新人教版初中数学九年级上册《实际问题与一元二次方程》专题复习
人教版九年级上册数学 21.3 实际问题与一元二次方程(传播问题)专题练习(Word版,含答案)

人教版九年级上册数学21.3 实际问题与一元二次方程--传播问题专题练习一、单选题1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,设每个支干长出x 个小分支,则下列方程中正确的是( )A .2143x +=B .2143x x ++=C .243x x +=D .()2143x += 2.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有100人患病,设每轮传染中平均一个人传染了x 个人,下列列式正确的是( ) A .x +x (1+x )=100B .1+x +x 2=100C .1+x +x (1+x )=100D .x (1+x )=1003.新冠病毒主要是经呼吸道飞沫传播的,在无防护下传播速度很快.已知有1个人患了新冠肺炎,经过两轮传染后共有169个人患了新冠肺炎,每轮传染中平均一个人传染m 人,则m 的值为( )A .11B .12C .13D .14 4.早期,甲肝流行,在一天内,一人能传染4人,若有三人患上甲肝,那么经过两天患上甲肝的人数为( )A .50B .75C .25D .70 5.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .x (x +1)=28B .12x (x ﹣1)=28 C .x (x ﹣1)=28 D .12x (x +1)=28 6.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑? A .-10 B .10 C .8 D .9 7.一个同学经过培训后会做某项实验,回到班级后第一节课他教会了若干个同学,第二节课会做的同学每人又教会了同样多的同学,这样全班共有36人会做这项实验,若设1人每次能教会x 名同学,则可列方程为( )A.x+(x+1)x=36B.(x+1)2=36C.1+x+x2=36D.x+(x+1)2=368.在一次同学聚会上,参加的每个人都与其他人握手一次,共握手95次,设参加这次同学聚会的有x人,可得方程()A.x(x﹣1)=190B.x(x﹣1)=380C.x(x﹣1)=95D.(x﹣1)2=380二、填空题9.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有100人患病,设每轮传染中平均一个人传染了x个人,则由题意列出方程___________________.10.今年“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到200个红包,则可以列方程为__.11.有3人患了流感,经过两轮传染后共有192人患流感,设每轮传染中平均一个人传染了x人,则可列方程为____________.12.有一种传染性疾病,蔓延速度极快,据统计,在人群密集的某城市里,通常情况下,每天一人能传染给若干人,现有一人患了这种疾病,两天后共有225人患上此病,则每天一人传染______人.13.某种植物的主干长出若干数目的支干,每个支干长出同样数量的小分支.若主干、支干和小分支的总数是73,设每个支干长出x个小分支,则可列方程为______.14.中秋节当天,小明将收到的一条短信发送给若干人,每个收到短信的人又给相同数量的人转发了这条短信,此时包括小明在内收到这条短信的人共有111人,则小明给_______人发了短信.15.有两名流感病人,如果每轮传播中平均一个病人传染的人数相同,两轮传播后,流感病人总数为288人,则每轮传播中平均一个病人传染的人数为______人.16.秋冬季节为流感的高发期,有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染的人数为________.三、解答题17.某种流感病毒,若有一人患了这种流感,则在每轮传染中一人将平均传染x人.(1)现有一人患上这种流感,求第一轮传染后患病的人数(用含x的代数式表示);(2)在进入第二轮传染前,有两位患者被及时隔高并治愈,问第二轮传染后患病的人数会有21人吗?18.某种病毒传播速度非常快,如果最初有两个人感染这种病毒,经两轮传播后,就有五十个人被感染,求每轮传播中平均一个人会传染给几个人?若病毒得不到有效控制,三轮传播后将有多少人被感染?19.新冠肺炎疫情在全球蔓延,造成了严重的人员伤亡和经济损失,其中一个原因是新冠肺炎病毒传播速度非常快.一个人如果感染某种病毒,经过了两轮的传播后被感染的总人数将达到64人.(1)求这种病毒每轮传播中一个人平均感染多少人?(2)按照上面的传播速度,如果传播得不到控制,经过三轮传播后一共有多少人被感染?20.为了宣传垃圾分类,小王写了一封倡议书,用微博转发的方式传播,他设计了如下的转发规则:将倡议书发表在自己的微博上,然后邀请x个好友转发,每个好友转发之后,又邀请x个互不相同的好友转发,已知经过两轮转发后,共有111个人参与了本次活动.(1)x的值是多少?(2)再经过几轮转发后,参与人数会超过10000人?参考答案:1.B2.C3.B4.B5.B6.C7.B8.A9.2(1)100x +=10.x (x ﹣1)=20011.()3333192x x x +++=12.1413.x 2+x +1=7314.1015.1116.1017.(1)(1)x +;(2)不会,18.每轮传播中平均一个人会传染给4个人,若病毒得不到有效控制,三轮传播后将有250人被感染19.(1)7人;(2)512人20.(1)10;(2)再经过两轮转发后,参与人数会超过10000人.。
九年级数学上册《第二十一章 实际问题与一元二次方程》同步练习题及答案(人教版)

九年级数学上册《第二十一章实际问题与一元二次方程》同步练习题及答案(人教版)姓名班级学号一、单选题1.已知△ABC是等腰三角形,BC=8,AB,AC的长是关于x的一元二次方程x2-10x+k=0的两根,则()A.k=16 B.k=25C.k=-16或k=-25 D.k=16或k=252.某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是()A.10% B.20% C.30% D.40%3.奉节特产专卖店销售2015年良种夏季脐橙,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种脐橙要想平均每天获利2240元,为减少库存,每千克脐橙应降价多少元?()A.4元B.6元C.4元或6元D.5元4.2011年向阳村农民人均收入为7200元,到2013年增长至8712元.这两年中,该村农民人均收入平均每年的增长率为()A.10% B.15% C.20% D.25%5.毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为()A.5人B.6人C.7人D.8人6.一个两位数,它的十位数字比个位数字大3,且十位数字与个位数字的积是28,求这个两位数.设这个两位数的个位数字为x,则可列方程()A.x2+3x−28=0B.x2−3x−28=0C.x2+3x+28=0D.x2−3x+28=07.如图,要设计一幅宽20cm、长30cm的图案,其中有两横两竖的彩条即图中的阴影部分,横竖彩条的,则竖彩条宽度为()宽度比为2:1.如果要使阴影所占面积是图案面积的1975A.1 cm B.2 cm C.19 cm D.1 cm或19 cm8.欧几里得的《几何原本》中记载了用图解法求解一元二次方程的方法,小南读了后,想到一个可以求,BC=a,以A为圆心,作AE=AB,解方程x2-bx+a2=0的图解方法:如图,在矩形ABCD(AB>BC)中,AB= b2交DC于点E,则该方程的其中一个正根是( )A.BE的长B.CE的长C.AB的长D.AD的长二、填空题9.方程√5−x=3的根是10.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是.11.在一次同学聚会上,每两个人之间都互相赠送了一份礼物,若一共送出了380份礼物,则参加聚会的同学的人数是.12.某小组有若干人,新年大家互相发一条微信视福,已知全组共发微信56条,则这个小组的人数为人.13.某商场销售一批名牌衬衫,平均每天可售出20件,每件可盈利40元.为了扩大销售量,增加盈利,采取了降价措施,经调查发现如果每件计划降价1元,那么商场平均每天可多售出2件.若商场平均每天要赢利1200元,则每件衬衫应降价.三、解答题14.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,问应邀请多少个球队参加比赛?15.花鸟市场一家店铺正销售一批兰花,每盆进价100元,售价为140元,平均每天可售出20盆.为扩大销量,增加利润,该店决定适当降价.据调查,每盆兰花每降价1元,每天可多售出2盆. 要使得每天利润达到1200元,则每盆兰花售价应定为多少元?16.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是91,每个支干长出多少小分支?17.宜城市某楼盘准备以每平方米4000元的均价对外销售,由于国务院“新国五条”出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米3240元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?18.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?19.如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.(1)问:依据规律在第6个图中,黑色瓷砖多少块,白色瓷砖有多少块;(2)某新学校教室要装修,每间教室面积为68m2,准备定制边长为0.5米的正方形白色瓷砖和长为0.5米、宽为0.25米的长方形黑色瓷砖来铺地面.按照此图案方式进行装修,瓷砖无须切割,恰好完成铺设.已知白色瓷砖每块20元,黑色瓷砖每块10元,请问每间教室瓷砖共需要多少元?参考答案1.D2.B3.B4.A5.B6.A7.A8.B9.x=﹣410.25%11.2012.813.10元或20元14.解:设邀请x个球队参加比赛依题意得1+2+3+…+x-1=21即x(x−1)=212∴x2-x-42=0∴x=7或x=-6(不合题意,舍去).答:应邀请7个球队参加比赛.15.解:设每盆兰花售价定为x元,可以达到1200元的利润,则据题意得, (x-100)[20+2(140-x)]=1200,解得x=120或x=130,因为为扩大销量,增加利润,所以x=130(舍去)答:要使刚刚利润达到1200元,每盆兰花售价为120元16.解:设每个支干长出的小分支的数目是x个根据题意列方程得:x2+x+1=91解得:x=9或x=﹣10(不合题意,应舍去);∴x=9;答:每支支干长出9个小分支.17.解:(1)设平均每次下调的百分率是x,依题意得,4000(1﹣x)2=3240解之得:x=0.1=10%或x=1.9(不合题意,舍去)所以,平均每次下调的百分率是10%.(2)方案①实际花费=100×3240×98%=317520元方案②实际花费=100×3240﹣100×80=316000元∵317520>316000∴方案②更优惠18.(1)2x;50﹣x(2)解:由题意得:(50﹣x)(30+2x)=2100(0≤x<50)化简得:x2﹣35x+300=0,即(x﹣15)(x﹣20)=0解得:x1=15,x2=20∵该商场为了尽快减少库存∴降的越多,越吸引顾客∴选x=20答:每件商品降价20元,商场日盈利可达2100元19.解:(1)通过观察图形可知,当n=1时,黑色瓷砖有8块,白瓷砖2块;当n=2时,黑色瓷砖有12块,白瓷砖6块;当n=3时,黑色瓷砖有16块,用白瓷砖12块;则在第n个图形中,黑色瓷砖的块数可用含n的代数式表示为4(n+1),白瓷砖的块数可用含n的代数式表示为n(n+1)当n=6时,黑色瓷砖的块数有4×(6+1)=28块,白色瓷砖有6×(6+1)=42块;故答案为:28,42;(2)设白色瓷砖的行数为n,根据题意,得:0.52×n(n+1)+0.5×0.25×4(n+1)=68解得n1=15,n2=﹣18(不合题意,舍去)白色瓷砖块数为n(n+1)=240黑色瓷砖块数为4(n+1)=64所以每间教室瓷砖共需要:20×240+10×64=5440元.答:每间教室瓷砖共需要5440元.。
数学人教版九年级上册《实际问题与一元二次方程,复习课》教案及实录

《实际问题与一元二次方程,复习课》教案武汉市第二十五中学,罗琪教学目标:一、知识与技能:1.会解一元二次方程应用题中的面积问题和利润问题;(基础要求,训练巩固)2. 熟悉掌握一元二次方程应用中的面积问题的多种情况;(提高难度,发散思维)3. 能分析了解到一元二次方程应用中的面积问题和利润问题的本质;(开拓思维,提升认知高度)4. 能自己根据条件编应用题。
(加深难度,逆向思维)二、过程与方法学生通过顺向思维解决问题、修改问题条件和逆向思维编撰问题的数学活动,自主探索、合作交流、展示讲解、探究讨论,发展数学思维,培养合作学习意识、动手、动脑习惯。
三、情感、态度与价值观在积极开放的数学活动中,培养学生独立思考意识、合作交流意识,并逐渐提高学生学习数学的自信和对数学学科的热爱。
学情分析:一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的基础,它是研究现实世界数量关系和变化规律的重要模型。
本节课以一元二次方程解决实际问题为载体,通过对它的进一步学习和研究体现数学建模的过程帮助学生增强应用认识。
知识积累方面:学生之前已经进行了一周时间的一元二次方程的应用知识学习,有一定的知识积累,并做了一定数量的习题训练,为这节翻转课堂提供了必要的知识准备。
信息技术方面:在日常学习中,学生经常使用"洋葱数学网"“乐乐课题”等网络资源平台开展预习活动或巩固训练,使用电子白板等工具上台讲题,为这节翻转课堂学生的自主讲解环节和讨论环节奠定了基础。
使用信息技术情况:教师使用希沃一体机,武汉市教育云互动课堂系统,洋葱数学网络教学平台。
学生自带智能手机,使用洋葱数学网络学习平台,乐乐课堂网络学习平台,“家校帮”APP。
教学重点难点:1.能写出一元二次方程应用中的面积问题的多种情况,考察学生对面积问题掌握的广度,训练发散思维。
人教版初中数学九年级上册第二十一章《实际问题与一元二次方程》同步练习题(解析版)

当 BP=2 时,AP=
=;
当 BP=8 时,AP=
=.
故答案为: 或 . 【点睛】 本题主要考查了矩形的性质和勾股定理及一元二次方程,学会利用方程的思想求线段的长是 关键. 10.25% 【解析】 【分析】 设运动商城的自行车销量的月平均增长率为 x,根据该商城一月份、三月份销售自行车的数 量,即可列出关于 x 的一元二次方程,解之取其正值即可得出结论. 【详解】 解:设运动商城的自行车销量的月平均增长率为 x, 根据题意得:64(1+x)2=100, 解得:x1=0.25=25%,x2=-2.25(舍去). 故答案为:25%. 3;CD, ∴CD=5-x, ∵AC 2+AD 2= DC 2, ∴(2+x)2+32=(5-x) 2,
∴x= ,
AC=2+ =2 m. 故选 B. 【点睛】 本题考查了一元二次方程的应用,勾股定理及数形结合的思想,通过图形找到等量关系然后 列方程求解. 6.C 【解析】 分析:设平均每次下调的百分率为 x,则两次降价后的价格为 6000(1-x)2,根据降低率问 题的数量关系建立方程求出其解即可. 详解:设平均每次下调的百分率为 x,由题意,得 6000(1-x)2=4860, 解得:x1=0.1,x2=1.9(舍去). 答:平均每次下调的百分率为 10%. 故选:C. 点睛:本题考查了一元二次方程的应用,降低率问题的数量关系的运用,一元二次方程的解 法的运用,解答时根据降低率问题的数量关系建立方程是关键. 7.C 【解析】 【分析】 设参加酒会的人数为 x 人,根据每两人都只碰一次杯,如果一共碰杯 55 次,列出一元二次 方程,解之即可得出答案. 【详解】 设参加酒会的人数为 x 人,依题可得:
3 / 13
最新人教版九年级上册数学第21章一元二次方程专题4 实际问题与一元二次方程

二、面积问题 3. (2019徐州)如图D21-4-1,有一块矩形硬纸板,长30 cm,宽20 cm. 在其四角各剪去一个同样的正方形,然 后将四周突出部分折起,可制成 一个无盖长方体盒子. 当剪去正 方形的边长取何值时,所得长方 体盒子的侧面积为200 cm2?
返回目录
解:设剪去正方形的边长为x cm,则做成无盖长方体盒 子的底面长为(30-2x) cm,宽为(20-2x) cm,高为x cm. 依题意,得2×[(30-2x)+(20-2x)]x=200. 解得x1= ,x2=10. 当x=10时,20-2x=0,不合题意,舍去. 答:当剪去正方形的边长为 cm时,所得长方体盒子 的侧面积为200 cm2.
解:设应邀请x支球队参加比赛. 由题意,得 x(x-1)=28. 解得x1=8,x2=-7(不合题意,舍去). 答:应邀请8支球队参加比赛.
返回目录
8. 某校为培育青少年科技创新能力,举办了动漫制作
活动,小明设计了点做圆周运动的一个雏形,如图D21-
4-4,甲、乙两点分别从直径的两端点A,B以顺时针、逆
返回目录
6. 某商场销售A,B两种新型小家电,A型每台进价40元, 售价50元,B型每台进价32元,售价40元,4月份售出A 型40台,且销售这两种小家电共获利不少于800元. (1)求4月份售出B型小家电至少多少台? 解:(1)设4月份售出B型小家电x台,根据题意, 得(50-40)×40+(40-32)x≥800. 解得x≥50. 答:4月始运动到第二次相遇时,它们运动了多 少时间?
(3)由图可知,甲、乙第二次相遇时走过的路程为三个半
圆的长度,
则 1 t2+ 3 t+4t=21×3,
2
22.3实际问题与一元二次方程复习教案(新人教版九年级上)

22.3 实际问题与一元二次方程复习【教学任务分析】【教学环节安排】综合应用【分析】(1)经过2次降价,那么等量关系为:原价×(1-降低的百分率)2=现在的价格,把相关数值代入即可求解.(2)设三、四月份平均每月增长的百分率是x,60(1-10%)(1+x)2=91.26例题2西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?【分析】设售价定为x元/kg时,每天可盈利200元,则:由题意得:40(3)200(2)242000.1xx-⎡⎤+--=⎢⎥⎣⎦,化简得:-502x+275x-378=0,解之得:x1=2.8(舍去), x2=2.7,所以,售价定位2.7元/kg时,每天可盈利200元,此时售价降低了3-2.7=0.3(元/kg).理解情况,以便在讲解中做到有的放矢.个别有困难的小组或个人,适当的点拨或帮助.充分讨论交流后,各小组展示自己的成果,教师认真听取,并给出肯定或纠正,然后教师根据情况讲解.两生板演过程,其他学生在练习本上完成.矫正补偿1.一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共握手66次,这次到会的人数是_______人.2.某种出租车的收费标准是:起步价7元(即行驶距离不超过3km都需付7元车费);超过3km以后,每增加1km,加收2.4元(不足1km按1km计),某人乘出租车从甲地到乙地共支付车费19元,则此人从甲地到乙地经过的路程()A.正好8km B.最多8km C.至少8km D.正好7km3.某电脑公司2009年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40℅,该公司预计2011年经营总收入要达到2160万元,且计划从2009到2011年,每年经营总收入的增长率相同.问2010年经营总收入为多少万元?4.如图所示,某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m宽的空地,其他三侧内墙各保留1m宽的通道,当矩形温室的长与宽为多少时,蔬菜种植区域的面积为288m2?5. 某海关缉私艇发现在正北方30海里的A处有一艘可疑船只测得它正以60海里/时的速度向正东方向航行,随即调整方向,以75海里/时的速度准备在B处迎头拦截,试问经过多少时间能赶上?学生独立完成.教师巡视,了解学生完成的情况,及时的纠正和指导.学生举手回答每道题的答案,教师进行点评.对于在巡视中发现的较多的问题详解.完善整合1.列一元二次方程解应用题的步骤与列一元一次方程解应用题的步骤类似,即审、设、列、解、检、答.2.这里要特别注意:在列一元二次方程解应用题时,由于所得的根一般有两个,所以要检验这两个根是否符合实际问题的要求.3. 列方程时:(1)注意各类应用题中常用的等量关系.例如面积问题中有关的面积公式,还要注意挖掘题目中隐含的等量关系;(2)注意单位问题:一是在设元时必须写清单位,用对单位,例如不要把速度单位写成路程单位.二是在列方程时,要注意方程两边的单位必须一致.教师总结利用一元二次方程解决实际问题的方法和规律,学生认真的听取,并做好笔记.。
人教版九年级数学上册21.3实际问题与一元二次方程(增长率类问题)同步练习题

实际问题与一元二次方程(增长率类问题)同步练习题一、单选题1.某市为解决当地教育“大班额”问题,计划用三年时间完成对相关学校的扩建,2019年市政府已投资5亿人民币,若每年投资的增长率相同,预计2021年投资额达到y 亿元人民币,设每年投资的增长率为x ,则可得( )A .5(12)y x =+B .25y x =C .()251y x =+D .()251y x =+ 2.据省统计局公布的数据,安徽省2019年第二季度GDP 总值约为7.9千亿元人民币,若我省第四季度GDP 总 值为y 千亿元人民币,平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是( ) A .7.9(12)y x =+ B .27.9(1)y x =-C .27.9(1)y x =+D .27.97.9(1)7.9(1)y x x =++++3.一辆新汽车原价20万元,如果每年折旧率为x ,两年后这辆汽车的价钱为y 元,则y 关于x 的函数关系式为( )A .220(1)y x =+B .220(1)y x =-C .()201y x =+D .220y x =+4.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价,设平均每次降价的百分率为x ,降价后的价格为y 元,原价为a 元,则y 与x 的函数关系为( )A .2(1)y a x =-B .2(1)y a x =-C .22(1)y a x =-D .2(1)y a x =- 5.某公司的生产利润原来是a 元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是( )A .y =x 2+aB .y =a(x -1)2C .y =a(1-x)2D .y =a(l+x)26.一件商品的原价是100元,经过两次提价后的价格为y 元,每次提价的百分率是x ,则y 与x 的函数关系式是( )A .y =100(1+2x )B .y =100(1﹣2x )C .y =100(1+x )2D .y =100(1﹣x )27.为方便市民进行垃圾分类投放,某环保公司第一个月投放a 个垃圾桶,计划第三个月投放垃圾桶y 个,设该公司第二、三两个月投放垃圾桶数量的月平均增长率为x ,那么y 与x 的函数关系是( ) A .()21y a x =+ B .()21y a x =- C .()21y x a =-+ D .2y x a =+8.某种商品的价格是2元,准备进行两次降价.如果每次降价的百分率都是x ,经过两次降价后的价格y (单位:元)随每次降价的百分率x 的变化而变化,则y 关于x 的函数解析式是( )A .()221y x =+B .()221y x =- C .()21y x =+ D .()21y x =- 二、填空题9.据了解,某蔬菜种植基地2019年的蔬菜产量为100万吨,2021年的蔬菜产量为y 万吨,如果2019年至2021年蔬菜产量的年平均增长率为(0)x x >,那么y 关于x 的函数解析式为_________.10.某种产品今年的年产量是20t ,计划今后两年增加产量.如果每年的产量都比上一年增加x 倍,两年后这种产品的产量y 与x 之间的函数表达式是________________.11.某厂有一种产品现在的年产量是2万件,计划今后两年增加产量,如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y (万件)将随计划所定的x 的值而确定,那么y 与x 之间的关系式应表示为________.12.某厂今年一月份新产品的研发资金为1000元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y (元)关于x 的函数关系式为y =______.13.某工厂实行技术改造,产量年均增长率为x ,已知2020年产量为1万件,那么2022年的产量y (万件)与x间的关系式为___________.14.某厂七月份的产值是10万元,设第三季度每个月产值的增长率相同,都为x(x>0),九月份的产值为y万元,那么y关于x的函数解析式为_______.(不要求写取值范围)三、解答题15.为防控新冠疫情,减少交叉感染,某超市在线上销售优质农产品,该超市于今年一月底收购一批农产品,二月份销售256盒,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到400盒.若农产品每盒进价25元,原售价为每盒40元,(1)求三、四这两个月销售量的月平均增长率;(2)该超市五月份降价促销,经调查发现,若该农产品每盒降价1元,销售量可增加5盒,当农产品每盒降价多少元时,这种农产品在五月份可获利4250元?16.东平湖景区共接待游客达20万人次,预计在2023年春节长假期间,将接待游客达28.8万人次.(1)求景区2021至2023年春节长假期间接待游客人次的平均增长率;(2)景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?17.某工厂前年的生产总值为10万元,去年比前年的年增长率为x,预计今年比去年的年增长率仍为x,今年的总产值为y万元.(1)求y关于x的函数关系式.(2)当x=20%时,今年的总产值为多少?(3)在(2)的条件下,前年、去年和今年三年的总产值为多少万元?18.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5.另外每天还需支付其他各项费用80元.(1)请求出y与x之间的函数关系式;(2)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?。
人教版九年级数学上册 21.3 实际问题与一元二次方程 专题训练题 (含解析)

B.100 + 100(1 + x)2 = 331
1 / 14
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
C.100 + 100(1 + x) + 100(1 + x)2 = 331
D.100 + 100x + 100(1 + x)2 = 331
6.一次围棋比赛,要求参赛的每两位棋手之间都要比赛一场,根据赛程计划共安排 45 场比
若每盆增加 1 株,平均每株盈利减少 0.5 元,要使每盆的盈利达到 15 元,每盆应多植多少
株?设每盆多植 x 株,可列出的方程是
.
18.一学校为了绿化校园环境,向某园林公司购买了一批树苗.园林公司规定:如果购买树
苗不超过 60 棵,每棵售价为 120 元;如果购买树苗超过 60 棵,在一定范围内,每增加 1
9
5 / 14
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
参考答案与试题解析
一.选择题(共 10 小题)
1.某纪念品原价 150 元,连续两次涨价 a% 后售价为 216 元.下列所列方程中正确的是 (
)
A.150(1 + 2a%) = 216
ห้องสมุดไป่ตู้B.150(1 + a%) 2 = 216
C.150(1 + a%)2 = 216
A.100(1 + x)2 = 169
B.169(1 − x)2 = 100
C.169(1 + x)2 = 100
D.100(1 − x)2 = 169
解:依题意,得:100(1 + x)2 = 169 .
21.3+实际问题与一元二次方程+同步练习+2024-2025学年人教版数学九年级上册

21.3 实际问题与一元二次方程同步练习一、选择题1.某品牌服装,经过两次调价,从每件1000元降至810元,则该服装平均每次降价率为( ) A.10%B.9%C.8%D.19%2.某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x米,则可列方程为( )A.x(x−10)=200B.2x+2(x−10)=200C.2x+2(x+10)=200D.x(x+10)=2003.2023年是我国全面推进乡村振兴开局之年.为了解某县助推乡村振兴的投资收益情况,现对投资项目的收益进行统计,结果显示收益从2020年的1000万元,增加到2022年的1960万元,则该县平均每年的收益增长率为()A.10%B.20%C.30%D.40%4.某厂一月份生产产品150台,计划二、三月份共生产该产品450台,设二、三月平均每月增长率为x,根据题意列出方程是( )A.150(1+x)2=450B.150(1+x)+150(1+x)2=450C.150(1+2x)2=450D.150(1+x)2=6005.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是( )A.x2+9x-8=0 B.x2-9x-8=0C.x2-9x+8=0 D.2x2-9x+8=06.春节是我们国家的传统节日,也是消费旺季,全国各地积极增加市场供应,畅通产销衔接,某商场自元旦以来营业额大增,一月份第一周的营业额为60万元,前三周的营业额共为218.4万元,若第二、三周的平均增长率均为m,则m的值为()A.10%B.15%C.20%D.25%7.空地上有一段长为20米的旧墙MN,一边利用旧墙,其他三边利用木栏围成一个矩形菜园如图所示,已知木栏总长为40米,所围成的菜园面积为198.设垂直于旧墙的一边长为x米,下列正确的是()A.由题意,得−x2+40x=198B.x的取值范围为x<20C.只有一种围法D.只有两种围法8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱.根据题意可列方程3x(x−1)=6210,其中x表示()A.剩余椽的数量B.这批椽的数量C.剩余椽的运费D.每株椽的价钱二、填空题9.一种药品原价每盒25元,经过两次降价后每盒16元.若两次降价的百分率都为x,则根据题意可列方程.10.九年级(7)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了132本图书,如果设全组共有x名同学,依题意,可列出的方程是.11.近年来,我国大力推行药品集中带量采购制度,很多常用药的价格显著下降,受此影响,某种药品两次降价后,价格由每盒160元大幅调整为40元,则该药品平均每次降价的百分率为.12.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.进馆人次的月平均增长率是.13.《长津湖》以抗美援朝战争中长津湖战役为背景,影片一上映就获得追捧,目前票房已突破48亿.第二天票房为4.1亿元,以后每天票房按相同的增长率增长,第四天的票房为4.7亿元,若把增长率记作x.则方程可以列为三、解答题14.自2023年1月以来,甲流便肆虐横行,成为当前主流流行疾病.某一小区有1位住户不小心感染了甲流,由于甲流传播感染非常快,小区经过两轮传染后共有121人患了甲流.(1)每轮感染中平均一个人传染几人?(2)如果按照这样的传播速度,经过三轮传染后累计是否超过1500人患了甲流?15.“绿水青山就是金山银山”,为加快城乡绿化建设,某市2021年绿化面积约1000万平方米,预计2023年绿化面积约为1210万平方米.假设每年绿化面积的平均增长率相同.(1)求每年绿化面积的平均增长率;(2)若2024年的绿化面积继续保持相同的增长率,则2024年的绿化面积是多少?17.某农场要建一个矩形动物场,场地的一边靠墙(墙AB长度为10米),另外三边用木栏围成,木栏总长20米,设动物场CD边的长为xm.(1)当矩形动物场面积为48m2时,求CD边的长;(2)能否围成面积为52m2矩形动物场?说明理由.18.某校乒乓球队举行队内比赛,比赛规则是每两个队员之间都赛一场,每场比赛都要分出胜负,每一场比赛结束后依据胜负给出相应积分.本次比赛一共进行了210场,用时两天完成.下面是第一天比赛结束后部分队员的积分表:队员号码比赛场次胜场负场积分1 10 82 182 10 10 0 203 8 7 1 154 8 6 2 145 7 0 7 7(1)在本次比赛中,有一名队员只输掉了一场比赛,则该名队员的积分是多少?(2)如果有一名队员在本次比赛中的积分不低于34分,那么他最多负场.。
人教版九年级上册数学实际问题与一元二次方程---营销问题专题训练

人教版九年级上册数学21.3 实际问题与一元二次方程---营销问题专题训练一、单选题1.某水果园2019年水果产量为50吨,2021年水果产量为75吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )A .275(1)50x -=B .250(1)75x -=C .250(1)75x +=D .275(1)50x += 2.某餐厅主营盒饭业务,每份盒饭的成本为12元.若每份盒饭的售价为16元,每天可卖出360份.市场调查反映:如调整价格,每涨价1元,每天要少卖出40份.若该餐厅想让每天盒饭业务的利润达到1680元,设每份盒饭涨价x 元,则符合题意的方程是( )A .()()1612360401680x x +--=B .()()12360401680x x --=C .()()1236040161680x x ⎡⎤---=⎣⎦D .()()16+1236040161680x x ⎡⎤---=⎣⎦ 3.2020年初新冠疫情肆虐,社会经济受到严重影响,地摊经济是就业岗位的重要来源,小李把一件T 恤按成本价提高40%后标价,按照8折销售仍可获利10元,设这件T 恤的成本为x 元,根据题意,下面所列的方程正确的是( )A .(1+40%)x ⨯0.8-x=10B .(1+40%)x-x=10C .(1+40%)0.8x 10⨯=+D .(1+40%)x ⨯0.8=x-104.某商场销售一批衬衣.平均每天可售出30件.每件衬衣盈利50元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衣降价10元,商场平均每天可多售出20件.若商场平均每天盈利2000元.每件衬衣应降价( )元.A .10B .15C .20D .25 5.某网店在“双11”促销活动中对一件原价500元的商品进行了“折上折”优惠活动(即两次打折数相同),优惠后实际仅售320元,设该店打x 折,则可列方程( ) A .500(12)320x -=B .2500(1)320x -=C .2500(1)32010x -=D .2500()32010x = 6.某商场对一种商品作调价,按原价的8折销售的售价为88元,则商品原价是( )A .100元B .110元C .70.4元D .120元 7.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,商场采取降价措施,假设一定范围内,衬衫价格每降低1元,商场平均每天可多售出2件.如果销售这批衬衫每天盈利1250元,设衬衫单价降了x 元,根据题意,可列方程( )A .(40)(202)1250x x -+=B .(402)(20)1250x x -+=C .(40)(202)1250x x +-=D .(402)(20)1250x x +-=8.某商场将每件进价为20元的玩具以30元的价格出售时,每天可售出300件.经调查当单价每涨1元时,每天少售出10件.若商场每天要获得3750元利润,则每件玩具应涨多少元?这道应用题如果设每件玩具应涨x 元,则下列说法错误..的是( ) A .涨价后每件玩具的售价是(30)x +元;B .涨价后每天少售出玩具的数量是10x 件C .涨价后每天销售玩具的数量是(30010)x -件D .可列方程为:(30)(30010)3750x x +-=二、填空题9.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应涨价为______元.10.某旅行社有100张床位,每床每晚收费10元,床位可全部租出,在每床的收费提高幅度不超过5元的情况下,若每床的收费提高2元,则减少10张床位租出,若收费再提高2元,则再减少10张床位租出,以每次提高2元的这种方式变化下去,为了获得1120元的收入,每床的收费每晚应提高_____元11.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,在一定范围内,每增加1棵,所出售的这批树苗每棵售价降低0.5元,若该校最终向园林公司支付树苗款8800元,设该校共购买了x 棵树苗,则可列出方程__________. 12.商场中换季衣服都要打折处理,今年10月某商店将某种春秋装以原价8.1的折出售,到了11月,再次降价,现将这种春秋装仅以原价的6.4折出售,经过两次降价,则平均折扣率是______________.13.某种商品,平均每天可销售40件,每件赢利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件,若每天要赢利2400元,则每件应降价_____元.14.某商店以每件20元的价格购进一批商品,若每件商品售价a元,则每天可卖出(800﹣10a)件.如果商店计划每天恰好盈利8000元,根据题意所列方程为__.15.某超市销售一种水果,每月可售出500千克,每千克盈利10元.经市场分析,售价每涨1元,月销售量将减少10千克.如果该超市销售这种水果每月盈利8000元,那么该水果的单价涨了多少元?设水果单价涨了x元,根据题意,可列方程为_____.16.某商场销售一批衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施经调查发现,如果每件衬衫每降价一元,商场平均每天可多售出2件.若商场平均每天赢利1200元,每件衬衫应降价______元.三、解答题17.为助力我省脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,每袋成本16元,该网店于今年3月销售出200袋,每袋售价30元,为了扩大销售,4月准备适当降价.据测算每袋降价1元,销售量可增加20袋.(1)每袋降价5元时,4月共获利多少元?(2)当农产品每袋降价多少元时,能尽可能让利于顾客,并且让商家获利2860元?18.某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销售量就减少10件.(1)当销售单价为52元时,销售量为______件,总利润为______元;(2)要使得一周的销售利润达到8000元,销售单价应定为多少元?(3)该超市为了获得最大利润,应将销售单价定为多少元?19.某水果店购进一批优质芒果,进价为10元/千克,售价不低于15元/千克,且不超过30元/千克,市场调查发现当售价为30元/千克时,每天可售出40千克,售价每降低0.5元,每天可多售出1千克.设售价为x元/千克,解决以下问题:(1)当天该芒果的销售量为_________千克(用x的代数式表示)(2)若水果店该天获利750元,求这天芒果的售价.(3)该水果店的日盈利能否达到1000元?请说明理由.20.某蔬菜店以每千克2元的价格购进某种绿色蔬菜若干千克,然后以每千克4元的价格出售,每天可售出100千克.通过调查发现,这种蔬菜每千克的售价每降低0.1元,每天可多售出20千克,为保证每天至少售出260千克,蔬菜店决定降价销售.若将这种蔬菜每千克售价降低x元.(1)每天的销售量是______千克(用含x的代数式表示);(2)销售这种蔬菜要想每天盈利300元,每千克的售价需降低多少元?参考答案:1.C2.A3.A4.D5.D6.B7.A8.D9.5或1010.411.[1200.5(60)]8800x x --=12.20 %13.414.(a ﹣20)(800﹣10a )=8000.15.(10+x )(500﹣10x )=800016.2017.(1)4月共获利2700元(2)当农产品每袋降价3元时,能尽可能让利于顾客,并且让商家获利2860元 18.(1)480,5760(2)60元或80元(3)70元19.(1)1002x -(2)这天芒果的售价为25元(3)该水果店的日盈利不能达到1000元,20.(1)()100200x +(2)1元。
人教版九年级上册数学21.3 实际问题与一元二次方程(数字问题)专题练习(Word版,含答案)

人教版九年级上册数学21.3 实际问题与一元二次方程--数字问题专题练习一、单选题1.两个连续奇数的积为323,设其中较小的一个奇数为x ,可得方程( ) A .()2323-=x xB .()2323+=x xC .()1323x x -=D .()()2121323x x -+= 2.一个两位数的两个数字的和为9,把这个两位数的个位数字与十位数字互换得到一个新的两位数,它与原两位数的积为1458,设原两位数的个位数字为x ,则可列方程( )A .()()91091458x x x x -++-=⎡⎤⎡⎤⎣⎦⎣⎦B .()()991458x x x x -++-=⎡⎤⎡⎤⎣⎦⎣⎦C .()()1091091458x x x x -++-=⎡⎤⎡⎤⎣⎦⎣⎦D .()()10991458x x x x -++-=⎡⎤⎡⎤⎣⎦⎣⎦ 3.一个两位数等于其各数位上数字的积的3倍,且个位上的数比十位上的数字大2,则这个两位数是( )A .24B .35C .42D .53 4.某医院内科病房有护士x 人,每2人一班,轮流值班,每8小时换班一次,某两人同值一班后,到下次两人再同班,最长需要的天数是70天,则x =( ) A .15 B .18 C .21 D .35 5.如图所示的是某月的日历表,在此日历表上可以按图示形状圈出位置相邻的6个数(如:8,14,15,16,17,24).如果圈出的6个数中,最大数x 与最小数的积为225,那么根据题意可列方程为( )A .x (x +8)=225B .x (x +16)=225C .x (x ﹣16)=225D .(x +8)(x ﹣8)=2256.某数的一半比这个数的平方的3倍少14,设某数为x ,某数的方程是( )A .()211324x x -= B .211324x x ⎛⎫-= ⎪⎝⎭ C .2113024x x -+= D .211324x x -= 7.已知一个两位数,个位上的数字比十位上的数字少4,这个两位数十位和个位交换位置后,新两位数与原两位数的积为1612,那么原两位数是( )A .95B .59C .26D .62 8.小明同学是一位古诗文的爱好者,在学习了一元二次方程这一章后,改编 了苏轼诗词《念奴娇·赤壁怀古》:“大江东去浪淘尽,千古风流人物.而立之年督东吴,早逝英年两位数.十位恰小个位三,个位平方与寿同.哪位学子算得快,多少年华数周瑜?”假设周瑜去世时年龄的十位数字是x ,则可列方程为( )A .210(3)(3)x x x +-=-B .210(3)x x x ++=C .210(3)(3)x x x ++=+D .210(3)(3)x x x ++=+二、填空题9.已知一个两位数,个位上的数字比十位上的数字小4,且个位上的数字与十位上的数字的平方和比这个两位数小4,则这个两位数是___.10.两个相邻偶数的积是168.求这两个偶数.若设较小的偶数为x ,列方程为______.11.某班学生去参加义务劳动,其中一组到一果园去摘梨子, 第一个进园的学生摘了1个梨子,第二个学生摘了2个,第三个学生摘了3个,…以此类推,后来的学生都比前面的学生多摘1个梨子,这样恰好平均每个学生摘了6个梨子,请问这组学生的人数为 _______12.已知一个数的平方减去30的差等于这个数本身,则这个数为 ___.13.一个两位数等于它的两个数字积的3倍,十位上的数字比个位上的数字小2,设个位上的数字为x ,由此得到方程____.14.两个相邻偶数的积是168,设这两个相邻偶数中较大的数是x ,可列方程是______________.15.两个连续整数的平方和为113,则这两个连续整数为__________.16.一个两位数,十位上的数字比个位上的数字的平方小3,如果把这个数的个位数字与十位数字交换,那么所得到的两位数比原来的数小27,则原来的两位数是___.三、解答题17.一个两位数,十位数字与个位数字之和是6, 把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的积是1008,求这个两位数.18.一个两位数,它的两个数字之和为6,把这两个数字交换位置后所形成的两位数与原两位数的积是1008,求原来的两位数.19.一个两位数,十位上的数字比个位上的数字的平方小2,如果把这个数的个位数字与十位数字交换,那么所得到的两位数比原来的数小36,求原来的两位数.20.2021年7月1日是建党100周年纪念日,在本月日历表上可以用小方框圈出四个数(如图所示),圈出的四个数中,最小数与最大数的乘积能否为33或65,若能求出最小数:若不能请说明理由.参考答案:1.B2.C3.A4.C5.C6.D7.D8.C9.84x x+=10.()216811.1112.6或-513.10(x-2)+x=3x(x-2)x x-=14.(2)16815.7,8或-8,-716.6317.4218.这个两位数是42或24.19.原来的两位数为7320.最小的数是5。
九年级数学上册 第二十一章 一元二次方程21.3实际问题与一元二次方程知识梳理与复习(新版)新人教版

1 / 5知识要点一:握手问题1.某地一月份发生禽流感的养鸡场100家,后来二、三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x ,依题意列出的方程是 ( ))1(2x +=250B.100(1+x)+100)1(2x +)1(2x -=250)1(2x +=250-1002.某校九年级组织象棋比赛,每两位选手之间都必须比赛一场,全年级共进行了45场比赛,设有x 名学生参加比赛,列出方程为_________.3.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染就会有81台电脑被感染,请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,三轮感染后,被感染的电脑会不会超过700台?4. 生物兴趣小组的学生将自己收集的标本向本组其他成员各赠送一件,全组互赠了182件,求全组的人数.5.某中学足球联赛,实行主客场赛制(即每队都作为主场与他队赛一次),共需要进行132场比赛,问:有几支参赛队?若改为单循环赛(即每队只与他队赛一次),则进行了66场比赛,问:有几支参赛队?知识要点二:增长率问题6.某市今年一月份工业产值达50亿元,第一季度总产值达175亿元,则二月份、三月份平均每月的增长率是多少?设平均每月增长的百分率为x ,根据题意列方程为( ))1(2x +=175B.50+50)1(2x +=175C.50(1+x)+50)1(2x +=175D.50+50(1+x)+50)1(2x +=1757.为治理大气污染,保护人民健康,某市调整产业结构,压减钢铁生产总量,2014年某市钢铁生产量为9700万吨,计划到2016年钢铁生产量设定为5000万吨,设该市每年钢铁生产量平均降低率为x ,依题意,下面所列方程正确的是( ) A.9700(1-2x)=56000)1(2x +=9700C.5000(1-2x)=9700)1(2x -=500018.某农户的粮食产量平均每年的增长率为x,第一年的产量为6万千克,第二年的产量为______万千克,第三年的产量为_______万千克,三年总产量为_______万千克.9.某种品牌的手机经过四、五月份连续两次降价,每部售价由3600元降到了2500元,则平均每月降价的百分率为____________.10.某药品两次降价,零售价降为原来的一半,已知两次降价的百分率一样,求每次降价的百分率.(精确到0.1%)11.某人将2000元人民币按一年定期存入银行,到期后支取1000元用作购物,剩下的1000元应得利息又全部按一年定期存入银行.若银行的年利率不变,到期后可得本金和利息共1320元,求这种存款方式的年利率是多少。
人教版九年级上册数学《实际问题与一元二次方程》说课教学复习课件

5.验:验方程、验实际;
6.答:写出答案。
情景思考(传播问题)
有一个人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平
均一个人传染了几个人?
设每轮传染中平均一个人传染了x个人,
具体传播过程
……
……
……
x
……
……
……
开始传染源
一轮传染
二轮传染
x(x+1)
情景思考(传播问题)
XX
XX
XX
XX
XX
XX
XX
个人简历:XX/jianli/
XX
XX
手抄报:XX/shouchaobao/
XX
XX XX
XX XX
XX XX
XX XX
XX
XX
传染源
新增患者人数
第一轮
第二轮
第三轮
1
1+x
(1+x)2
1∙x=x
(1+x)x
第n轮
(1+x)n-1
(1+x)n-1∙x
用数学的方法去描述变量之间的数量关系。
2.理解二次函数的概念,掌握二次函数的形式。
重点难点
重点:正确列出一元二次方程,并解决有关的实际问题。
难点:经历将实际问题转化为数学问题的过程,提高数学应用意识。
回顾
列方程解实际问题的一般步骤:
1.审:分清已知未知,明确数量关系;
2.设:设未知数;
3.列:列方程;
50 000(1 + x ) kg,第三年的产量为______________
二年的产量为____________
50000 1 + 2 kg.
人教版九年级数学上册课件21归纳.3实际问题与一元二次方程3[上学期]新人教版ppt归纳.ppt
![人教版九年级数学上册课件21归纳.3实际问题与一元二次方程3[上学期]新人教版ppt归纳.ppt](https://img.taocdn.com/s3/m/055c64ade518964bce847c9b.png)
7x
21 7 3 3 ..分割.. 2
42 21
3
1.4
3
2
2
4
要设计一本书的封面,封面长27
㎝,宽21㎝,正中央是一个与整个
27
封面长宽比例相同的矩形,如果
要使四周的边衬所占面积是封 分面矩析形面:两这积边本之书的比的四也长为宽分9之:7之比,由是一此9判:,7上,断正上中、下央下边的边衬 等衬宽与,左左右、边衬右的边宽衬度之等比宽也为,应9:7如何设
2.正方形的面积公式是什么呢? 长方形的面积公式又是什么?
3.梯形的面积公式是什么? 4.菱形的面积公式是什么? 5.平行四边形的面积公式是什么? 6.圆的面积公式是什么?
..分割..
2
探究3
要设计一本书的封面,封面长27
27
㎝,宽21㎝,正中央是一个与整个
封分面析:长这本宽书比的长例宽相之比同是的9:7矩,依题形知,正如中果 要使四央周的矩的形边两边衬之所比也占为面9:7积是封
面积为S米2,
(1)求S与x的函数关系式;(2)如果要围成面积为
45米2的花圃,AB的长是多少米?
【解析】(1)设宽AB为x米,
则BC为(24-3x)米,这时面积
S=x(24-3x)=-3x2+24x
(2)由条件-3x2+24x=45
化为:x2-8x+15=0解得x1=5,x2=3
∵0<24-3x≤10得14/3≤x<8
解法二计:设四上周下边边衬衬的宽的为宽9xc度m,?左右边衬宽为7xcm
(27
依题意得
18x)(21
14x)
3
27
21
解方程得 x 6 3 3 4
(以下同学们自己完成)
2023年新九年级数学核心知识点与常见题型-实际问题与一元二次方程(6种题型)(解析版)(人教版)

实际问题与一元二次方程(6种题型)【知识梳理】列一元二次方程解应用题1.利用方程解决实际问题的关键是寻找等量关系.2.解决应用题的一般步骤:审(审题目,分清已知量、未知量、等量关系等);设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,列出方程);解(解方程,注意分式方程需检验,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义)答(写出答案,切忌答非所问).要点诠释: 列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.【考点剖析】题型1:增长率问题列一元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次.(1)增长率问题:平均增长率公式为(1)na xb += (a 为原来数,x 为平均增长率,n 为增长次数,b 为增长后的量.)(2)降低率问题:平均降低率公式为(1)n a x b −= (a 为原来数,x 为平均降低率,n 为降低次数,b 为降低后的量.) 例1.(2022•宁夏)受国际油价影响,今年我国汽油价格总体呈上升趋势.某地92号汽油价格三月底是6.2元/升,五月底是8.9元/升.设该地92号汽油价格这两个月平均每月的增长率为x ,根据题意列出方程,正确的是( )A.6.2(1+x)2=8.9B.8.9(1+x)2=6.2C.6.2(1+x2)=8.9D.6.2(1+x)+6.2(1+x)2=8.9【分析】利用该地92号汽油五月底的价格=该地92号汽油三月底的价格×(1+该地92号汽油价格这两个月平均每月的增长率)2,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意得6.2(1+x)2=8.9,故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的感觉.例2.(2022•上海)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为.【分析】设平均每月的增长率为x,根据5月份的营业额为25万元,7月份的营业额为36万元,表示出7月的营业额,即可列出方程解答.【解答】解:设平均每月的增长率为x,由题意得25(1+x)2=36,解得x1=0.2,x2=﹣2.2(不合题意,舍去)所以平均每月的增长率为20%.故答案为:20%.【点评】本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.例3.随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每场降价的百分率.【思路点拨】设该种药品平均每场降价的百分率是x,则两个次降价以后的价格是200(1﹣x)2,据此列出方程求解即可.【答案与解析】解:设该种药品平均每场降价的百分率是x,由题意得:200(1﹣x)2=98解得:x1=1.7(不合题意舍去),x2=0.3=30%.答:该种药品平均每场降价的百分率是30%.【总结升华】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.判断所求的解是否符合题意,舍去不合题意的解.例4.(2023·湖南·湖南师大附中校联考模拟预测)今年五一“网红长沙”再次火出“圈”,27个旅游景区五天累计接待游客194.98万人,成为全国十大必到城市之一.长沙美食也吸引了无数游客纷纷打卡,某网红火锅店五一期间生意火爆,第2天营业额达到10万元,第4天营业额为14.4万元,据估计第3天、第4天营业额的增长率相同.(1)求该网红店第3,4天营业额的平均增长率;(2)若第1天的营业额为4.6万元,第五天由于游客人数下降,营业额是前四天总营业额的10%,求该网红店第5天营业额.【答案】(1)该网红店第3,4天营业额的平均增长率为20%;(2)该网红店第5天营业额为4.1万元.【分析】(1)设该网红店第3,4天营业额的平均增长率为x,连续增长两次,根据第2天的营业额为10万元可列出方程求解;(2)求得前四天营业总额,根据“第五天的营业额是前四天总营业额的10%”列式计算即可求解.【详解】(1)解:设该网红店第34天营业额的平均增长率为x,则()210114.4x+=解得10.2x=,22.2x=−(舍)答:该网红店第3,4天营业额的平均增长率为20%;(2)解:前四天营业额为:()4.61010120%14.441++++=万元.第五天营业额:4110% 4.1⨯=万元,答:该网红店第5天营业额为4.1万元.【点睛】本题考查了一元二次方程中求增长率的方法.若设变化前的量为a,变化后的量为b,平均增长率为x,则经过两次变化后的数量关系为2(1)a x b+=.题型2:面积问题 此类问题属于几何图形的应用问题,解决问题的关键是将不规则图形分割或组合成规则图形,根据图形的面积或体积公式,找出未知量与已知量的内在关系并列出方程.例5.如图,有一面积是150平方米的长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边(门除外)用竹篱笆围成,篱笆总长33米.求鸡场的长和宽各多少米?解答方法:通过列出篱笆的长和宽来求解面积解:设鸡场的宽为x 。
新人教版九年级数学上22.3实际问题与一元二次方程复习-课件-2

1 根据题意,得 2 D
C
6x 8 0
解这个方程,得
x1 2, x2 4
A P
Q
0 x 6
所以2秒或4秒后⊿ PBQ的 面积等于8cm2
B
解:设AP=x,则PR=x,PB=8-x 根据题意得:x 8-x 16 整理得:x 8 x 16 0
2
例2:等腰直角⊿ ABC中,AB=BC=8cm, 动点P从A点出发,沿AB向B移动,通过点 P引平行于BC,AC的直线与AC,BC分别 交于R、Q.当AP等于多少厘米时,平行 四边形PQCR的面积等于16cm2?
A R P
解这个方程得:x1 x2 4 答:当AP 4cm时,四边形面积为16cm 2
x 80cm x 50cm x
例1 在矩形ABCD中,AB=6cm,BC=12cm, 点P从点A开始以1cm/s的速度沿AB边向点 B移动,点Q从点B开始以2cm/s的速度沿BC 边向点C移动,如果P、Q分别从A、B同时出 发,几秒后⊿ PBQ的面积等于8cm2?
解:设x秒后⊿ PBQ的面积等于8cm2
2
2. 在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色 纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图 的面积是5400cm2,设金色纸边的宽为xcm,那么x满足 的方程是【B 】 A.x2+130x-1400=0 B.x2+65x-350=0 C.x2-130x-1400=0 D.x2-65x-350=0
二、列方程解应用题的关键是:
找出相等关系.
一元二次方程及应用题
1、球类比赛问题、互赠礼物问题: 2、细菌传播问题: 3、面积、体积问题:
2 a (1 x ) b 4、增长率、减少率问题
人教版九年级上册数学21.3实际问题与一元二次方程--增长率问题同步训练(word、含答案)

人教版九年级上册数学21.3实际问题与一元二次方程--增长率问题同步训练一、单选题1.李师傅家的超市今年1月盈利3000元,3月盈利3630元.若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是( ) A .10.5%B .10%C .20%D .21%2.2021年顺平县林木覆盖率为39.7%,被评为“河北省森林城市”.为进一步巩固成果,全县大力开展植树造林活动,计划到2023年森林覆盖率达到50%,如果这两年的森林覆盖年平均增长率相同,均为x ,那么符合题意的方程是( ) A .0.397(1)0.5+=x B .0.397(12)0.5+=x C .20.397(1)0.5+=xD .20.397(1)0.5-=x3.某种药品原价为64元/盒,经过连续两次降价后售价为49元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是( ) A .264(1)6449x -=- B .64(12)49x -=C .264(1)49x -=D .()264149x -=4.某农业基地现有杂交水稻种植面积36公顷,计划两年后将杂交水稻种植面积增加到48公顷,设该农业基地杂交水稻种植面积的年平均增长率为x ,则可列方程为( ) A .248(1)36x += B .248(1)36x -= C .236(1)48x +=D .236(1)48x -=5.电影《长津湖》讲述了一段波澜壮阔的历史,自上映以来,全国票房连创佳绩.据不完全统计,某市第一天票房收入约2亿元,第三天票房收入约达到4亿元,设票房收入每天平均增长率为x ,下面所列方程正确的是( ) A .22(1)4x += B .()2124x +=C .22(1)4x -=D .()22212(1)4x x ++++=6.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增.为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.则口罩日产量的月平均增长率为( )A .8%B .10%C .15%D .20%7.某品牌电动自行车经销商1月至3月统计,该品牌电动自行车1月销售150辆,3月销售216辆.设该品牌电动车销售量的月平均增长率为x ,根据题意列方程得( )A .()15012216x -=B .()21501216x -= C .()15012216x +=D .()21501216x +=8.骑行带头盔,安全有保障.“一盔一带”政策的推行致头盔销量大幅增长,从2019年到2021年我国头盔销售额从18亿元增长到30.42亿元,则我国头盔从2019年到2021年平均每年增长率是( ) A .10% B .15%C .25%D .30%二、填空题9.重庆某风景区2021年三月份共接待游客4000人次,五月份共接待游客9000人次,则每月的平均增长率为______.10.某试验田种植了杂交水稻,2019年平均亩产800千克,2021年平均亩产1000千克,设此水稻亩产量的平均增长率为x ,则可列出的方程是______.11.某商品由于连续两次降低成本,使成本比原来降低了36%,则平均每次降低成本_______(填百分数).12.某药品经过两次降价,每瓶零售价由100元降为81元,若设平均每次降价的百分率为x ,则由题意可列方程为 ________________,可得x =____.13.2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育活动.据了解,某展览中心3月份的参观人数为10万人,5月份的参观人数增加到12.1万人.设参观人数的月平均增长率为x ,则可列方程为________. 14.随着网络购物的兴起,增加了快递公司的业务量,一家今年刚成立的小型快递公司业务量逐月攀升,今年9月份和11月份完成投送的快递件数分别是20万件和24.2万件,若该公司每月投送的快递件数的平均增长是x ,由题意列出关于x 的方程:______.15.某旅游景点6月份共接待游客64万人次,暑期放假学生旅游人数猛增,且每月的增长率相同,8月份共接待游客81万人次,如果每月的增长率都为x ,则根据题意可列方程 _____.16.某超市第二季度的营业额为200万元,第四季度的营业额为288万元.如果每季度营业额的平均增长率相同,那么每季度的平均增长率为 _____.三、解答题17.某商场今年8月的营业额为400万元,9月份营业额比8月份增加10%,11月份的营业额达到633.6万元,求9月份到11月份营业额的月平均增长率.18.某产品5月份时每件200元,在6、7月进行了两次提价,且每次提价的百分率相同,此时售价为288元,后因产品销售问题,8月选择降价,降价的百分率与之前每次提价的百分率相同,求8月份该产品的售价?19.某菜农大量种植蔬菜计划以每千克5元的价格对外批发销售,因销售不利,为减少损失,菜农决定降价出售,经过两次下调售价后,以每千克3.2元的单价对外批发销售.求每次下调的百分率.20.王师傅今年初开了一家商店,二月份开始盈利,二月份的盈利是5000元,四月份的盈利达到6050元,且从今年二月到四月,每月盈利的增长率都相同.(1)求每月盈利的增长率;(2)按照这个增长率,预计今年五月份的盈利能达到多少元?参考答案:1.B2.C3.C4.C5.A6.B7.D8.D9.50%10.800(1+x)2=100011.20%12.100(1﹣x)2=8110%13.210(1)12.1+=x14.()2x+=20124.215.64(1+x)2=8116.20%17.20%18.230.4元19.每次下调的百分率为20%20.(1)每月盈利的平均增长率为10%(2)按照这个增长率,预计今年五月份这家商店的盈利将达到6655元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版初中数学九年级上册《实际问题与一元二次方程》专题复习列一元二次方程解应用题与列一元一次方程解应用题类似,都是根据问题中的相等关系列出方程,解方程,并能根据具体问题的实际意义检验结果的合理性,进一步提高分析问题、解决问题的意识和能力。
在利用一元二次方程解决实际问题,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性.主要学习下列两个内容:1. 列一元二次方程解决实际问题。
一般情况下列方程解决实际问题的一般步骤:审、设、列、解、验、答六个步骤,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键. 主要设置了【典例引路】中的例1、例2、例4.【当堂检测】中的第1、2题,【课时作业】中的第1,2,11题.2. 一元二次方程根与系数的关系。
一般地,如果一元二次方程ax 2+bx +c =0(a ≠0)的两个根是1x 和2x ,那么ac x x a b x x =•,=+2121-.主要设置了【典例引路】中的例3.【当堂检测】中的第4题,【课时作业】中的第6、7题.点击一: 列方程解决实际问题的一般步骤应用题考查的是如何把实际问题抽象成数学问题,然后用数学知识和方法加以解决的一种能力,列方程解应用题最关键的是审题,通过审题弄清已知量与未知量之间的等量关系,从而正确地列出方程.概括来说就是实际问题——数学模型——数学问题的解——实际问题的答案.一般情况下列方程解决实际问题的一般步骤如下:(1)审:是指读懂题目,弄清题意和题目中的已知量、未知量,并能够找出能表示实际问题全部含义的等量关系.(2)设:是在理清题意的前提下,进行未知量的假设(分直接与间接).(3)列:是指列方程,根据等量关系列出方程.(4)解:就是解所列方程,求出未知量的值.(5)验:是指检验所求方程的解是否正确,然后检验所得方程的解是否符合实际意义,不满足要求的应舍去.(6)答:即写出答案,不要忘记单位名称.总之,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键.针对练习1: 某城市2006年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2008年底增加到363公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是( )A .300(1+x )=363B .300(1+x )2=363C .300(1+2x )=363D .363(1-x )2=300【解析】B 设平均增长百分率为x ,由题意知基数为300公顷,则到2004年底的绿化面积为:300+300x =300(1+x )(公顷);到2008年底的绿化面积为:300(1+x )+300(1+x )x =300(1+x )2公顷,而到2008年底绿化面积为363公顷,所以300(1+x )2=363.点击二:一元二次方程根与系数的关系一元二次方程根与系数的关系。
一般地,如果一元二次方程ax 2+bx +c =0(a ≠0)的两个根是1x 和2x ,那么ac x x a b x x =•,=+2121-. 针对练习2: 先阅读,再填空解题:(1)方程:x 2-x -2=0 的根是:x 1=-3, x 2=4,则x 1+x 2=1,x 1·x 2=12;(2)方程2x 2-7x+3=0的根是:x 1=12, x 2=3,则x 1+x 2=72,x 1·x 2=32; (3)方程x 2-3x+1=0的根是:x 1= , x 2= .则x 1+x 2= ,x 1·x 2= ;根据以上(1)(2)(3)你能否猜出:如果关于x 的一元二次方程mx 2+nx+p=0(m≠0且m 、n 、p 为常数)的两根为x 1、x 2,那么x 1+x 2、x 1、x 2与系数m 、n 、p 有什么关系?请写出来你的猜想并说明理由.【解析】本题首先请同学们阅读两个一元二次方程的两根之和、两根之积与系数之间的关系,再通过第3个方程的两根之和、两根之积与系数之间的关系特点,归纳猜想出一元二次方程的两个根与系数的关系. 【解答】③.25—3,25321=+=x x .1,32121=•=+x x x x 猜想.,—2121mp x x m n x x =•=+ ∵一元二次方程mx 2+nx+p=0(m≠0,且m ,n ,p 为常数)的两个实数根是.24,242221mmp n n x m mp n n x —————=+=∴m n m mp n n m mp n n x x ——————=++=+24242221, .4)4()(242422222221m p m mp n n m mp n n m mp n n x x ==•+=•——————— 【评注】本题是探索一元二次方程根与系数之间的关系.关于x 的一元二次方程mx 2+nx+p=0(m≠0,且m ,n ,p 为常数)的两根为x 1,x 2,那么.,—2121mp x x m n x x =•=+由方程①,②,③的根与系数的关系特点,通过观察、比较、猜想发现一般性规律,并进行验证,培养同学们由特殊到一般的数学思想方法.类型之一:建立一元二次方程模型解应用题例1甲、乙两人分别骑车从A 、B 两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C 地相遇,相遇后两人按原来的方向继续前进.乙在由C 地到达A 地的途中因故停了20分钟,结果乙由C 地到达A 地时比甲由C 地到达B 地还提前了40分钟,已知乙比甲每小时多行驶4千米,求甲、乙两人骑车的速度.【解答】设甲的速度为x 千米/时,则乙的速度为(x+4)千米/时.根据题意,得54(4)2040.460x x x x ++==+ 解之,得x 1=16,x 2=-2.经检验:x 1=16,x 2=-2都是原方程的根,但x 2=-2不合题意,舍去.∴当x=16时,x+4=20.答:甲每小时行驶16千米,乙每小时行驶20千米.例2 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?【解析】设每件衬衫降价x 元,则每件衬衫盈利(40―x)元,降价后每天可卖出(20+2x)件,由关系式:总利润=每个商品的利润×售出商品的总量,可列出方程.【解答】设每件衬衫降价x 元,依题意,得(40―x)(20+2x)=1200,整理得:x 2―30x+200=0,解得:x 1=10,x 2=20,因为要尽快减少库存,所以x=10舍去.答:每件衬衫应降价20元.类型之二:一元二次方程的根的判别式的应用例3阅读材料:如果1x ,2x 是一元二次方程20ax bx c ++=的两根,那么有1212,b c x x x x a a+=-=. 这是一元二次方程根与系数的关系,我们利用它可以用来解题,例如12,x x 是方程2630x x +-=的两根,求2212x x +的值.解法可以这样:126,x x +=-123,x x =-则222212112()2x x x x x x +=+-=2(6)2(3)42--⨯-=.请你根据以上解法解答下题:已知12,x x 是方程2420x x -+=的两根,求:(1)1211x x +的值; (2)212()x x -的值.【解析】先由公式x 1+x 2=ab -,x 1x 2=a c ,求出x 1+x 2,x 1x 2,再化1x 1+1x 2化为x 1+x 2x 1x 2, (x 1-x 2)2化为(x 1+x 2)2-4x 1x 2.【答案】 ∵x 1+x 2=4, x 1x 2=2. (1)1x 1+1x 2=x 1+x 2x 1x 2=42=2. (2) (x 1-x 2)2=(x 1+x 2)2-4x 1x 2=42-4×2=8. 【感悟】本题属于阅读理解题,解此类问题关键理解材料中知识与方法,从中获得知识迁移.类型之三:综合应用例4. 某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x 元,商场一天可获利润y 元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y 与x 之间的函数关系式,并通过画该函数图像的草图,观察其图像的变化趋势,结合题意写出当x 取何值时,商场获利润不少于2160元?【解析】本题是以商场经营为素材的利润问题,解题的关键是理解降价与销售数量增加量之间的关系,根据每天盈利的计算,即“每天盈利=每件的利润×销售数量”作为等量关系列方程或列函数关系式,第(2)的第②小题,考查了函数及其图象,并用图象确定商场获利润不少于2160元的x 的取值范围,体现了数形结合的数学思想。
【解答】⑴若商店经营该商品不降价,则一天可获利润100×(100-80)=2000(元)⑵①依题意得:(100-80-x)(100+10x)=2160即x2-10x+16=0 -解得:x1=2,x2=8经检验:x1=2,x2=8都是方程的解,且符合题意.答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元.②依题意得:y=(100-80-x)(100+10x)∴y= -10x2+100x+2000=-10(x-5)2+2250画草图(略)观察图像可得:当2≤x≤8时,y≥2160∴当2≤x≤8时,商店所获利润不少于2160元.1.如果一个不为零的数的平方等于这个数的两倍,那么这个数是( )A.偶数B.奇数C.偶数或奇数D.不一定是整数【解析】A 设这个数为x.由题意,得x2=2x,解得x1=0,x2=2.故选A.2. 在一幅长80 cm,宽50 cm的矩形风景画的四周镶上一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5 400 cm2,设金色纸边的宽为x cm,那么x满足的方程是( )A.x2+130x-1 400=0B.x2+65x-350=0C.x2-130x-1 400=0D.x2-65x-350=0【解析】B 上、下两条金色纸边的面积一样,左、右两条金色纸边的面积一样,∴2(80+x)·x+2(50+x)·x+80×50=5 400.3. 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.【解析】这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m (1+x )2=n 求解,其中m <n .对于负的增长率问题,若经过两次相等下降后,则有公式m (1-x )2=n 即可求解,其中m >n .【解答】设这两个月的平均增长率是x .,则根据题意,得200(1-20%)(1+x )2=193.6,即(1+x )2=1.21,解这个方程,得x 1=0.1,x 2=-2.1(舍去).答:这两个月的平均增长率是10%.4. 若αβ,是方程2220050x x +-=的两个实数根,则23ααβ++的值为( ) A.2005 B.2003 C.-2005 D.4010【解析】B 由于所求的两根代数式非对称,故只用韦达定理难于解决,结合根的定义,把23ααβ++化为对称式.因为α是方程2220050x x +-=的根,故2220050αα+-=,从而220052αα=-,所以23ααβ++=2005+α+β,而α+β=-2,故23ααβ++=2003. 1. 从一块正方形的铁片上剪掉2 cm 宽的长方形铁片,剩下的面积是48 cm 2,则原来铁片的面积是( )A.64 cm 2B.100 cm 2C.121 cm 2D.144 cm 2【解析】A 本题用间接设元法较简便,设原铁片的边长为xcm.由题意,得x(x -2)=48,解得x 1=-6(舍去),x 2=8.∴x 2=64,即正方形面积为64 cm 2.2. 如图,某工厂直角墙角处,用可建60米长围墙的建筑材料围成一个矩形堆货场地,中间用同样的材料分隔成两间,问AB 为多长时,所围成的矩形面积是450平方米?【解析】等量关系为:长×宽=450,如果设AB 为x 米,那么BC 的长可表示为(60-2x)米,根据矩形的面积公式可列出方程.【解答】设AB 的长为x 米,则BC=(60-2x)米.根据题意,得x(60-2x)=450.解得x=15.即AB=15米.答:AB 为15米时,所围成的矩形面积是450平方米.3. 某厂制造某种商品,原来每件产品的成本是100元,由于不断改进设备,提高生产技术,连续两次降低成本,两次降价后的成本是81元,则平均每次降低成本的百分率是( )A.8.5%B.9%C.9.5%D.10%【解析】D 降低百分率与增长率问题类似,这里依据的基本等量关系为基础数×(1-降低率)降低次数=降低后的数量.5. 某厂制造某种商品,原来每件产品的成本是100元,由于不断改进设备,提高生产技术,连续两次降低成本,两次降价后的成本是81元,则平均每次降低成本的百分率是( )A.8.5%B.9%C.9.5%D.10%【解析】D 降低百分率与增长率问题类似,这里依据的基本等量关系为基础数×(1-降低率)降低次数=降低后的数量.设平均每次降低成本的百分率为x.由题意,得100(1-x)2=81.解得x 1=0.1=10%,x 2=1.9(舍去),∴x=10%.6. 已知1x 、2x 是方程,032=--x x 的两个根,那么2221x x +的值是( ) A.1 B.5 C.7 D. 449 【解析】C 根据根与系数的关系, 121=+x x ,321-=•x x ,又因为2212x x + =212212)(x x x x -+,所以2212x x +=7.7. 某两位数的十位数字是方程x 2-8x=0的解,则其十位数是___________.【解析】解方程x 2-8x=0,得x 1=0,x 2=8,由于两位数的十位数字不能为0,∴x=0(舍去).∴十位数字为8.【答案】88. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?【解析】人数×人均旅游费用=付给旅行社的总费用,可设这次共有x 名员工去天水湾风景区旅游,由于1000×25=2500<2700,所以员工人数肯定超过25人,由于人数比25增加了(x -25)人,因此每人均费用比1000元降低了20(x -25)元,即此时人均费用为[1000-20(x -25)]元。