指数根式运算法则

合集下载

方根、指数、幂、对数基本运算公式及全部推导公式

方根、指数、幂、对数基本运算公式及全部推导公式

方根、指数、幂、对数基本运算公式及全部推导公式1.根式运算法则:(1) , ,;(2) ,,(ma =≥0)a =≥0,P ≠0)(5) ,0),,a m n N =≥∈其中2.指数运算法则:, , ,,,,(7)1(0)mm a aa-=≠, (8)1n a = (9)mn a =(10) d bdba c a c =⇔=3.对数运算法则:i 性质:若a >0且a≠1,则,, (3)零与负数没有对数,(4)log log 1a b b a ⨯= ⑥,(7)log log log 1a b c b c a ⨯⨯=ii 运算法则: 若a >0且a≠1,M >0,N >0,b >0且b≠1,n ∈R 则, ,, log log (,01)m n a a nb b a b m=>≠且 (4), log log n naa m m =, 1log log na a m m n=(5)换底公式 , a>0 a ≠1, b>0 b ≠1, N>0,(6)倒数公式 1log ,0,1log a b b a a a=>≠, b>0 b ≠1 (7) 十进制对数 10log lg N N = , l g 10xN x N =⇔=(8)自然对数 log e N InN = , x InN x e N =⇔= , 1lim(1) 2.71828...n n e n→∞=+≈4.指数与对数式的恒等变形:;。

5、指数方程和对数方程解题:()(1)()log ,log ()()(f x b a a a b f x b f x b f x a =⇔==⇔=定义法)()()(2)()(),log ()log ()()()0(f x g x a a a a f x g x f x g x f x g x =⇔==⇔=>转化法) ()()(3)b ()log ()log ,f x g x m m a f x a g x b =⇔=(取对数法)()(4)log log ()log ()log ()/log ,f x a b a a a g x f x g x b =⇔=(换底法)6、理解对数①两种log a b 理解方法1、表示a 的“指数”,这个指数能让a 变成b 。

【数学知识点】初中数学根式运算法则公式

【数学知识点】初中数学根式运算法则公式

【数学知识点】初中数学根式运算法则公式
根式开方法则是根式的运算法则之一,算术根开n次方,把根指数扩大n倍,被开方数不变。

非算术根的开方不总是可能的,负数的奇次方根开奇次方时,一般先将给定根式化为算术根后再按法则开方
1.根号2乘以2,把2变成根号4再乘,就是根号4乘根号2,再根号下的2乘以zhi4的积,就是根号8,也可化简写成2倍根号
2.
如题:√dao2*2=2√2=√2*√4=√(2*4)=√(2^2*4)=√8
2.根号3乘以根号6就是根号下6乘以3的积,就是根号18,再把18变成9乘以2,因为9可以开根,所以最后化简得出3倍根号2.
如题:√3*√6=√(3*6)=√18=√(9*2)=√3^2*2)=3√2
3.根号32乘以根号25,得出根号800,根号800再化简得根号下的400乘以2的
积,400又等于20乘以20,就是20的平方,最后化简得出20倍根号2.
如题:√32*√25=√(32*25)=√800=√(400*2)=√(20^2*2)=20√2
①根据字母的取值范围化简二次根式;
②根据二次根式的化简结果确定字母的取值范围;
③利用二次根式的性质求字母(或代数式)的最小(大)值;
④利用平方差公式进行分母有理化的计算求值;再者就是相关最简二次根式、同类二次根式等相关的基础知识考察,
在实数范围内:
(1)偶次根号下不能为负数,其运算结果也不为负。

(2)奇次根号下可以为负数。

不限于实数,即考虑虚数时,偶次根号下可以为负数,利用【i=√-1】即可。

以上就是一些数学根式的相关信息,希望对大家有所帮助。

感谢您的阅读,祝您生活愉快。

指数函数运算公式8个

指数函数运算公式8个

指数函数运算公式8个
指数函数是形如y=a^x的函数,其中a是底数,x是幂。

指数函数具有以下8个运算公式:
1.乘法公式:
a^x*a^y=a^(x+y)
这个公式说明了相同底数的指数函数相乘时,底数不变,指数相加。

2.除法公式:
(a^x)/(a^y)=a^(x-y)
这个公式说明了相同底数的指数函数相除时,底数不变,指数相减。

3.平方公式:
(a^x)^y=a^(x*y)
这个公式说明了指数函数的指数也可以是指数。

4.根式公式:
(a^x)^(1/y)=a^(x/y)
这个公式说明了指数函数可以求根号。

5.幂公式:
(a^x)^y=a^(x*y)
这个公式说明了对一个指数函数求幂时,可以将指数间的乘法提到指数外面。

6.对数公式:
loga (a^x) = x
这个公式说明了对一个指数函数求底数为a的对数时,可以得到其指数。

7.指数和对数互补公式:
a^loga (x) = x
这个公式说明了对一个以底数为x的对数函数求以底数为a的指数时,结果是x。

8.复合函数公式:
g(f(x))=(a^x)^y
=a^(x*y)
这个公式说明了一个指数函数作为复合函数时,可以把两个指数相乘。

这些指数函数运算公式是指数函数的基本性质,通过这些公式可以对
指数函数进行各种运算和简化。

对于求解指数函数的实际问题,这些公式
具有重要的应用价值。

指数运算知识解读-高一数学(人教A版2019必修一)

指数运算知识解读-高一数学(人教A版2019必修一)

专题4.1 指数运算(知识解读)【学习目标】1.理解n 次方根、根式、分数指数幂的概念;2.正确运用根式运算性质和有理指数幂的运算性质;3.培养学生认识、接受新事物和用联系观点看问题的能力。

【知识点梳理】知识点1:整数指数幂1、正整数指数幂的定义:n n a aaa aaa =个,其中,n N *∈2、正整数指数幂的运算法则: ①m n m n a a a +⋅=(,m n N *∈)②m n m n a a a -÷=(0a ≠,m n >,,m n N *∈)③()m n mna a=(,m n N *∈)④()mm mab a b =(m N *∈)⑤()mm m a a b b=(0b ≠m N *∈)知识点2:根式1、n 次根式定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中1n >,且n N *∈.特别的:①当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.这时,a 的n 次②当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.这时,正数a 的正的n 次方表示,叫做a 的n 次算术根;负的n 次方根用符号表示.正的n 次方根与负的n 次方根可以合并写成0a >). ③负数没有偶次方根;④0的任何次方根都是00= 2、根式:n 叫做根指数,a 叫做被开方数.中,注意:①1n >,n N *∈②当n 为奇数时,n a 对任意a R ∈都有意义 ③当n 为偶数时,n a 只有当0a ≥时才有意义. 3、()n n a 与n n a 的区别:①当n 为奇数时,()n n a a =(a R ∈) ②当n 为偶数时,()n n a a =(0a ≥) ③当n 为奇数时,且1n >,n n a a = ④n 为偶数时,且1n >,,0||,0nna a a a a a ≥⎧==⎨-<⎩知识点3:分式指数幂1、正数的正分数指数幂的意义是mnm n a a=(0a >,,m n N *∈,1n >)于是,在条件0a >,,m n N *∈,1n >下,根式都可以写成分数指数幂的形式.2、正数的负分数指数幂的意义与负整数指数幂的意义相仿,我们规定,11mnm nmna a a-==(0a >,,m n N *∈,1n >).3、0的正分数指数幂等于0,0的负分数指数幂没有意义.知识点4:有理数指数幂①r s r s a a a +=(0a >,,r s Q ∈) ②()r srsa a =(0a >,,r s Q ∈)③()r r rab a b =(0a >,0b >r Q ∈)知识点5:无理数指数幂①r s r s a a a +=(0a >,,r s R ∈) ②()r srsa a =(0a >,,r s R ∈) ③()rr rab a b =(0a >,0b >r R ∈)【典例分析】【考点1根式的概念及意义求参】【典例1】(2022·全国·高一课时练习)已知481x =,那么x 等于( ) A .3B .3-C .3-或3D .不存在【变式1】(2022·江苏·泰州中学高一阶段练习)已知75x =,则x 的值为( )A B C .D .【典例2】(1)(2021·a 的取值范围是( )A .1[,)2+∞B .1(,]2-∞C .11[,]22-D .R(2)(2021·全国高一专题练习)若34(12)x --有意义,则实数x 的取值范围为( ) A .1(,]2-∞B .1(,)2-∞C .11(,)22-D .11[,]22-【变式2-1】(多选)(2021·全国高一课时练习)若n N ∈,a R ∈,则下列四个式子中有意义的是( )A BC D【变式2-2】(2021·全国高一专题练习)已知a ∈R ,n ∈N *,给出四个式子:②________.(只填式子的序号即可)【考点2 根式的形式化简】【典例2】(2021·2,结果是( ) A .6x ―6B .―6x +6C .―4D .4【变式2-1】(2021·的结果是________.【变式2-2】(2022·青海西宁·高一期末)若a ,b =,则a b +等于( ) A .10-B .10C .2-D .2【变式2-3】(2021·上海高一专题练习)求下列各式的值.(1(2(3(4【考点3 根式与分数指数幂的互化】【典例3】(2021·上海高一专题练习)将下列根式化成有理数指数幂的形式:(1a >0);(2x >0);(3)23-⎝⎭(b >0).【变式3-1】(2022·江苏·扬中市第二高级中学高一开学考试)化简2531433(2)(3)(4)a b a b a b -----⋅-÷(,0)a b >得A .232b -B .232bC .7332b -D .7332b【变式3-2】(2022·湖南·高一课时练习(理))化简(式中字母都是正数):(1)211511336622263a b a b a b ⎛⎫⎛⎫⎛⎫-÷- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;【考点4 分数指数幂的运算性质化简求值】【典例4】(2021·全国高一课时练习)化简下列各式:(1(2)12133113344x y z x y z ---⎛⎫⎛⎫⋅⋅⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭;(3)214⎛⎫⎪⎝⎭+13-0(1.03)×⎛ ⎝⎭. 【变式4-1】(2021·全国)计算112313824527-⎛⎫⎛⎫⎛⎫---= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________;若0x >,则13131142422223234x x x x x -⎛⎫⎛⎫⎛⎫+---= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭_________. 【变式4-2】(2021·全国高一课时练习(理))(05934.-⎛⎫--=⎪⎝⎭________.【变式4-3】(2022·江苏·10.7525316(4)---÷+. .【考点5 整体代换法求分数指数幂】【典例5】(2022·江苏·3=,求下列各式的值: (1)1a a -+; (2)22a a -+; (3)11122a a a a--+-.【变式5-1】(2021·全国)若3x xa a-+=,则3322x xxxa a a a --+=+________. 【变式5-2】(2021·全国高一课时练习)已知11x x --=,其中0x >,求122121x x x x x x x---+-的值.【变式5-3】(2021·江西高安中学高一月考)计算:(141210.252-⎛⎫+⨯ ⎪⎝⎭;(2)已知:11223x x-+=,求22123x x x x --+-+-的值.专题4.1 指数运算(知识解读)【学习目标】1.理解n 次方根、根式、分数指数幂的概念;2.正确运用根式运算性质和有理指数幂的运算性质;3.培养学生认识、接受新事物和用联系观点看问题的能力。

指数与指数幂的运算知识点总结

指数与指数幂的运算知识点总结

指数与指数幂的运算知识点总结本节知识点 (1)整数指数幂; (2)根式; (3)分数指数幂; (4)有理数指数幂; (5)无理数指数幂. 知识点一 整数指数幂1.正整数指数幂的定义:,其中N*.an na a a a 个⋅⋅=∈n 2.正整数指数幂的运算法则: (1)(N*);nm nmaa a +=⋅∈n m ,(2)(且N*);nm nma a a -=÷,,0n m a >≠∈n m ,(3)(N*);()mn nma a=∈n m ,(4)(N*);()mmmb a ab =∈m (5)(N*).m m mb a b a =⎪⎭⎫⎝⎛,0≠b ∈m 3.两个规定(1)任何不等于零的数的零次幂都等于1.即.()010≠=a a 零的零次幂没有意义.(2)任何不等于零的数的(为正整数)次幂,等于这个数的次幂的倒数.即:n -n n . ()01≠=-a a a nn 零的负整指数幂没有意义. 知识点二 根式的概念及其性质 1.次方根n (1)定义 一般地,如果(且N*),那么叫做的次方根. a x n=1>n ∈n x a n (2)性质:①当为奇数时,正数的次方根是一个正数,负数的次方根是一个负数,这时,的次n n n a n方根用表示;na ②当为偶数时,正数的次方根有两个,这两个数互为相反数,表示为.负数没有偶n n na ±次方根;③0的任何次方根都是0,记作.00=n2.根式的定义 形如(且N*)的式子叫做根式,其中叫做根指数,叫做被na 1>n ∈n n a 开方数.对根式的理解,要注意以下几点: na (1)且N*; 1>n ∈n (2)当为奇数时,R ; n ∈a (3)当为偶数时,≥0.n a 根式(且N*)的符号的确定:由的奇偶性和被开方数的符号共同确定. na 1>n ∈n n a (1)当为奇数时,的符号与的符号相同; n na a (2)当为偶数时,≥0,为非负数. n a na 3.根式的性质: (1);()a a nn=(2)对于,当为奇数时,;当为偶数时,.nna n a a nn=n ()()⎩⎨⎧≤-≥==00a a a a a a nn与的联系与区别:()nna nn a (1)对于,当为奇数时,R ;当为偶数时,≥0.而对于,是一个恒有意义()nna n ∈a n a nn a 的式子,不受的奇偶性的限制,但式子的值受到的奇偶性的限制. n n (2)当为奇数时,.n ()=nna a a nn =知识点三 分数指数幂1. 规定正数的正分数指数幂的意义是(,N*,且)nm nm a a =0>a ∈n m ,1>n 于是在条件,N*,且下,根式都可以写成分数指数幂的形式.0>a ∈n m ,1>n2. 正数的负分数指数幂的意义与负整数指数幂的意义相仿,规定(,N*,且)nmnm nm aaa11==-0>a ∈n m ,1>n 3. 0的正分数指数幂等于0,0的负分数指数幂没有意义. 对分数指数幂的理解:(1)分数指数幂不能理解为个相乘,它是根式的一种新的写法; nm a nma (2)分数指数不能随意约分. nm如,事实上,,式子是有意义的;而在()()214233-≠-()()424233-=-()3321-=-实数范围内是没有意义的.(3)在保证相应的根式有意义的前提下,负数也存在分数指数幂.如上面提到的,但没有意义.()()424233-=-()()434355-=-所以对于分数指数幂,当≤0时,有时有意义,有时无意义.因此,在规定分数指数幂的nm a a 意义时,要求. 0>a 知识点四 有理数指数幂规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 整数指数幂的运算性质对于有理数指数幂同样适用: (1)(Q );sr sra a a +=⋅,0>a s r ,∈(2)(Q );()rs sra a=,0>a s r ,∈(3)(Q ).()rrrb a ab =0,0>>b a r ∈有理数指数幂的运算还有如下性质: (4)(Q );sr sraa a -=÷,0>a s r ,∈(5)(Q ).r r rb a b a =⎪⎭⎫⎝⎛0,0>>b a r ∈常用结论:(1)当时,; 0>a 0>ba (2)若则;,0≠a 10=a(3)若(,且),则; sr a a =0>a 1≠a s r =(4)乘法公式适用于分数指数幂.如().b a b a b a b a -=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+221221212121210,0>>b a 知识点五 无理数指数幂一般地,无理数指数幂(,是无理数)是一个确定的实数.有理数指数幂的运算性αa 0>a α质同样适用于无理数指数幂.知识点六 运用公式进行指数幂的运算(条件求值) 常用公式:(1)平方差公式 .()()b a b a b a -+=-22(2)完全平方公式 .()()2222222,2b ab a b a b ab a b a +-=-++=+(3)立方和公式 . ()()2233bab a b a b a +-+=+(4)立方差公式 .()()2233bab a b a b a ++-=-(5)完全立方和公式 .()3223333b ab b a a b a +++=+(6)完全立方差公式 .()3223333b ab b a a b a -+-=-常用公式变形:(1),.()ab b a b a 2222-+=+()ab b a b a 2222+-=+(2),.211222-⎪⎭⎫ ⎝⎛+=+x x x x 211222+⎪⎭⎫ ⎝⎛-=+x x x x 或者写成,.()22122-+=+--x x xx ()22122+-=+--x x x x (3);⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+b b a a b a b a b a 212121213213212323.⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-b b a a b a b a b a 212121213213212323例题讲解例1. 已知,求的值.32121=+-x x 32222323++++--x x x x 分析:采用整体思想方法,对所求式子进行合理变形,然后把条件整体代入求值.本题用到的公式和结论有:;()22122-+=+--x x x x . ()()1112121121213213212323-+⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+------x x x x x x x x x x xx 解:∵32121=+-xx ∴,∴. 92122121=++=⎪⎭⎫ ⎝⎛+--x x x x 71=+-x x ∴.()4727222122=-=-+=+--x x x x ()()181731121213213212323=-⨯=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+----x x x x x x xx ∴.52502034721832222323==++=++++--x x x x 例2. 已知,求下列各式的值:22121=+-a a (1); (2); (3).1-+a a 22-+a a 22--a a 分析:在求的值时,直接入手比较困难,我们可以先求出的值,然22--a a ()222--a a 后在进行开平方运算. 解:(1)∵22121=+-aa ∴,∴; 42122121=++=⎪⎭⎫ ⎝⎛+--a a a a 21=+-a a (2);()222222122=-=-+=+--a a a a (3)∵()()04242222222=-=-+=---a a a a ∴. 022=--a a例3. 已知,其中,求的值.41=+-x x 10<<x xx x x 122+--分析:要学会根式与分数指数幂的相互转化,在转化时要注意:根指数是分数指数的分母,被开方数(或式)的指数是分数指数的分子.解:∵41=+-x x ∴,∴,∴. 4222121=-⎪⎭⎫ ⎝⎛+-x x 622121=⎪⎭⎫ ⎝⎛+-x x 62121=+-x x()1424222122=-=-+=+--x x x x ∴()()19241442222222=-=-+=---x x x x ∵,∴,∴.10<<x 22-<x x 3819222-=-=--x x ∴. 24638121212222-=-=+-=+----x x x x x x x x 例4. (1)已知,求的值;42121=+-aa 21212323----aa a a (2)已知,且,求的值;9,12==+xy y x y x <21212121yx y x +-解:(1)∵42121=+-aa ∴,∴. 212212142=++=⎪⎭⎫ ⎝⎛+--a a a a 142161=-=+-a a ∴; ()15114111212112121212132132121212323=+=++=-++⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=----------a a a a a a a a a a a a aa a a (2)∵9,12==+xy y x ∴ ()()3192129212222221212212122121221212121=+-=++-+=++-+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+-xy y x xy y x xy y x xy y x y x y x y x y x∵,∴,∴y x <2121y x <021212121<+-yx y x ∴. 333121212121-=-=+-yx y x 例5. 已知,求的值.3232+=a 31311--++aa a a 分析:借助于分式的性质. 解:∵ 3232+=a ∴,.3232113232-=+==-a a()34732223234+=+=⎪⎭⎫⎝⎛=a a ∴()132323431313113131311++=⎪⎭⎫⎝⎛++=++-----a aa a a a a a a aa aa .()3333333333913232347=++=++=++-++=解法二:∵3232+=a ∴113232313132323131313133133131311-+=+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++--------a a a a a a a a a a a a aa a a .313232132132113232=--++=-+++=-+=aa 例6. (1)当时,求的值;22,22-=+=y x ⎪⎭⎫ ⎝⎛++⋅⎪⎭⎫ ⎝⎛----323132343132y y x x y x (2)若,求的值. 122-=xaxx xx aa a a --++33分析: 结论 对于二次根式,若是完全平方数,则也是完全C B A ±C B A 22-C B A ±平方数. 本题中,,被开方数不是完全平方数,所以不能化简,当确有22+=x 22+x.()222222+=+=x 解:(1)∵22,22-=+=y x ∴12331332323132343132------=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++⋅⎪⎭⎫ ⎝⎛-y x y x y y x x y x ; ()22122222221222+=+-+=--+=(2)∵122-=x a ∴ ()()()()1122223333-+=++-+=++=++--------xx xx x x x x x x x x x x x x a a aa a a a a a a a a a a a a . 1121121122--+-=-+=xx a a 12211212-=-++-=另解:解例5的解法一.题型一 整数指数幂的运算例7. 已知(为常数,且Z ),求的值.a x x =+-22a ∈x x x -+88分析:因为,所以先由条()()()()x x x x x x x x x x 22333321222222288-----+-+=+=+=+件求出的值.a x x =+-22x x 2222-+完全立方和公式 .()3223333b ab b a a b a +++=+解法一:∵a x x =+-22∴()2222222222-=-+=+--a x x x x ∴()()()()x x x x x x x x x x 22333321222222288-----+-+=+=+=+.()()a a a a a a 3312322-=-=--=解法二:(完全立方和公式) ∵a x x =+-22∴,展开得:.()3322a x x =+-()()()()3322322232232a x x x x x x =+⨯⨯+⨯⨯+---整理得:,∴. ()382238a x x x x =+++--3838a a x x =++-∴.a a x x 3883-=+-例8. 已知,则_________. 3101=+-x x =--22x x 解:∵ 3101=+-x x ∴ ()9822310222122=-⎪⎭⎫⎝⎛=-+=+--x x xx ∴ ()()816400498242222222=-⎪⎭⎫⎝⎛=-+=---x x x x ∴. 98081640022±=±=--x x 解法二分析:使用平方差公式得. ()()1122----+=-x x x x x x 解法二:∵ 3101=+-x x ∴ ()()9644310422121=-⎪⎭⎫⎝⎛=-+=---x x xx ∴. 389641±=±=--x x ∴. ()()980383101122±=⎪⎭⎫ ⎝⎛±⨯=-+=----x x x x x x 例9. 若,求的值. 31=+-x x 2323-+x x 解:∵(这里)31=+-x x 0>x ∴,∴. 3222121=-⎪⎭⎫ ⎝⎛+-x x 522121=⎪⎭⎫ ⎝⎛+-x x ∵,∴.02121>+-x x 52121=+-xx ∴ ()1212132132123231----+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+x x x x x x xx . ()52135=-⨯=解法二:∵31=+-x x ∴()723222122=-=-+=+--x x x x∴ ()()()202173122213322323=+-⨯=+-+=++=⎪⎭⎫ ⎝⎛+----x x x x x x x x ∴.52202323==+-xx 例10. 已知,则【 】41=+-x x =+-2121x x (A )2 (B )2或 2-(C )(D )或666-分析:题目的隐含条件为. 0>x 解:∵41=+-x x ∴,∴ 42221211=-⎪⎭⎫ ⎝⎛+=+--x x x x 622121=⎪⎭⎫ ⎝⎛+-x x ∵02121>+-x x ∴.选择【 C 】.62121=+-x x例11. 已知,则【 】212121++=⎪⎭⎫ ⎝⎛+--x x x x f ()=+1x f (A ) (B )42-x ()21+x (C )(D )()()2111-+++-x x 322-+x x 解:(换元法)设,则有t xx =+-2121∴222221211-=-⎪⎭⎫ ⎝⎛+=+--t x x x x ∴,∴. ()2222t t t f =+-=()2x x f =∴.选择【 B 】.()()211+=+x x f 解法二(凑整法):∵212121++=⎪⎭⎫ ⎝⎛+--x x x x f ∴,∴.2212122121212122⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+---x x x x x x f ()2x x f =∴.()()211+=+x x f题型二 根式的化简在进行根式的化简时,主要用到的是根式的性质: (1);()a a nn=(2)对于,当为奇数时,;当为偶数时,.nna n a a nn=n ()()⎩⎨⎧≤-≥==00a a a a a a nn注意 对于,当为奇数时,R ;当为偶数时,≥0.而对于,是一个恒有意()nna n ∈a n a nn a 义的式子,不受的奇偶性的限制,但式子的值受到的奇偶性的限制.n n 例12. 化简下列各式: (1);()()222535-+-(2)(≥1).()()2231x x -+-x 解:(1)原式;125532535=-+-=-+-=(2).()()x x x x -+-=-+-313122∵≥1x ∴当1≤≤3时,原式; x 231=-+-=x x 当时,原式. 3>x 4231-=-+-=x x x 例13. 化简: (1); (2)(≤).()nnx π-62144+-a a a 21分析:对于(1),要对的奇偶性进行分类讨论. n 解:(1)当为奇数时,;n ()ππ-=-x x nn 当为偶数时,; n ()()()⎩⎨⎧<-≥-=-=-ππππππx x x x x x nn(2).()()()33162626221212112144a a a a a a -=-=-=-=+-注意:当底数为正数时,其分数指数可以约分.例14. 求下列各式的值: (1);223223-++(2).347246625-+--+分析: 结论 对于二次根式,若是完全平方数,则也是完全C B A ±C B A 22-C B A ±平方数.根据此结论,可知,,均可以化为完全平方的形式. 625+246-347-解:(1)原式;()()221212*********2=-++=-++=-++=(2)原式()()()222322232-+--+=.22322232322232=-++-+=-+--+=总结 形如()的双重二次根式的化简,一般是将其化为n m 2±0,0>>n m 的形式,然后再化简.由得:()2ba ±()ab b a ba n m 222±+=±=± ⎩⎨⎧==+nab mb a 所以是一元二次方程的两个实数根.b a ,02=+-n mx x 例15. 化简. 32-解:. ()()226213213222132324322-=-=-=-=-=-例16. 计算:.()()4123323-+-解:原式.()[]()58323233443=+-=-+-=-+-=注意 在利用根式的性质进行的化简时,一定要注意当为偶数时,底数的符号.nna n a 例17. 化简下列各式: (1)();()()665544b a b a a -+++0<<b a (2)(). 1212----+x x x x 21<<x 解:(1)∵0<<b a ∴原式; ()a b a b b a a b a b a a -=-+++-=-+++=2(2)∵,∴ 21<<x 110<-<x ∴原式()()1111111122---+-=---+-=x x x x. ()1211111111-=-+-+-=---+-=x x x x x 例18. 求值_________. =-++335252解:令,则有y x =-=+3352,52,.4525233=-++=+y x 1-=xy ∴,∴()()422=+-+y xy x y x ()()[]432=-++xy y x y x 设,则,有t y x =+0>t ,∴,()432=+t t 0433=-+t t 01333=--+t t ∴()()0412=++-t t t ∵,∴,∴. 042>++t t 01=-t 1=t ∴. 1525233=-++解法二:设,则有=x 335252-++,∴()x x 3452523333-=-++=0432=-+x x∴, ()()03313=-+-x x ()()0412=++-x x x ∵,∴,∴ 042>++x x 01=-x 1=x ∴. 1525233=-++例19. 根据已知条件求值: (1)已知,求的值;32,21==y x yx y x yx y x +---+(2)已知是方程的两根,且,求的值.b a ,0462=+-x x 0>>b a ba b a +-解:(1)∵ 32,21==y x ∴原式()()()()()()yx yx yx yx yx yx -+--+-+=22yx xyy x y x xy y x --+--++=22; 383221322144-=-⨯⨯=-=yx xy(2)∵是方程的两根 b a ,0462=+-x x ∴4,6==+ab b a ∴()()204464222=⨯-=-+=-ab b a b a ∵,∴ 0>>b a 0>-b a ∴. 5220==-b a ∴. ()()()55515242622==-=--+=-+-=+-b a ab b a ba ba ba ba b a (2)解法二:∵是方程的两根,∴b a ,0462=+-x x 4,6==+ab b a ∴. ()()5110242642622222==+-=++-+=+-=⎪⎪⎭⎫⎝⎛+-abb a ab b a b a b a b a b a ∵,∴,∴0>>b a b a >0>+-ba b a ∴. 5551==+-ba b a 例20. 已知,N*,求的值.⎪⎭⎫ ⎝⎛-=-nn x 115521∈n ()n x x 21++解:∵⎪⎭⎫ ⎝⎛-=-n nx 115521∴.n n n n n n x 222221125215525411552111---++=⎪⎭⎫ ⎝⎛+-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=+2115541⎪⎭⎫ ⎝⎛+=-n n∴⎪⎭⎫ ⎝⎛+=+-n nx 11255211∴.()55552155211111112=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=++--nn n nn n n nx x例21. 已知函数,.()53131--=x x x f ()53131-+=x x x g (1)证明:在上是增函数(已知在R 上是增函数);()x f ()+∞,031x y =(2)分别计算和的值,由此概括出函数和()()()2254g f f -()()()3359g f f -()x f 对所有不等于0的实数都成立的一个等式,并加以证明.()x g x (1)证明:任取,且()+∞∈,0,21x x 21x x <∴ ()()55531131231231131231231131121⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=---=-----x x x x x x x x x f x f ∵,且,在R 上是增函数 ()+∞∈,0,21x x 21x x <31x y =∴312311312311,--><x x x x ∴,∴ ()()021<-x f x f ()()21x f x f <∴在上是增函数; ()x f ()+∞,0(2)解:()()()2254g f f -.0522522552222554432323232313131313131=---=⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⨯--=-----同样求得. ()()()03359=-g f f 猜想:. ()()()052=-x g x f x f 证明:()()()x g x f x f 52-.055555532323232313131313232=---=⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⨯--=-----x x x x x x x x xx 例22. 当,且时,求的值.0,0>>y x ()()y x y y x x 53+⋅=+yxy x y xy x -+++32解:∵,且0,0>>y x ()()y x y y x x53+⋅=+∴, y xy xy x 153+=+0152=--y xy x ∴()()053=-+y x yx ∴,. 05=-y x y x y x 25,5==∴.22958525355032==-+++=-+++yyy y y y y y yxy x y xy x 题型三 根式与分数指数幂的互化在进行根式与分数指数幂的互化时要注意两个对应: (1)根指数对应分数指数的分母;(2)被开方数(或式)的指数对应分数指数的分子. 当出现多重根号时,应从里向外化简.例23. 用根式或分数指数幂表示下列各式:,,,;.51a ()043>a a 36a ()013>a a()0>a a a 解:;551a a =;()43430a a a =>;23636a a a ==;()23233101-==>a aa a.()4323210a a a a a a a ==⋅=>例24. 将根式化为分数指数幂是【 】 53-a (A ) (B )(C )(D )53-a 53a 53a -35a -解:选择【 A 】. 例25. 化简:_________.(用分数指数幂表示)()()=⋅÷⋅109532a a a a 解:由题意可知:.0>a ∴原式.561012101451310921532a a a a a a a a ==÷=⎪⎭⎫⎝⎛⋅÷⎪⎭⎫ ⎝⎛⋅=例26. 设,化简:.0>a 434334aa a a -解:∵0>a ∴.611616653163254343234434334---===⋅⋅=aaa aa a a aa aa aa例27. 下列根式与分数指数幂的互化中,正确的是【 】 (A )(B )()()0414>-=-x x x )0551≠-=-x x x(C ) (D )()0,4343≠⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-y x x y y x 4182y y =解:(A ),故(A )错;()0414>-=-x x x (B ),故(B )错; ()0155151≠==--x xx x(D ),故(D )错. 选择【 C 】. 4182y y =例28. 下列各式正确的是【 】 (A );(B )35531aa=-2332x x =(C )(D )⎪⎭⎫ ⎝⎛-⨯-=814121814121aaa a x x x x 412212323131-=⎪⎭⎫ ⎝⎛---解:(A ),故(A )错;53535311aaa ==-(B ),故(B )错; 3232x x =(C ),故(C )错. 选择【 D 】.85814121814121a aaa a ==⎪⎭⎫ ⎝⎛-+-题型四 根式和分数指数幂有意义的条件1.对于次根式,当为奇数时,R ;当为偶数时,≥0. n na n ∈a n a 2.0的0次幂和负实数幂都没有意义.例29. 若有意义,则的取值范围是__________.()4321--x x解:∵()()()43434321121121x x x -=-=--∴,解之得:. 021>-x 21<x 即的取值范围是.x ⎪⎭⎫ ⎝⎛∞-21,例30. 函数的定义域是【 】()()2125--+-=x x y (A ) (B ){}2,5≠≠x x x {}2>x x (C ) (D ){}5>x x {}552><<x x x 或解:∵()()()()()215215250210210-+-=-+-=-+-=-x x x x x x y ∴,解之得:且.⎩⎨⎧>-≠-0205x x 2>x 5≠x ∴该函数的定义域为.选择【 D 】.()()+∞,55,2 题型五 幂的运算目前,当底数大于0时,指数已经由整数指数推广到了实数指数,整数指数幂的运算性质适用于实数指数幂的运算.运算的结果可以化成根式形式或者保留分数指数幂的形式,但不能既有根式又有分数指数幂,也不能同时含有分母和负指数幂.(1)(R ); s r s r a a a +=⋅∈>s r a ,,0(2)(R );()rs sr a a =∈>s r a ,,0(3)(R ).()r r rb a ab =∈>>r b a ,0,0例31. 计算下列各式(式中的字母均为正数): (1);()()()c b a b a b a 24132124-----÷-⋅(2). ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--+----------212121211122b a b a b a b a 解:(1)原式;()ca ac cb a b a 33112412423-=-=÷-=-----(2)原式 ()()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+---=--------21212121112121b a b a b a b a ()()()bb b a b a b a ba b a b a221111111111111==+-+=----+=-------------例32. 化简下列各式: (1);212121211111aaa a a++------(2).111113131313132---+++++-x xx x x x x x 解:(1)原式; ()()011112121212121211=-=+⎪⎭⎫ ⎝⎛+---=-----a a a a a a a a a (2)原式 11111131323131333131323331-⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛=x x x x x x x x 31323132313131313131313231313231323111111111111xx x x x x x x x x x x x x x x x x --+-+-=-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=.31x -=例33. 化简:. ()()()()()1421443333211--------++-++-+aa a a a a a a a a a a解:原式 ()()()()()()1221442212212111---------+-+-++++-+-+=a a a a a a a a a a a a a aa a ()[]()[]()()1214412222111--------++++++-+=aa a a a a a a a a a a()()aa a a a aa a a a a a a 21111144144=-++=-++++++=------例34. 化简下列各式:(1);(2).436532yx xy⋅1111212331++-+++a a a a a 解:(1)原式;1212143653231--==yx yx y x (2)原式 111111111121212131313231213321313331++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=++-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛=a a a a a a a a a a a a a a21313221313211aa a a a a +-=-++-=例35. 【 】 ()=-⎪⎭⎫⎝⎛⨯+⎪⎭⎫ ⎝⎛--21212001.04122532(A )(B ) (C )(D )0151630173658-解:. ()21212001.04122532-⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛--1516101324111001491411=-⨯+=-⨯+=选择【 A 】.例36. 化简:_________.=⎪⎪⎭⎫⎝⎛÷⋅⋅----321132132a b b a bab a 解:原式.656161673223236167322121131212132--------=÷=⎪⎭⎫⎝⎛÷=⎪⎪⎪⎭⎫ ⎝⎛÷=b a ab b a b a b a b a ba b a b a 例37._________. =⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛---442102324953121解:原式. 22322322232491112=-++=-++-+=例38. 已知,则的值是_________. 3,2==n m 32432332⎪⎪⎭⎫⎝⎛÷⋅----m n nm m n n m 解:∵3,2==n m ∴原式 32325343322534312322332⎪⎭⎫ ⎝⎛÷=⎪⎭⎫ ⎝⎛÷=⎪⎪⎪⎭⎫ ⎝⎛÷=--------mn n m n m n m n m mn n m n m . 27232333131=⨯==⎪⎭⎫⎝⎛=---mn n m 例39. 已知函数,则_________.()()⎪⎩⎪⎨⎧≥--<=1,351,312x x x x x f =⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--4321353f f 解: ⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛---4343213533353f f f f . 33939335353331243=+-=+⎪⎭⎫⎝⎛-+-⨯=-题型六 解含幂的方程例40. 解下列方程:(1);(2).2291381+⎪⎭⎫ ⎝⎛=⨯x x0123222=-⨯++x x 解:(1),()2224333+-=⨯x x 424233--+=x x ∴,解之得:;4242--=+x x 2-=x (2),设,则()0123242=-⨯+⨯x x t x =20>t ∴, 01342=-+t t ()()0114=+-t t 解之得:(舍去). 1,241221-===-t t ∴,∴.222-=x 2-=x 结论 若(,且),则sra a =0>a 1≠a s r =题型七 指数幂等式的证明 设参数法例41. 设都是正数,且,求证:. c b a ,,c b a 643==ba c 122+=证明:设,则有. t cba===643cbat t t 12116,2,3===∵ 236⨯=∴,∴ba bacttt t 2112111+=⋅=ba c 2111+=等式两边同时乘以2得:. b a c 122+=例42. 设,且,则_________.m b a ==52211=+ba =m 分析:这是指数幂的连等式,参数已经给出. 解:∵,∴. m ba==52bam m 115,2==∵211=+ba ∴,∴,.2111152m m m m ba ba==⋅=⨯102=m 10±=m ∵,∴. 0>m 10=m 例43. 已知,且. 333cz by ax ==1111=++zy x 求证:.()31313131222c b a czby ax ++=++证明:设,则. t cz by ax ===333zt cz y t by x t ax ===222,,∴.⎪⎭⎫⎝⎛++=++z y x t cz by ax 111222∵,∴ 1111=++z y x t z y x t =⎪⎭⎫⎝⎛++111∴,t cz by ax =++222()3131222t czby ax =++∵3131313313313313131111t z y x t z t y t x t c b a =⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++∴.()31313131222c b a czby ax ++=++例44. 对于正整数(≤≤)和非零实数,若c b a ,,a b c ω,,,z y x ,ω70===z y x c b a ,求的值. zy x 1111++=ωc b a ,,解:设,则有.k c b a zyx====ω70ω111170,,,k k c k b k a zyx====∴zy x k abc 111=∵,∴. zy x 1111++=ω70=abc ∵为正整数,且≤≤ c b a ,,a b c ∴ 752107170⨯⨯=⨯⨯==abc ∴或10,7,1===c b a 7,5,2===c b a 当时,,不符合题意,舍去. 10,7,1===c b a 0===ωz y ∴.7,5,2===c b a 本节易错题例45. 计算_________.()()=-++44332121分析 对于对于,当为奇数时,;当为偶数时,.nna n a a nn=n ()()⎩⎨⎧≤-≥==00a a a a a a nn解:原式.2212212121=-++=-++=例46. 化简_________. ()()=-⋅-43111a a 分析:题目的隐含条件为. 1>a 解:原式.()()()()()()()414343431111111--=-⋅--=-⋅-=-⋅-=---a a a a a a a 例47. 已知,N*,化简.1,0><<n b a ∈n ()()nn nnb a b a ++-解:当为奇数时,原式; n a b a b a 2=++-=当为偶数时,原式.n b a b a ++-=∵,∴原式. 0<<b a a b a a b 2-=---=其它例48. 已知函数,则_________. ()⎪⎩⎪⎨⎧≤⎪⎭⎫ ⎝⎛>=0,210,21x x x x f x ()=-)4(f f 解:∵ ()1621121444=⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=--f ∴.()()4161616)4(21====-f f f 例49. 已知集合,,且,则_______.{}4,,2a a A -=⎭⎬⎫⎩⎨⎧-=b a aa B 2,,33B A ==+b a 解:{}{}4,,4,,2a a a a A -=-=根据集合元素的互异性,,∴a a -≠0>a ∴{}b b a a aa B 2,1,2,,33-=⎭⎬⎫⎩⎨⎧-=∴,解之得:.⎩⎨⎧==421b a ⎩⎨⎧==21b a ∴ 3.=+b a 例50. 设,若,则()244+=x xx f 10<<x _________. =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛10011000100131001210011f f f f 解:∵()244+=x x x f ∴()()=+++=+++=+++=-+--2422444444244244244111x x x x x x x x x x x x f x f 12424=++x x ∴ ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛10011000100131001210011f f f f.500111100150110015001001100010011=++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛= f f f f。

根式与指数运算

根式与指数运算

根式与指数运算根式与指数是数学中常见的运算方式,它们在代数、几何、物理等领域中都有广泛应用。

本文将介绍根式与指数的概念和运算规则,帮助读者更好地理解和应用这两种运算方式。

一、根式运算根式是表示一个数的平方根、立方根等的数学符号。

比如,√4表示4的平方根,3√8表示8的立方根。

根式运算主要包括开方、化简、比较大小等。

1. 开方开方指求一个数的平方根、立方根、四次方根等。

以√为例,√4=2表示4的平方根是2,√9=3表示9的平方根是3。

同样地,3√8=2表示8的立方根是2。

2. 化简有时候需要对根式进行化简,使其变得简洁易读。

化简的方法包括将分母中的根号消去、将根号内的平方数提取出来等。

例如,化简√18可以进行分解,得到√(9×2),然后提取出平方数9,得到3√2。

3. 比较大小在进行根式比较大小时,可以通过平方、立方等方式对根式进行化简,然后再进行比较。

例如,比较√2和√3的大小,可以将两者都平方,得到2和3,因此√2小于√3。

二、指数运算指数是数学中代表乘方的运算符号,用于表示一个数被乘以自身若干次。

比如,2³表示2的三次方,2³=2×2×2=8。

指数运算包括乘法规则、除法规则、幂运算等。

1. 乘法规则当指数相同时,不同底数的乘法可以简化为底数的乘积再进行乘方运算。

例如,2²×3²=6²表示2的平方乘以3的平方等于6的平方。

2. 除法规则当指数相同时,不同底数的除法可以简化为底数的商再进行乘方运算。

例如,4²÷2²=2²表示4的平方除以2的平方等于2的平方。

3. 幂运算幂运算指一个数被自身乘以若干次,其中指数为正整数。

例如,2³表示2的三次方,2³=2×2×2=8。

指数为0时,任何非零数的0次方都等于1。

指数为负整数时,可以将其转化为分数进行运算。

指数与根式的运算定理

指数与根式的运算定理

指数与根式的运算定理在数学中,指数与根式的运算定理是指数和根式之间运算的一些基本规则和性质。

这些定理在代数和计算中经常被使用,能够帮助我们简化复杂的指数和根式的运算过程。

以下将介绍一些常见的指数与根式的运算定理。

一、指数的乘法和除法定理1. 指数相乘:对于相同的底数,指数相乘等于底数不变,指数相加。

例如,a^m * a^n = a^(m+n)。

2. 指数相除:对于相同的底数,指数相除等于底数不变,指数相减。

例如,a^m / a^n = a^(m-n)。

二、指数的幂次和根式的运算定理1. 指数的幂次:对于一个数的指数的幂次,等于底数不变,指数乘以幂次。

例如,(a^m)^n = a^(m*n)。

2. 幂次的根式:对于一个数的幂次的根式,等于底数不变,指数除以根指数。

例如,(a^m)^(1/n) = a^(m/n)。

三、根式的乘法和除法定理1. 根式相乘:根指数相同的根式相乘,等于根指数不变,底数相乘。

例如,√a * √b = √(a*b)。

2. 根式相除:根指数相同的根式相除,等于根指数不变,底数相除。

例如,√a / √b = √(a/b)。

四、指数与根式的混合运算定理在进行指数与根式的混合运算时,可以先将指数转化为根式,再进行根式的运算。

例如,(a^m)^(1/n) = (√a^m)^n = (√(a^m))^n = (a^m)^(n/1) = a^(m*n)。

以上是指数与根式的运算定理的简要介绍,通过运用这些定理,我们可以更加方便地进行复杂指数和根式的运算。

然而,在具体的问题中,我们还需要根据题目要求和实际情况灵活运用这些定理,以达到更加准确和高效的计算目的。

总结:指数与根式的运算定理提供了一些基本的规则和性质,可以帮助我们简化复杂的指数和根式的运算过程。

在实际运用中,我们需要熟练掌握这些定理,并根据实际情况进行灵活运用,以便更好地解决数学问题。

根式运算规律

根式运算规律

根式运算规律全文共四篇示例,供读者参考第一篇示例:根式运算是数学中常见的运算形式之一,它在代数、几何和数学分析等不同领域都有着重要的应用。

根式运算的规律包括基本规律、乘法规律、除法规律、加法规律和减法规律等,掌握这些规律对于解题和计算都是至关重要的。

下面我们将详细介绍根式运算的各种规律。

1. 基本规律根式运算的基本规律是最基础的规律,也是其他规律的基础。

根式运算中,我们常见的是平方根和立方根。

平方根的表示方法是√a,表示a的平方根;立方根的表示方法是∛a,表示a的立方根。

根式运算中,我们要注意的是求根号下的数称为“被开方数”,开方的数称为“根指数”。

根式运算的基本规律包括:(1)若a>0,则√a存在且唯一;(2)若a≥0,则√a≥0;(3)若a≥0,则∛a≥0;(4)若a>0,则∛a存在且唯一。

这些基本规律是使用根式进行运算时的基础,我们要牢记并灵活运用。

2. 乘法规律根式运算中的乘法规律是根据数学运算中的乘法法则来推导的。

根据乘法法则,根式运算中的乘法规律包括以下几点:(1)对于任意非负实数a和b,有√a*√b=√(ab);(2)对于任意非负实数a和b,有∛a*∛b=∛(ab);(3)对于任意非负实数a和b,有√a*∛b=√(a)*∛b;(4)对于任意非负实数a和b,有√a*∛b=√(a)*√(b)*√(b)。

乘法规律是在根式运算中常见的运算规律,我们在进行乘法运算时,要注意根号下的数和根指数的乘积,以及根式的合并。

根式运算是数学中重要的一部分,掌握根式运算的规律和性质能帮助我们更好地理解数学,提高数学解题的能力。

在学习根式运算时,我们要注重理论和实践相结合,通过大量的练习来巩固和运用所学知识。

希望本文介绍的根式运算规律对大家有所帮助,欢迎大家继续深入学习和探索数学的奥秘。

第二篇示例:根式运算是数学中的一个重要分支,也是我们在日常生活中经常会用到的知识点。

根式可以用来表示一个数的平方根、立方根等,它在代数、几何等数学领域都有着广泛的应用。

指数函数运算公式8个

指数函数运算公式8个

指数函数运算公式8个指数函数,也称为幂函数,是数学中的一种常见函数类型。

它的一般形式可以表示为y = ax^n,其中a是常数,n是指数。

在指数函数的运算中,有一些常见的公式可以帮助简化计算。

下面是8个常见的指数函数运算公式:1.指数函数的乘法公式:若要计算两个指数函数相乘,即y=a1x^n1*a2x^n2,可以将底数先相乘,再将指数相加,即y=(a1*a2)x^(n1+n2)。

2.指数函数的除法公式:若要计算两个指数函数相除,即y=(a1x^n1)/(a2x^n2),可以将底数先相除,再将指数相减,即y=(a1/a2)x^(n1-n2)。

3. 指数函数的幂运算公式:若要计算一个指数函数的幂,即y =(ax^n)^m,可以将指数相乘,即y = ax^(n * m)。

4. 幂函数的指数公式:若要计算一个幂函数的指数,即y =a^(bx^n),可以将指数和底数都取对数,即y = e^(ln(a^(bx^n))),然后根据对数的运算公式进一步简化。

5. 指数函数的倒数公式:若要计算一个指数函数的倒数,即y = 1/ (ax^n),可以将指数取相反数,即y = (ax^(-n))。

6. 指数函数的根式公式:若要计算一个指数函数的根式,即y =(ax^n)^(1/m),可以将指数和根式互相消去,即y = a^(1/m) * x^(n/m)。

7. 指数函数的对数公式:若要计算一个指数函数的对数,即y =loga(ax^n),可以将对数和指数互相消去,即y = n * loga(x)。

8. 对数函数的指数公式:若要计算一个对数函数的指数,即y = loga^(bx^n),可以将指数取为e的幂,即y = e^(bx^n * ln(a))。

这些指数函数运算公式可以在解决数学问题、化简复杂表达式以及研究数学模型等方面发挥重要作用。

通过熟练掌握这些公式,并结合其他数学知识和技巧,可以更加灵活地运用指数函数进行计算和分析。

2.1.1指数与指数运算(根式)

2.1.1指数与指数运算(根式)

P50探究 例如,3 33 = 3 ,5(-3)5 = -3
32 = 3 ,(-3)2 = 3
当n为奇数时, n an a;
当n为偶数时, n
an
| a |
a, a 0, a,a 0.
例1、求下列各式的值:
(1)3 (8)3 =-8 (2) (10)2 =︱-10︱=10
P59A1
(3)4 (3 )4 =︱3-π ︱= π -3
(4) (a b)2 (a b) = ︱a-b ︱=a-b
分析:
当n为奇数时,n an a
a(a 0)
当n为偶数时,n an a
-a (a<0)
补充练习:
(1) 5 -3)3 =-3
(3) (-3)4 = 92 = 9 =9
(4) ( 2- 3)2 =︱ 2- 3︱= 3- 2
(5)
6 = ( 3)2 =︱x3︱
(6)
5-2 6 = ( 3)2-2 2 3 ( 2)2
= ( 3- 2)2 =︱ 3- 2 ︱ = 3- 2
小结
a2
(3) a6 的三次方根是____
(4) 0 的七次方根是____0___
思考:a的n次方根有几个?
① n 为奇数时,a 的 n 次方根只有1个.记为:n a
正数的奇次方根是正数, 例如,3 8=2 负数的奇次方根是负数, 例如,3 -8=-2 零的奇次方根是零.
② n为偶数时,aa 0 的 n次方根有2个.记为: n a
例如,81的4次方根 4 81= 3.
(其中4 81=3, -4 81=-3)
n 0 0;负数没有偶次方根.
4、式子 n a 叫做根式. n 叫做根指数,a 叫

根式运算的方法

根式运算的方法

根式运算的方法根式是关于数的一种特殊表示方式,可以用于表示数的平方根、立方根等。

根式运算是进行根式的加减、乘除等操作。

本文将介绍一些根式运算的基本方法。

根式的基本性质在进行根式运算之前,首先要了解一些根式的基本性质:1. 乘方与开方的互逆性:若$a$是一个非负实数,$m$和$n$是整数,那么$(\sqrt[m]{a})^n = \sqrt[m]{a^n}$。

2. 根式的乘法法则:$\sqrt[m]{a} \cdot \sqrt[m]{b} = \sqrt[m]{a\cdot b}$。

3. 根式的除法法则:$\frac{\sqrt[m]{a}}{\sqrt[m]{b}} =\sqrt[m]{\frac{a}{b}}$。

根式的加减法根式的加减法需要先化简,然后根据根式的性质进行运算。

下面是一些示例:示例1:同次根式的加减对于同次根式,即指数相同的根式,可以直接进行加减运算。

例如,计算$\sqrt[3]{2} + \sqrt[3]{5}$:首先化简为同次根式:$\sqrt[3]{2} + \sqrt[3]{5} = \sqrt[3]{2} + \sqrt[3]{5} \cdot \sqrt[3]{\frac{2}{2}} = \sqrt[3]{2} + \sqrt[3]{10}$。

然后使用加法法则:$\sqrt[3]{2} + \sqrt[3]{10} = \sqrt[3]{2 + 10} = \sqrt[3]{12}$。

示例2:异次根式的加减对于异次根式,即指数不同的根式,需要进行化简后再进行加减运算。

例如,计算$\sqrt[4]{3} - \sqrt[2]{2}$:首先化简为同次根式:$\sqrt[4]{3} - \sqrt[2]{2} = \sqrt[4]{3} - \sqrt[2]{2} \cdot \sqrt[4]{\frac{3}{3}} = \sqrt[4]{3} - \sqrt[2]{6}$。

指数根式运算法则

指数根式运算法则

根式的有理化法则
• 有理化分母: $\frac{\sqrt{a}}{\sqrt{b}} = \frac{\sqrt{a} \times \sqrt{b}}{\sqrt{b} \times \sqrt{b}} = \frac{\sqrt{ab}}{|b|}$($a \geq 0$,$b > 0$)
03 指数根式运算法则的应用
指数根式运算法则
目录
CONTENTS
• 指数根式运算法则概述 • 指数根式运算法则的基本性质 • 指数根式运算法则的应用 • 指数根式运算法则的注意事项 • 指数根式运算法则的扩展
01 指数根式运算法则概述
定义与特点
定义
指数根式运算法则是数学中一种重要 的运算规则,用于简化复杂的根式表 达式。
根式的化简法则
根式的乘方
$(sqrt{a})^n = sqrt[2n]{a^n}$($a geq 0$,$n in N$)
分母有理化
$frac{sqrt{a}}{sqrt{b}} = frac{sqrt{a} times sqrt{b}}{sqrt{b} times sqrt{b}} = frac{sqrt{a}}{sqrt{b}} times frac{sqrt{b}}{sqrt{b}} = frac{sqrt{a}}{sqrt{b}} times frac{sqrt{b^2}}{|b|}$($a geq 0$,$b > 0$)
根式的运算顺序
在进行根式运算时,应遵循 先乘除后加减、先括号后根 式的原则。
在进行根式与常数相乘时, 应将常数因子提取出来,与 根式相乘。
对于复杂的根式表达式,应 先进行化简,再进行运算。
在进行根式与根式相乘时, 应将它们的指数相加,并将 被开方数相乘。

第5节 根式、指数、对数

第5节 根式、指数、对数

第5节 根式、指数、对数考试要求 1.了解指数幂的含义,掌握有理指数幂的运算;2.理解对数的概念,掌握对数的运算,会用换底公式.知 识 梳 理1.根式与指数幂的运算 (1)根式①概念:式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数.②性质:(n a )n =a (a 使n a 有意义);当n 为奇数时,n a n =a ,当n 为偶数时,na n =|a |=⎩⎨⎧a ,a ≥0,-a ,a <0.(2)分数指数幂①规定:正数的正分数指数幂的意义是a m n =na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -m n =1n a m (a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.②有理指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q .2.对数与对数的运算 (1)对数的概念如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.(2)对数的性质①log a 1=0;②log a a =1;③a log a N =N ;④log a a b =b (a >0,且a ≠1). (3)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ;②log a MN =log a M -log a N ; ③log a M n =n log a M (n ∈R ). (4)换底公式log b N =log a Nlog ab (a ,b 均大于零且不等于1).[常用结论与易错提醒]已知a ,b ,c ,d ,M ,N 都满足条件,则: (1)log a m M n =nm log a M (m ,n ∈R ,且m ≠0); (2)log a b =1log ba ,推广log ab ·log bc ·log cd =log a d .诊 断 自 测1.(必修1P52例5改编)化简[(-2)6]12-(-1)0的结果为( ) A.-9 B.7 C.-10D.9解析 原式=(26)12-1=8-1=7. 答案 B2.若log a 2<log b 2<0,则( ) A.0<a <b <1 B.0<b <a <1 C.a >b >1D.b >a >1解析 log a 2<log b 2<0⇔lg 2lg a <lg 2lg b <0⇔lg b <lg a <0,故0<b <a <1.故选B. 答案 B 3.⎝ ⎛⎭⎪⎫32-13×⎝ ⎛⎭⎪⎫-760+814×42-⎝ ⎛⎭⎪⎫-2323=________. 解析 原式=⎝ ⎛⎭⎪⎫2313×1+234×214-⎝ ⎛⎭⎪⎫2313=2.答案 24.(2015·浙江卷)计算:log 222=________;2log 23+log 43=________.解析 log 222=log 22-log 22=12-1=-12;2log 23+log43=2log 23·2log 43=3×2log 43=3×2log 23=3 3.答案 -12 3 35.设α,β是方程5x 2+10x +1=0的两个根,则2α·2β=________,(2α)β=________. 解析 由一元二次方程根与系数的关系,得α+β=-2,αβ=15,则2α·2β=2α+β=2-2=14,(2α)β=2αβ=215.答案 14 2156.(2020·杭州质检)设a =log 23,b =log 38,则2a =________;ab =________.解析 由a =log 23得2a =3,ab =log 23×log 38=ln 3ln 2×ln 8ln 3=ln 23ln 2=3ln 2ln 2=3.答案 3 3考点一 指数幂的运算【例1】 化简:(1)a 3b23ab 2(a 14b 12)4a -13b 13(a >0,b >0);(2)⎝ ⎛⎭⎪⎫-278-23+(0.002)-12-10(5-2)-1+(2-3)0. 解 (1)原式=(a 3b 2a 13b 23)12ab 2a -13b 13=a 32+16-1+13b 1+13-2-13=ab -1.(2)原式=⎝ ⎛⎭⎪⎫-278-23+⎝ ⎛⎭⎪⎫1500-12-105-2+1=⎝ ⎛⎭⎪⎫-82723+50012-10(5+2)+1 =49+105-105-20+1=-1679.规律方法 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序.(2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. 【训练1】 化简求值:(1)⎝ ⎛⎭⎪⎫2350+2-2×⎝ ⎛⎭⎪⎫214-12-(0.01)0.5; (2)(a 23×b -1)-12×a -12×b 136a ×b 5.解 (1)原式=1+14×⎝ ⎛⎭⎪⎫4912-⎝ ⎛⎭⎪⎫110012=1+14×23-110=1+16-110=1615.(2)原式=a -13b 12×a -12b 13a 16b 56=a -13-12-16×b 12+13-56=1a . 考点二 对数的运算【例2】 (1)设2a =5b =m ,且1a +1b =2,则m 等于( ) A.10 B.10 C.20 D.100(2)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=________.解析 (1)由已知,得a =log 2m ,b =log 5m , 则1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2.解得m =10.(2)原式=(lg 2-2-lg 52)×10012=lg ⎝ ⎛⎭⎪⎫122×52×10=lg 10-2×10=-2×10=-20.答案 (1)A (2)-20规律方法 (1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.(2)先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.(3)a b =N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.【训练2】 (1)(2017·全国Ⅰ卷)设x ,y ,z 为正数,且2x =3y =5z ,则( ) A.2x <3y <5z B.5z <2x <3y C.3y <5z <2xD.3y <2x <5z(2)若实数a >b >1,且log a b +log b a =52,则log a b =__________,b 2a =__________.解析 (1)取对数:x ln 2=y ln 3=z ln 5,x y =ln 3ln 2>32(由ln 32>ln 23可得),又x ,y 为正数,∴2x >3y .x ln 2=z ln 5,则x z =ln 5 ln 2<52(由ln 52<ln 25可得),又x ,z 为正数,∴2x <5z ,∴3y <2x <5z ,故选D.(2)由a >b >1,得0<log a b <1,又因为log a b +log b a =log a b +1log ab =52,解得log a b=12,所以a 12=b ,即b 2=a ,所以b 2a =1.答案 (1)D (2)12 1基础巩固题组一、选择题1.化简416x 8y 4(x <0,y <0)得( ) A.2x 2y B.2xy C.4x 2yD.-2x 2y解析 ∵x <0,y <0,∴416x 8y 4=2x 2|y |=-2x 2y . 答案 D2.(log 29)×(log 34)=( ) A.14 B.12 C.2D.4解析 (log 29)×(log 34)=2log 23×2log 32=4. 答案 D3.已知log 23=a ,log 25=b ,则log 295=( ) A.a 2-b B.2a -b C.a 2bD.2a b解析 ∵log 23=a ,log 25=b ,∴log 295=log 29-log 25=2log 23-log 25=2a -b . 答案 B4.已知x ,y 为正实数,则( ) A.2lg x +lg y =2lg x +2lg yB.2lg(x +y )=2lg x +2lg yC.2lg x ·lg y=2lg x +2lg yD.2lg(xy )=2lg x ·2lg y解析 ∵x ,y ∈(0,+∞),∴2lg (xy )=2lg x +lg y =2lg x ·2lg y ,A 不成立,D 成立;对于B ,C ,不妨取x =y =1,代入B ,C 易知不成立,故选D. 答案 D5.已知2x=3,log 483=y ,则x +2y 的值为( )A.3B.8C.4D.log 48解析 由2x =3得x =log 23,又log 483=y , ∴x +2y =log 23+2 log 483=log 23+log 283=log 23+log 28-log 23=3. 答案 A6.设x ,y ,z 为正数,且2x =3y =5z ,则( ) A.2x <3y <5z B.5z <2x <3y C.3y <5z <2xD.3y <2x <5z解析 (特值法)令x =1,则由已知条件可得3y =2,且5z =2,所以y =ln 2ln 3,z =ln 2ln 5,从而3y =3ln 2ln 3=ln 23ln 3<ln 9ln 3=2,5z =5ln 2ln 3=ln 25ln 3>2,则3y <2x <5z . 答案 D7.已知a >0,b >0,则下列等式不正确的是( ) A.a lg b ·b lg a =1B.a lg b +b lg a =2a lg bC.a lg b ·b lg a =(a lg b )2D.a lg b ·b lg a =b lg a 2解析 由于a >0,b >0,故当a =b 时,有a lg b b lg a =(a lg b )2,a lg b +b lg a =a lg b +a lg b =2a lg b ,a lg b ·b lg a =(b lg a )2=b 2lg a =b lg a 2,故选A. 答案 A8.(2019·北京卷)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( ) A.1010.1 B.10.1 C.lg 10.1D.10-10.1解析 设太阳的星等为m 1,天狼星的星等为m 2,则太阳与天狼星的亮度分别为E 1,E 2.由题意知m 1=-26.7,m 2=-1.45,代入所给公式得-1.45-(-26.7)=52lg E 1E 2,所以lg E 1E 2=10.1,所以E 1E 2=1010.1.故选A.答案 A9.已知m >0且m ≠1,则log m n >0是(1-m )(1-n )>0的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 ∵m >0且m ≠1,由log m n >0得⎩⎨⎧m >1,n >1,或⎩⎨⎧0<m <1,0<n <1,∴(1-m )(1-n )>0,反过来,当(1-m )(1-n )>0时,不妨取m =12,n =-1,此时log m n 无意义,故选A. 答案 A 二、填空题10.若log 2x =log 43,则x =________.解析 由等式可得log 2x =12log 23,解得x = 3.答案 311.(lg 2)2+lg 2·lg 50+lg 25=________. 解析 (lg 2)2+lg 2·lg 50+lg 25 =lg 2·(lg 2+lg 50)+lg 25 =2(lg 2+lg 5)=2. 答案 212.若x =log 43,则(2x -2-x )2=________. 解析 ∵x =log 43,∴4x=3,4-x=13,∴(2x -2-x )2=4x -2+4-x =3-2+13=43.答案 4313.已知a 12+a -12=3,则a +a -1=________,a 2+a -2=________.解析 ∵a 12+a -12=3, ∴两边平方得a +a -1+2=9, ∴a +a -1=7,对上式两边平方得a 2+2+a -2=49, ∴a 2+a -2=47. 答案 7 4714.(2019·嘉兴测试)计算:2lg 2+lg 25=________,方程log 2(x +1)=3的解为x =________.解析 2lg 2+lg 25=lg 4+lg 25=lg 100=2,∵方程log 2(x +1)=3,∴x +1=23=8,解得x =7. 答案 2 7能力提升题组15.(2018·全国Ⅲ卷)设a =log 0.20.3,b =log 20.3,则( ) A.a +b <ab <0 B.ab <a +b <0 C.a +b <0<ab D.ab <0<a +b解析 由a =log 0.20.3得1a =log 0.30.2,由b =log 20.3得1b =log 0.32,所以1a +1b =log 0.30.2+log 0.32=log 0.30.4,所以0<1a +1b <1,得0<a +b ab <1.又a >0,b <0,所以ab <0,所以ab <a +b <0. 答案 B16.函数f (x )=2log 2⎝ ⎛⎭⎪⎫x +1x -x 2+1x 2-22的图象为( )解析 f (x )=2log 2⎝ ⎛⎭⎪⎫x +1x -x 2+1x 2-22=⎩⎪⎨⎪⎧x ,0<x <1,1x ,x ≥1,故选D.答案 D17.(2019·全国Ⅱ卷)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通信联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程: M 1(R +r )2+M 2r 2=(R +r )M 1R 3.设α=r R .由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( ) A.M 2M 1RB.M 22M 1RC.33M 2M 1RD.3M 23M 1R解析 由α=rR 得r =αR , 代入M 1(R +r )2+M 2r 2=(R +r )M 1R 3, 整理得3α3+3α4+α5(1+α)2=M 2M 1.又3α3+3α4+α5(1+α)2≈3α3,即3α3≈M 2M 1,所以α≈3M 23M 1,故r =αR ≈3M 23M 1R .答案 D18.(2020·杭州四中仿真)比较lg 2,(lg 2)2,lg(lg 2)的大小,其中最大的是________;最小的是________.解析 因为0<lg 2<1,所以lg(lg 2)<0<(lg 2)2<lg 2,即最大的是lg 2,最小的是lg(lg 2). 答案 lg 2 lg(lg 2)19.已知x >0,y >0,lg 2x +lg 8y =lg 2,则xy 的最大值是________.解析 由题意得lg 2x +lg 8y =lg(2x ×23y )=lg 2x +3y =lg 2(x >0,y >0),所以x +3y =1,则xy =13x ×3y ≤13⎝ ⎛⎭⎪⎫x +3y 22=112,当且仅当x =3y =12时,等号成立,所以xy 的最大值为112.答案 11220.(2019·浙江名校新高考研究联盟三联)已知方程log a (5x -3x )=x (其中a >0,a ≠1),若x =2是方程的解,则a =________;当a =2时,方程的解x =________. 解析 若x =2是方程的解,则log a (52-32)=log a 42=2,所以a =4;当a =2时,log 2(5x -3x )=x ,即5x -3x =2x ,通过对比可知该方程的解为x =1. 答案 4 1。

指数根式运算法则

指数根式运算法则
2 3 1 2

8 (23 ) 2
1 2 2 1 2
2 3
2 3
3
2 3
4
1 2( ) 2
100 (10 ) 10
1 10 10
1
1 3 2 3 - 2( 3 ) 6 () (2 ) 2 2 64 4
3 4( ) 16 3 2 2 3 27 4 4 ( ) ( ) ( ) 81 3 3 8
②当n为偶数时:a的n次方根有两个: 如:X4=16
xБайду номын сангаас
4
16 2, 或 x 4 16 2
求下列格式的值:
(1) (2) (3)
4
3
(8)3 =-8
(10) =10
2
(3 ) 4 3
2 =|a-b| (a b) (4)
完成下列填空:
5
a
10
a ______;
1 ) 2 1 3 2( 1 1 1 ( ) 2 ( ) 2 4 2 10 1 1 16 1 6 10 15
a2 a a3 3 a 2 a a

a2 a a2 a a
3 3 2 3 2 3
1 2
5 2
a a a a a
1 2 1 2
3
2 3
a
11 3
a a (a a ) (a ) a
3 2
1 2
3 1 2 2
a
3 4
1 3 16 3 100 , ( ) , ( ) 4. 求值: 8 , 4 81
2
3
a
12
______(a 0)

指数与指数幂的运算(1)根式

指数与指数幂的运算(1)根式

结论2:当n为偶数时,正数的n次方根有两个且互为相反数, 负数没有n次方根
探究n次方根的性质
例3、根据n次方根的定义,分别求出 0的3次方根 0的4次方根
例题讲解
例题讲解ຫໍສະໝຸດ 好好复习课后作业:课本P59 A组.1(工整地写在作业本上)
2.1.1指数与指数幂的运算(1) ——根式
复习回顾 1、整数指数幂的概念 2、整数指数幂的运算
复习回顾
新课讲解
新课讲解
探究n次方根的性质
结论1:当n为奇数时,正数的n次方根是正数, 负数的n次方根是负数
探究n次方根的性质
例2、根据n次方根的定义,分别求出
16的4次方根 -81的4次方根

根式的运算法则含根式的运算法则

根式的运算法则含根式的运算法则

根式的运算法则含根式的运算法则一:[根式的运算法则]二次根式的运算知识点总结一、因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面.反之,也可以将根号外面的正因式,平方后移到根号里面去。

二、有理化因式与分母有理化:两个含有二次根式的代数式相乘,若它们的积不含二次根式,则称这两个代数式互为有理化因式。

把分母中的根号化去,叫做分母有理化。

三、二次根式运算法则:(1)加法法则(合并同类二次根式);(2)乘、除法法则。

四、有理数的加法交换律、结合律,乘法交换律、结合律,乘法对加法的分配律,以及多项式的乘法公式,都适用于二次根式的运算。

常见考法二次根式的运算是中考命题的热点,二次根式的运算在中考中多以混合运算为主,解决时,我们还要与分母有理化以及各运算法则,公式相结合。

题型既有选择填空,也有计算解答。

误区提醒二:[根式的运算法则]3.二次根式的运算3.二次根式的运算★★★二次根式的加法和减法★★★整式的加减归结为合并同类项. 二次根式的加减同整式的加减类似,归结为合并同类二次根式.要点解析1.二次根式的加减实际上就是合并同类二次根式,因此在进行二次根式加减时,化简二次根式和合并同类二次根式是关键.不是同类二次根式不能合并,如就是最简结果,不能再合并.2.有理数的交换律、结合律都适用于二次根式运算.二次根式的乘法法则★★★ 两个二次根式相乘,被开方数相乘,根指数不变.要点解析1.法则用数学式子表示,即:.它是将积的算术平方根性质逆用得到的.2.根据这一法则可以对二次根式进行恒等变形,或将根号内的因式变形后移到根号外,或将根号外面的非负因式平方后移到根号内.3.乘法交换律、结合律、分配律在二次根式中仍然适用,适当地应用运算律有时会简化计算;4.法则可推广,如:.二次根式的除法法则★★★ 两个二次根式相除,被开方数相除,根指数不变.要点解析1.法则用数学式子表示,即:.它是将商的算术平方根性质逆用得到的.2.二次根式的混合运算顺序与实数运算顺序一样,先乘方,后乘除,最后加减,有括号先算括号内的.3.二次根式运算的结果必须化为最简根式.三:[根式的运算法则]★初二数学根式及其运算专题复习初二数学根式及其运算专题复习二次根式的概念、性质以及运算法则是根式运算的基础,在进行根式运算时,往往用到绝对值、整式、分式、因式分解,以及配方法、换元法、待定系数法等有关知识与解题方法,也就是说,根式的运算,可以培养同学们综合运用各种知识和方法的能力.下面先复习有关基础知识,然后进行例题分析.二次根式的性质:二次根式的运算法则:设a,b,c,d,m是有理数,且m不是完全平方数,则当且仅当两个含有二次根式的代数式相乘时,如果它们的积不含有二次根式,则这两个代数式互为有理化因式.例1 化简:法是配方去掉根号,所以因为__2<0,1__<0,所以原式=2__+__1=1.=a-b-a+b-a+b=b-a.说明若根式中的字母给出了取值范围,则应在这个范围内进行化简;若没有给出取值范围,则应在字母允许取值的范围内进行化简.例2 化简:分析两个题分母均含有根式,若按照通常的做法是先分母有理化,这样计算化简较繁.我们可以先将分母因式分解后,再化简.解法1 配方法.配方法是要设法找到两个正数x,y(x>y),使x+y=a,xy=b,则解法2 待定系数法.例4 化简:(2)这是多重复合二次根式,可从里往外逐步化简.分析被开方数中含有三个不同的根式,且系数都是2,可以看成解设两边平方得②×③×④得(xyz)2=5×7×35=352.因为x,y,z均非负,所以xyz≥0,所以xyz=35.⑤⑤÷②,有z=7.同理有x=5,y=1.所求x,y,z显然满足①,所以解设原式=x,则解法1 利用(a+b)3=a3+b3+3ab(a+b)来解.将方程左端因式分解有(__4)(x2+4x+10)=0.因为x2+4x+10=(x+2)2+6>0,所以__4=0,x=4.所以原式=4.解法2说明解法2看似简单,但对于三次根号下的拼凑是很难的,因此本题解法1是一般常用的解法.例8 化简:解(1)本小题也可用换元法来化简.解用换元法.解直接代入较繁,观察x,y的特征有所以3x2-5xy+3y2=3x2+6xy+3y2-11xy=3(x+y)2-11xy=3×102-11×1=289.例11 求分析本题的关键在于将根号里的乘积化简,不可一味蛮算.解设根号内的式子为A,注意到1=(2-1),及平方差公式(a +b)(a-b)=a2-b2,所以A=(2-1)(2+1)(22+1)(24+1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(a • b1 )n
an bn
根式运算:
(1)平方根:如果 x2=a
则x a (a0)
(2)立方根:如果 x3=a 则x3 a (aR )
例:x3=27;x5=-32; x3=a6
3 27 3; 5 32 2; 3 a6 a2 .
②当n为偶数时:a的n次方根有两个:如:X4=16
x 4 16 2, 或 x 4 16 2
m
一般地: n am a n (a 0) 含义:求am的n次方根
规定:
m
a n n am (a 0,m.n n * 且n 1) 注:0的正分数指
-m
anΒιβλιοθήκη 1m(a 0,m.nn * 且n 1)
数幂等于0 ;负分 数指数幂无意义。
an
2
如: 3 a2 a3 (a 0)
1
b b2
(b 0)
5
4 c5 c 4 (c 0)
m
n am a n (a 0)
用分数指数幂表示下列各式:
a2 a a3 3 a2 a a

1
5
a2 • a a2 • a2 a2
a3 • 3
a2
2
a3 • a3
3 2
a 3
11
a3
11
31
31
3
a a (a • a2 )2 (a2 )2 a2 2 a4
1
1
(
3
)
2(
1 2
)
(
1
2 1
)2
42
10
1 1 1 16 6 10 15
求下列格式的值: (1) 3 (8)3 =-8 (2) (10)2 =10
(3) 4 (3 )4 3
(4) (a b)2 =|a-b|
完成下列填空:
a a 2
4
5 a10 ______; 3 a12 ______(a 0)
注:被开方数的指数能被根指数整除时,根式可写成分数指数幂的形式。 被开方数的指数不能被根指数整除时,也可写成分数指数的形式。
求值:
2
83
,
100
1 2
,
( 1)3
,
(16
)
3 4
.
4
81

2
83
2
(23 ) 3
3 2
2 3
4
1
100 2
(10
2
)
1 2
2( 1 )
10 2
101
1
10
(1)3 (2 2) 3 2-2(3) 26 64 4
16 3 ( )4
2 4( 3 ) ( ) 4
( 2)3
1. 指数和根式的运算法则
国际交流中心 林宸辰
指数运算:
定义: 幂 → an←指数
底数 含义:n个a相乘
指数的运算性质:
(1)am∙an=am+n (2)(am)n=am∙n (3)(ab)n=anbn
(m,n∈Z) (4)a0=1(a≠0)
(m,n∈Z) (n∈Z)
(5)
a n
1 an
例:am÷an=am∙a-n=am-(na )n b
27
81
3
3
8
练习:将下列根式写成分数指数幂
1,
a a b 1
2 3
_______
2,
3
b
2 1
______3_ 3
3 a2
a2
1
3, 4 a2 b2 (_a_2___b_2;)44 ,
a a2
3
____4___
4 a3 a
(1)计算
(2 3)0
22
(2
1
1
)2
(0.01)0.5
5
4
相关文档
最新文档