人教版初二数学上.几何综合.学生版

合集下载

三角形全等几何模型(一线三等角)(人教版)(学生版) 2024-2025学年八年级数学上册专项突破

三角形全等几何模型(一线三等角)(人教版)(学生版) 2024-2025学年八年级数学上册专项突破

专题12.11三角形全等几何模型(一线三等角)第一部分【知识点归纳】【知识点一】一线三直角模型1.基本图形题型特征:如图1,在直线BC上出现三个直角,如图中∠B=∠ACE=∠D=90°图1图2图3解题方法:只要题目再出现一组等边(AB=CD或BC=DE或CA=CE),可证△ABE≌△ECD(AAS 或ASA)结论延伸1:如图2,两个直角三角形在直线两侧时,同样成立结论延伸2:图1中连接AE,得到如图3,可得以下结论:(1)四边形ABDE为直角梯形;AB+DE=BC(上底+下底=高)【知识点二】一线三等角模型图4图5题型特征:如图4,图形的某条线段上出现三个相等的角,如图中∠B=∠ACE=∠D解题方法:只要题目再出现一组等边(BA=CD或BC=DA或CA=DC),必证△ABC≌△CDE(AAS或ASA)结论延伸:如图5,两个三角形在直线两侧时,同样成立第二部分【题型展示与方法点拨】【题型1】直接用“一线三直角”模型求值或证明【例1】(23-24八年级上·安徽合肥·期末)如图,在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥,BE MN ⊥,垂足分别为D E 、.(1)求证:ADC CEB ≌;(2)若3cm =AD ,5cm BE =,求四边形ABED 的面积.【变式1】(23-24八年级上·湖北武汉·阶段练习)如图,小虎用10块高度都是3cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC =,90ACB ∠=︒),点C 在DE 上,点A 和B 分别与木墙的顶端重合,则两堵木墙之间的距离DE 的长度为()A .30cmB .27cmC .21cmD .10cm【变式2】(23-24九年级下·重庆开州·阶段练习)如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若5BE =,2CF =,则EF 的长度为.【题型2】直接用“一线三等角”模型求值或证明【例2】(23-24八年级上·新疆昌吉·期中)已知ABC 是直角三角形,90BAC AB AC ∠=︒=,,直线l 经过点A ,分别过点B 、C 向直线l 作垂线,垂足分别为D 、E(1)如图a ,当点B 、C 位于直线l 的同侧时,证明:ABD CAE≌(2)如图b ,锐角ABC 中,AB AC =,直线l 经过点A ,点D 、E 分别在直线l 上,点B ,C 位于l 的同一侧,如果CEA ADB BAC ∠=∠=∠,请找到图中的全等三角形,并写出线段ED EC 、和DB 之间的数量关系【变式1】(21-22八年级上·浙江温州·期中)如图,在△ABC 中,AB =AC =9,点E 在边AC 上,AE 的中垂线交BC 于点D ,若∠ADE =∠B ,CD =3BD ,则CE 等于()A .3B .2C .94D .92【变式2】(23-24七年级下·吉林长春·期中)如图,在ABC 中,AB AC =,AB BC >,点D 在边BC 上,且2CD BD =,点E 、F 在线段AD 上.CFD BED BAC ∠=∠=∠,ABC 的面积为18,则ABE 与CDF 的面积之和.【题型3】构造“一线三直角”模型求值或证明【例3】(23-24八年级上·山西吕梁·期末)数学课上,老师让同学们利用三角形纸片进行操作活动,探究有关线段之间的关系问题情境:如图1,三角形纸片ABC 中,90ACB ∠=︒,AC BC =.将点C 放在直线l 上,点A ,B 位于直线l 的同侧,过点A 作AD l ⊥于点D初步探究:(1)在图1的直线l 上取点E ,使BE BC =,得到图2,猜想线段CE 与AD 的数量关系,并说明理由;(2)小颖又拿了一张三角形纸片MPN 继续进行拼图操作,其中90MPN ∠=︒,MP NP =.小颖在图1的基础上,将三角形纸片MPN 的顶点P 放在直线l 上,点M 与点B 重合,过点N 作NH l ⊥于点H .如图3,探究线段CP ,AD ,NH 之间的数量关系,并说明理由【变式1】(23-24八年级上·新疆喀什·期中)如图,906AC AB BD ABD BC ==∠=︒=,,,则BCD △的面积为()A .9B .6C .10D .12【变式2】(20-21七年级下·黑龙江哈尔滨·期末)如图,在ABC 中,90ABC ∠=︒,过点C 作CD AC ⊥,且CD AC =,连接BD ,若92BCD S = ,则BC 的长为.【题型4】“一线三直(等)角”模型的延伸与拓展【例4】如图,A 点的坐标为(0,3),B 点的坐标为(-3.0),D 为x 轴上的一个动点,AE ⊥AD ,且AE=AD ,连接BE 交y 轴于点M(1)若D点的坐标为(-5.0),求E点的坐标:(2)求证:M为BE的中点(3)当D点在x轴上运动时,探索:OMBD为定值【变式1】(23-24八年级上·陕西西安·阶段练习)勾股定理被誉为“几何明珠”.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图所示,把一个边长分别为3,4,5的三角形和三个正方形放置在大长方形ABCD中,则该长方形中空白部分的面积为()A.54B.60C.100D.110【变式2】已知:四边形ABCD中,AB=AD=CD,∠BAD=90°,三角形ABC的面积为1,则线段AC的长度是.第三部分【中考链接与拓展延伸】1、直通中考【例1】(2021·四川南充·中考真题)如图,90BAC ∠=︒,AD 是BAC ∠内部一条射线,若AB AC =,BE AD ⊥于点E ,CF AD ⊥于点F .求证:AF BE =.【例2】(2023·重庆·中考真题)如图,在Rt ABC △中,90BAC ∠= ,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =,则EF 的长度为.2、拓展延伸【例1】(22-23八年级下·河南洛阳·期中)综合与实践数学活动课上,老师让同学们以“过等腰三角形顶点的直线”为主题开展数学探究.(1)操作发现:如图甲,在Rt ABC △中,90BAC ∠=︒,且AB AC =,直线l 经过点A .小华分别过B 、C 两点作直线l 的垂线,垂足分别为点D 、E .易证ABD CAE △△≌,此时,线段DE 、BD 、CE 的数量关系为:;(2)拓展应用:如图乙,ABC 为等腰直角三角形,90ACB ∠=︒,已知点C 的坐标为(2,0)-,点B 的坐标为(1,2).请利用小华的发现直接写出点A 的坐标:;(3)迁移探究:①如图丙,小华又作了一个等腰ABC ,AB AC =,且90BAC ∠≠︒,她在直线l 上取两点D 、E ,使得BAC BDA AEC ∠=∠=∠,请你帮助小华判断(1)中线段DE 、BD 、CE 的数量关系是否变化,若不变,请证明;若变化,写出它们的关系式并说明理由;②如图丁,ABC 中,2AB AC =,90BAC ∠≠︒,点D 、E 在直线l 上,且BAC BDA AEC ∠=∠=∠,请直接写出线段DE 、BD 、CE 的数量关系.【例2】(22-23八年级上·广东惠州·期中)如图1,90ACB AC BC AD CE BE CE ∠==⊥⊥,,,,垂足分别为D ,E .(1)若 2.5cm 1.7cm AD DE ==,,求BE 的长.(2)在其它条件不变的前提下,将CE 所在直线变换到ABC 的外部(如图2),请你猜想AD DE BE ,,三者之间的数量关系,并证明你的结论;(3)如图3,将(1)中的条件改为:在ABC 中,AC BC =,D ,C ,E 三点在同一条直线上,并且有BEC ADC BCA α∠=∠=∠=,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.。

人教版八年级上册数学几何八字三角形

人教版八年级上册数学几何八字三角形

人教版八年级上册数学几何八字三角形一、概述数学几何是数学的一个重要分支,它研究的是图形、空间等几何对象的性质和相互关系。

在八年级上册数学中,八字三角形是其中一个重要的几何概念,通过学习八字三角形,不仅可以加深对三角形的理解,还能够锻炼学生的逻辑思维和推理能力。

本文将从八字三角形的定义、性质和应用等方面来深入探讨这一概念。

二、八字三角形的定义1. 什么是八字三角形八字三角形是指一个三角形在平面直角坐标系中的顶点坐标分别为(a,0)、(-a,0)和(0,b)的三角形。

即它的边和坐标轴满足一定的条件,形状如“八”字,因此得名八字三角形。

2. 八字三角形的条件要构成一个八字三角形,需要满足以下条件:(1)三条边的长度关系:三边的长度必须满足a > b,且a² = b² + (2x)²。

(2)角度关系:其中,直角所在的两边的夹角为90°。

以上条件既是八字三角形的定义,也是构成八字三角形的基本要求。

三、八字三角形的性质1. 与直角三角形的关系八字三角形是一种特殊的直角三角形。

在八字三角形中,其中一个角为90°,而且满足勾股定理的条件。

我们可以将八字三角形看作是勾股定理的一种特殊情况。

2. 对称性八字三角形在平面直角坐标系中具有一定的对称性。

以坐标轴为对称轴,可以将八字三角形对称成一个完整的八字形。

这种对称性不仅体现在形状上,还体现在性质上,例如其边长、面积等都具有一定的对称性。

3. 边长和面积的计算对于八字三角形,其边长和面积的计算是非常重要的。

通过勾股定理和坐标系中的直线方程,我们可以求得八字三角形的各边长和面积等相关参数。

这不仅有助于加深对几何概念的理解,还有助于锻炼学生的运算能力。

四、八字三角形的应用1. 实际生活中的应用八字三角形这一概念并不是停留在书本知识中,它在现实生活中也有着广泛的应用。

比如在地理测量中,我们经常会遇到需要计算直角三角形的情况,而八字三角形作为一种特殊的直角三角形,同样适用于这类计算。

【期末试卷】八年级数学上册几何期末综合复习题1新人教版

【期末试卷】八年级数学上册几何期末综合复习题1新人教版

八年级期末几何综合复习(一)1.如图,设△ABC和△CDE都是等边三角形,且∠EBD=65°,则∠AEB的度数是()A.115°B.120°C.125°D.130°2.如图,在四边形ABCD中,AB=AC,∠ABD=60°,∠ADB=78°,∠BDC=24°,则∠DBC=()A.18°B.20°C.25°D.15°3.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,AM的延长线交BC于点N,连接DM,下列结论:①DF=DN;②△DMN为等腰三角形;③DM平分∠BMN;④AE=EC;⑤AE=NC,其中正确结论的个数是()A.2个B.3个C.4个D.5个4.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC.点A、B分别在坐标轴上,且x轴恰好平分∠BAC,BC交x轴于点M,过C点作CD⊥x轴于点D,则的值为.5.已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D处,折痕交另一直角边于E,交斜边于F,则△CDE的周长为.6.如图,∠AOB=30°,点P为∠AOB内一点,OP=8.点M、N分别在OA、OB上,则△PMN周长的最小值为.7.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC为度.8如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上,点M在x轴负半轴上,S△ABM=6.当线段OM最长时,点M的坐标为.9.如图,△ABC中,AC=BC,∠ACB=90°,点D为BC的中点,点E与点C关于直线AD对称,CE与AD、AB分别交于点F、G,连接BE、BF、GD,求证:(1)△BEF为等腰直角三角形;(2)∠ADC=∠BDG.10.如图,等腰△ABC中,AB=CB,M为ABC内一点,∠MAC+∠MCB=∠MCA=30°(1)求证:△ABM为等腰三角形;(2)求∠BMC的度数.11.如图,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a、b满足|a+b|+(a ﹣5)2=0(1)点A的坐标为,点B的坐标为;(2)如图,若点C的坐标为(﹣3,﹣2),且BE⊥AC于点E,OD⊥OC交BE延长线于D,试求点D的坐标;(3)如图,M、N分别为OA、OB边上的点,OM=ON,OP⊥AN交AB于点P,过点P作PG⊥BM交AN的延长线于点G,请写出线段AG、OP与PG之间的数列关系并证明你的结论.12.如图,在等边三角形△ABC中,AE=CD,AD、BE交于P点,BQ⊥AD于Q,(1)求证:BP=2PQ;(2)连PC,若BP⊥PC,求的值.13.在△ABC中,AD平分∠BAC交BC于D.(1)如图1,∠MDN的两边分别与AB、AC相交于M、N两点,过D作DF⊥AC于F,DM=DN,证明:AM+AN=2AF;(2)如图2,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB,求四边形AMDN 的周长.14.如图1,在平面直角坐标系中,点A、B分别在x轴、y轴上.(1)如图1,点A与点C关于y轴对称,点E、F分别是线段AC、AB上的点(点E不与点A、C重合),且∠BEF=∠BAO.若∠BAO=2∠OBE,求证:AF=CE;(2)如图2,若OA=OB,在点A处有一等腰△AMN绕点A旋转,且AM=MN,∠AMN=90°.连接BN,点P为BN的中点,试猜想OP和MP的数量关系和位置关系,说明理由.15.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F.(1)如图1,若∠ACD=60°,则∠AFD=;(2)如图2,若∠ACD=α,连接CF,则∠AFC=(用含α的式子表示);(3)将图1中的△ACD绕点C顺时针旋转如图3,连接AE、AB、BD,∠ABD=80°,求∠EAB的度数.16.等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在x轴、y轴的正半轴上.(1)如图1,求证:∠BCO=∠CAO(2)如图2,若OA=5,OC=2,求B点的坐标(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQA=18.分别以AC、CQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN交y轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.17.如图,在平面直角坐标系中,已知A(0,a)、B(﹣b,0)且a、b满足+|a﹣2b+2|=0.(1)求证:∠OAB=∠OBA;(2)如图1,若BE⊥AE,求∠AEO的度数;(3)如图2,若D是AO的中点,DE∥BO,F在AB的延长线上,∠EOF=45°,连接EF,试探究OE和EF的数量和位置关系.19.如图①,平面直角坐标系XOY中,若A(0,a)、B(b,0)且(a﹣4)2+=0,以AB为直角边作等腰Rt△ABC,∠CAB=90°,AB=AC.(1)求C点坐标;(2)如图②过C点作CD⊥X轴于D,连接AD,求∠ADC的度数;(3)如图③在(1)中,点A在Y轴上运动,以OA为直角边作等腰Rt△OAE,连接EC,交Y轴于F,试问A点在运动过程中S△AOB:S△AEF的值是否会发生变化?如果没有变化,请直接写出它们的比值(不需要解答过程或说明理由).20.如图1,点A和点B分别在y轴正半轴和x轴负半轴上,且OA=OB,点C和点D分别在第四象限和第一象限,且OC⊥OD,OC=OD,点D的坐标为(m,n),且满足(m﹣2n)2+|n﹣2|=0.(1)求点D的坐标;(2)求∠AKO的度数;(3)如图2,点P,Q分别在y轴正半轴和x轴负半轴上,且OP=OQ,直线ON⊥BP交AB于点N,MN⊥AQ交BP的延长线于点M,判断ON,MN,BM的数量关系并证明.21.如图,△AOB和△ACD是等边三角形,其中AB⊥x轴于E点(1) 如图,若OC=5,求BD的长度(2) 设BD交x轴于点F,求证:∠OF A=∠DF A(3) 如图,若正△AOB的边长为4,点C为x轴上一动点,以AC为边在直线AC下方作正△ACD,连接ED,求ED的最小值。

二次函数与线段数量关系最值定值问题(学生版)

二次函数与线段数量关系最值定值问题(学生版)

二次函数与几何综合专题----线段数量关系最值定值问题图形运动的过程中,求两条线段之间的函数关系,是中考数学的热点问题.产生两条线段间的函数关系,常见的情况有两种,一是勾股定理,二是比例关系.还有一种不常见的,就是线段全长等于部分线段之和.由比例线段产生的函数关系问题,在两种类型的题目中比较常用.一是由平行线产生的对于线段成比例,二是相似三角形的对应边成比例.一般步骤是先说理产生比例关系,再代入数值或表示数的字母,最后整理、变形,根据要求写出自变量取值范围.关键是寻找比例关系,难点是有的整理、变形比较繁琐,容易出错.【实例分析】1.如图1,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,3OA OC ==,顶点为D ,对称轴交x 轴于点E . (1)求抛物线的解析式、对称轴及顶点D 的坐标. (2)判断ACD 的形状,并说明理由.(3)如图2,在抛物线上有一动点P ,过点P 作PM x ⊥轴于点M ,交直线AC 于点N ,在线段PN 、MN 中,若其中一条线段是另一条线段的2倍,求点P 的坐标.(4)在抛物线上是否存在一点P ,使PA PC =,若存在,求出点P 的坐标;若不存在,说明理由. (5)如图3,在抛物线的对称轴上的一点151,4H ⎛⎫-- ⎪⎝⎭,过点H 的任一条与y 轴不平行的直线l 交抛物线于点M 、N ,说明MH NHMN⋅是否为定值?若是定值,请求出这个定值,若不是,请说明理由.2.抛物线y=x2﹣2x+m的顶点A在x轴上,与y轴交于点B.(1)求抛物线的解析式;(2)如图1,直线CD∥AB交抛物线于C,D两点,若,求△COD的面积;(3)如图2,P为抛物线对称轴上顶点下方的一点,过点P作直线交抛物线于点E,F,交x轴于点M,求的值.3.如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(m,0)两点,与y轴相交于点C(0,﹣3),抛物线的顶点为D.(1)求抛物线的解析式;(2)若点E在x轴上,且∠ECB=∠CBD,求点E的坐标.(3)若P是直线BC下方抛物线上任意一点,过点P作PH⊥x轴于点H,与BC交于点M.①求线段PM长度的最大值.②在①的条件下,若F为y轴上一动点,求PH+HF+CF的最小值.4.如图,抛物线与坐标轴分别交于A(﹣1,0),B(3,0),C(0,3).(1)求抛物线的解析式;(2)抛物线上是否存在点P,使得∠CBP=∠ACO,若存在,求出点P的坐标;若不存在,说明理由;(3)如图2,Q是△ABC内任意一点,求++的值.5.如图1,已知抛物线y=ax2+bx+c(a>0)与x轴交于A(﹣1,0),B(3,0),与y轴交于点C.(1)若C(0,﹣3),求抛物线的解析式;(2)在(1)的条件下,E是线段BC上一动点,AE交抛物线于F点,求的最大值;(3)如图2,点N为y轴上一点,AN、BN交抛物线于E、F两点,求•的值.6.如图,抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求点A,B,C的坐标及抛物线的对称轴;(2)如图1,点P(1,m),Q(1,m﹣2)是两动点,分别连接PC,QB,请求出|PC﹣QB|的最大值,并求出m的值;(3)如图2,∠BAC的角平分线交y轴于点D,过D点的直线l与射线AB,AC分别于E,F,当直线l 绕点D旋转时,是否为定值,若是,请求出该定值;若不是,请说明理由.【课后练习】1.如图,抛物线y=ax2+bx+c与x轴交于原点O和点A,且其顶点B关于x轴的对称点坐标为(2,1).(1)求抛物线的函数表达式;(2)抛物线的对称轴上存在定点F,使得抛物线y=ax2+bx+c上的任意一点G到定点F的距离与点G到直线y=﹣2的距离总相等.①证明上述结论并求出点F的坐标;②过点F的直线l与抛物线y=ax2+bx+c交于M,N两点.证明:当直线l绕点F旋转时,+是定值,并求出该定值;(3)点C(3,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQBC周长最小,直接写出P,Q的坐标.2.抛物线y=ax2+bx+c经过A(﹣1,0),B(3,4)两点,与y轴交于点C.(1)求抛物线的解析式(用含a的式子表示);(2)当a>0时,连接AB,BC,若tan∠ABC=,求a的值;(3)直线y=﹣x+m与线段AB交于点P,与抛物线交于M,N两点(点M在点N的左侧),若PM•PN =6,求m的值.3.如图1,抛物线y=ax2+bx经过点A(﹣5,0),点B(﹣1,﹣2).(1)求抛物线解析式;(2)如图2,点P为抛物线上第三象限内一动点,过点Q(﹣4,0)作y轴的平行线,交直线AP于点M,交直线OP于点N,当点P运动时,4QM+QN的值是否变化?若变化,说明变化规律,若不变,求其值;(3)如图3,长度为的线段CD(点C在点D的左边)在射线AB上移动(点C在线段AB上),连接OD,过点C作CE∥OD交抛物线于点E,线段CD在移动的过程中,直线CE经过一定点F,直接写出定点F的坐标与的最小值.。

数学人教版八年级上册14.2平方差公式(几何法).2平法差公式(几何法)

数学人教版八年级上册14.2平方差公式(几何法).2平法差公式(几何法)

如图,你能根据图形的面积说明平方差公式吗? 请从左图正方形纸板上,剪下一个边长 为b的小正方形,拼成如右图的长方形, 你能根据图中的面积说明平方差公式吗?
回顾学习目标及重难点
• 学习目标: 1.理解平方差公式,能运用公式进行计算. 2.在探索平方差公式的过程中,感悟从具体到抽象 地研究问题的方法,在验证平方差公式的过程中, 感知数形结合思想. • 学习重点: 平方差公式.
=(100+2)(100-2)
=1002-22 =10 000-4 =9 996.
=(y2-22)-(y2+5y-y-5)
= y2-22-y2-5y+y+5 =-4y+1.
2.利用平方差公式计算:
( 1 ) ( x 2 y ) ( 2 y x ) . ( 2 ) ( 2 x5 ) ( 52 x ) .
【解析】 原式=(-2y-x)(-2y+x) 【解析】原式=(5+2x)(5-2x)
= 4y2-x2.
2 2 ( 3 ) ( x6 ) ( x】原式=[(x+6)-(x-6)][(x+6)+(x-6)]
= (x+6-x+6)(x+6+x-6) =12×2x=24x.
【解析】 (1) (3x+2)(3x-2) (2)(b+2a)(2a-b) =(3x)2-22 =9x2-4. =(2a+b)(2a-b) =(2a)2-b2
=4a2-b2.
1、计算 (1) 102×98. 【解析】 (1) 102×98 (2)原式 (2)(y+2)(y-2)-(y -1)(y+5).
理解平方差公式
2 2 ( a + ba ) ( b ) = a b 前面探究所得的式子 又一次 验证了平方差公式。

数学人教版八年级上册几何图形

数学人教版八年级上册几何图形

5、如图是一个小正方体的展开图,把展开图折叠成小正方体后,与有“建”字的一面相对的那一
.
面上的字是( )
A 和
B 谐
C 社
D 会
6、如图是从上面看由几个小立方块搭成的几何体的平面图形,小正方形中的数字表示在该位置的小立方块的个数,那么从正面看这个几何体的平面图形是( )
7、如图可以折叠成 的几何体是 ( )
A 三棱柱
B 四棱柱
C 圆柱
D 圆锥 8、某几何体从三个方向看到的平面图如图所示,那么这个几何体可能是()
c
建 设
和 谐 社

A B C D
A三棱柱B圆柱C圆锥D球
小结与作业
1. 小结:
我知道了什么?我学会了什么?我发现了什么?
2. 作业:(1)必做题习题:4.1第4、13题
(2)思考题:“横看成岭侧成峰,远近高低各不同。

不识庐山真面目,只缘身在此山中。

”这是宋代诗人苏轼的著名诗句(《题西林壁》)。

“横看成岭侧成峰”中蕴含着什么样的数学道理?。

人教版数学八年级上下册教学设计(全册)

人教版数学八年级上下册教学设计(全册)

人教版数学八年级上下册教学设计(全册)一. 教材分析人教版数学八年级上下册教材内容丰富,结构严谨,遵循学生的认知规律,注重培养学生的数学思维能力和实践能力。

本册教材包括以下几个部分:1.第一章:二次根式2.第二章:分数指数幂3.第三章:方程(一)4.第四章:方程(二)5.第五章:不等式(一)6.第六章:不等式(二)7.第七章:函数(一)8.第八章:函数(二)9.第九章:几何综合二. 学情分析八年级的学生已经具备一定的数学基础,对于公式、定理的理解和运用有一定的掌握。

但部分学生在数学思维能力和解题技巧上还存在不足,需要通过针对性的教学设计进行提高。

三. 教学目标1.知识与技能:使学生掌握本册教材中的基本概念、公式、定理,提高学生的数学解题能力。

2.过程与方法:培养学生独立思考、合作交流的能力,提高学生的数学思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自信心,使学生树立克服困难的决心。

四. 教学重难点1.教学重点:教材中的基本概念、公式、定理。

2.教学难点:对于部分抽象的数学问题,如何引导学生运用所学知识进行解决。

五. 教学方法1.启发式教学:通过提问、讨论等方式,激发学生的思维,引导学生主动探究。

2.案例教学:分析典型题目,引导学生运用所学知识解决问题。

3.小组合作:鼓励学生进行合作交流,共同完成任务。

六. 教学准备1.教学PPT:制作符合教学内容的PPT,辅助讲解。

2.教学案例:挑选具有代表性的题目,用于案例教学。

3.教学道具:准备相应的教学道具,如几何模型等。

七. 教学过程1.导入(5分钟)通过复习上节课的知识,引导学生进入新课的学习。

2.呈现(10分钟)讲解本节课的基本概念、公式、定理,让学生了解本节课的主要内容。

3.操练(15分钟)针对本节课的知识点,设计一些练习题,让学生现场解答,巩固所学知识。

4.巩固(10分钟)对学生的解答进行点评,纠正错误,解答学生的疑问,确保学生对知识点有清晰的认识。

(完整版)初二数学几何类综合题及参考答案

(完整版)初二数学几何类综合题及参考答案

初中几何综合测试题(时间120分满分100分)一.填空题(本题共22分,每空2分)1.一个三角形的两条边长分别为9和2,第三边长为奇数,则第三边长为 .2.△ABC三边长分别为3、4、5,与其相似的△A′B′C′的最大边长是 10,则△A′B′C′的面积是.4.弦AC,BD在圆内相交于E ,且,∠BEC=130°, 则∠ACD= .5.点O是平行四边形ABCD对角线的交点,若平行四边行ABCD的面 积为8cm,则△AOB的面积为 .6.直角三角形两直角边的长分别为5cm和12cm,则斜边上的中线长为 .7.梯形上底长为2,中位线长为5,则梯形的下底长为 .9.如图,分别延长四边形ABCD两组对边交于E、F,若DF=2DA,10.在Rt△ABC中,AD是斜边BC上的高,如果BC=a,∠B=30°, 那么AD等于 .二.选择题(本题共44分,每小题4分) 1.一个角的余角和它的补角互为补角,则这个角是 [ ]A.30°B.45°C.60°D.75° 2.依次连结等腰梯形的各边中点所得的四边形是 [ ]A.矩形B.正方形C.菱形D.梯形 3.如图,DF∥EG∥BC,AD=DE=EB,△ABC被分成三部分的 面积之比为 [ ]A.1∶2∶3B.1∶1∶1C.1∶4∶9D.1∶3∶5 4.如果两个圆的半径分别为4cm和5cm,圆心距为1cm,那么这两个圆 的位置关系是 [ ]A.相交B.内切C.外切D.外离 5.已知扇形的圆心角为120°,半径为3cm,那么扇形的面积为[ ] 6.已知Rt△ABC的斜边为10,内切圆的半径为2,则两条直角边的 长为 [ ] 7.和距离为2cm的两条平行线都相切的圆的圆心的轨迹是 [ ] A.和两条平行线都平行的一条直线。

B.在两条平行线之间且与两平行线都平行的一条直线。

C.和两平行线的距离都等于2cm的一条平行线。

2021年北京中考数学分类——几何综合(学生版)

2021年北京中考数学分类——几何综合(学生版)

2021年北京中考数学分类—几何综合1.如图,在△ABC中,AB=AC,∠BAC=40°,作射线CM,∠ACM=80°.D在射线CM上,连接AD,E是AD的中点,C关于点E的对称点为F,连接DF.(1)依题意补全图形;(2)判断AB与DF的数量关系并证明;(3)平面内一点G,使得DG=DC,FG=FB,求∠CDG的值.2.在正方形ABCD中,将边AD绕点A逆时针旋转α(0°<α<90°)得到线段AE,AE 与CD延长线相交于点F,过B作BG∥AF交CF于点G,连接BE.(1)如图1,求证:∠BGC=2∠AEB;(2)当(45°<α<90°)时,依题意补全图2,用等式表示线段AH,EF,DG之间的数量关系,并证明.3.如图,在正方形ABCD中,CD=3,P是CD边上一动点(不与D点重合),连接AP,点D与点E关于AP所在的直线对称,连接AE,PE,延长CB到点F,使得BF=DP,连接EF,AF.(1)依题意补全图1;(2)若DP=1,求线段EF的长;(3)当点P在CD边上运动时,能使△AEF为等腰三角形,直接写出此时△DAP的面积.4.已知∠MAN=30°,点B为边AM上一个定点,点P为线段AB上一个动点(不与点A,B重合),点P关于直线AN的对称点为点Q,连接AQ,BQ,点A关于直线BQ的对称点为点C,连接PQ,CP.(1)如图1,若点P为线段AB的中点;①直接写出∠AQB的度数;②依题意补全图形,并直接写出线段CP与AP的数量关系;(2)如图2,若线段CP与BQ交于点D.①设∠BQP=α,求∠CPQ的大小(用含α的式子表示);②用等式表示线段DC,DQ,DP之间的数量关系,并证明.5.如图,在等腰三角形ABC中,∠BAC<60°,AB=AC,D为BC边的中点,将线段AC 绕点A逆时针旋转60°得到线段AE,连接BE交AD于点F.(1)依题意补全图形(2)求∠AFE的度数;(3)用等式表示线段AF,BF,EF之间的数量关系,并证明.6.如图,等腰三角形ABC中,AB=AC,CD⊥AB于点D,∠A=α.(1)求出∠DCB的大小(用含α的式子表示);(2)延长CD至点E,使CE=AC,连接AE并延长交CB的延长线于点F.①依题意补全图形;②用等式表示线段EF与BC之间的数量关系,并证明.7.如图,在△ABC中,AB=AC,∠BAC>90°,D是△ABC内一点,∠ADC=∠BAC.过点B作BE∥CD交AD的延长线于点E.(1)依题意补全图形;(2)求证:∠CAD=∠ABE;(3)在(1)补全的图形中,不添加其他新的线段,在图中找出与CD相等的线段并加以证明.8.在△ABC中,AB=AC,∠BAC=α(0°<α<60°).点E是△ABC内动点,连接AE,CE,将△AEC绕点A顺时针旋转α,使AC边与AB重合,得到△ADB,延长CE与射线BD交于点M(点M与点D不重合).(1)依题意补全图1;(2)探究∠ADM与∠AEM的数量关系为;(3)如图2,若DE平分∠ADB,用等式表示线段MC,AE,BD之间的数量关系,并证明.9.如图1,等边△ABC中,点P是BC边上一点,作点C关于直线AP的对称点D,连接CD,BD,作AE⊥BD于点E;(1)若∠P AC=10°,依题意补全图1,并直接写出∠BCD的度数;(2)如图2,若∠P AC=α(0°<α<30°),①求证:∠BCD=∠BAE;②用等式表示线段BD,CD,AE之间的数量关系并加以证明.10.已知点P为线段AB上一点,将线段AP绕点A逆时针旋转60°,得到线段AC;再将线段BP绕点B逆时针旋转120°,得到线段BD;连接AD,取AD中点M,连接BM,CM.(1)如图1,当点P在线段CM上时,求证:PM∥BD;(2)如图2,当点P不在线段CM上,写出线段BM与CM的数量关系与位置关系,并证明.11.如图,在△ABC中,∠ACB=90°,CA=CB,点P在线段AB上,作射线CP(0°<∠ACP<45°),将射线CP绕点C逆时针旋转45°,得到射线CQ,过点A作AD⊥CP 于点D,交CQ于点E,连接BE.(1)依题意补全图形;(2)用等式表示线段AD,DE,BE之间的数量关系,并证明.12.已知:在△ABC中,∠A=45°,∠ABC=α,以BC为斜边作等腰Rt△BDC,使得A,D两点在直线BC的同侧,过点D作DE⊥AB于点E.(1)如图1,当α=20°时,①求∠CDE的度数;②判断线段AE与BE的数量关系;(2)若45°<α<90°,线段AE与BE的数量关系是否保持不变?依题意补全图2,并证明.13.在△ABC中,∠ACB=90°,AC=BC,D是直线AB上一点(点D不与点A、B重合),连接DC并延长到E,使得CE=CD,过点E作EF⊥直线BC,交直线BC于点F.(1)如图1,当点D为线段AB的上任意一点时,用等式表示线段EF、CF、AC的数量关系,并证明;(2)如图2,当点D为线段BA的延长线上一点时,依题意补全图2,猜想线段EF、CF、AC的数量关系是否发生改变,并证明.。

八年级数学常考点 第07讲 勾股定理与几何最值问题突破技巧(学生版+解析版)

八年级数学常考点 第07讲 勾股定理与几何最值问题突破技巧(学生版+解析版)

第07讲勾股定理与几何最值问题突破技巧(学生版)第一部分专题典例剖析及针对训练类型一立体图形表面的最短路线问题典例1:如图,正四棱柱的底面边长为1.5cm,侧棱长为4cm,求一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处的最短路程的长。

典例2 在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为(π取3)针对训练1:1.如图所示,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C 1处,问怎样走路线最短?最短路线长为多少?2.(2020秋•罗湖区校级期末)如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为dm.3.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm;如果从点A开始经过4个侧面缠绕n圈到达点B,那么A1B1C1D1DA BC所用细线最短需要cm .类型二将军“饮马问题”中的最短路线典例3 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?类型三求一条线段的最小值典例4 (2020秋•遂宁期末)如图,OC平分∠AOB,点P是OC上一点,PM⊥OB于点M,点N是射线OA上的一个动点若OM=4,OP=5,则PN的最小值为()A.2B.3C.4D.5针对训练34.(2020秋•仪征市期中)如图,在△ABC中,AB=6,BC=8,∠B=90°,若P是AC上的一个动点,则AP+BP+CP的最小值是()A.14.8B.15C.15.2D.16类型四利用配方法求最值典例5 (2021•南通)平面直角坐标系xOy中,已知点P(m,3n2﹣9),且实数m,n满足m﹣n2+4=0,则点P到原点O的距离的最小值为.针对练习45.(2020秋•江都区期末)已知点P(3m,4﹣4m)为平面直角坐标系中一点,若O为原点,则线段PO 的最小值为()AB小河东北牧童小屋A.2B.2.4C.2.5D.3第二部分专题培优训练1.(2021•柳南区校级模拟)如图,C是线段AB上一动点,△ACD,△CBE都是等边三角形,M,N分别是CD,BE的中点,若AB=4,则线段MN的最小值为()A.√32B.3√34C.√3D.3√322.(2021春•饶平县校级期中)如图,Rt△ABC中,∠ACB=90°,AC=3,AB=5,D为AB边上一动点,连接CD,△ACD与△A′CD关于直线CD轴对称,连接BA′,则BA′的最小值为()A.12B.1C.√2D.√33.(2014•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3√2+3√6)cm.4.(2021秋•青岛期末)如图,点M为线段AB上的一个动点,在AB同侧分别以AM和BM为边作等边△AMC 和等边△BMD,若AB=12,则线段CD的最小值为.5.(2021秋•锦江区校级期末)如果一个直角三角形的两边长分别是3,4,那么这个直角三角形斜边上的高长最小值为.6.(2020秋•霸州市期末)如图,在△ABC中,BA=BC,BH平分∠ABC,点P,D分别是BH和AB上的任意一点,设P A+PD=m.(1)连接CD交BH于点E,则m CD(填表示相等或大小关系的符号);(2)若BA=BC=5,AC=6,BH=4,则m的最小值是.7.(2021秋•大东区期中)如图,三角形ABC中,∠ACB=90°,AC=6,BC=8,P为直线AB上一动点,连PC,则线段PC的最小值是.8.(2021•永嘉县校级模拟)如图,AB=1,以AB为斜边作直角△ABC,以△ABC的各边为边分别向外作正方形,EM⊥KH于M,GN⊥KH于N,则图中阴影面积和的最大值为.9.(2021春•海淀区校级期末)A(0,a),B(3,5)是平面直角坐标系中的两点,线段AB长度的最小值为.10.如图所示,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿着圆柱侧面爬行的最短路程是多少?(π的值取3)11.(2021秋•吉安期中)如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=3,DE=2,BD=12,设CD=x.(1)用含x的代数式表示AC+CE的长.(2)请问点C满足什么条件时,AC+CE的值最小,并求出此时AC+CE的最小值.(3)根据(2)中的规律和结论,重新构图求出代数式√x2+1+√(8−x)2+25的最小值.12.(2021秋•长丰县期末)如图,在△ABC中,∠A=90°,BD平分∠ABC交AC于点D,AB=4,BC=12,AD=3,若点P在BC上运动.(1)求线段DP的最小值;(2)当DP最小时,求△CDP的面积.第07讲 勾股定理与几何最值问题突破技巧(解析版)第一部分 专题典例剖析及针对训练类型一 立体图形表面的最短路线问题典例1:如图,正四棱柱的底面边长为1.5cm ,侧棱长为4cm ,求一只蚂蚁从正四棱柱底面上的点A 沿着棱柱表面爬到C 1处的最短路程的长。

人教版初二数学上册知识点总结

人教版初二数学上册知识点总结

人教版初二数学上册知识点总结初中数学是学生数学学习的一个重要阶段,对于初二学生来说,数学知识点的掌握和理解对于以后的学习起着至关重要的作用。

本文将对人教版初二数学上册的知识点进行总结,希望能够帮助学生更好地理解和掌握相关知识。

一、代数部分。

1. 代数基础知识。

代数是数学的一个重要分支,初二数学代数部分主要包括有理数、整式、一元一次方程等内容。

学生需要掌握有理数的加减乘除运算规则,整式的加减乘除运算法则,以及一元一次方程的解法等基础知识。

2. 一元一次方程。

一元一次方程是初中数学中的重要内容,学生需要掌握用方程解决实际问题的能力,包括列方程、解方程、检验解等步骤。

3. 不等式。

不等式是代数中的重要内容,学生需要理解不等式的意义和性质,掌握不等式的解法和应用。

二、几何部分。

1. 几何基本概念。

初二数学几何部分主要包括角的概念、直线、射影、平行线、相交线等内容。

学生需要理解这些基本概念,掌握相关性质和定理。

2. 图形的性质。

学生需要了解和掌握各种图形的性质,如三角形的性质、四边形的性质等,能够运用相关性质解决实际问题。

3. 相似与全等。

相似与全等是几何中的重要内容,学生需要理解相似与全等的概念,掌握相似三角形的判定和性质,以及全等三角形的判定和性质。

三、实数部分。

1. 实数的性质。

学生需要了解实数的性质,包括有理数和无理数的性质,实数的大小比较,实数的运算性质等内容。

2. 实数的应用。

实数的应用是初二数学的重要内容,学生需要掌握实数在实际问题中的应用,包括利用实数解决实际问题、实数在坐标系中的应用等。

四、统计与概率部分。

1. 统计。

统计是数学中的一门重要学科,学生需要了解统计的基本概念,包括频数、频率、中位数、众数等内容,能够进行简单的统计分析。

2. 概率。

概率是数学中的一门重要学科,学生需要了解概率的基本概念,包括随机事件、概率的计算、概率的性质等内容,能够运用概率解决实际问题。

总结,人教版初二数学上册的知识点涵盖了代数、几何、实数、统计与概率等内容,学生需要认真学习和掌握这些知识点,能够灵活运用于实际问题的解决中。

二次函数与几何图形的综合问题(学生版)--初中数学专题训练

二次函数与几何图形的综合问题(学生版)--初中数学专题训练

二次函数与几何图形的综合问题目录一、热点题型归纳【题型一】 二次函数与图像面积的数量关系及最值问题【题型二】 二次函数与角度数量关系问题【题型三】 二次函数与线段长度数量关系及线段长度最值问题【题型四】 二次函数与特殊三角形问题【题型五】 二次函数与相似三角形存在性问题【题型六】 二次函数与特殊四边形存在性问题【题型七】 二次函数与代数或几何综合问题二、最新模考题组练1.热点题型归纳题型一:二次函数与图像面积的数量关系及最值问题1【典例分析】1如图,二次函数y=x2+bx+c的图象与x轴交于A-3,0两点,点C为二次函数的图象与y轴,B1,0的交点.(1)求二次函数的表达式;(2)若点P为二次函数图象上的一点,且S△POC=2S△BOC,求点P的坐标.2【提分秘籍】对于图形的运动产生的相等关系问题,解答时应认真审题,仔细研究图形,分析动点的运动状态及运动过程,解题过程的一般步骤是:①弄清其取值范围,画出符合条件的图形;②确定其存在的情况有几种,然后分别求解,在求解计算中一般由函数关系式设出图形的动点坐标并结合图形作辅助线,画出所求面积为定值的三角形;③过动点作有关三角形的高或平行于y轴、x轴的辅助线,利用面积公式或三角形相似求出有关线段长度或面积的代数式,列方程求解,再根据实际问题确定方程的解是否符合题意,从而证得面积等量关系的存在性.④对于面积的最值问题选择合适的自变量,建立面积关于自变量的函数,并求出自变量的取值范围,用二次函数或一次函数的性质来解决.3【变式演练】1如图,抛物线y=ax2+3x+c(a≠0)与x轴交于点A(-2,0)和点B,与y轴交于点C(0,8),点P为直线BC上方抛物线上的动点,连接CP,PB,直线BC与抛物线的对称轴l交于点E.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)求△BCP的面积最大值.2如图,抛物线y=x2+bx+c与x轴交于A-1,0两点.,B3,0(1)求该抛物线的解析式;(2)观察函数图象,直接写出当x取何值时,y>0?(3)设(1)题中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.3如图,抛物线y=ax2+bx+4(a≠0)与x轴交于A(-2,0),B(6,0)两点,与y轴交于点C,抛物线的对称轴l与x轴交于点M.(1)求抛物线的函数关系式.(2)设点P是直线l上的一个动点,求△PAC周长的最小值.题型二:二次函数与角度数量关系问题1【典例分析】1如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0)和B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)如图1,若点M为直线BC上方抛物线一动点(与点B、C不重合),作MN平行于y轴,交直线BC于点N,当线段MN的长最大时,请求出点M的坐标;(3)如图2,若P为抛物线的顶点,动点Q在抛物线上,当∠QCO=∠PBC时,请求出点Q的坐标.2【提分秘籍】探究两个角相等的方法:①可转换为满足此三角形是等腰三角形时的点,一般是通过此动点作已知两点连线的中垂线,再通过三角形相似以及中垂线的性质求出中垂线所在直线的解析式,最后通过直线解析式和抛物线解析式联立方程组求得动点的坐标;②通过构造两个三角形相似,再通过三角形相似的性质建立等式关系,再通过直线解析式和抛物线解析式联立方程组求得动点的坐标.3【变式演练】1如图,在平面直角坐标系中,抛物线y=-12x2+bx+c过点A-2,0,B4,0,x轴上有一动点P t,0,过点P且垂直于x轴的直线与直线BC及抛物线分别交于点D,E.连接CE.(1)求抛物线的解析式.(2)点P在线段OB上运动时(不与点O,B重合)当△CDE∽△BDP时,求t的值.(3)当点P在x轴上自由运动时,是否存在点P,使∠DCE=∠DEC?若存在,请直接写出点P的坐标;若不存在,请说明理由.2如图,抛物线y=ax2+bx+5(a≠0)与y轴相交于点C,且经过A(1,0),B(5,0)两点,连接AC.(1)求抛物线的表达式;(2)设P为x轴下方抛物线上一点,M为对称轴上一点,N为该抛物线对称轴与x轴交点,若∠MNP=∠OCA,求点P的坐标.题型三:二次函数与线段长度数量关系及线段长度最值问题1【典例分析】1如图,已知经过A1,0两点的抛物线y=x2+bx+c与y轴交于点C.,B4,0(1)求此抛物线的解析式及点C的坐标;(2)若线段BC上有一动点M(不与B、C重合),过点M作MN⊥x轴交抛物线于点N.求当线段MN的长度最大时点M的坐标;2【提分秘籍】探究平面直角坐标系中线段的数量关系的方法:①先设点的坐标,再用点的坐标表示线段的长度,然后分析表示线段长度的代数式,得出线段之间的数量关系;②函数图象上点的坐标的表示方法:直线y=kx+b上点的坐标为(x,kx+b);抛物线y=ax2+bx+c上点的坐标为(x,ax2+bx+c);双曲线y=k x上的点的坐标为y=x,k x③已知点A(x,y),B(m,n),若AB与x轴平行,则AB=|x-m|;若AB与y轴平行,则AB=|y-n|;若AB既不与x轴平行又不与y轴平行,则AB=(x-m)2+(y-n)2。

人教版八年级上册数学第二十一章《解析几何》全章教学设计

人教版八年级上册数学第二十一章《解析几何》全章教学设计

人教版八年级上册数学第二十一章《解析几何》全章教学设计1. 教学内容概述1.1 课程标准根据《义务教育数学课程标准(2011年版)》,本章主要让学生掌握解析几何的基本概念和方法,培养学生的几何直观和逻辑思维能力。

1.2 教材分析人教版八年级上册数学第二十一章《解析几何》共4个小节,主要内容包括:- 直角坐标系- 坐标轴上的点- 两点间的距离- 直线的斜率本章内容是初中数学的重要内容,对于学生掌握几何知识和提高数学思维能力具有重要意义。

1.3 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识和一些基本的代数知识,如函数、方程等。

但学生对于坐标系和解析几何的概念和方法可能较为陌生,需要通过本章的学习来逐步掌握。

2. 教学目标根据课程标准和学生的实际情况,本章的教学目标为:1. 理解直角坐标系、坐标轴上的点、两点间的距离和直线的斜率等基本概念。

2. 掌握解析几何的基本方法和步骤,能够运用解析几何的知识解决一些实际问题。

3. 培养学生的几何直观和逻辑思维能力,提高学生的数学素养。

3. 教学重难点3.1 教学重点1. 直角坐标系、坐标轴上的点、两点间的距离和直线的斜率等基本概念。

2. 解析几何的基本方法和步骤。

3.2 教学难点1. 坐标系和解析几何的概念和方法的理解和运用。

2. 解决实际问题时,如何运用解析几何的知识和方法。

4. 教学策略与方法4.1 教学策略1. 采用直观演示、实例分析、练习巩固等教学策略,帮助学生理解和掌握直角坐标系、坐标轴上的点、两点间的距离和直线的斜率等基本概念。

2. 通过问题解决、小组讨论等方式,引导学生运用解析几何的知识和方法解决实际问题。

3. 注重知识点的衔接和拓展,提高学生的综合运用能力。

4.2 教学方法1. 讲授法:讲解直角坐标系、坐标轴上的点、两点间的距离和直线的斜率等基本概念和方法。

2. 案例分析法:分析实际问题,引导学生运用解析几何的知识和方法解决实际问题。

2022~2023学年北京市八年级上期末数学试卷分类汇编——几何综合(学生版)

2022~2023学年北京市八年级上期末数学试卷分类汇编——几何综合(学生版)

2022~2023学年北京市八年级上期末数学试卷分类汇编——几何综合一.全等三角形的判定与性质(共3小题)1.(2022秋•密云区期末)如图,在△ABC中,∠BAC=60°,∠C=40°,∠BAC与∠ABC 的角平分线AD、BE分别交BC、AC边于点D和点E.(1)求证:△BEC是等腰三角形;(2)用等式表示线段AB、AC、BD之间的数量关系,并证明.2.(2022秋•大兴区期末)已知,在△ABC中,∠ACB=90°,AC=BC,点M是AB的中点,作∠DME=90°,使得射线MD与射线ME分别交射线AC,CB于点D,E.(1)如图1,当点D在线段AC上时,线段MD与线段ME的数量关系是;(2)如图2,当点D在线段AC的延长线上时,用等式表示线段CD,CE和BC之间的数量关系并加以证明.3.(2022秋•通州区期末)如图△ABC中,∠BAC=90°,AB=AC,D是AC边上一点,连接BD,EC⊥AC垂足为点C,且AE=BD,AE交线段BC于点F.(1)在图1中画出符合题意的图形,并证明CE=AD;(2)当∠CFE=∠ADB时,求证:BD平分∠ABC.二.等腰三角形的性质(共1小题)4.(2022秋•海淀区期末)已知在△ABC中,AB=AC,且∠BAC=α.作△ACD,使得AC =CD.(1)如图1,若∠ACD与∠BAC互余,则∠DCB=(用含α的代数式表示);(2)如图2,若∠ACD与∠BAC互补,过点C作CH⊥AD于点H,求证:CH=BC;(3)若△ABC与△ACD的面积相等,则∠ACD与∠BAC满足什么关系?请直接写出你的结论.三.勾股定理(共1小题)5.(2022秋•延庆区期末)在Rt△ABC中,∠ABC=90°,AB=BC,∠ABD=α,点D为AC边上的一个动点,连接BD,点A关于直线BD的对称点为点E,直线BD,CE交于点F.(1)如图1,当α=20°时,根据题意将图形补充完整,并直接写出∠BFC的度数;(2)如图2,当0°<α<45°时,用等式表示线段FC,EF,BC之间的数量关系,并证明.四.三角形综合题(共9小题)6.(2022秋•平谷区期末)如图,△ABC中,AB=AC,∠BAC=α(0°<α<90°),AD为BC边上的中线,过点B作BE⊥AC于E,交AD于点F,作∠ABE的角平分线AD于M,交AC于N.(1)①补全图形1;②求∠CBE的度数(用含α的式子表示);(2)如图2,若∠α=45°,猜想AF与BM的数量关系,并证明你的结论.7.(2022秋•怀柔区期末)康康同学在研究等边三角形,如图1,已知△ABC是等边三角形,D为BC边的中点,E为中线AD上一点(E不可取A点,可取D点),点E关于直线AC 的对称点是点F.连接AF,EF,BF.(1)①在图1中补全图形;②他发现点E在中线AD上运动时,△AEF是一种特殊三角形.请你回答△AEF是三角形;③利用图1证明这个结论.(2)康康同学发现当E点在中线AD上运动时,BF的长度也有规律的变化.当BF为最大值时,在图2中画出点F,并连接AF,BF,BF与AC交于点P.①按要求画出图形;②在AF上存在一点Q,使PQ+QC的值最小,猜想这最小值BP(填>,<,=);③证明②的结论.(3)在边AC上存在一点M,同时满足BM﹣ME的值最大且BM+ME的值最小,则此时MC与AC的数量关系是.8.(2022秋•丰台区期末)在△ABC中,∠BAC=110°,AC=AB,射线AD,AE的夹角为55°,过点B作BF⊥AD于点F,直线BF交AE于点G,连结CG.(1)如图1,射线AD,AE都在∠BAC的内部.①设∠BAD=α,则∠CAG=(用含有α的式子表示);②作点B关于直线AD的对称点B′,则线段B′G与图1中已有线段的长度相等;(2)如图2,射线AE在∠BAC的内部,射线AD在∠BAC的外部,其他条件不变,用等式表示线段BF,BG,CG之间的数量关系,并证明.9.(2022秋•朝阳区期末)在△ABC中,AC=BC,0°<∠ACB<120°,CD是AB边的中线,E是BC边上一点,∠EAB=∠BCD,AE交CD于点F.(1)如图①,判断△CFE的形状并证明;(2)如图②,∠ACB=90°,①补全图形;②用等式表示CA,CD,CF之间的数量关系并证明.10.(2022秋•石景山区期末)如图,在△ABC中,AB=AC,∠BAC=30°,点B关于AC 边的对称点为D,连接CD,过点A作AE∥CD且AE=CD,连接CE,DE.(1)依题意补全图形;(2)判断AB和DE的数量关系并证明;(3)平面内有一点M,使得DM=DC,EM=EB,求∠CDM的度数.11.(2022秋•大兴区期末)如图,△ABC为等边三角形,AC=AD,∠DAC>60°,连接BD交AC于点E,分别延长DA,CB交于点F.(1)依题意补全图形;(2)若∠DBC=40°,直接写出∠BAF的度数为;(3)用等式表示线段CF,AF,AE之间的数量关系,并证明.12.(2022秋•通州区期末)已知:线段AB及过点A的直线l.如果线段AC与线段AB关于直线l对称,连接BC交直线l于点D,以AC为边作等边△ACE,使得点E在AC的下方,作射线BE交直线l于点F,连结CF.(1)根据题意补全图形;(2)如图,如果∠BAD=α(30°<α<60°),①∠ABE=;(用含有α代数式表示)②用等式表示线段FA,FE与FC的数量关系,并证明.13.(2022秋•房山区期末)△ABC是等边三角形,点D是直线AC上一动点,点E在BC 的延长线上,且CE=AD,连接DB,DE.(1)如图1,若点D是线段AC的中点,则∠BDE=°;(2)当点D在线段AC上时,依题意补全图2,用等式表示DB与DE的数量关系,并证明;(3)当点D在线段AC的延长线上时,请直接用等式表示DB与DE的数量关系.14.(2022秋•昌平区期末)在等边△ABC中,点P,Q是BC边上的两个动点(不与B,C 重合),点P在点Q的左侧,且AP=AQ.(1)若∠BAP=20°,则∠AQB=°;(2)在图1中,求证:BP=CQ;(3)点M在边AC上,CM=CQ,点D为AQ的中点,连接MD并延长交AB于点N,连接PM,PN.①依题意将图2补全;②猜想△PMN的形状,并证明.15.(2022秋•西城区期末)在△ABC中,AB=AC(AB<BC),在BC上截取BD=AB,连接AD.在△ABC的外部作∠ABE=∠DAC,且BE交DA的延长线于点E.(1)作图与探究:①小明画出图1并猜想AE=AC.同学小亮说“要让你这个结论成立,需要增加条件:∠ABC=°.”请写出小亮所说的条件;②小明重新画出图2并猜想△ABE≌△DAC.他证明的简要过程如下:小明的证明:在△ABE与△DAC中,,可得△ABE≌△DAC.(ASA)请你判断小明的证明是否正确并说明理由;(2)证明与拓展:①借助小明画出的图2证明BE=DE;②延长AD到F,使DF=AE,连结BF,CF.补全图形,猜想∠BFE与∠AFC的数量关系并加以证明.16.(2022秋•门头沟区期末)已知,如图,在△ABC中,AD是∠BAC的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H.以直线CH为对称轴作点A的对称点P,连接CP(1)依题意补全图形;(2)直接写出AB与CP的位置关系;(3)用等式表示线段AH与AB+AC之间的数量关系,并证明.17.(2022秋•北京期末)如图,△ABC中,AB<AC,点D为BC边中点,∠BAD=α.作点B关于直线AD的对称点B',连接BB'交AD于点E,过点C作CF∥AB交直线AB'于点F.(1)依题意补全图形,并直接写出∠AB'E和∠AFC的度数(用含α的式子表示);(2)用等式表示线段AB,AF,CF之间的数量关系,并证明.第11页(共11页)七.几何变换综合题(共2小题)18.(2022秋•东城区期末)已知:在△ABC 中,∠CAB =2∠B .点D 与点C 关于直线AB 对称,连接AD ,CD ,CD 交直线AB 于点E .(1)当∠CAB =60°时,如图1.用等式表示,AD 与AE 的数量关系是:,BE 与AE 的数量关系是:;(2)当∠CAB 是锐角(∠CAB ≠60°)时,如图2;当∠CAB 是钝角时,如图3.在图2,图3中任选一种情况,①依题意补全图形;②用等式表示线段AD ,AE ,BE之间的数量关系,并证明.19.(2022秋•顺义区期末)如图,△ABC 为等边三角形,在∠BAC 内作射线AP (∠BAP <30°),点B 关于射线AP 的对称点为点D ,连接AD ,作射线CD 交AP 于点E ,连接BE .(1)依题意补全图形;(2)设∠BAP =α,求∠BCE 的大小(用含α的代数式表示);(3)用等式表示EA ,EB ,EC之间的数量关系,并证明.。

初二数学(人教版)全等三角形的性质与判定的综合运用(第一课时) 教学设计

初二数学(人教版)全等三角形的性质与判定的综合运用(第一课时) 教学设计

同学们好,在前面的学习中,我们一起学习、探究了三角形全等的性质及判定的方法,今天,我们将综合运用三角形全等的知识解决一些几何问题.我们首先回顾全等三角形的判定方法.问题判定两个三角形全等的方法有哪些?三边对应相等的两个三角形全等 .(简写成“边边边”或“SSS”).两边和它们夹角对应相等的两个三角形全等.(简写成“边角边”或“SAS”).两角和它们的夹边对应相等的两个三角形全等.(简写成“角边角”或“ASA”).两个角和其中一个角的对边对应相等的两个三角形全等.(简写成“角角边”或“AAS”).或以上是一般三角形全等的判定方法,特殊的直角三角形,除了以上判定方法外,还有直角三角形全等特有的判定方法,即:斜边和一条直角边对应相等的两个三角形全等,(简写为“斜边、直角边”或“HL”).或AB C DE FCBAFEDABCDEFABCDEF问题要判定两个三角形全等,至少要几组条件?至少需要三组条件,并且三组条件中至少有一组边相等的关系.复习总结:以上是我们学习的三角形判定定理,解决问题时,选用哪条判定定理,需要我们同学根据题目条件和图形特点,具体问题,具体分析.下面让我们通过一组基础练习,熟悉三角形全等的判定方法.即EB=BD ,此时用的判定定理是HL ,或EA=BC 此时用的判定定理是SAS.还可以找任一组角相等的条件,即∠AEB=∠CBD ,此时用的判定定理是AAS ,或∠EBA=∠BDC ,此时用的判定定理是ASA.通过以上分析,本题可以添加的条件有:EB=BD ,EA=BC ,∠AEB=∠CBD ,∠EBA=∠BDC.通过例题和练习,我们知道,要添加的条件使两个三角形全等,首先明确已知条件,根据判定定理确定要添加的条件,特别注意的是,添加方法可能不唯一.例 如图3所示,已知AD=AB , 要使△ABC ≌△ADC ,现在已有的条件够不够用?需要添加几个条件?有几种添加的方法?分析:已知AD=AB ,仔细观察图形不难发现还有一个隐含条件:AC=AC ,知道两组边相等的关系之后,现在已有的条件不够用,至少需要添加一个条件,我们来看需要添加哪些条件可以判断两个三角形全等.EDC B A EDCB AA BC DEA B CDE图3⎪⎩⎪⎨⎧︒=∠=∠→∠=∠→=→90B D BAC DAC BC DC 找直角找两边夹角找第三边已知两边: 通过以上分析,我们知道本题有三种添加条件的方法,DC =BC 或∠DAC =∠BAC 或∠D =∠B =90°.遇到这类题目我们应特别注意挖掘隐含条件. 练习 如图4所示,AB=AC ,AD=AE 求证: BE=CD .分析:已知AB=AC ,AD=AE ,有公共角∠A ,并且公共角是两边的夹角.根据题干标图,由三角形全等判定定理SAS 可得△ABE ≌△ACD ,进而得出∠B=∠C. 解:在△ABE 和△ACD 中,⎪⎩⎪⎨⎧=∠=∠=,,,AE AD A A CA BA ∴ △ABE ≌△ACD (SAS) . ∴ BE =CD .小结:证明三角形全等是证明两线段、两个角相等的重要方法,遇到此类问题时,需要明确具体证明哪两个三角形全等,特别注意的是公共角一定是对应角,公共边一定是对应边.HL.SSS. SAS.图4例.如图5所示,点B ,E ,C ,F 在一条直线上,AB=DE,AC=DF , BE=CF,求证∠A =∠D ..分析:根据题干标图要证∠A =∠D ,需证△ABC ≌△DEF ,根据已知条件很容易证得 △ABC ≌△DEF.证明:∵BE=CF ,∴BE +EC =CF +EC . 即BC =EF .在△ABC 和△DEF 中,⎪⎩⎪⎨⎧===,,,EF BC DF AC DE AB ∴△ABC ≌△DEF (SSS ).∴∠A =∠D .例4.如图6所示,在△ABC 和△ADE 中,∠BAC=∠DAE ,AD=AE .连接BD ,CE , ∠ABD=∠ACE .求证AB=AC .分析:根据题干标图图5图6要证AB=AC需证△BAD ≌△CAE∠BAC-∠CAD=∠DAE-∠CAD 又知AD=AE ,∠ABD=∠ACE .已知∠BAC=∠DAE ,..--CAE BAD DAC DAE DAC BAC DAE BAC ∠=∠∠∠=∠∠∴∠=∠即,在△BAD 和△CAE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠,,,AE AD CAE BAD ACE ABD ∴ △BAD ≌△CAE (AAS) . ∴ AB=AC .证明三角形全等时需要准备边相等和角相等的条件,除了公共边、公共角相等,等量相加结果相等、等量相减结果相等也是求两条边、两个角相等经常用到的方法.通过以上例题和练习,你运用三角形全等知识解决问题的能力有没有提升呢?让我们通过一道练习验证一下吧!练习.如图7所示,B ,F ,C ,E 在一条直线上BF=CE ,AC=DF .图7(1) 在下列条件①∠B=∠E ;②∠ACB=∠DFE ;③AB=DE ;④AC ∥DF 中,只添加一个条件就可以证得△ABC ≌△DEF ,则所有正确条件的序号是 ______________________.(2) 根据已知及(1)中添加的一个条件证明∠A=∠D . 分析:(1)根据题干标图由BF=CE 得EF+FC=CE+FC ,即:BC=EF ,又知AC=DF ,如果添加①∠B=∠E此时,SSA 不能判定两个三角形全等;如果添加②∠ACB=∠DFE此时,SAS 能判定△ABC ≌△DEF ;如果添加③AB=DEFEDCBAEDBAFC此时,SSS 能判定△ABC ≌△DEF ;如果添加④AC ∥DF可得到∠ACB=∠DFE ,所以正确条件的序号是②③④ .(2)选择一种证明即可,我们这里以添加②∠ACB=∠DFE 为例证明. 证明:FCEDBAEDBAFC从结论入手,结合已知,双向推理.1.已知:点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:(1)AD=AE; (2)BD=CE.2.如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,∠A=∠D.求证:BE=CF.。

人教版八年级上册期末数学备考---几何综合 Word版

人教版八年级上册期末数学备考---几何综合  Word版

人教版八年级上册期末数学备考----几何综合(Word版)1.如图,在△ABC 中,AB=AC,∠BAC=90°,点D 是边BC 上的动点,连接AD,点C 关于直线AD 的对称点为点E,射线BE 与射线AD 交于点F.(1)在图中,依题意补全图形;(2)记∠DAC=α(α<45°),求∠ABF的大小;(用含α的式子表示)(3)若△ACE 是等边三角形,猜想EF 和BC 的数量关系,并证明.2.如图,CN 是等边△ABC 的外角∠ACM 内部的一条射线,点A 关于CN 的对称点为D,连接AD,BD,CD,其中AD,BD 分别交射线CN 于点E,P.(1)依题意补全图形;(2)若∠ACN=α,求∠BDC的大小(用含α的式子表示);(3)用等式表示线段PB,PC 与PE 之间的数量关系,并证明.3.数学老师布置了这样一道作业题:在△ABC 中,AB=AC≠BC,点D 和点A 在直线BC 的同侧,BD=BC,∠BAC=α,∠DBC=β,α+β=120°,连接AD,求∠ADB 的度数.小聪提供了研究这个问题的过程和思路:先从特殊问题开始研究,当α=90°,β=30° 时(如图1),利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形的相关知识便可解决这个问题.(1)请结合小聪研究问题的过程和思路,求出这种特殊情况下∠ADB 的度数;(2)结合小聪研究特殊问题的启发,请解决数学老师布置的这道作业题;(3)解决完老师布置的这道作业题后,小聪进一步思考,当点D 和点A 在直线BC 的异侧时,且∠ADB的度数与(1)中相同,则α,β满足的条件为(直接写出结果).4.如图1,在△ABC 中,∠ACB=2∠B,∠BAC 的平分线AO 交BC 于点D,点H 为AO上一动点,过点H 作直线l⊥AO 于H,分别交直线AB、AC、BC 于点N、E、M.( 1 )当直线l 经过点 C 时(如图 2 ),证明:BN =CD ;(2)当M 是BC 中点时,写出CE 和CD 之间的等量关系,并加以证明;(3)请直接写出BN、CE、CD 之间的等量关系.5.如图1,在等腰直角三角形ABC 中,AB=AC,∠BAC=90°,点D 在BC 边上,连接AD,AE⊥AD,AE=AD,连接CE,DE.(1)求证:∠B=∠ACE;(2)点A 关于直线CE 的对称点为M,连接CM,EM.①补全图形并证明∠EMC=∠BAD;②利用备用图进行画图、试验、探究,找出当D,E,M 三点恰好共线时点D 的位置.请直接写出此时∠BAD 的度数,并画出相应的图形.6.在△ABC 中,AB=AC,在△ABC 的外部作等边三角形△ACD,E 为AC 的中点,连接DE 并延长交BC 于点F,连接BD.(1)如图1,若∠BAC=100°,求∠BDF 的度数;(2)如图2,∠ACB 的平分线交AB 于点M,交EF 于点N,连接BN.①补全图2;②若BN=DN,求证:MB=MN.7.在△ABC 中,∠A=60°,BD,CE 是△ABC 的两条角平分线,且BD,CE 交于点F.(1)如图1,用等式表示BE,BC,CD 这三条线段之间的数量关系,并证明你的结论;小东通过观察、实验,提出猜想:BE+CD=BC.他发现先在BC 上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD 即可.①下面是小东证明该猜想的部分思路,请补充完整:ⅰ)在BC 上截取BM,使BM=BE,连接FM,则可以证明△BEF 与全等,判定它们全等的依据是;ⅱ)由∠A=60°,BD,CE 是△ABC 的两条角平分线,可以得出∠EFB=°;…②请直接利用ⅰ),ⅱ)已得到的结论,完成证明猜想BE+CD=BC的过程.(2)如图2,若∠ABC=40°,求证:BF=CA.8.在等边△ABC 中,点D 在BC 边上,点E 在AC 的延长线上,DE=DA(如图1)(1)求证:∠BAD=∠EDC;(2)点E 关于直线BC 的对称点为M,连接DM,AM.①依题意将图2 补全;②小姚通过观察,实验提出猜想:在点D 运动的过程中,始终有DA=AM,小姚把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明DA=AM,只需证△ADM 是等边三角形;想法2:连接CM,只需证明△ABD≌△ACM 即可.请你参考上面的想法,帮助小姚证明DA=AM(一种方法即可)9.已知:△ABC 是等边三角形.(1)如图1,点D 在AB 边上,点E 在AC 边上,BD=CE,BE 与CD 交于点F.试判断BF 与CF 的数量关系,并加以证明;(2)点D 是AB 边上的一个动点,点E 是AC 边上的一个动点,且BD=CE,BE 与CD 交于点F.若△BFD 是等腰三角形,求∠FBD 的度数.10.已知:在△ABC 中,∠ABC<60°,CD 平分∠ACB 交AB 于点D,点E 在线段CD 上(点E不与点C、D重合),且∠EAC=2∠EBC.(1)如图1,若∠EBC=27°,且EB=EC,则∠DEB=°,∠AEC=°.(2)如图2,①求证:AE+AC=BC;②若∠ECB=30°,且AC=BE,求∠EBC 的度数.11.在△ABC 中,AD 是△ABC 的角平分线.(1)如图1,过C 作CE∥AD 交BA 延长线于点E,若F 为CE 的中点,连接AF,求证:AF⊥AD;(2)如图2,M 为BC 的中点,过M 作MN∥AD 交AC 于点N,若AB=4,AC=7,求NC 的长.12.如图,在△ABC 中,AC=BC,∠ACB=90°,D 为△ABC 内一点,∠BAD=15°,AD =AC,CE⊥AD 于E,且CE=5.(1)求BC 的长;(2)求证:BD=CD.13.在Rt△ABC 中,∠ACB=90°,∠A=30°,BD 是△ABC 的角平分线,DE⊥AB 于点E.(1)如图1,连接EC,求证:△EBC 是等边三角形;(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG 交DE 延长线于点G.请你在图2 中画出完整图形,并直接写出MD,DG 与AD 之间的数量关系;(3)如图3,点N 是线段AD 上的一点,以BN 为一边,在BN 的下方作∠BNG=60°,NG 交DE 延长线于点G.试探究ND,DG 与AD 数量之间的关系,并说明理由.14.已知:如图,在△ABC 中,如果∠A 是锐角,点D,E 分别在AB,AC 上,且∠DCB=求证:BD=CE.15.在△ABC 中,AB>BC,直线l 垂直平分AC.(1)如图1,作∠ABC 的平分线交直线l 于点D,连接AD,CD.①补全图形;②判断∠BAD 和∠BCD 的数量关系,并证明.(2)如图2,直线l 与△ABC 的外角∠ABE 的平分线交于点D,连接AD,CD.求证:∠BAD=∠BCD.16.在平面直角坐标系xOy 中,△ABO 为等边三角形,O 为坐标原点,点A 关于y 轴的对称点为D,连接AD,BD,OD,其中AD,BD 分别交y 轴于点E,P.(1)如图1,若点B 在x 轴的负半轴上时,直接写出∠BDO 的度数;(2)如图2,将△ABO 绕点O 旋转,且点A 始终在第二象限,此时AO 与y 轴正半轴夹角为α,60°<α<90°,依题意补全图形,并求出∠BDO的度数;(用含α的式子表示)(3)在第(2)问的条件下,用等式表示线段BP,PE,PO之间的数量关系.(直接写出结果17.(1)老师在课上给出了这样一道题目:如图1,等边△ABC边长为2,过AB边上一点P 作PE⊥AC 于E,Q 为BC 延长线上一点,且AP=CQ,连接PQ 交AC 于D,求DE 的长.小明同学经过认真思考后认为,可以通过过点P 作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE 的长.(2)【类比探究】老师引导同学继续研究:1.等边△ABC 边长为2,当P 为BA 的延长线上一点时,作PE⊥CA 的延长线于点E,Q 为边BC 上一点,且AP=CQ,连接PQ 交AC 于D.请你在图2 中补全图形并求DE 的长.2.已知等边△ABC,当P 为AB 的延长线上一点时,作PE⊥射线AC 于点E,Q 为(①BC 边上;②BC 的延长线上;③CB 的延长线上)一点,且AP=CQ,连接PQ 交直线AC于点D,能使得DE的长度保持不变.(将答案的编号填在横线上)18.如图,在等边三角形ABC 的外侧作直线AP,点C 关于直线AP 的对称点为点D,连接AD,BD,其中BD 交直线AP 于点E.(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB 的度数;(3)连结CE,写出AE,BE,CE 之间的数量关系,并证明你的结论.19.如图1,在△ABC 中,∠A 的外角平分线交BC 的延长线于点D.(1)线段BC 的垂直平分线交DA 的延长线于点P,连接PB,PC.①利用尺规作图补全图形1,不写作法,保留痕迹;②求证:∠BPC=∠BAC;(2)如图2,若Q 是线段AD 上异于A,D 的任意一点,判断QB+QC 与AB+AC 的大小,并予以证明.第10页(共17页)20.如图,在△ABC 中,BA=BC,点D 为△ABC 外一点,连接DA,∠DAC 恰好为25°,线段AD 沿直线AC 翻折得到线段AD′,过点C 作AD 的平行线交AD′于点E,连接BE.(1)求证:AE=CE;(2)求∠AEB 的度数.21.如图①,在△ABC 中,D、E 分别是AB、AC 上的点,AB=AC,AD=AE,然后将△ADE 绕点A 顺时针旋转一定角度,连接BD,CE,得到图②,将BD、CE 分别延长至M、N,使BD,EN=CE,得到图③,请解答下列问题:(1)在图②中,BD 与CE 的数量关系是;(2)在图③中,猜想AM 与AN 的数量关系,∠MAN 与∠BAC 的数量关系,并证明你的猜想.22.在等边△ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED=EC.(1)若点E 是AB 的中点,如图1,求证:AE=DB.(2)若点E 不是AB 的中点时,如图2,试确定线段AE 与DB 的大小关系,并写出证明过程.23.在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路,如:在图1 中,若C 是∠MON 的平分线OP 上一点,点A 在OM 上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC 和△OAC,参考上面的方法,解答下列问题:如图2,在非等边△ABC 中,∠B=60°,AD,CE 分别是∠BAC,∠BCA 的平分线,且AD,CE 交于点F,求证:AC=AE+CD.24.如图:在Rt△ABC 中,AB=AC,∠BAC=90°,O 为BC 的中点.(1)写出点O 到△ABC 的三个顶点A、B、C 距离之间的关系;(2)如果点M、N 分别在线段AB、AC 上移动,移动中保持AN=BM,请判断△OMN 的形状,并证明你的结论.25.如图,△ABC 是等边三角形,△ADC 与△ABC 关于直线AC 对称,AE 与CD 垂直交BC 的延长线于点E,∠EAF=45°,且AF 与AB 在AE 的两侧,EF⊥AF.(1)依题意补全图形.(2)①在AE 上找一点P,使点P 到点B,点C 的距离和最短;②求证:点D 到AF,EF 的距离相等.26.如图,△ABC 中,AB=AC,AD⊥BC 于点D,延长AB 至点E,使∠AEC=∠DAB.判断CE 与AD 的数量关系,并证明你的结论.27.已知C 是线段AB 垂直平分线m 上一动点,连接AC,以AC 为边作等边三角形ACD,点D 在直线AB 的上方,连接DB 与直线m 交于点E,连接BC,AE.(1)如图1,点C 在线段AB 上.①根据题意补全图1②求证:∠EAC=∠EDC;(2)如图2,点C 在直线AB 的上方,0°<∠CAB<30°,用等式表示线段BE,CE,DE 之间的数量关系,并证明.28.在等边△ABC 外作射线AD,使得AD 和AC 在直线AB 的两侧,∠BAD=α(0°<α<180°),点B关于直线AD的对称点为P,连接PB,PC.(1)依题意补全图1;(2)在图1 中,求∠BPC 的度数;(3)直接写出使得△PBC 是等腰三角形的α的值.29.在△DEF 中,DE=DF,点B 在EF 边上,且∠EBD=60°,C 是射线BD 上的一个动点(不与点B重合,且BC≠BE),在射线BE上截取BA=BC,连接AC.(1)当点C 在线段BD 上时,①若点C 与点D 重合,请根据题意补全图1,并直接写出线段AE 与BF 的数量关系为;②如图2,若点C 不与点D 重合,请证明AE=BF+CD;(2)当点C 在线段BD 的延长线上时,用等式表示线段AE,BF,CD 之间的数量关系(直接写出结果,不需要证明).30.解决下面问题:如图,在△ABC 中,∠A 是锐角,点D,E 分别在AB,AC 上,且∠A,BE 与CD 相交于点O,探究BD 与CE 之间的数量关系,并证明你的结论.小新同学是这样思考的:在平时的学习中,有这样的经验:假如△ABC 是等腰三角形,那么在给定一组对应条件,如图a,BE,CD 分别是两底角的平分线(或者如图b,BE,CD 分别是两条腰的高线,或者如图c,BE,CD 分别是两条腰的中线)时,依据图形的轴对称性,利用全等三角形和等腰三角形的有关知识就可证得更多相等的线段或相等的角.这个问题也许可以通过添加辅助线构造轴对称图形来解决.请参考小新同学的思路,解决上面这个问题.31.如图,在△ABC 中,AB=AC,P 为△ABC 内一点,且∠BAP=70°,∠ABP=40°,(1)求证:△ABP 是等腰三角形;(2)连接PC,当∠PCB=30°时,求∠PBC 的度数.32.如图,在等边三角形ABC右侧作射线CP,∠ACP=α(0<α<60°),点A关于射线CP 的对称点为点D,BD 交CP 于点E,连接AD,AE.(1)求∠DBC的大小(用含α的代数式表示);(2)在α(0°<α≤60°)的变化过程中,∠AEB 的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请直接写出∠AEB 的大小;(3)用等式表示线段AE,BD,CE 之间的数量关系,并证明.33.如图,在等边△ABC 中,点D 是线段BC 上一点作射线AD,点B 关于射线AD 的对称点为E,连接EC 并延长,交射线AD 于点F.(1)补全图形;(2)求∠AFE 的度数;(3)用等式表示线段AF、CF、EF 之间的数量关系,并证明.34.△ABC 是等边三角形,AC=2,点C 关于AB 对称的点为C',点P 是直线C'B 上的一个动点,连接AP,作∠APD=60°交射线BC 于点D.(1)若点P在线段C'B上(不与点C',点B重合).①如图1,若点P 是线段C'B 的中点,则AP 的长为;②如图2,点P 是线段C'B 上任意一点,求证:PD=PA;(2)若点P 在线段C'B 的延长线上.①依题意补全图3;②直接写出线段BD,AB,BP 之间的数量关系为:.35.等边△ABC 的边长为4,D 是射线BC 上任一点,线段AD 绕点D 顺时针旋转60°得到线段DE,连接CE.(1)当点D 是BC 的中点时,如图1,判断线段BD 与CE 的数量关系,请直接写出结论:(不必证明);(2)当点D 是BC 边上任一点时,如图2,请用等式表示线段AB,CE,CD 之间的数量关系,并证明;(3)当点D 是BC 延长线上一点且CD=1 时,如图3,求线段CE 的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末试题点拨——
几何部分
题型一:全等三角形与轴对称
思路导航
全等三角形是初中几何学习中的重要内容之一,是今后学习其他知识的基础。

判断三角形全等的公理有SAS、ASA、AAS、SSS和HL(直角三角形),如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件,引出相应的辅助线然后再证明。

一、常见辅助线的作法有以下几种:
1. 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对称”;
2. 若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”;
3. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对称”,所考知识点常常是角平分线的性质定理或逆定理;
4. 过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;
5. 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法,适合于证明线段的和、差、倍、分等类的题目。

二、常见模型
1.最值问题:“将军饮马”模型;
2. 全等三角形经典模型:三垂直模型、手拉手模型、半角模型以及双垂模型等。

三、尺规作图
部分地区会考察尺规作图,难点在于构造轴对称图形解决几何问题。

【例1】 ⑴如下左图,把△ABC 沿EF 对折,叠合后的图形如图所示.若∠A =60°,
∠1=95°,则∠2的度数为( )
A .24°
B .25°
C .30°
D .35°
⑵长为20,宽为a 的矩形纸片(10<a <20),如上右图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n 次操作后,剩下的矩形为正方形,则操作停止.当n =3时,a 的值为 .
【例2】 ⑴如图所示,在长方形ABCD 称轴l 上找点P ,使得△P AB 、△PBC 均为等腰三角形,
则满足条件的点P 有( ).
A .1个
B .3个
C .5个
D .6个
⑵已知,横线和竖线相交的点叫做格点,P 、A 、B 为格点上的点,A 、B 的位置如图所示,若此三点能够构成等腰三角形,P 点有 种不同的位置?
典题精练
2
1C'
B'
F
E C
B
A 第二次操作
第一次操作
l
D C
B
A
【例3】 ⑴ 如图1
,在等边三角形ABC 中,AB =2,点E 是AB 的中点,AD 是高,在AD 上找
一点P ,使BP +PE 的值最小;
⑵ 如图2,正方形ABCD 的边长为2,E 为AB 的中点,在AC 上找一点P ,使PB +PE 的值最小;
⑶ 如图3,⊙O 的半径为2,点A 、B 、C 在⊙O 上,OA ⊥OB ,∠AOC =60°,P 是OB 上一动点,求P A +PC 的最小值;
⑷ 如图4,在四边形ABCD 的对角线AC 上找一点P ,使∠APB =∠APD .保留作图痕迹,不必写出作法.
图4
图3
图2
图1
P D
C
A
O
P C B
A
P E D C
B A
P E D C
B
A
【例4】 如图1,在ABC △中,2ACB B ∠=∠,BAC ∠的平分线AO
交BC 于点D ,点H 为AO 上一动点,过点H 作直线l AO ⊥于H ,分别交直线AB AC BC 、、于点N E M 、、. ⑴当直线l 经过点C 时(如图2),证明:BN CD =; ⑵当M 是BC 的中点时,写出CE 和CD 之间的等量关 系,并加以证明;
⑶请直接写出BN CE CD 、、之间的等量关系.
一、直角三角形的性质
1. 直角三角形的两个锐角互余;
2. 直角三角形斜边上的中线等于斜边的一半;
3. 直角三角形的两直角边的乘积等于斜边与斜边上高的乘积,即ab =c h ;
4. 勾股定理:直角三角形两直角边的平方和等于斜边的平方,即222c b a =+;
5. 在直角三角形中,30°角所对的直角边等于斜边的一半(或含30°的直角三角形三边之比
为1:3:2);
6. 含45°角的直角三角形三边之比为1:1:2. 二、直角三角形的判定 1. 有一个角为90°的三角形是直角三角形; 2. 两个锐角互余的三角形是直角三角形;
3. 勾股定理的逆定理:在以a 、b 、c 为边的三角形中,若222c b a =+,则这个三角形是以c 为斜边的直角三角形;
4. 一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.
【例5】 在给定的图形内作一条折线AB 1C 1D 1E ,使AB 1⊥AB ,B 1C 1⊥BC ,C 1D 1⊥CD ,
D 1
E ⊥DE ,且A ,B ,C ,D ,E ,B 1,C 1,D 1都是格点.
E
D
C
B
A
思路导航
典题精练
题型二:直角三角形与勾股定理
【例6

N
M
D
C B
A
训练1. ⑴如图所示,EFGH 是一个台球桌面,有黑白两球分别置于A B 、两点的位置上,试问怎
样撞击黑球A ,经桌面HE EF 、连续反弹后,准确击中白球B ?(写出作法并画图)
H
G
F
E
A
B
⑵如图,在锐角△ABC 中,4245AB BAC =∠=,°,BAC ∠的平分线交BC
于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是___________.
训练2. 如图,在△ABC 中,AC =BC ,∠ACB =90°. 将△ABC 绕点C 逆时针旋转α角,得到
△A 1B 1C ,连结BB 1,设B 1C 交AB 于D ,A 1B 1分别交AB 、AC 于E 、F .
⑴ 当090︒<α<︒时,如图1,请在不添加任何线段的情况下,找出一对全等三角形,并加以证明(△ABC ≌△A 1B 1C 除外);
⑵ 在⑴的条件下,当△BB 1D 是等腰三角形时,求α; ⑶ 当90180︒<α<︒时,如图2,求证:△A 1CF ≌△BCD .
图2
图1
A
B
C
A 1
B 1
E F D
D
F
E
B 1
A 1
C
B
A
训练3. 已知如图,AB=AC ,PB=PC ,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E . ⑴ 求证:PD=PE ;
⑵ 若BP AB =,o 45=∠DBP ,2=AP ,求四边形ADPE 的面积.
思维拓展训练(选讲)
P
E
D C B A
训练4. ⑴如图,等腰直角三角形ABC 分别沿着某条直线对称得到图形b 、
c 、
d .若上述对称关系保持不变.平移ABC ∆,使得四个图形能够拼成一个重叠且无缝隙的正方形,此时点C 的坐标和正方形的边长为( )
A .1
122
2⎛⎫- ⎪⎝⎭,, B .(11)2-,,
C
.(11)-, D
.1
12
2⎛⎫- ⎪⎝⎭,
⑵如图,△ABC 中,AB =BC ,∠B =120°,AB 的垂直平分线交
DC 间的数量关系,并证明.
【练习1】 ⑴如图,正方形纸片ABCD 的边长为1,M ,N 分别是AD 、
BC 边上的点,将纸片的一角沿过点B 的直线折叠,使点A 落在MN 上,
落点记为A ',折痕交AD 于点E .若M 、N 分别是AD 、BC 边的中点, 则A N '=_________;若M 、N 分别是AD 、BC 边上距DC 最近的n 等 分点(2n ≥,且n 为整数),则A N '=_________(用含有n 的式子表示)
⑵如图,D 为ABC △内一点,
CD 平分ACB ∠, BD CD ⊥,A ABD ∠=∠, 若5AC =,3BC =,则BD 的长为( ) A .1 B .1.5 C .2 D .2.5
【练习2】 如图,ABC △是等腰三角形,AB AC =,AD 是角平分线,以AC 为边向外作等边三
角形ACE ,BE 分别与AD 、AC 交于点F 、点G ,连接CF .
⑴ 求证:FBD FCD ∠=∠;
⑵ 若1FD =,求线段BF 的长.
复习巩固
D
C
B A
G
F
E
D
C
B
A。

相关文档
最新文档