,3,4,5,6,7,8,9,10}。
集合A和B的交集(A∩B)是包含了A和B中共有的元素的集合。
根据题目给出的集合A和B,可以得到交集A∩B={},因为集合A和B中没有共有的元素。
习题2给定两个集合A={奇数}和B={偶数},求A和B的交集和并集。
如果集合B改为B={2,4,6,8},结果是否有变化?解答:集合A表示奇数,集合B表示偶数。
当集合A和B中元素的范围比较广泛时,它们的交集为{},因为奇数和偶数没有共有的元素。
当集合B改为B={2,4,6,8}时,集合A和B中共有的元素为{},并集为A∪B=奇数∪{2,4,6,8}={奇数,2,4,6,8}。
2.2 命题与逻辑运算习题3给定两个命题p:“小明喜欢篮球”和q:“小明是篮球队的队长”。
请判断以下复合命题是真还是假:(1)p∧q;(2)p∨q;(3)p→q。
解答:命题p:“小明喜欢篮球” 是真命题。
命题q:“小明是篮球队的队长” 是假命题。
(1)p∧q:当p和q都为真时,命题p∧q才为真。
根据题目中给出的p和q的真值,可以确定p∧q是假命题。
(2)p∨q:当p和q中至少一个为真时,命题p∨q就为真。
根据题目中给出的p和q的真值,可以确定p∨q是真命题。
(3)p→q:当p为真时,命题p→q为真,否则为假。
根据题目中给出的p和q的真值,可以确定p→q是真命题。
习题4给定一个命题p:“2是偶数”。
请判断以下复合命题是真还是假:(1)¬p;(2)p∧¬p;(3)¬p∨p。
解答:命题p:“2是偶数” 是真命题。
(1)¬p:取命题p的否定,即“2不是偶数”,根据命题p的真值,可以确定¬p是假命题。
国家开放大学电大本科《离散数学》网络课形考任务2作业及答案
国家开放大学电大本科《离散数学》网络课形考任务2作业及答案此任务2 g选择题题目1 无向完全图K4是()、选择一项:A、树 B、欧拉图 C、汉密尔顿图 D、非平面图题目2 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T 的树叶数为()、选择一项: A、4 B、8 C、3 D、5 题目3 设无向图G的邻接矩阵为 011111 0 0111 0 0 0 011 0 011 01 0 则G 的边数为( 选择一项: A、7 B、14 C、6 D、1 题目4 如图一所示,以下说法正确的是()、选择一项: A、 ((a, e), (b, c)}是边割集 B、{(a, e)}是边割集 C、{(d, e)}是边割集 D、((a, e)}是割边题目5 以下结论正确的是()、选择一项: A、有n个结点n-l条边的无向图都是树B、无向完全图都是平面图 C、树的每条边都是割边 D、无向完全图都是欧拉图题目6 若G是一个欧拉图,则G一定是()、选择一项: A、汉密尔顿图 B、连通图 C、平面图 D、对偶图题目7 设图G=, vGV,则下列结论成立的是()、选择一项:A、云 d做、)=2|% B、2>“ = |司 w C、 deg(v)=2|S| D、deg(v)=|E| 题目8 图G如图三所示,以下说法正确的是()、选择一项: A、(b, d}是点割集 B、{c}是点割集 C、{b, c}是点割集 D、 a是割点题目9 设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是()、选择一项: (a)是费连通的 B、 (d)是强连通的 C、 (c)是强连通的D、 (b)是强连通的题目10 设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是()、选择一项: A、 (b)只是弱连通的 B、 (c)只是弱连通的 C、 (a)只是弱连通的 D、 (d)只是弱连通的判断逝题目11 设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树、()选择一项:对错题目12 汉密尔顿图一定是欧拉图、()选择一项:对错题目13 设连通平面图G的结点数为5,边数为6,则面数为4、()选择一项:对错题目14 设G是一个有7个结点16条边的连通图,则G为平面图、()选择一项:对错题目15 如图八所示的图G存在一条欧拉回路、()选择一项:对错题目16 设图G如图七所示,则图G的点割集是{f}、()选择一项:对错题目172>瞒)=2圜设G是一个图,结点集合为V,边集合为E,则代衫()选择一项:对错题目18 设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树、()选择一项:对错题目19 如图九所示的图G不是欧拉图而是汉密尔顿图、()选择一项:对错题目20 若图 G=,其中 V=( a, b, c, d }, E={ (a, b), (a, d), (b, c), (b, d)},则该图中的割边为(b, c)、()选择一项:对。
自考离散数学第二章答案
习题答案(从本章起,习题答案由jhju提供,晓津补充。
如有问题或不同意见,欢迎到分课论坛发表)1、用谓词表达式写出下列命题a)小张不是研究生;解:设A(x):x是研究生;a:小张;|A(a)。
b)他是跳高或篮球运动员;解:设A(x):x是跳高运动员;B(x):x是篮球运动员;a: 他;A(a)∨B(a) 。
c)晓莉非常聪明和能干;解:设 A(x):x非常聪明;B(x):x能干;l: 晓莉;A(l)∧B(l)d)若m是奇数则2m是偶数解:设 A(x): x是奇数B(y):y是偶数m:某数A(m)→ B(2m)2、将下列命题符号化并要分析到个体词及谓词a)长江流经四川省;解:B(x,y):x流经y;a:长江 b:四川省B(a,b)。
个体词:长江、四川省谓词:流经b)这架新式歼击机击沉了那艘老式快艇解:设A(x,y):x击沉了ya:新式歼击机 b:老式快艇A(a,b).个体词:歼击机、快艇谓词:击沉3、用谓词表达式符号化下列命题。
那位戴眼镜穿西服的大学生在看一本英文杂志。
解:设:A(x): x戴眼镜;B(x): x穿西服;C(x): x在看英文杂志;a: 那位大学生A(a)∧B(a)∧C(a)这个表达式的含义就是一个陈述句:那位大学生戴眼镜且那位大学生穿西服且那位大学生在看英文杂志。
个体词是:那位大学生。
谓词有:戴眼镜、穿西服、在看英文杂志。
习题答案(从本章起,习题答案由jhju提供,晓津补充。
如有问题或不同意见,欢迎到分课论坛发表)题号:1 2 3 4 5 61、对下列公式指出约束变元和自由变元,并指明量词的辖域。
a,(x)(P(x)—→Q(x))∧(x)R(x,y);(x)的指导变元是x,其辖域是(P(x)—→Q(x))(x)的指导变元是x,其辖域是R(x,y)对于(x)来说,x是约束出现,y则是自由出现。
b,(x)(y)(P(x)∨Q(y))—→(x)(R(x)∧S(z));(x)和(y)的指导变元是x,y,其辖域是(P(x)∨Q(y))(x)的指导变元是x,其辖域是(R(x)∧S(z))x,y在辖域是约束出现,z则是自由出现(注,教材中本题原来是多一个括号的(或者说少一个),现在jhju将它改成这个样子,请大家仔细在书中找BUG)c,(x)(y)(P(x,y)∧Q(z))(x)(y)的指导变元是x,y,自由变元是z,其辖域是P(x,y)∧Q(z)2、在下列公式中,对约束变元进行换名,对自由变量进行代入。
湖南大学离散数学第二章习题二解答
第二章习题二解答1、求证∀x∀y(P(x)→Q(y))⇔∃xP(x)→∀yQ(y)证:∀x∀y (P(x)→Q(y))⇔∀x∀y (¬P(x)∨Q(y)) 条件式等值式⇔∀x(¬P(x)∨∀yQ(y)) 量词辖域的扩充收缩律⇔∀x¬P(x)∨∀yQ(y) 量词辖域的扩充收缩律⇔¬∃xP(x)∨∀yQ(y) 量词的德摩律⇔∃xP(x)→∀yQ(y) 条件式等值式2、把下列各式转换为前束范式(1) ∃x(¬ (∃yP(x,y)→(∃zQ(z)→R(x)) ) )⇔∃x(¬ (¬∃yP(x,y)∨(¬∃zQ(z)∨R(x)) ) 条件式等值式⇔∃x ( (∃yP(x,y)∧(∃zQ(z)∧¬R(x)) ) 德摩律⇔∃x∃y(P(x,y)∧(∃zQ(z)∧¬R(x))) 量词辖域的扩充收缩律⇔∃x∃y (P(x,y)∧∃z (Q(z)∧¬R(x)) ) 量词辖域的扩充收缩律⇔∃x∃y∃z (P(x,y)∧Q(z)∧¬R(x)) 量词辖域的扩充收缩律(2) ∀x∀y((∃zP(x,y,z)∧∃uQ(x,u))→∃vQ(y,v))⇔∀x∀y(¬ (∃zP(x,y,z)∧∃uQ(x,u)) ∨∃vQ(y,v)) 条件式等值式⇔∀x∀y( (¬∃zP(x,y,z) ∨¬∃uQ(x,u)) ∨∃vQ(y,v)) 德摩律⇔∀x∀y( (∀z¬P(x,y,z) ∨∀u¬Q(x,u)) ∨∃vQ(y,v)) 德摩律⇔∀x∀y∀z∀u∃v ( ¬P(x,y,z) ∨¬Q(x,u)∨Q(y,v)) 量词辖域的扩充收缩律(用了三次)(3) ∀xF(x) →∀yP(x,y)⇔∀zF(z) →∀yP(x,y) 约束变元与自由变元同名,故约束变元改名⇔¬∀zF(z)∨∀yP(x,y) 条件式等值式⇔∃z¬F(z)∨∀yP(x,y) 德摩律⇔∃z∀y(¬F(z)∨P(x,y)) 德摩律(4) ∀x(P(x,y)→∃yQ(x,y,z)) 注意约束变元y 与自由变元y 同名⇔∀x(P(x,y)→∃sQ(x,s,z)) 约束变元y改名s⇔∀x(¬P(x,y)∨∃sQ(x,s,z)) 条件式的等值式⇔∀x∃s(¬P(x,y)∨Q(x,s,z)) 量词辖域的扩充收缩律(5) ∀x(P(x,y)↔∃yQ(x,y,z)) 注意约束变元y 与自由变元y 同名⇔∀x(P(x,y)↔∃sQ(x,s,z)) 约束变元y改名s⇔∀x((P(x,y)→∃sQ(x,s,z)) ∧(∃sQ(x,s,z)→P(x,y))) 双条件的等值式⇔∀x((P(x,y)→∃sQ(x,s,z)) ∧(∃tQ(x,t,z)→P(x,y))) 后约束变元s因同名而改名t⇔∀x((¬P(x,y)∨∃sQ(x,s,z))∧(¬∃tQ(x,t,z)∨P(x,y))) 条件式等值式⇔∀x((¬P(x,y)∨∃sQ(x,s,z))∧(∀t¬Q(x,t,z)∨P(x,y))) 德摩律⇔∀x∃s∀t((¬P(x,y)∨Q(x,s,z))∧(¬Q(x,t,z)∨P(x,y))) 量词辖域的扩充收缩律(用了四次)(6) ∀x(F(x) →G(x,y)) →(∃yH(y) →∃zL(y,z))⇔∀x(F(x) →G(x,y)) →(∃sH(s) →∃zL(y,z)) 约束变元改名⇔¬∀x(¬F(x) ∨G(x,y)) ∨(¬∃sH(s) ∨∃zL(y,z)) 条件式等值式⇔∃x(F(x)∧¬G(x,y))∨(∀s¬H(s)∨∃zL(y,z)) 德摩律⇔∃x(F(x)∧¬G(x,y))∨(∀s¬H(s)∨∃zL(y,z)) 否定的否定⇔∃x∀s∃z(F(x)∧¬G(x,y))∨(¬H(s)∨L(y,z)) 量词辖域的扩充收缩律(用了三次)(7) ∃xF(x,y) →(F(x) →¬∀yG(x,y))⇔∃sF(s,y) →(F(x) →¬∀yG(x,y)) 约束变元x改名s⇔∃sF(s,y)→(F(x)→¬∀tG(x,t)) 约束变元y改名t⇔¬∃sF(s,y)∨(¬F(x)∨¬∀tG(x,t)) 条件式等值式⇔∀s¬F(s,y)∨(¬F(x)∨∃t¬G(x,t)) 德摩律⇔∀s∃t(¬F(s,y)∨(¬F(x)∨¬G(x,t)) 量词辖域的扩充收缩律(用了二次) ⇔∀s∃t(¬F(s,y)∨¬F(x)∨¬G(x,t) ) 结合律。
离散数学(胡海涛)第2章答案
(12)两个不相等的实数间,必存在第三个实数。 解: (1)S(x):x 是大学生。K(x):x 是科学家。┐(x)(S(x)→K(x)) (2)P(x,y):x 平行于 y。C(x,y):x 与 y 相交。a:直线 A。b:直线 B。P(a,b)→ ←┐C(a,b) (3)S(x):x 是大学生。A(x):x 是运动员。(x)(A(x)∧S(x)) (4)T(x):x 是教练员。O(x):x 是年老的。J(x):x 是健壮的。(x)(T(x)∧O(x)∧J(x)) (5)O(x):x 是年老的。J(x):x 是健壮的。w:王教练。┐O(w)∧┐J动员。G(x):x 是国家对选手。(x)(A(x)∧S(x)∧G(x)) (7)A(x):x 是运动员。T(x):x 是教练员。P(x,y):x 钦佩 y。(x)(A(x)→(y)(T(y)∧P(x,y))) (8)S(x):x 是大学生。T(x):x 是教练员。P(x,y):x 钦佩 y。(x)(S (x)∧(y)(T(y)→┐P(x,y))) (9)C(x):x 是汽车。T(x):x 是火车。K(x,y):x 比 y 快。┐(x)(C(x)→(y)(T(y)→K(x,y))) (10)M(x):x 是男人。W(x):x 是女人。T(x,y):x 比 y 高。┐(x)(M(x)→(y)(W(y)→T(x,y))) (11)C(x):x 是汽车。T(x):x 是火车。K(x,y):x 比 y 快。
(x)((B(x)∨W(x))∧Z(x)→G(x)) (11)M(x):x 是机器人。T(x):x 会说话。(x)(M (x)∧T(x)) (12)M(x):x 是人。E(x):x 吃萝卜。D(x):x 喝水。(x)(M(x)∧┐E(x))∧(x)(M(x)→D(x)) 2. 用谓词表达式符号化下列命题。 (1)并非所有大学生都能成为科学家。 (2)直线 A 平行于直线 B,当且仅当直线 A 不相交于直线 B。 (3)某些运动员是大学生。 (4)某些教练员是年老的,但是很健壮。 (5)王教练既不年老,也不健壮。 (6)某些大学生运动员是国家对选手。 (7)所有运动员都钦佩某些教练。 (8)有些大学生不钦佩教练。 (9)并不是所有的汽车都比火车快。 (10)男人一定比女人高,是不对的。 (11)某些汽车慢于所有的火车,但至少有一火车快于每一汽车。
离散数学自考第二章
“”表达式的读法:
· x A(x) :存在一个x,使x是…;
· x¬ A(x) :存在一个x, 使x不是…;
· ¬ x A(x) :不存在一个x, 使x是…;
· ¬ x¬ A(x) :不存在一个x, 使精选xp不pt 是…。
7
著名的苏格拉底三段论可论述如下: a. 所有人都是要死的; b. 因为苏格拉底是人; c. 所以苏格拉底总是要死的; d. 试讲其符号化为谓词公式。 e. 解M(x):表示x是人,D(x):x是要死的;a:苏格拉底。 f. 上述三段论可符号化为: g. (x)(M(x) → D(x)) h. M(a) i. D(a) j. 该三段论可用推理描述为: k. 前提:(x)(M(x) → D(x) ), M(a) , l. 结论: D(a)
在上述的谓词合式公式中,有的个体变元既可以是约束出 现,也可以是自由出现,为了避免混淆采用以下两个规 则。
1.下面介绍约束变元的改名规则: (a)在改名中要把公式中所有相同的约束变元全部同时改掉; (b)改名时所用的变元符号在量词辖域内未出现的。
精选ppt
11
例: xP(x) yR(x,y)可改写成xP(x) zR(x,z) ,但不能改成 xP(x) xR(x,x) , xR(x,x)中前面的x原为自由变元,现在变为 约束变元了。
P,A,B为不含有变元X的任何谓词公式
E30 xA(x)B x(A(x)B) E31 xA(x)B x(A(x)B) E32 AxB(x) x(AB (x)) E33 A x B(x) x(AB (x))
精选ppt
21
(3)量词分配率
E23 x (A(x) B(x)) xA(x) xB(x) E24 x(A(x)B(x)) xA(x) xB(x) E29 (x (A(x) B(x)) xA(x) xB(x) I17 xA(x) xB(x) x(A(x) B(x)) I18 x(A(x) B(x)) x(A(x) B(x)) I19 xA(x) xB(x) x(A(x) B(x))
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明:先证充分性。 设1A中的每一个等价类都包含于2A的某个等价类中, 对于任一(ai,aj)1,有ai1aj,因此,ai[ai]1, aj[ai]1, 又由于必有某个元素bA存在,使得[ai]1 [b]2, 则有ai[b]2, aj[b]2,因此有(ai,aj)2。 故12。 必要性 设12。,并设[ai]1是1A中的任一等价类 对任一x[ai]1,有aix,即(ai,x)1,则(ai,x) 2, 即x[ai]2,故有[ai]1 [ai]2。
但ρ1· ρ2 ={(1, 3),(3,1)}不是反对称的。
(5)否 . 例如设 A ={1,2,3},ρ1={(1,2),(2,3},(1,3)}, ρ2 ={(2,3),(3,1),(2,1)},显然ρ1和ρ2都可传递的. 但ρ1· ρ2={(1,3),(2,1),(1,1)} 不是可传递的。
33. 设1和2是A上的等价关系,试证明:当且仅当1A中的每一个等 价类都包含于2A的某一个等价类中时,有12。
证法二
设(a,b)1,由1的自反性,有(a,a) 1, 由(a,a) 1, (a,b)1可知(a,b) 2, 因此, 1 2 反之,设(a,b)2,则存在cA,使得(a,c) 1, (c,b) 1,由1的传递性,有(a,b) 1,
因此, 2 1. 设1是集合A上的一个关系, 2={(a,b)|存在c,使得(a,c)1, 且 (c,b) 1} ,试证明:若 1是一个等价关系,则2也是一个等价关系。
证明 因为1是自反的,所以对于任意的 aA, 有(a,a) 1 , 由 (a,a)1, (a,a)1,因此有(a,a)2, 2是自反的。 对于任意的a, b∈A,若(a,b)2 ,则必有元素c∈A,使得(a,c) 1, (c,b) 1,由1的对称性可知(b,c) 1, (c,a) 1,因此,(b,a) 2, 2是对称的。 对于任意的a,b,c∈A,若(a,b)2 , (b,c)2则必有元素d,e∈A, 使得(a,d) 1, (d,b) 1, (b,e) 1, (e,c) 1由1的传递性可知 (a,b) 1, (b,c) 1,因此,(a,c) 2, 2是可传递的。 因此2也是一个等价关系。
(2)否。 例如,设集合A={a,b}. ρ1={(a ,b), (b ,a)} ,ρ2 ={(a, b) ,(b,a)}
显然ρ1和ρ2都是非自反的,但ρ1· ρ2自反。
(3)若ρ1和ρ2是对称的,则ρ1· ρ2也是对称的;
(4)若ρ1和ρ2是反对称的,则ρ1· ρ2也是反对称的; (5)若ρ1和ρ2是可传递的,则ρ1· ρ2也是可传递的;
21 设ρ1和ρ2是集合A上的任意两个关系,判断下列 命题是否正确,并说明理由. (1)若ρ1和ρ2是自反的,则ρ1· ρ2也是自反的; (2)若ρ1和ρ2是非自反的,则ρ1· ρ2也是非自反的;
解 (1)正确。 因为对任意的a∈A , 有aρ1a , 又对任意的a ∈A , 有aρ2a . 所以对任意的a ∈A , 有 a(ρ1· ρ2)a , 因此ρ1· ρ2也是自反的。