平方差公式课件.ppt

合集下载

《平方差公式》PPT课件

《平方差公式》PPT课件
= y2 - 22 - (y2+4y-5) = y2-4-y2-4y+5 = -4y+1
完整版ppt
20
1、 口答随:堂练习
(1)(a+3)(a−3); (2)(2a +3b)(2a−3b) ;
(3)(1+2c)(1−2c) ; (4)(−1+5m)(−1−5m)
(5)(−2x+3y)(2x+3y) ; (6)(a−2b)(a−2b) .
第二数b
平方
=25− 36x2 ;
(2) (x+22yy) (x−22yy)
= x2− ( 2y )2
= x2 −4y2 ;
(3) (−m+nn)(−−mm−n )n = ( −m )2 − n2 = m2 −n2 .
完整版ppt
注意 当“第
一(二)数”是一分数 或是数与字母的乘积 要时用, 括号把这个数整 个括起来,再平方;
(3)(a+b)(a-c) 否 (4)(2+a)(a-2) 是
(5)(1x2y) (1x2y)
4
4

(6) (1-x)(-x-1) 是
(7 )(-4k3+3y2)(-4k3-3y2) 是
完整版ppt
10
【例1】运用平方差公式计算:
(1) (3x+2)(3x-2) (2) (b+2a)(2a-b) (3) (-x+2y)(-x-2y) (4) (a-b+c)(a-b-c)
猜想:(a+b)(a-b)= a2-b2 ?
(a+b)(a-b) = a2-ab+ab-b2
=a -b 2 2完整版ppt

平方差公式课件PPT

平方差公式课件PPT

$(a+b-c)^2 = a^2 + b^2 - c^2 + 2ab - 2bc$
$(a-b+c)^2 = a^2 - b^2 + c^2 + 2(ab)c$
平方差公式的其他变种形式
$(a+b)^3 = (a+b)(a^2 - ab + b^2)$ $(a-b)^3 = (a-b)(a^2 + ab + b^2)$
平方差公式课件
目录
CONTENTS
• 平方差公式的基本概念 • 平方差公式的推导过程 • 平方差公式的证明 • 平方差公式的应用举例 • 平方差公式的变种 • 总结与回顾
01 平方差公式的基本概念
平方差公式的定义
总结词
平方差公式是数学中一个重要的恒等 式,用于表示两个数的平方差与这两 个数之间的关系。
$(a+b+c)^3 = (a+b+c)(a^2 - ab + b^2 - ac + bc - c^2)$
06 总结与回顾
本节课的重点回顾
01
02
03
04
平方差公式的形式和结 构
平方差公式的推导过程
平方差公式的应用范围 和条件
平方差公式的代数表示 和几何意义
本节课的难点解析
01
02
03
04
如何理解和记忆平方差公式的 形式和结构
目标
证明该公式成立
证明的步骤
01
02
03
步骤1
展开左侧,得到 $(a+b)(a-b) = a^2 b^2 + ab - ab$
步骤2
合并同类项,得到 $(a+b)(a-b) = a^2 b^2$

《平方差公式说》课件

《平方差公式说》课件
围。
二次项系数不为1的平方差公式推广
当二次项系数不为1时,平方差 公式仍然成立,但形式会有所不
同。
推广后的公式可以适用于更广泛 的情况,包括二次项系数不为1
的等式和恒等式。
通过推广平方差公式,我们可以 更好地理解和应用数学中的一些
基本概念和原理。
平方差公式的其他形式和推广
除了标准的平方差公式外,还有许多 其他形式和推广的平方差公式。
03
CATALOGUE
平方差公式的证明
利用数学归纳法证明
总结词
数学归纳法是一种证明数学命题的重要方法,通过归纳递推 的方式,证明命题对所有自然数都成立。
详细描述
首先证明基础步骤,即n=1时命题成立;然后假设n=k时命 题成立,推导出n=k+1时命题也成立;最后由归纳递推得出 ,命题对所有自然数n都成立。
利用多项式乘法法则推导
总结词
通过多项式乘法法则,将平方差公式进行拆解和重组,推导出其公式形式。
详细描述
首先将平方差公式中的每一项视为一个多项式,然后利用多项式乘法法则,将 每一项与另一项相乘,得到的结果再合并同类项,最终推导出平方差公式。
利用因式分解法推导
总结词
通过对平方差公式进行因式分解,将其拆解为更简单的形式,从而推导出其公式 形式。
通过学习和掌握这些公式,我们可以 更好地理解和应用数学中的一些基本 概念和原理,从而更好地解决实际问 题。
这些公式可以用来解决一些特定的问 题,例如求解某些数学问题和证明某 些等式。
THANKS
感谢观看
平方差公式的应用范围
01
02
03
04
在代数中,平方差公式常用于 因式分解和多项式简化。
在几何中,它可以用于计算某 些图形的面积和周长。

《平方差公式》PPT课件

《平方差公式》PPT课件
平方差公式
-.
动脑筋 计算下列各式,你能发现怎样的规律?
(-a +1)(-a - 1)= a2 + a - a - 12 = a2 - 1 (-a + 2)(-a - 2)= a2 + 2a - 2a - 22 = a2 - 4
(-a + 3)(-a - 3)= a2 + 3a - 3a - 32 = a2 - 9 (-a + 4)(-a - 4)= a2 + 4a - 4a - 42 = a2 - 16
例2 利用平方差公式计算本章“情境导航” 中提出的问题.
解:803×797=(800+3)(800-3) =8002-32 =640000-9=639991
(a)
(b)
如图 (a),将边长为 a 的大正方形剪去一个边长为
b 的小正方形,并将剩余部分沿虚线剪开,得到两
个长方形,再将这两个长方形拼成如图(b). 你能用
B. -(-x)3·(-x)5= -x8
C. (-2x2y)3·4x-3=-24x3y3
D.
1
-
3
y
-
1
+
3
y
=
1
2
2
4
x2 -9 y2
解析 A 中同类项为x5,合并后应为2x5,A错.
B 中是同底数幂的乘法,应为
-(-x)3+5=-(-x)8=-x8,B正确
C 中应为(-2)3·(x2)3 ·y3 ·4x-3=-32x3y3,C
错;D 中是多项式乘以多项式,且不适用
平方差 公式.应为
1 2
-
3
y
-
1 2
+3

平方差公式ppt课件

平方差公式ppt课件

1. 计算 (+)(−) 的结果是(
A. −
B. −
)
A
C. −
D. −
2. 下列多项式相乘中,不能用平方差公式计算的是( A )
A. ( − )( − )
B. (− + )(− − )
C. ( − )( + )
D. ( + )( − )
3.(1)(2021德阳)已知a+b=2,a-b=3,则a 2-b2 的值

6

(2)计算:(x+2)(x-2)(x 2+4)=
x 4-16 .
知识点三:巧用平方差公式计算
技巧:当出现多个因式相乘时,要仔细观察式子的特点,
看是不是符合平方差公式的结构特征或根据题意“凑”出
符合平方差公式结构的形式,然后依次运用公式,一直到
小结:正确列式表示图①和图②中的阴影面积是关键.
例1 判断下列各式是否满足平方差公式的结构特征,若满足,则运用平方差公式计算.
【点拨】先观察题中的式子是否符合“ ( + )( − ) ”的结构特征,若符合,进
而确定式子中的“ ”与“ ”,然后依据公式可得出运算结果.








例3 计算:
【点拨】 (1) (−) 与 (+) 符合平方差公式的形式,其结果再与 ( +) 结合.(2)
观察式子的特点, (+) 可以理解为 × (+) = (−)(+) = − ,这样可借助平方差公
式计算.
(1) (−)( +)(+) ;
【解】原式 = (−)(+)( +)

2.平方差公式PPT课件

2.平方差公式PPT课件

(4)(5a+b)(5a-b)= 25a2-b2 (5)(n+3m)(n-3m)= n2-9m2
(6)(x+2y)(x-2y)= x2-4y2
计算下列各题
视察 & 发现
(1)(a+5)(a-5)= a2-25 视察以上算式及其运
算结果,你发现了什
(2)(m+3) (m-3)= m2-9 么规律?
(3)(3x+7)(3x-7)= 9x2-49
平方差公式
平方差公式的几何背景:
第一回忆我们曾经用 几何的意义即图形面积来解释整式乘法
运算法则,如:a(b+c)=ab+ac;
平方差公式
平方差公式的几何背景:
请同学们思考如何用几何图形的 面积来解释(a +b)(a-b)呢? 1、当a>b>0时,我们可能看成是以长为(a+b) , 宽为(a-b)的长方形的面积。
平方差公式
回顾 & 思考☞
多项式乘法 法则是:
用一个多项式的每一项 乘另一个多项式的每一项 再把所得的积相加。
(m+a)(n+b)= mn+mb+an+ab
如果m=n,且都用 x 表示,那么上式就成为:
(x+a)(x+b) = x2+(a+b)x+ab
这是上一节学习的 一种特殊多项式的乘法——
两个相同字母的 二项式的ห้องสมุดไป่ตู้积 .
如果 (x+a)(x+b)中的a、b再有某种特殊关系, 又将得到什么特殊结果呢? 这就是从本课起要学习的内容.
计算下列各题
视察 & 发现

平方差公式(课件)八年级数学上册(人教版)

平方差公式(课件)八年级数学上册(人教版)
2
(1)
=
(x+1)
(x -1) x -1 ;
(2)
= m2 - 4 ;
(m+ 2)
(m- 2)
2
(3)
=
4
x
-1.
(2 x+1)
(2 x -1)
相乘的两个多项式的各项与它们的积中的各项有什么关系?
(a+b)
(a-b)=a 2 -b 2
你能证明(a+b)(a-b)=a 2 -b 2 吗?
1、利用多项式的乘法法则验证:
(1)上述操作能验证的等式是________.
B
A. 2 − 2 + 2 = ( − )2
B. 2 − 2 = ( + )( − )
C. 2 − = ( − )
(2)应用你从(1)中选出的等式,完成下列各题:
①已知x 2 − 4y 2 = 18, − 2 = 3,求 + 2.
2
3
4
1
20212
× 1−
1
20222

(2)解:①∵x2-4y2=18,x-2y=3,
∴x+2y=(x2-4y2)÷(x-2y)=18÷3=6;
1
1
1
②原式=(1 − ) × (1 + ) × (1 − )
2
2
3
1
3
2
4
2021
2023
= × × × × ⋯×
×
2
2
3
3
2022
2022
1 2023
人教版
八年级上册数学
第十四章
14.2.1平方差公式
复习引入

《平方差公式》PPT优质课件

《平方差公式》PPT优质课件
= 9x2–16–6x2–5x+6 = 3x2–5x–10.
探究新知
素养考点 3 利用平方差公式进行化简求值
例3 先化简,再求值:(2x–y)(y+2x)–(2y+x)(2y–x), 其中x=1,y=2.
解:原式=4x2–y2–(4y2–x2) =4x2–y2–4y2+x2 =5x2–5y2.
当x=1,y=2时, 原式=5×12–5×22=–15.
探究新知
素养考点 5 利用平方差公式解决实际问题
例5 王大伯家把一块边长为a米的正方形土地租给了邻居 李大妈.今年王大伯对李大妈说:“我把这块地一边减少 4米,另外一边增加4米,继续租给你,你看如何?”李大 妈一听,就答应了.你认为李大妈吃亏了吗?为什么?
解:李大妈吃亏了. 理由:原正方形的面积为a2, 改变边长后面积为(a+4)(a–4)=a2–16, ∵a2>a2–16, ∴李大妈吃亏了.
巩固练习
如果两个连续奇数分别是2n–1,2n+1(其中n为正 整数),证明两个连续奇数的平方差是8的倍数.
证明:(2n+1)2–(2n–1)2 =[(2n+1)+(2n–1)][(2n+1)–(2n–1)] =(2n+1+2n–1)(2n+1–2n+1) =4n×2 =8n 因为8n是8的倍数,所以结论成立.
探究新知 知识点 平方差公式
多项式与多项式是如何相乘的?
(a+b)(m+n) =am +an +bm +bn
(x + 3)( x+5) =x2 +5x +3x +15 =x2 +8x +15.
探究新知
面积差变了吗?
a米
a米 5米

平方差公式课件(市一等奖)

平方差公式课件(市一等奖)

平方差公式的特点
形式特点:形如a^2 - b^2 = (a+b)(a-b) 结构特点:左边是两个相同的二项式相减,右边是两个相同的二项式相加 符号特点:当a、b同号时,结果为正;当a、b异号时,结果为负 代数式特点:左边是两个相同的代数式相减,右边是两个相同的代数式相加
平方差公式的应用
第四章
练习与巩固
第六章
基础练习题
计算(a+b)^2的值
计算(a^2-b^2)^2的值
计算(a-b)^2的值 计算(a^2+b^2)^2的值
提升练习题
计算(a+b)(a-b)的值 计算(2x+y)(2x-y)的值 计算(3a+2b)(3a-2b)的值 计算(-5m+6n)(-5m-6n)的值
综合练习题
文字,以便观者准确地理解您传达的思想
归纳法证明法:通过归纳法,从特殊到一般,逐步推导出平方差公式的结论。 以上是几种常见
04
的平方差公式的证明方法,可以根据不同的需求和实际情况选择合适的方法进行证明。
以上是几种常见的平方差公式的证明方法,可以根据不同的需求和实际情况选
择合适的方法进行证明。
证明过程演示
平方差公式的应用范围
代数式变形:利用 平方差公式对代数 式进行变形和化简
计算:利用平方差 公式计算一些数学 表达式的结果
证明:利用平方差 公式证明一些数学 命题
应用题:利用平方 差公式解决一些实 际问题
平方差公式的应用实例
计算平方差公式 中的a和b的值
计算平方差公式 中的c的值
计算平方差公式 中的d的值
计算平方差公式 中的e的值
平方差公式的应用技巧
识别平方差公式形式:首先需要识别题目中的平方差公式形式,以便正确应用。

14.2.1《平方差公式》ppt课件(共28张PPT)

14.2.1《平方差公式》ppt课件(共28张PPT)
14.2.1《平方差公式》ppt课件(共28张PPT)
5.化简:(x-y)(x+y)(x2+y2)(x4+y4)(x8+y8)(x16+y16).
【解析】原式=(x2y2 )( x2+y2)(x4+y4)(x8+y8)(x16+y16) =(x4-y4)(x4+y4)(x8+y8)(x16+y16) =(x8-y8)(x8+y8)(x16+y16) =(x16-y16)(x16+y16) = x32-y32.
个边长为b的小正方形,如图1,拼成
如图2的长方形,你能根据图中的面
图1
积说明平方差公式吗?
(a+b)(a-b)=a2-b2
图2
【例题】
【例1】运用平方差公式计算:
只有符合(a+b) (a- b)的
形式才能用平方差公式
(1) (3x+2 )( 3x-2 ) .(2) (b+2a)(2a-b).
【解析】 (1) (3x+2)(3x-2) (2)(b+2a)(2a-b)
=(3x)2-22
=(2a+b)(2a-b)
=9x2-4.
=(2a)2-b2
=4a2-b2.
【例2】计算
(1) 102×98. (2)(y+2)(y-2)-(y -1)(y+5).
【解析】
(1) 102×98
(2)原式
=(100+2)(100-2)
=(y2-22)-(y2+5y-y-5)
=1002-22
= y2-22-y2-5y+y+5
=10 000-4

《1.平方差公式的认识》教学课件

《1.平方差公式的认识》教学课件
方法总结:利用平方差公式先化简再求值, 切忌代入数值直接计算.
当堂练习
1.下列式子可用平方差公式计算吗? 为什么? 如 果能够,怎样计算?
(1) (a+b)(a−b) ; (不能)
(2) (a−b)(b−a) ; (不能) (3) (a+2b)(2b+a); (不能) (4) (a−b)(a+b) ; ( 能 ) −(a2 −b2)= −a2 + b2 ; (5) (2x+y)(y−2x). (不能)
练一练:口答下列各题: (l)(-a+b)(a+b)=__b_2_-__a_2__. (2)(a-b)(b+a)= ___a_2_-__b_2 __. (3)(-a-b)(-a+b)= __a_2_-__b_2_. (4)(a-b)(-a-b)= __b_2_-__a_2__.
填一填: (a-b)(a+b) (1+x)(1-x) (-3+a)(-3-a) (1+a)(-1+a)
注意:1.先把要计算的式子与公式对照; 2.哪个是a ?哪个是b?
例2 利用平方差公式计算:
(1) ( 1 x y)( 1 x y); (2) (ab+8)(ab-8).
4
4
解:(1)原式=
(
1 4
x)2
y2
1 16
x2
y2;
(1)原式=(ab)2-82 =a2b2-64.
练一练 利用平方差公式计算: (1)(-7m+8n)(-8n-7m); (2)(x-2)(x+2)(x2+4). 解:(1)原式=(-7m)2-(8n)2
3.利用平方差公式计算:
(1)(a+3b)(a- 3b);

八年级数学上册教学课件《平方差公式》

八年级数学上册教学课件《平方差公式》
( y-1)( y+5)可以用平方差公式进行运算吗? 不能,不符合平方差公式的条件. 自己动手算一算.
解:(1)( y+2)( y-2)-( y-1)( y+5) =y2-4-( y2+4y-5) =1-4y;
(2)102×98 =(100+2)(100-2) =1002-22 =9996.
强化练习
【课本P108 练习 第2题】
3.运用平方差公式计算: (1)(a+3b)(a-3b) (2)(3+2a)(-3+2a) (2)51×49 (4)(3x+4)(3x-4) -(2x+3)(3x-2)
【课本P108 练习 第2题】
3.运用平方差公式计算: (1)(a+3b)(a-3b) (2)(3+2a)(-3+2a) (2)51×49 (4)(3x+4)(3x-4) -(2x+3)(3x-2)
下列式子能用平方差公式计算吗?
① (-3x+2)(3x-2)
② (b+2a)(22y)
能,4a2-b2 ④ (-x+y)(x-y)
能,x2-4y2
不能
随堂演练
1.下列多项式中,可以用平方差公式计算的
是( B )
A.(2a-3b)(-2a+3b)
B.(-3a+4b)(-4b-3a)
思考 你能根据图1中图形的面积说明平方差公式吗?
方法一:设矩形EBNM的面积+矩形ADFE的面
积=S.
A
D
E MF BN
S= (a-b)b+(a-b)a = a2-b2
.
方法二:剪下矩形EBNM拼到FBND的位置,
如图.
A
D(M) N
E
M

平方差公式ppt课件

平方差公式ppt课件
解:(4)
例 在括号中填入适当的整式
(1)(b+a(a -b)=a²-b²; (2)(m-n(-n -m)=n²-m²;
(3)(=1-3x)(=1
+3x)=1-9x²;(4)(a²+b²)(a²-b²)=a⁴-b4
分析:观察此题的结果,是两数的平方差,再对比左侧已知的 因式,分析出谁是相同项,谁是相反项.
=9996
例 计算:
(3)(x"+4)(x"-4);
分析:(3)xn 可以看成公式中的a,4 可以看成公式中的b, 根据平方差公式,结果为(xn)²-42.
解:
(3) (x”+4)(xn-4)
=(x”)²-4²
=x²n-16.
例 计算: (3)(x”+4)(x”-4);
分析:(4)需要先把前两项利用平方差公式计算出来,然 后利用结果二次利用平方差公式,从而得到最终结果.
平方差公式
阅读小故事,并回答问题:
小明和小兰分别负责两块区域的值日工作.小明负责一块边长为a 米 的正方形空地,小兰则负责一块长方形空地,长为正方形空地边长加5 米,宽度是正方形空地边长减5米.有一天,小明对小兰说:“咱们换 一下值日的区域吧,反正这两块地大小都一样. ”你觉得小明说的对吗? 为什么?
符号语言: (a+b)(a-b)=a²-b²
atb(a-b)=a²-b²→ 平方差公式
代数推导:(a+b)(a-b)=a²-ab+ab-b²
=a²-b².
文字描述:两个数的和与这两个数差的积,等于这两个数的 平方差.
结构特点:左边:a 符号相同,b 符号相反. 右边:符号相同项a的平方减去符号相反项b的平方.

平方差公式课件1

平方差公式课件1
理等。
平方差公式的定义:a^2 - b^2 = (a+b)(a-b) 平方和公式的定义:a^2 + b^2 无法通过其他形式表示 平方和与平方差的关系:无法直接通过平方差公式推导得到 平方和与平方差的应用场景:在数学、物理等领域有广泛的应用
二项式定理:平方差公式的扩展,适用于任意两个二项式相乘的情况
平方差公式在代数表达式中可以用 于简化计算
平方差公式可以用于解决一些代数 方程的求解问题
添加标题
添加标题
添加标题
添加标题
平方差公式可以用于因式分解,将 多项式化为两个因式的乘积
平方差公式在代数表达式中可以用 于证明一些恒等式
计算面积:利用平方差公式计算各种几何图形的面积 计算周长:利用平方差公式计算各种几何图形的周长 证明定理:利用平方差公式证明几何定理,如勾股定理等 解决实际问题:利用平方差公式解决几何图形中的实际问题,如土地测量、建筑测量等
利用多项式乘法展 开验证公式
证明公式正确性
总结推导过程
将原式拆分成两个二项式相减的形 式
利用平方差公式进行因式分解
展开并简化得到平方差公式
平方差公式的推导 基于多项式乘法与 因式分解的结合
通过将左边的式子 进行因式分解,得 到两个二项式的乘 积
利用多项式乘法的 分配律,将右边的 式子展开
最终得到平方差公 式的形式
完全平方公式:平方差公式的特殊形式,适用于两个完全平方项相乘的情况
平方差公式的几何意义:将平方差公式与几何图形相结合,有助于理解公式的意义和性 质
平方差公式的应用:介绍平方差公式在数学、物理等学科中的应用,以及在解决实际问 题中的应用
公式形式:a^2 b^2 = (a+b)(a-b)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:(1)(3x+2)(3x-2)
=(3x)2-22 =9x2-4;
(2)(b+2a)(2a-b) =(2a+b)(2a-b) =(2a)2-b2 =4a2-b2.
Copyright 2004-2009 版权所有 盗版必究
例1 运用平方差公式计算: (3) (-x+2y)(-x-2y). 解:原式= (-x+2y)(-x-2y)
=(9x2-16) - (6x2+5x -6) =3x2-5x+10
Copyright 96×2004 解:原式=(2000-4)×(2000+4)
=2000 2 - 4 2 =4000000-16 = 3999984
拓展练习
计算:(4a1)(4a1).
方法一:利用加法交换律,
变成公式的形式
解:原式= ( 4a−1 ) ×( 4a −1 )
= (−1 −4a)×(−1 +4a
(1)(a+3b)(a - 3b)= (a)2-(3b)2 =a2-9b2 ; (2)(3+2a)(-3+2a)= (2a+3)(2a-3) =(2a)2-32 =4 a2-9; (3)(-2x2-y)(-2x2+y)= (-2x2 )2-y2 =4x4-y2.
(4)51×49= (50+1)(50-1) =502-12 =2500-1 =2499 (5)(3x+4)(3x-4)-(2x+3)(3x-2)
= (1)2 −(4a)2

= 1−16a2
计算:(4a1)(4a1).
方法二:提取两“−”号中的“−” 号
原式 变成4公a 式1的 (形4a式1)
4a 14a 1
4a2 12
16a2 1
= 1−16a2
注意
①计算时千万别忘了你提出的“”号、添括号;
②运用平方差公式时,要紧扣公式的特征, 找出相等的“项”和符号相反的“项”, 然后应用公式.
=(-x)2-(2y)2 = x2-4y2
Copyright 2004-2009 版权所有 盗版必究
检验成果:
1.下列式子可用平方差公式计算吗? 为什么? 如果能够,怎样计算?
(1) (a+b)(a−b) ; (2) (a−b)(b−a) ; (3) (a+2b)(2b+a); (4) (a−b)(a+b) ; (5) (2x+y)(y−2x).
(不能) (不能) (不能)
(能) −(a2 −b2)= −a2 + b2 ;
(不能)
2、计算:
(1)(a+3)(a−3);
(2)(2a +3b)(2a −3b ) ;
(3) (1+2c)(1-2c).
挑战自我
3、利用平方差公式计算: 1998×2002;
(1)解:1998×2002 =(2000-2)(2000+2) =20002 -22 =4000000-4 =3999996
§15.2 乘法公式
平方差公式
某同学去商店买了单价是9.8元/千克的 糖果10.2千克,售货员刚拿起计算器,他就 说出应付99.96元,结果与售货员计算出的 结果相吻合。售货员很惊讶地说:“你好象 是个神童,怎么算得这么快?”王敏捷同学 说:“过奖了,我利用了在数学上刚学过的 一个公式。”
你知道他是怎么计算的吗?
某同学去商店买了单价是9.8元/千克的 糖果10.2千克,售货员刚拿起计算器,他就 说出应付99.96元,结果与售货员计算出的 结果相吻合。售货员很惊讶地说:“你好象 是个神童,怎么算得这么快?”王敏捷同学 说:“过奖了,我利用了在数学上刚学过的 一个公式。”
你知道他是怎么计算的吗?
利用平方差公式计算:
a
b
a
b
如图:在边长为a的大正方形的一角剪去 一个边长为b的小正方形。
(1)图中的红色部分部分面积是__a__2 __b__2__
(2)你能否将红色部分拼成一个完整的长方形图案吗?
你拼出的长方形的面积是__(_a____b__)_(a____b_)_
平方差公式
概念挖掘:
例1 运用平方差公式计算: (1) (3x+2 )( 3x-2 ) ;(2) (b+2a)(2a-b);
相关文档
最新文档