平面向量三点共线基本关系运用

合集下载

平面向量的三点共线定理及其应用技巧

平面向量的三点共线定理及其应用技巧

思路探寻在解答平面向量问题时,经常要用到平面向量的运算法则、定理、几何意义、公式等.对于多点在同一直线上的问题,可以利用平面向量的三点共线定理进行求解.如图1,O 为直线外一点,在△OPA 中, AP =OP - OA ,设 OP =λ OA +μ OB ,则AP =λ OA +μ OB - OA =μ OB+(λ-1) OA =m ( OB - OA ),而在△OBA 中, AB = OB -OA ,即 AB =mAP ,所以A 、B 、P 三点共线.在平面中A 、B 、P 三点共线的充要条件是对于平面内任意一点的O ,存在唯一的一对实数x 、y ,使得 OP =x OA +yOB 且x +y =1.这就是平面向量的三点共线定理.该定理常用于判断三点是否共线,证明几个点是否在同一条直线上,求某个向量的表达式,求参数的值等.下面结合实例探讨一下如何运用平面向量三点共线定理解题.例1.已知O 为锐角三角形ABC 的外心,AB =3,AC =6,若 AO =x AB +yAC ,且3x +10y =5,求三角形ABC 的面积.解:由3x +10y =5,得3x 5+2y =1.由题意可得AO =x AB +y AC =3x 5(53 AB )+2y (12AC ),如图2,在直线AB ,AC 上取两点D ,E ,使得 AD =53 AB , AE =12 AC ,则 AO =3x 5 AD +2y AE ,又3x 5+2y =1,所以O ,D ,E 三点共线.因为O 为△ABC 的外心,且|| AE =|| EC ,则DE ⊥AC ,又|| AD =5,||AE =3,可得sin ∠BAC =45,故S △ABC =12×|| AB ×||AC ×sin ∠BAC=12×3×6×45=365.根据向量式的特点以及3x +10y =5联想到要三点共线定理,于是在直线AB 、AC 上取两点D 、E ,证明 AO =3x 5AD +2y AE ,即可根据三点共线定理证明O ,D ,E 三点共线,从而根据三角形外心的性质和面积公式求得问题的答案.例2.如图3所示,在△ABO 中,OC =14 OA , OD =12OB ,AD 与BC 相交于点M .设 OA =a ,OB =b ,试用 a 和 b 来表示向量 OM .解:设 OM =ma +nb ,则 AM = OM - OA =m a +n b - a =(m -1)a +nb ,AD = OD - OA =12 OB - OA =-a +12b ,因为A ,M ,D 三点共线,所以存在实数t ,使得 AM =tAD ,即(m -1)a →+n b →=t (-a →+12b →),所以ìíîïïm -1=-t ,n =t 2,消去t 得m +2n =1,又因为CM = OM - OC =(m -14)a →+n b →, CB = OB - OC =-14a →+b →,且B ,M ,C 三点共线,所以存在实数t 1,使得 CM =t 1CB ,即(m -14)a →+n b →=t 1(-14a →+b →),所以ìíîïïm -14=-14t 1n =t 1,消去t 1得4m +n =1,由上述两式得m =17,n =37,故 OM =17 a +37b .解答本题需抓住A ,M ,D 三点共线和B ,M ,C 三点共线这两个关键点,再将 OA 和OB 作为基底表示出其他向量,利用待定系数法来求参数的值.向量共线定理是平面向量中的一个重要定理.合理运用三点共线定理,往往能起到化繁为简的功效,使问题快速得解.同学们要重视三点共线定理,将其灵活地应用于解题当中.(作者单位:江苏省盐城市龙冈中学)图1图2图348Copyright ©博看网. All Rights Reserved.。

(完整版)平面向量中“三点共线定理”妙用

(完整版)平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +=。

特别地有:当点P 在线段AB 上时,0,0x y >> 当点P 在线段AB 之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。

例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O ),则S 200=( ) A .100B .101C .200D .201解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200()1002a a S +==,故选A 。

点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。

例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y xx y ∴>> 由基本不等式可知:4424y x y xx y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 .解:因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线. 设OA x OP =,OB y OQ =,证明:yx 11+是定值; 图3图4图2证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y ∴+= 113x y ∴+= 11x y∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与BF 相交于G 点,记AB a =,AD b =,则AG =_______A .2177a b + B. 2377a b + C. 3177a b + D. 4277a b +分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B 以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。

平面向量中三点共线的证明及其应用

平面向量中三点共线的证明及其应用

平面向量中三点共线的证明及其应用在平面向量中,三点共线说明这三个点满足下面的条件:重合、向垂直、和向平行。

如果三点共线,这意味着他们在同一条线上,且在同一条平面空间内。

三点共线的证明有两种方式-零空间的方法和二维的方法。

在零空间的方法中,每个点的位置可以用三个极坐标系表示,r,θ,φ是相应的极角度和极坐标(或旋转角度)。

用三维立体的形式表示每个点的位置,我们可以使用下面的表达式来表示:其中,x=r*cosθ*sinφ,y=r*cosθ*cosφ,z=r*sinθ由于这三个点共线,它们将在三维中共同满足右边的方程:a*x+b*y+c*z=0可以看出,这个方程具有三个参数-a,b,c,这意味着它可以用来描述和表示任何三点共线的情况。

另一种方法是二维法,它直接使用三点的平面坐标来证明三点共线。

在这里,两个点的坐标用(x1,y1)和(x2,y2)表示,而另一个点的坐标用(x,y)表示。

为了证明三点共线,需要满足方程m*(x1-x2)+n*(y1-y2)=0在这里,m和n是方程的参数。

如果这个方程能够成立,意味着第三个点(x,y)与其余两个点在同一条线上。

三点共线的数学原理在日常生活中得到广泛的应用。

其中最常见的应用是画图和土木计算,通常需要三角测量。

绘图包括绘制几何形状、图像和其他图案,这些图案通常与空间位置有关,因此必须确保三点共线,以便得出正确的结论。

土木计算中也经常会遇到三点共线的问题,例如评估桥梁的结构安全性时,在桥梁的两端设置两个支撑,这就是一个三点共线的示例。

总之,三点共线是一个重要的数学原理,具有重要的应用。

研究人员、土木工程师,甚至是普通的绘图师都会经常使用这个原理。

共线向量定理推论

共线向量定理推论

共线向量定理推论
一、共线向量定理
1. 定理内容
- 如果有向量→a(→a≠→0)与向量→b,那么存在唯一实数λ,使得→b=λ→a 时,向量→a与→b共线。

1. 推论一:判断三点共线
- 设A,B,C是平面内三个不同的点,则A,B,C三点共线的充要条件是存在实数λ,使得→AB=λ→AC(其中→AB和→AC为非零向量)。

- 例如,已知A(1,2),B(3,4),C(5,6),则→AB=(3 - 1,4 - 2)=(2,2),→AC=(5 - 1,6 - 2)=(4,4)。

- 此时→AC = 2→AB,满足→AB=λ→AC(λ=(1)/(2)),所以A,B,C三点共线。

2. 推论二:向量共线与坐标的关系(平面向量)
- 对于平面向量→a=(x_{1},y_{1}),→b=(x_{2},y_{2})(→a≠→0),若→a与→b共线,则x_{1}y_{2}-x_{2}y_{1} = 0。

- 证明:由共线向量定理可知,若→a与→b共线,则存在实数λ,使得→b=λ→a,即(x_{2},y_{2})=λ(x_{1},y_{1})=(λ x_{1},λ y_{1})。

- 所以x_{2}=λ x_{1},y_{2}=λ y_{1},消去λ可得x_{1}y_{2}-x_{2}y_{1}=0。

- 例如,已知→a=(1,2),→b=(2,k),因为→a与→b共线,根据x_{1}y_{2}-x_{2}y_{1}=0,则1× k - 2×2=0,解得k = 4。

平面向量中的三点共线结论的应用

平面向量中的三点共线结论的应用

若,3.已知B 为OAC 边AC 上一点,且满足OC y OA x OB +=4,不等式222313x y m m x y +≥-++恒成立时,实数m 的最值范围为___________.巩固练习1.在ABC ∆中,4AB =,O 为三角形的外接圆的圆心,若),(R y x AC y AB x AO ∈+=且21x y +=,则ABC ∆的面积的最大值为_____.2.在P AB ∆中,,60,9,80=∠==APB PB P A 点C 满足PB y P A x PC +=,且,0,0,532≥≥=+y x y x 其中则||PC 的最大值为______,最小值为______.3.已知ABC ∆的外心为O 满足AC y AB x AO +=,若,10,6==AC AB 且,5102=+y x 则=∠BAC cos ______.例5.如图,M 为△ABC 的中线AD 的中点,过点M 的直线分别交线段AB 、AC 于点P 、Q 两点,设AP xAB =,AQ y AC =,记()y f x =,设32()32g x x a x a =++,[0,1]x ∈,若对任意11[,1]3x ∈,总存在2[0,1]x ∈,使得12()()f x g x =成立,则实数a 的取值范围为______.巩固练习2.(2022·辽宁葫芦岛·高三期末)如图,在等腰ABC 中,已知2AB AC ==,120A ∠= ,E ,F 分别是边AB ,AC 上的点,且AE AB λ= ,AF AC μ=,其中λ,R μ∈,且21λμ+=,若线段EF ,BC 的中点分别为M ,N ,则MN的最小值是()A .77B .217C .2114D .213.(2023·全国·高三专题练习)直角三角形ABC 中,P 是斜边BC 上一点,且满足2BP PC =,点M 、N 在过点P 的直线上,若AM m AB = ,AN nAC =,()0,0m n >>,则下列结论错误的是()A .12m n+为常数B .m n +的最小值为169C .2m n +的最小值为3D .m 、n 的值可以为12m =,2n =巧用杠杆原理处理三角形中的向量问题数值,各线段上得如图所示各点的标数则根据杠杆平衡原理可,已知三角形中的赋值标数法,d,cNC AN b a MB AM ==点数值乘数值等于点数值乘线段上,段数值乘积相等。

高中数学例题:利用平面向量基本定理证明三点共线问题

高中数学例题:利用平面向量基本定理证明三点共线问题

高中数学例题:利用平面向量基本定理证明三点共线问题 例3.设OA 、OB 、OP 是三个有共同起点的不共线向量,求证:它们的终点A 、B 、P 共线,当且仅当存在实数m 、n 使m+n=1且OP mOA nOB ==.
【思路点拨】本题包含两个问题:(1)A 、B 、P 共线⇒m+n=1,且OP mOA nOB ==成立;(2)上述条件成立⇒A 、B 、P 三点共线.
【证明】(1)由三点共线⇒m 、n 满足的条件.
若A 、B 、P 三点共线,则AP 与AB 共线,由向量共线的条件知存在实数λ使AP AB λ=,即()OP OA OB OA λ-=-,∴(1)OP OA OB λλ=-+. 令1m λ=-,n=λ,则OP mOA nOB =+且m+n=1.
(2)由m 、n 满足m+n=1⇒A 、B 、P 三点共线.
若OP mOA nOB =+且m+n=1,则(1)OP mOA m OB =+-.
则()OP OB m OA OB -=-,即BP mBA =.
∴BP 与BA 共线,∴A 、B 、P 三点共线.
由(1)(2)可知,原命题是成立的.
【总结升华】 本例题的结论在做选择题和填空题时,可作为定理使用,这也是证明三点共线的方法之一.
举一反三:
【变式1】设e 1,e 2是平面内的一组基底,如果124AB e e =-,12BC e e =+,1269CD e e =-,求证:A ,C ,D 三点共线.
【解析】 因为1212121(4)()233
AC AB BC e e e e e e CD =+=-++=-=,所以AC 与CD 共线.。

平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B、P三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x ,y使得:OP xOA yOB =+且1x y +=。

特别地有:当点P在线段AB 上时,0,0x y >> 当点P 在线段A B之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。

例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为Sn,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O),则S 200=( ) A .100ﻩﻩﻩﻩB.101 ﻩC.200 ﻩﻩﻩD.201解:由平面三点共线的向量式定理可知:a1+a 200=1,∴1200200200()1002a a S +==,故选A。

点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。

例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y x x y ∴>> 由基本不等式可知:4424y x y x x y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是B C的中点,过点O 的直线分别交直线AB 、AC于不同的两点M 、N,若AB = m AM ,AC =nAN ,则m +n 的值为 .解:因为O 是B C的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是图3图4图2△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线.设OA x OP =,OB y OQ =,证明:yx 11+是定值; 证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y∴+= 113x y ∴+= 11x y ∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与B F相交于G 点,记AB a =,AD b =,则AG =_______A.2177a b +B. 2377a b +C. 3177a b + D. 4277a b + 分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。

平面向量的共点与共线定理

平面向量的共点与共线定理

平面向量的共点与共线定理平面向量是数学中重要的概念,它们可以描述平面上的位移、力等物理量。

在研究平面向量时,共点与共线定理是一个重要的概念,本文将详细介绍平面向量的共点与共线定理及其应用。

一、平面向量的基本概念在平面直角坐标系中,平面向量通常由有序实数对(a, b)表示,其中a为向量在x轴上的分量,b为向量在y轴上的分量。

平面向量可以用箭头(或有向线段)表示,箭头从向量起点指向终点,长度表示向量的大小,方向表示向量的方向。

二、平面向量的共点与共线1. 共点向量若有两个或多个向量的起点都相同,则这些向量称为共点向量。

2. 共线向量若有两个或多个向量都能够通过平移将它们重合在同一直线上,则这些向量称为共线向量。

共线向量除了在同一直线上的位置相同外,其大小和方向都可以不同。

三、平面向量的共点定理如果三个平面向量a, b, c共点,则存在实数λ, μ,使得a = λb + μc。

即,一个向量可以用其他两个向量的线性组合表示。

四、平面向量的共线定理1. 三个向量共线的充分必要条件给定三个平面向量a, b, c,它们共线的充分必要条件是存在实数λ, μ,使得a = λb + μc。

2. 两个向量共线的判定方法给定两个非零向量a和b,它们共线的充分必要条件是存在实数λ,使得a = λb。

五、平面向量的应用平面向量的共点与共线定理在许多问题中有广泛的应用。

下面以几个例子来说明其应用。

例1:证明三角形的垂心、重心和外心共线。

解析:设O为三角形的外心,M为三角形的中心,D为三角形的垂心。

连接OM、OD。

根据共点与共线定理,只需证明OM和OD共线即可。

例2:证明四边形的对角线的交点与中点共线。

解析:设ABCD为四边形,连接AC和BD,并设交点为E。

根据共点与共线定理,只需证明AE和DE共线即可。

例3:证明四边形的对角线和中线共点。

解析:设ABCD为四边形,连接AC和BD,并设交点为E。

根据共点与共线定理,只需证明AC和BD的中点与交点E共线即可。

平面向量中“三点共线定理”妙用.doc

平面向量中“三点共线定理”妙用.doc

平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +=。

特别地有:当点P 在线段AB 上时,0,0x y >> 当点P 在线段AB 之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。

例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O ),则S 200=( ) A .100B .101C .200D .201解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200()1002a a S +==,故选A 。

点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。

例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y xx y ∴>> 由基本不等式可知:4424y x y xx y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 .解:因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是△OAB 的重心,P 、Q分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线. 设OA x OP =,OB y OQ =,证明:yx 11+是定值; 图3图4图2证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y ∴+= 113x y ∴+= 11x y∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与BF 相交于G 点,记AB a =,AD b =,则AG =_______A .2177a b + B. 2377a b + C. 3177a b + D. 4277a b +分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B 以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。

平面向量中三点共线定理的推广及应用

平面向量中三点共线定理的推广及应用

平面向量中三点共线定理的推广及应用
三点共线定理是指在平面向量中,三个点A,B,C,如果向
量AB与向量AC的夹角为0°或180°,则三点A,B,C共线。

三点共线定理的推广及应用主要有以下几点:
1. 平面向量中四点共线定理:在平面向量中,如果四个点A,B,C,D满足向量AB与向量AC的夹角为0°或180°,向量BC与向量CD的夹角也为0°或180°,则四点A,B,C,D共线。

2. 平面向量中多点共线定理:在平面向量中,如果n个点A,B,C,D,…,P满足,任意两个相邻的向量的夹角为0°或180°,则n个点共线。

3. 平面向量中两点共线定理:在平面向量中,如果两个点A,B满足向量AB的夹角为0°或180°,则两点A,B共线。

4. 平面向量中多边形共线定理:在平面向量中,如果n边形的每两个相邻边的夹角都为0°或180°,则n边形共线。

5. 平面向量中多角形共线定理:在平面向量中,如果n角形的每两个相邻边的夹角都为0°或180°,则n角形共线。

6. 平面向量中多条直线共线定理:在平面向量中,如果n条直线的每两条直线的夹角都为0°或180°,则n条直线共线。

以上是平面向量中三点共线定理的推广及应用,它们在几何图形中都有广泛的应用,可以帮助我们更好地理解和分析几何图形。

平面向量中三点共线定理的应用

平面向量中三点共线定理的应用

平面向量中三点共线定理的应用知识梳理(一)对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b aλ=由该定理可以得到平面内三点共线定理:(二)三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x ,y 使得:OP xO A yOB =+ 且.OP xO A yOB =+ 例题精讲例1设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于()A.OM→B .2OM→C .3OM→D .4OM→例2如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R),则λ+μ=.例3如图所示,在平行四边形ABCD 中,13AE AB = ,14AF AD =,CE 与BF 相交于G 点,记AB a = ,AD b = ,则AG =_______例4在△ABC 中,D 是△ABC 所在平面内一点,且AD →=13AB →+12AC →,延长AD 交BC 于点E ,若AE →=λAB →+μAC →,则λ-μ的值是.练习1.如图,在三角形ABC 中,BE 是边AC 的中线,O 是BE 边的中点,若AB →=a ,AC →=b ,则AO →=()A.12a +12b B.12a +13b C.14a +12b D.12a +14b 2.(2019·济南调研)在△ABC 中,AN →=14NC →,若P 是直线BN 上的一点,且满足AP →=mAB →+25AC →,则实数m 的值为()A .-4B .-1C .1D .43.在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为()A .911B .511C .311D .2114.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为()A .1B .2C .3D .45.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则向量EM →=()A .12AC →+13AB→B .12AC →+16AB→C .16AC →+12AB →D .16AC →+32AB→6.(2019·衡水中学调研)一直线l 与平行四边形ABCD 中的两边AB ,AD 分别交于点E ,F ,且交其对角线AC 于点M ,若AB →=2AE →,AD →=3AF →,AM →=λAB →-μAC →(λ,μ∈R),则52μ-λ=()A .-12B .1C.32D .-37.在平行四边形ABCD 中,E 和F 分别是CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R,则λ+μ=________.8.在平行四边形ABCD 中,E 和F 分别是CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R,则λ+μ=________.9.(2019·中原名校联考)如图,在△ABC 中,点M 是BC 的中点,N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,则APPM=________.10.点G 是△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线.设OA x OP =,OB y OQ =,证明:yx 11+是定值;11.在三角形ABC 中,AM ﹕AB =1﹕3,AN ﹕AC =1﹕4,BN 与CM 相交于点P ,且a AB =,b AC =,试用a 、b表示AP .12.已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,求yx 41+的最小值.PABCMN答案例1答案:D 解析:OA →+OB →+OC →+OD →=(OA →+OC →)+(OB →+OD →)=2OM →+2OM →=4OM →例2解:因为E 为线段AO 的中点,所以BE →=12BA →+12BO →=12BA →+1221(⨯BD →)=12BA →+14BD →=λBA →+μBD →,所以λ+μ=12+14=34.例3解:,,E G C 三点共线,∴由平面内三点共线定理可得:存在唯一的一对实数x 使得(1)AG xAE x AC∴=+- , 1133AE AB a == ,AC a b=+ 12(1)()(1)(1)33x AG x a x a b a x b ∴=⨯+-+=-+-…………………①又,,F G B 三点共线,∴由平面内三点共线定理可得:存在唯一的一对实数λ使得(1)AG AB AFλλ∴=+- 1144AF AD b ==,,1(1)4AG a b λλ∴=+-……………………………②由①②两式可得:213114x x λλ⎧=-⎪⎪⎨-⎪=-⎪⎩6737x λ⎧=⎪⎪∴⎨⎪=⎪⎩3177AG a b ∴=+ 例4解:设AE →=xAD →,因为AD →=13AB →+12AC →,所以AE →=x 3AB →+x2AC →.由于E ,B ,C 三点共线,所以x 3+x 2=1,解得x =65.又AE →=λAB →+μAC →.所以λ=x 3=25,μ=x 2=35,因此λ-μ=-15.练习1、答案:D 解析:因为在三角形ABC 中,BE 是AC 边上的中线,所以AE →=12AC →.因为O 是BE 边的中点,所以AO →=12(AB →+AE →)=12AB →+14AC →=12a +14b .2、答案:B解析:根据题意设BP →=nBN →(n ∈R),则AP →=AB →+BP →=AB →+nBN →=AB →+n (AN →-AB →)=AB →+-(1-n )AB →+n5AC →,又AP →=mAB →+25AC →,n =m ,=25,=2,=-1.3、答案:C 解析:,,B P N 三点共线,又2284111111AP m AB AC m AB AN m AB AN=+=+⨯=+ 8111m ∴+=311m ∴=4、答案:B 解析:因为O 为BC 的中点,所以AO →=12(AB →+AC →)=12(mAM →+nAN →)=m 2AM →+n 2AN →,因为M ,O ,N 三点共线,所以m 2+n2=1,所以m +n =2.5、答案:C 解析:如图,因为EC →=2AE →,所以EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →)=12AB →+16AC →.6、答案:A 解析:AM →=λAB →-μAC →=λAB →-μ(AB →+AD →)=(λ-μ)AB →-μAD →=2(λ-μ)AE →-3μAF →,因此E ,M ,F 三点共线.所以2(λ-μ)+(-3μ)=1,则2λ-5μ=1.因此52μ-λ=-12.7、答案:43解析:选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=12λ+μ→+λ+12μ→,12λ+μ=1,λ+12μ=1,λ=23,μ=23,所以λ+μ=43.8、答案:43解析:选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=12λ+μ→+λ+12μ→,+μ=1,+12μ=1,=2,=23,所以λ+μ=43.9、答案:4解析:设AB →=a ,AC →=b ,因为A 、P 、M 三点共线,所以存在唯一实数λ,使得AP →=λAM →.又知M 为BC 的中点,所以AP →=12λ(a +b ).因为B 、P 、N 三点共线,所以存在唯一实数μ,使得BP →=μBN →,又AP →=AB →+BP →=AB →+μBN →=AB →+μ(AN →-AB →)=AB →+-(1-μ)a +2μb ,所以12λ(a +b )=(1-μ)a +23μb ,μ=12λ,=12λ,解得λ=45,μ=35.所以AP →=45AM →,PM →=15AM →.所以|AP →|∶|PM →|=4∶1,即APPM=4.10、证明: 因为G 是OAB 的重心,分析:211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OPx=∴=1OQ yOBOB y=∴= 111111()()3333OG OA OB OQ OG OP OQx y x y ∴=+=+∴=+又,,P G Q 三点共线,11133x y∴+=113x y∴+=11x y∴+为定值311、解:,,N P B 三点共线,∴由平面内三点共线定理可得:存在唯一的一对实数x,y 使得,1AP xAB y AN x y =++=,AN ﹕AC=1﹕4,b AC AN 4141==1444y y x AP xAB AC xa xa b -∴=+=+=+……①又,,C P M 三点共线,∴由平面内三点共线定理可得:存在唯一的一对实数μ,λ使得,1AP AM AC μλμλ∴=++=∵AM ﹕AB=1﹕3∴a AB AM3131==,,133AP a b a b μλλλ-∴=+=+ ……………………………②由①②两式可得:1314x x λλ-⎧=⎪⎪⎨-⎪=⎪⎩311211x λ⎧=⎪⎪∴⎨⎪=⎪⎩81,11x y y +=∴=321111AP a b∴=+12. 点P 落在ABC 的边BC 上∴B,P,C 三点共线AP xAB y AC=+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y x x y x y x y x y x y x y ∴+=+⨯=+⨯+=++=++ x>0,y>040,0y xx y∴>>由基本不等式可知:44y x x y +≥=,取等号时4y xx y=224y x ∴=2y x ∴=±0,0x y >> 2y x ∴=1x y += 12,33x y ∴==,符合所以yx 41+的最小值为9。

平面向量中“三点共线定理”妙用讲解学习

平面向量中“三点共线定理”妙用讲解学习

平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +=。

特别地有:当点P 在线段AB 上时,0,0x y >> 当点P 在线段AB 之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。

例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O ),则S 200=( ) A .100B .101C .200D .201解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200()1002a a S +==,故选A 。

点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。

例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y xx y ∴>> 由基本不等式可知:4424y x y xx y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 .解:因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是△OAB 的重心,P 、Q分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线. 设OA x OP =,OB y OQ =,证明:yx 11+是定值; 图3图4图2证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y ∴+= 113x y ∴+= 11x y∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与BF 相交于G 点,记AB a =,AD b =,则AG =_______A .2177a b + B. 2377a b + C. 3177a b + D. 4277a b +分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B 以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。

平面向量中三点共线

平面向量中三点共线

知识梳理(一)、对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b aλ=由该定理可以得到平面内三点共线定理:(二)、三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且OP xOA yOB =+。

特别地有:当点P 在线段AB 上时,0,0x y >>当点P 在线段AB 之外时,0xy <典例剖析例1、 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是 分析:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y xx y ∴>> 由基本不等式可知:44y x x y +≥=,取等号时4y xx y=224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例2、在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211分析:,,B P N三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+8111m ∴+=311m ∴=,故选C例3、在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 .:因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+ 又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=变式、直线l 过ABCD 的两条对角线AC 与BD 的交点O ,与AD 边交于点N,与AB 的延长线交于点M 。

平面向量三点共线推论

平面向量三点共线推论

平面向量三点共线推论
平面向量三点共线是指在一个平面上的三个向量的头尾都在某一条直线上,即
三个向量的头部、尾部会在某条直线上。

在数学、地理学和物理学等各种学科,都经常碰到向量三点共线的情况。

它是
描述平面内物体空间位置信息的重要方法,包括两点之间的连线,三点确定平面等。

假定ABC是平面内的三点,把A、B、C三点看作三个向量,则ABC三点共线的
条件是对任意两个向量都满足dot(a,b)= 0的关系。

因此,可以把ABC三个向
量看作一个组合,可以通过计算其中的两个向量的夹角来判断ABC三个向量是否共线。

如果夹角为0°,则说明ABC三个向量共线,如果夹角不为0°,则说明ABC
不共线。

ABC三点共线也可以用来表示平面中的三点序列是否满足共线条件。

如果所有
的向量共线,则表示ABC三点处于同一条直线上,此时ABC三点共线;如果ABC三点都位于不同的直线,则表示ABC三点不共线。

不仅如此,当ABC三点连接在一起时,就可以通过它们形成的三角形,来判断这个三角形的形状。

由此可见,平面向量三点共线对人们的科学研究和实际应用有着重要的意义,
它可以帮助人们推断平面上两点或多点的关系,也可以用来分析某一空间状况,甚至可以被用来解决复杂的几何问题和物理学问题。

平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用对平面内任意的两个向量 a,b (b 0),a//b 的充要条件是:存在唯一的实数 ,使a buuuv uv uuuv的 O ,存在唯一的一对实数 x,y 使得:OP xOA yOB 且 x y特别地有: 当点 P 在线段 AB 上时, x 0,y 0当点 P 在线段 AB 之外时, xy 0笔者在经过多年高三复习教学中发现,运用平面向量中三点 共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得 十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点 共线定理与它的两个推广形式的妙用 , 供同行交流。

例 1(06 年江西高考题理科第 7 题)已知等差数列 {a n } 的前 n项和为 S n ,若 uuur uuur uuurOB a 1OA a 200OC ,且 A 、B 、C 三点共线,(设直线不过点 O ),则 S 200=( )A . 100B .101C .200D .201解:由平面三点共线的向量式定理可知: a 1+a 200=1, ∴ S200 200(a1 a200)100, 故选 A 。

2点评: 本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经 典的高考题。

例2 已知P 是 ABC 的边BC 上的任一点,且满足 AP xAB yAC,x.yR,则1 4xy的最小值是解:Q 点 P 落在VABC 的边 BC 上 B , uuur uuur xAB yAC P,C 三点共线uuur Q AP且点共线定在平面中 A 、B 、P 三点共线的充要条件是:对于该平面内任意由该定理可以得到平面内三点共线定理:1。

4x5yx 4x yy4y4x2y4x x y x y 4 ,取等号时y y)1xy 4x 2 2 1 2y2 4x2 y 2xQ x 0,y 0 y 2xQ x y 1 x ,y ,符合x y 3 314所以 1 4的最小值为9 xy点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起,较综合考查了学生基本功.例 3 (湖北省2011 届高三八校第一次联考理科)如图 2 ,在△ ABCuuur AN1uuurNC,点P是BC上的一点,uuur 若APuuur 2 uuurmAB 2 AC ,则实数m的11值为()9532 A B. C. D.11111111uuur 解:Q B, P, N三点共线,又QuuurmAB2 uuurAC11uuurmAB2 uuur4AN11uuurmAB8 u A u N ur118m 11 m 3,故选 C11例4(07 年江西高考题理科)如图3,在△ ABC中,点O是BC的中点,过点O的直线分别交直线AB、AC 于不同的两点M、的值为.四边形法则可知:uuurAO1 uuur (AB2uuurAC)uuur uuuur uuur uuurQ AB=mAM ,AC nANuuur 1 uuuur uuurAO (mAM nAN ) 2uuur m uuuur n uuurAO AM AN22又Q M,O,N 三点共线,由平面内三点共线定理可得:m n22 例5(广东省2010 届高三六校第三次联)别是边OA 、OB上的动点,且P、G、Q 三点共线.11设OP xOA ,OQ yOB ,证明:是定值;xy 图2解:Q因为O是BC的中点,故连接AO,N,若AB =m AM ,AC =n AN ,则m+n如图5所示:点G是△ OAB的重心,P、Q 分中,例 6(汕头市东山中学 2013 届高三第二次模拟考试)如图 6 所示 , uuur 1uuur uuur 在平行四边形 ABCD 中, AE 1 AB , AF 3uuur r uuur r uuur 点,记 AB a ,AD b ,则 AG由平面内三点共线定理可得: 存在唯一的一对实数 x 使得uuur AG uuur xAE uuur(1 x)AC uuur, Q AE1uuur AB 3 1r a , 3uuur r AC a uuur 1rr r 2x rrAG xa(1 x)(a b) (1 )a (1 x)b332r 1r 2r 3r3r 1r4r 2r A . ab B. a b C. a b D.a b 7 7 7 7 7 77 7分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联 想到点 F 、G 、B 以及 E,G,C 三点在一条直线上,可用平面内三点共线定理求解。

三点共线定理在平面几何中的应用———平面向量应用举例教学有感

三点共线定理在平面几何中的应用———平面向量应用举例教学有感

128 三点共线定理在平面几何中的应用———平面向量应用举例教学有感■杨 萍 (安徽省安庆二中东区 246001)【摘 要】平面向量基本定理和三点共线定理在向量线性运算中的重要性。

【关键词】平面几何;平面向量基本定理;三定共线定理;线性运算【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2018)23-0128-01 引言教学中,我们发现建立在平面几何基础上的向量运算,学生会感到非常棘手。

如何处理平面几何的向量问题,即如何使用传统的向量线性运算处理问题呢?笔者认为主要依靠:平面向量基本定理和三点共线定理,其中平面向量基本定理是基础,找准基底,运算不会乱;三点共线定理则是利器,能让题目思路清晰、过程简洁。

本文笔者将以“平面几何中的向量方法”教学为例,阐述平面向量教学中如何培养学生对这一类型问题的处理能力、提高解题效率。

向量既有几何图形的直观又有代数运算的简洁,双重特征决定了它在解决平面几何问题的重要作用。

综合近6年的全国高考试卷,向量是必考内容,尤其是对数量积的考查更是重中之重(如表1),数量积的运算均为常规题型,无论是不是利用坐标进行计算,难度不大,学生的解题情况良好。

仅14年考查了平面图形的向量运算,但向量的相关运算一旦建立在平面几何基础上时,涉及传统几何解法时,学生出错率较高,或无从下手,14年的高考题,若对三点共线定理有深刻的理解,答案便一目了然。

那么我们的教学该如何处理平面几何的向量问题,即如何使用传统的向量线性运算处理问题?笔者认为主要依靠:平面向量基本定理和三点共线定理,其中平面向量基本定理是基础,找准基底,运算不会乱;三点共线定理则是利器,能让题目思路清晰、过程简洁。

笔者将以必修四2.5.1平面几何中的向量方法教学为例,阐述平面向量教学中如何培养学生对这一类型问题的处理能力、提高解题效率。

教材必修四“平面向量应用举例”一节,笔者认为例题的解题方法过于繁琐、冗长,不易学生理解,教学效果不太好。

2023届高三数学一轮复习专题 平面向量的表示、三点共线研究 讲义 (解析版)

2023届高三数学一轮复习专题  平面向量的表示、三点共线研究  讲义 (解析版)

高三第一轮复习专题 平面向量表示、三点共线研究 一、平面向量基本定理:设12,e e 是同一平面内两个不共线向量,a 是这一平面内的任一向量。

在平面内任取一点O ,作12,,OA e OB e OC a ===,过C 作OB 的平行线,交直线OA 于M ;过C 作OA 的平行线,交直线OB 于N 。

因OM 与OA 共线,则存在实数1λ,使得:11OM e λ=;因ON 与OB 共线,则存在实数2λ,使得:22ON e λ=; OC OM ON =+1122a e e λλ∴=+也即,任一向量a 都可表示成1122e e λλ+的形式。

平面向量基本定理:若12,e e 是同一平面内的两个不共线向量,则对于这个平面内的任意向量a ,有且只有一对实数12,λλ,使得:1122a e e λλ∴=+。

(也可称为a 用12,e e 表示出来)不共线向量12,e e 称为表示这一平面内所有向量的一组基底,12,e e 称为基向量。

例1。

ABCD 两条对角线交于O ,AB a =,AD b =,用a 、b 表示OA 、OB 、OC 、OD 。

2e2ea解:AC AB AD a b =+=+,DB AB AD a b =-=-O ABCD 为两条对角线的交点()1122OA AC a b ∴=-=-+,()1122OC AC a b ==+()1122OB DB a b ==-, ()1122OD DB a b =-=--。

故在一个图形中,任意两个不共线向量都可以作为一组基底,其余向量都可用这一组基向量表示出来。

在具体问题中,基向量的选择十分重要,它决定了是否容易表示。

二、向量的表示:★★★★★在研究向量间关系时,常先取两个基向量作为一组基底,其余向量用这两个基向量表示出来,这样能够更清晰地找出所研究向量间的关系。

1.,其余向量用这两个基向量表示出来。

例。

在ABC 中,2BD DC =,设,AB a AC b ==,用,a b 表示AD 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三点共线向量基本关系运用
平面上任意一点O ,求证:平面上A 、B 、C 共线的充要条件是存在实数μλ,使 OC OA OB λμ=+,且 1=+μλ .
若DF AB ,11OE OD OF λμ=+,则 11λμ+= 若DF AB ,22OE OA OB λμ=+,则 22λμ+=
例1 . 已知O 是ABC ∆内一点,0OA OB OC ++=,则O 是ABC ∆的
A. 重心 ;
B. 垂心
C. 外心
D. 内心
例2 已知O 是ABC ∆内一点,230OA OB OC ++=,则问ABC ∆的面积与AOC
∆的面积的比是多少?
()
20OA OC OB OC +++=,OF ON =
例3 设点O 是ABC ∆内一点,满足230OA OB OC ++=,则ABC ∆的面积与OBC ∆的面积之比为 5:1 .
解:(一)平行四边形法:设E D ,分别是BC AC ,的中点,则OD OC OA 2=+,()OE OC OB 42=+,故可得: OC OB OA 32++()
022=+=OE OD ,即
OE OD 2-=, 故2:3:=∆∆AOC AEC S S ,则1:3:=∆∆AOC ABC S S
(二)化归法:延长OB 使OB OB 2'=,延长OC 使OC OC 2'=,则O 是''C AB ∆的
重心, '''9
131C AB AOC AOC S S S ∆∆∆==, 例4已知O 是ABC ∆所在平面内一点,342OA OC OB +=,则ABC ∆的面积与OBC ∆的面积之比为
法一:342'777
OA OC OB OB +==,则,,'A C B 三点共线.
例5已知O 是ABC ∆内一点,::4:3:2AOB AOC BOC S S S ∆∆∆=, AO AB AC λμ=+,求λμ,. A B C O
29DBC ABC S DG AG S ∆∆==,所以79AE AB =,79
AF AC =;
同理69AH AB =,49AI AC =,所以 3499
AD AH AI AB AC =+=+
法二:
1230S OC S OB S OA ++=;(平衡原理) 又:()10AO AB AC OC OB OA λμμλλμ=+⇔++--=
故 1432μ
λ
λμ--==,所以14,39λμ==。

相关文档
最新文档