不等式的证明方法 (比较法)
证明不等式的基本方法——比较法
![证明不等式的基本方法——比较法](https://img.taocdn.com/s3/m/af8b9d95d15abe23482f4d5d.png)
第二讲证明不等式的基本方法课题:第01课时不等式的证明方法之一:比较法一.教学目标(一)知识目标(1)了解不等式的证明方法——比较法的基本思想;(2)会用比较法证明不等式,熟练并灵活地选择作差或作商法来证明不等式;(3)明确用比较法证明不等式的依据,以及“转化”的数学思想。
(二)能力目标(1)培养学生将实际问题转化为数学问题的能力;(2)培养学生观察、比较、抽象、概括的能力;(3)训练学生思维的灵活性。
(三)德育目标(1)激发学习的内在动机;(2)养成良好的学习习惯。
二.教学的重难点及教学设计(一)教学重点不等式证明比较法的基本思想,用作差、作商达到比较大小的目的(二)教学难点借助与0或1比较大小转化的数学思想,证明不等式的依据和用途(三)教学设计要点1.情境设计用糖水加糖更甜,实际是糖的质量分数增大这个生活常识设置问题情境,激发学生学习动机,通过将实际问题转化为不等式大小的比较,引入新课。
2.教学内容的处理(1)补充一系列不同种类的用作差、作商等比较法证明不等式的例题。
(2)补充一组证明不等式的变式练习。
(3)在作业中补充何时该用作差法,何时用作商法的习题,帮助同学们更好地理解比较法。
3.教学方法独立探究,合作交流与教师引导相结合。
三.教具准备水杯、水、白糖、调羹、粉笔等四.教学过程(一)、新课学习:1.作差比较法的依据:aba>b⇔>-aa=bb-⇔=aa<bb⇔-<作差比较法的步骤:作差—变形(化简)—定号(差值的符号)—得出结论2.作商比较法的原理和步骤:,111a b R a a b ba ab ba ab b +∈>⇔>=⇔=<⇔<作商比较法的步骤:作商—变形(化简)—判断(商值与实数1的关系)—得出结论(二)、典型例题: 例1、已知b a ,都是正数,且b a ≠,求证:2233ab b a b a +>+.证明:采用差值比较法:3322323222222()()()()()()()()()()a b a b ab a a b b ab a a b b b a a b a b a b a b +-+=-+-=-+-=--=-+(因式分解)223322,,0()0,0()()0a b a b a b a b a b a b a b a b ab ≠>∴->+>∴-+>∴+>+Q 假如没有已知b a ,都是正数这个条件,结论又该分几种情况进行讨论? 例2、若实数1≠x ,求证:.)1()1(32242x x x x ++>++证明:采用差值比较法:2242)1()1(3x x x x ++-++=3242422221333x x x x x x x ------++=)1(234+--x x x=)1()1(222++-x x x=].43)21[()1(222++-x x (配方法) ,043)21(,0)1(,122>++>-≠x x x 且从而Θ ∴ ,0]43)21[()1(222>++-x x ∴ .)1()1(32242x x x x ++>++若题设中去掉1≠x 这一限制条件,要求证的结论如何变换?...,,,()()(),0;,,a akg bkg ba m mkgb ma m a ab m a b b m b a m a m b a b m b b b m a b b a a b m +++<>++--=++<∴->Q Q 例3如果用白糖制出糖溶液,则糖的质量分数为若在上述溶液中再添加白糖,此时糖的质量分数增加到将这个事实抽象为数学问题,并给出证明.解:可以把上述事实抽象成如下不等式问题:已知都是正数,并且则下面给出证明.将不等式两边相减,得通分又都是正数,所()0,()0()00()m b a b b m m b a a m a b b m b m ba m ab m b ->+>-+∴>->+++∴>+以即例4、已知,,+∈R b a 求证:.a b b a b a b a ≥证明:注意到要证的不等式关于b a ,对称,不妨设0a b ≥>差值比较法失效采用商值比较法:,0,1≥-≥b a ba Θ ()()ab a b a b a b b a a b a a b a b b ----∴==101,0,101,0,1a b a b a b a b b a a a b ba a ab a b b ba a a ab b ba b a b ---==>>>->>>><-<>∴≥当时()当时,()当b 时,0<()故原不等式得证.例5.若0>≥≥c b a ,求证.)(3cb ac b a abc c b a ++≥.333330,,0,,1()()()1()()a b b c a c a b c a b c a b c a b c a b c a b b c a c a b a b c ca b c a b a b c c abc a b c abc ---++++≥≥>---≥≥∴=≥≥Q 证:则同时即(三)、课堂练习:1.已知.1≠a 求证:(1);122->a a (2).1122<+aa 222,,abc b c c a a b a b c a b c a b c +++≥2.已知是正数,求证五、课时小结:比较法是证明不等式的一种最基本、最重要的方法,用比较法证明不等式的步骤是:作差(或作商)、变形、判断、得出结论。
不等式证明的基本方法
![不等式证明的基本方法](https://img.taocdn.com/s3/m/8aa5ad601711cc7931b716c9.png)
4. 放缩法是在证明不等式或变形中, 将条件或结论或变换中的 式子放大或缩小进行求证的方法.放缩时要看准目标,做到 有的放矢, 注意放缩适度. 放缩法是证明不等式的常用技巧, 有些不等式若恰当地运用放缩法可以很快得证,要控制难 度.
比较法
(2010 年高考江苏卷试题)设 a、b 是非负实数,求证:a3 +b3≥ ab(a2+b2). 【思路分析】 先作差,再用不等式的基本性质解答.
不等式证明的基本方法
1.比较法是证明不等式最常用最基本的方法,有两种: (1)求差法:a>b⇔a-b>0; a (2)求商法:a>b>0⇔b>1,(b>0).
2.分析法、综合法是证明数学问题的两大最基本的方法. 综合法是以已知的定义、公理、定理为依据,逐步下推,直 到推出问题的结论为止,简而言之,就是“由因导果”. 分析法是从问题的结论出发,追溯导致结论成立的条件,逐 步上溯,直到使结论成立的条件与已知条件或已知事实吻合 为止,简而言之,就是“执果索因”.
分析法与综合法
如果 a>0,b>0,求证:a3+b3≥a2b+ab2. 【证法一】 (用分析法) 要证 a3+b3≥a2b+ab2, 只需证(a+b)(a2-ab+b2)≥ab(a+b) ∵a>0,b>0,有 a+b>0,故只需证 a2-ab+b2≥ab, 只需证(a-b)2≥0 显然(a-b)2≥0 成立,以上各步均可逆, ∴a3+b3≥a2b+ab2
1.设 a>0,a≠1,0<x<1.求证:|loga(1-x)|>|loga(1+x)|.
证明:方法一:(平方后作差)
2 log2 (1 - x ) - log a a(1+x)
=[loga(1-x)+loga(1+x)]· [loga(1-x)-loga(1+x)]= 1-x loga(1-x )· loga . 1+x
竞赛讲座之 12-1不等式的证明方法 (比较法)
![竞赛讲座之 12-1不等式的证明方法 (比较法)](https://img.taocdn.com/s3/m/0a880e0be87101f69e3195df.png)
证明不等式的基本方法现实世界中的量,相等是相对的、局部的,而不等的绝对的、普遍的。
不等式的本质是研究“数量关系”中的“不等关系”。
对于两个量,我们常要比较它们之间的大小,或者证明一个量大于另一个,这就是不等式的证明。
不等式的证明因题而异,灵活多变,常常要用到一些基本的不等式,如柯西不等式、平均值不等式等等,其中还需要用一些技巧性高的代数变形。
在这一部分我们主要来学习一些证明不等式的基本方法。
不等式是数学竞赛的热点之一。
由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。
而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。
证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。
但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。
【知识概要】证明不等式的常用方法有:⒈比较法:依据实数的运算性质及大小顺序之间的关系,通过两个实数的差或商的符号(范围)确定两个数的大小关系的方法。
基本解题步骤是:作差(商)—变形—判号(范围)—定论。
证题时常用到配方、因式分解、换元、乘方、恒等式、重要不等式、优化假设、放缩等变形技巧。
⒉分析综合法:所谓“综合”指由“因”导“果”,从已知条件出发,依据不等式的性质、函数的性质、重要不等式等逐步推进,证得所要证的不等式。
所谓“分析”指的是执“果”索“因”,从欲证不等式出发,层层推求使之成立的充分条件,直至已知事实为止。
一般先用分析法分析证题思路,再用综合法书写证明过程。
⒊重要不等式法:主要有均值不等式、柯西不等式、排序不等式等。
⒋换元法:适当引入新变量,通过代换简化原有结构,实现某种变通,给证明的成功带来新的转机。
具体地讲,就是化超越式为代数式,化无理式为有理式,化分式为整式,化高次式为低次式等等。
高中数学:不等式题目的七种证明方法
![高中数学:不等式题目的七种证明方法](https://img.taocdn.com/s3/m/439f56663186bceb18e8bb0e.png)
高中数学:不等式题目的七种证明方法压轴题目一般是开放型的题目,每年都是会变化。
但大概率题目是函数、数列、圆锥曲线、不等式等知识的综合问题。
我就来总结一下不等式的证明方法。
01比较法所谓比较法,就是通过两个实数a与b的差或商的符号(范围)确定a与b大小关系的方法,即通过来确定a,b大小关系的方法。
前者为作差法,后者为作商法。
但要注意作差法适用范围较广;作商法再用时注意符号问题,如果同为正的话是没有问题的,同为负的话记得改变不等式的符号。
02分析法和综合这两个方法我们一般会一起使用。
分析法是从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题。
如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。
综合法是从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式。
我们来看一个例题,已知如果要用综合法或者分析法的话,对于过程上需要写明,即证,所以要证,也就是说,即等价于……一些转化的语句来过渡我们的题目。
当然这两个方法我们经常一起用,因为分析完条件,分析结论,两个一起分析做题速度更快一些呢。
03反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的。
这个方法其实是按照集合的补集理论来的,正难则反,但是要注意用反证法证明不等式时,必须将命题结论的反面的各种情形都要考虑到,不能少的。
反证法证明一个命题的思路及步骤:1)假定命题的结论不成立;2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的;4)肯定原来命题的结论是正确的。
04放缩法在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明有更好的不等式来代替原不等式。
放缩法的目的性强,必须恰到好处,。
同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及,灵活性很大。
证明不等式的基本方法—比较法
![证明不等式的基本方法—比较法](https://img.taocdn.com/s3/m/6ea02fe58762caaedd33d489.png)
§4.2.1证明不等式的基本方法—比较法【学习目标】能熟练运用比较法来证明不等式。
【新知探究】1.比较法证明不等式的一般步骤:作差(商)—变形—判断—结论.2.作差法:a -b >0⇒a >b ,a -b <0⇒a <b .作差法证明不等式是不等式证明的最基本的方法.作差后需要判断差的符号,作差变形的方向常常是因式分解(分式通分、无理式有理化等)后,把差写成积的形式或配成完全平方式.3.作商法:a >0,b >0,ba >1⇒a >b . 比商法要注意使用条件,若b a >1不能推出a >b .这里要注意a 、b 两数的符号. 【自我检测】1.设0<x <1,则a =2x ,b =1+x ,c =x-11中最大的一个是 A. a B. b C. c D.不能确定2.已知x 、y ∈R ,M =x 2+y 2+1,N =x +y +xy ,则M 与N 的大小关系是A.M ≥NB.M ≤NC.M =ND.不能确定 3.若a 1<b1<0,则下列结论不正确...的是 A.a 2<b 2B.ab <b 2C.a b +ba >2 D.|a |+|b |>|a +b | 4.已知|a +b |<-c (a 、b 、c ∈R ),给出下列不等式:①a <-b -c ;②a >-b +c ;③a <b -c ;④|a |<|b |-c ;⑤|a |<-|b |-c .其中一定成立的是____________.(把成立的不等式的序号都填上)5.若a 、b ∈R ,有下列不等式:①a 2+3>2a ;②a 2+b 2≥2(a -b -1);③a 5+b 5>a 3b 2+a 2b 3;④a +a1≥2.其中一定成立的是__________.(把成立的不等式的序号都填上) 【典型例题】 例1、已知,a b 都是正数,并且a b ≠,求证:.2233ab b a b a +>+变式训练:当m >n 时,求证:m 3-m 2n -3mn 2>2m 2n -6mn 2+n 3.例2、已知,a b 都是正数,求证:,ab b a b a b a ≥ 当且仅当b a =时,等号成立。
2.1《证明不等式的基本方法-比较法》课件(新人教选修4-5)[1].
![2.1《证明不等式的基本方法-比较法》课件(新人教选修4-5)[1].](https://img.taocdn.com/s3/m/6d70cdcb58f5f61fb73666a3.png)
5.设P a 2b2 5, Q 2ab a 2 4a, 若P Q, 则实数a, b
ab 1或ab 2 满足的条件为 ________
ab 1 6.若0 a b 1, P log 1 , Q (log 1 a log 1 b), 2 2
2 2 2
Q>P>M M log 1 (a b), 则P , Q , M的大小关系是__________
2
练习
1.求证a 3b 2b(a b)
2 2
2.求证• a
b 2 2a 2b 4a 3.已知a 2, 求证 1 2 4a
2 2
例4.甲,乙 两 人 同 时 同 地 沿 同 一 路线走到 同一地点 .甲 有 一 半 时 间 以 速 度 m 行 走, 另一半时间以速度 n行 走;乙 有 一 半 路 程 以 速 度m 行 走, 另 一 半 路 程 以 速 度 n行 走. 如 果m n,问 甲 乙 两 人 谁 先 到 达 指 定 地 点.
2
2
2
2
(a b )(a b )2
a, b 0, a b 0 2 又 a b (a b) 0
故(a b)(a b)2 0即(a 3 b 3 ) (a 2b ab 2 ) 0
a b a b ab
3
3
2Hale Waihona Puke 2a 例 2 如果用akg白糖制出bkg糖溶液, 则其浓度为 , b 若在上述溶液中再添加 mkg白糖, 此时溶液的浓度 am 增加到 , 将这个事实抽象为数学 问题, 并给出证明 . bm 解 : 可以把上述事实抽象成 如下不等式问题 :
一、比较法 (1)作差比较法
证明不等式的基本方法——比较法.pdf
![证明不等式的基本方法——比较法.pdf](https://img.taocdn.com/s3/m/1709071284254b35eefd34cf.png)
第二讲证明不等式的基本方法课题:第01 课时不等式的证明方法之一:比较法一.教学目标(一)知识目标(1)了解不等式的证明方法——比较法的基本思想;(2)会用比较法证明不等式,熟练并灵活地选择作差或作商法来证明不等式;(3)明确用比较法证明不等式的依据,以及“转化”的数学思想。
(二)能力目标(1)培养学生将实际问题转化为数学问题的能力;(2)培养学生观察、比较、抽象、概括的能力;(3)训练学生思维的灵活性。
(三)德育目标(1)激发学习的内在动机;(2)养成良好的学习习惯。
二.教学的重难点及教学设计(一)教学重点不等式证明比较法的基本思想, 用作差、作商达到比较大小的目的(二)教学难点借助与0 或1 比较大小转化的数学思想,证明不等式的依据和用途(三)教学设计要点1. 情境设计用糖水加糖更甜,实际是糖的质量分数增大这个生活常识设置问题情境,激发学生学习动机,通过将实际问题转化为不等式大小的比较,引入新课。
2. 教学内容的处理(1)补充一系列不同种类的用作差、作商等比较法证明不等式的例题。
(2)补充一组证明不等式的变式练习。
(3)在作业中补充何时该用作差法,何时用作商法的习题,帮助同学们更好地理解比较法。
3. 教学方法独立探究,合作交流与教师引导相结合。
三.教具准备水杯、水、白糖、调羹、粉笔等四.教学过程( 一) 、新课学习:1. 作差比较法的依据:a b a b 0证明:采用差值比较法:已知a, b, m都是正数,并且 a b,则下面给出证明.a,b证明:注意到要证的不等式关于对称,不妨设当a b 0时, 1,a b 0(, )1例5. 若a b c 0,求证1.已知a 1. 求证:(1)a2 2a 1;最终比较差与0 的大小关结果与1 的大小关系系。
证明不等式的基本方法
![证明不等式的基本方法](https://img.taocdn.com/s3/m/cf6b241fa9956bec0975f46527d3240c8447a1a1.png)
证明不等式的基本方法证明不等式是数学中一个相当有趣又有点小挑战的事儿呢。
比较法是很常用的一种。
差值比较法呢,就是把要证明的不等式两边相减,然后判断差的正负性。
比如说要证明a > b,那就计算a - b,如果结果大于0,那可不就证明出来了嘛。
这就好比两个人比身高,直接站一块儿量一下差值就知道谁高谁低啦。
在这个过程中呢,计算差值的时候要特别细心哦,可别在计算上出岔子,那可就像爬山爬到一半摔一跤,太可惜啦。
它的安全性就在于只要计算正确,结果就很可靠,稳定性呢,就是不管这个不等式看起来多复杂,只要能算出差值就有希望判断。
它的应用场景可广啦,像一些简单的代数式大小比较就特别好用。
例如比较x²+ 1和2x的大小,计算(x²+ 1 - 2x)=(x - 1)²,因为任何数的平方都大于等于0,所以很容易就证明出x²+ 1≥2x啦,多棒呀!综合法也很厉害。
它是从已知条件出发,利用一些定理、性质等,逐步推导出要证明的不等式。
这就像是盖房子,一块砖一块砖地往上垒。
不过这就要求我们对那些定理、性质得特别熟悉才行呀,要是不知道有哪些“建筑材料”,那房子可就盖不起来喽。
它的安全性取决于我们对基础知识的掌握程度,如果基础知识很扎实,那推导出来的结果就很靠谱。
稳定性呢,只要每一步推导都是正确的,就不会出问题。
比如说已知a > 0,b > 0,要证明(a + b)/2≥√ab。
我们可以根据完全平方公式(a - b)²≥0展开得到a²- 2ab + b²≥0,移项得到a²+ 2ab + b²≥4ab,也就是(a + b)²≥4ab,再两边同时开方除以2就得到(a + b)/2≥√ab啦。
多神奇呀!这种方法在解决一些和几何、函数相关的不等式证明中特别有用,因为在这些领域有很多已知的定理可以用来推导。
分析法呢,和综合法有点相反。
证明不等式的基本方法
![证明不等式的基本方法](https://img.taocdn.com/s3/m/f8b1e610ddccda38366baf06.png)
x2
例7(1)设
y2
1, 求x
y的最大值,
16 9
并求此时的x, y值。 三角换元
(2)设 x, y R,且 x2 y 2 1,
求证:| x2 2xy y 2 | 2 ;
(1)设 x r sin, y r cos,且 | r | 1
证明:∵ a, b 是正数,且 a b , ∴要证 aabb abba ,只要证 lg (aabb ) lg(abba ) ,
只要证 a lg a b lgb b lg a a lgb .
(a lg a b lg b) (b lg a a lg b) = (a b)(lg a lg b)
= (a2 b2 )(a b) = (a b)(a b)2
∵ a,b 是正数,且 a b ,∴ a b 0, (a b)2 >0
∴ (a3 b3 ) (a2b ab2 ) >0,∴ a3 b3 a2b ab2
注:比较法是证明不等式的基本方法,也是 最重要的方法,另外,有时还可作商比较.
当且仅当(a b)(b c)≥0 时,等号成立.
四.反证法:
假设命题结论的反面成立,经过正确的推理, 引出矛盾,因此说明假设错误,从而证明原命题 成立,这样的证明方法叫反证法.(正难则反)
例、已知 f (x) x2 px q,求证:
1
| f (1) |,| f (2) |,| f (3) |中至少有一个不小于2 。
求证:已知a, b, c R+,求证 :书P25页2(2)
第60讲 不等式的证明、柯西不等式与均值不等式
![第60讲 不等式的证明、柯西不等式与均值不等式](https://img.taocdn.com/s3/m/f9da6d7bdd3383c4ba4cd28b.png)
3x+ 2y
2y+ 3z
1
z
2=( 3+2+ 3)2=16+8 3.
当且仅当3x=22y=31z,即 x∶y∶z=3∶ 3∶1 时,等号成立. xy z
∴3x+2y+1z的最小值为 16+8 3.
课堂考点探究
[总结反思] 对于若干个单项式的平方和,因为其符合柯西不等式(a2+b2+…+c2)(m2+n2+…+ p2)≥(am+bn+…+cp)2,所以只要补足另一个平方和多项式,便可利用柯西不等式来求 最值.
课堂考点探究
探究点二 利用综合法、分析法证明不等式
例 2 [2016·湖南邵阳三联] 设函数 f(x)=|x-a|. (1)当 a=2 时,解不等式 f(x)≥7-|x-1|; (2)若 f(x)≤1 的解集为0,2,m1 +21n=a(m>0,n>0),求
证:m+4n≥2 2+3.
[思路点拨] (1)采用零点分 段法去绝对值符号,再求 解;(2)根据 f(x)≤1 的解集 是[0,2],解得 a=1,所以
课堂考点探究
探究点三 利用放缩法证明不等式
例 3 [2017·湖南师大附中摸底考试] 设 α,β,γ 均为实 数.
(1)证明:|cos(α+β)|≤|cos α|+|sin β|; |sin(α+β)|≤|cos α|+|cos β|. (2)若 α+β+γ=0,证明:|cos α|+|cos β|+|cos γ|≥
可,这种方法称为求差比较法.
②求商比较法:a>b>0⇔ab>1 且 a>0,b>0,因此当 a>0,b>0 时要证明 a>b,只要证明
a b>1
即可,这种方法称为求商比较法.
(2)分析法
证明不等式的基本方法——比较法
![证明不等式的基本方法——比较法](https://img.taocdn.com/s3/m/736bbf5254270722192e453610661ed9ad5155e2.png)
证明不等式的基本方法——比较法不等式的基本方法之一是比较法(或称为递推法)。
该方法的主要思想是通过比较不等式两边的表达式来确定它们的大小关系。
在使用比较法证明不等式时,我们通常需要注意以下几点:1.明确不等式的目标:确定我们想要证明的具体不等式。
2.选择合适的比较对象:我们需要找到一个或多个合适的表达式作为比较对象,通常是在已知不等式中出现过的表达式。
3.建立递推关系:通过比较对象与目标表达式的大小关系,建立一种递推关系。
递推关系可以是通过改变不等式两边的表达式,或是通过引入新的变量来推导出来。
4.递归执行递推关系:通过递归执行建立好的递推关系,最终推导出目标不等式的结果。
下面将通过具体的例子来说明比较法的应用。
例1:证明对于任意正整数n,有$n^2>n$。
解:首先明确不等式的目标是$n^2>n$。
可以选择$n-1$作为比较对象,因为$n^2>n$与$n>n-1$是等价的。
建立递推关系:假设$n>1$,则有$(n-1)^2=n^2-2n+1<n^2<n(n-1)$。
递归执行递推关系,当$n=2$时,有$2^2=4>2$。
对于$n>2$,可以继续推导出$n^2>n$。
综上所述,对于任意正整数n,有$n^2>n$。
例2:证明对于任意正整数n,有$2^n>n$。
解:首先明确不等式的目标是$2^n>n$。
可以选择$n-1$作为比较对象,因为$2^n>n$与$n>n-1$是等价的。
建立递推关系:假设$n>1$,则有$2^{n-1} = \frac{1}{2^n} <\frac{n}{2}$。
递归执行递推关系,当$n=2$时,有$2^2=4>2$。
对于$n>2$,可以继续推导出$2^n>n$。
综上所述,对于任意正整数n,有$2^n>n$。
比较法是一种简单直观的证明不等式的方法。
通过找到合适的比较对象,建立递推关系,并递归执行递推关系,我们可以有效地证明不等式。
证明不等式的基本方法-比较法
![证明不等式的基本方法-比较法](https://img.taocdn.com/s3/m/8f6b2cea19e8b8f67c1cb9ea.png)
5.设 P = a 2 b 2 + 5, Q = 2ab − a 2 − 4a , 若 P > Q , 则实数 a , b
a b b a
a−b
a−b
≥1
∴ a b ≥ a b ,当且仅当 a = b时, 等号成立 .
1.求证 : 若a, b, c ∈ R+ , 则a b c ≥ ( abc )
a b c
a + b+ c 3
2.若a, b, m, n都是正实数, 且m + n = 1, 试证明 ma + nb ≥ m a + n b
2
= (a + b )(a − b )2
Q a , b > 0,∴ a + b > 0
又 Q a ≠ b ∴ (a − b ) > 0
2
故 (a + b )(a − b )2 > 0即(a 3 + b 3 ) − ( a 2b + ab 2 ) > 0
∴ a + b > a b + ab
3 3 2
2
a 例 2 如果用 akg 白糖制出 bkg 糖溶液 , 则其浓度为 , b 若在上述溶液中再添加 mkg 白糖 , 此时溶液的浓度 a+m , 将这个事实抽象为数学 问题 , 并给出证明 . 增加到 b+m 解 : 可以把上述事实抽象成 如下不等式问题 :
证明不等式的基本方法
![证明不等式的基本方法](https://img.taocdn.com/s3/m/6e06b17802768e9951e73812.png)
证明不等式的基本方法现实世界中的量,相等是局部的、相对的,而不等则是普遍的、绝对的,不等式的本质是研究“数量关系”中的“不等关系”.对于两个量,我们常常要比较它们之间的大小,或者证明一个量大于另一个量,这就是不等式的证明.不等式的证明因题而异,灵活多变,常常要用到一些基本的不等式,如平均不等式,柯西不等式等,其中还需用到一些技巧性高的代数变形.本节将介绍证明不等式的一些最基本的方法.比较法比较法一般有两种形式;(1)差值比较欲证A ≥B .只需证A —B ≥0; (2)商值比较若B>0,欲证A ≥B ,只需证BA≥1. 在用比较法时,常常需要对式子进行适当变形,如因式分解、拆项、合并项等. 例l 实数x 、y 、z 满足1-=++zx yz xy ,求证:485222≥++z y x .例2 设+∈R c b a ,,,试证:对任意实数x 、y 、z ,有:)())()((2222zx bac yz a c b xy c b a a c c b b a abc z y x ++++++++≥++,并指出等号成立的充要条件.例3 设+∈R c b a ,,,试证: b a a c c b cb ac b a c b a +++≥222.例4 设+∈R c b a ,,,1222=++c b a ,求abc c b a cb a S )(2111333222++-++=的最小值.说明先猜后证是处理许多极值问题的有效手段.猜,一猜答案,二猜等号成立的条件;证明的时候要注意等号是否能取到.有时我们直接证明不等式A ≤B 比较困难,可以试着去找一个中间量C ,如果有A ≤C 及C ≤B 同时成立,自然就有A ≤B 成立.所谓“放缩”即将A 放大到C ,再把C 放大到B 或者反过来把B 缩小到C 再缩小到A .不等式证明的技巧,常体现在对放缩尺度的把握上.例5 证明:对任意+∈R c b a ,,,均有abc abca c abc cb abc b a 1111333333≤++++++++.例6 设),,2,1(1n i a i =≥,求证:)1(12)1()1)(1(2121n nn a a a n a a a +++++≥+++ .所谓分析法就是先假定要证的不等式成立,然后由它出发推出一系列与之等价的不等式(即要求推理过程的每一步都可逆),直到得到一个较容易证明的不等式或者一个明显成立的不等式.分析法是一种执果索因的证明方法,在寻求证明思路时尤为有效.例7 若0,,≥∈y R y x ,且2)1()1(+≤+x y y .求证;2)1(x y y ≤-.例8 设+∈R c b a ,,,求证:ab b a abc c b a 233-+≥-++.引入参数法引入适当的参数,根据题中式子的特点,将参数确定,从而使不等式获得证明. 例12 设+∈R q p ,,且233=+q p ,求证:2≤+q p .例13 设+∈R c b a ,,,且12222=++c b a ,求证:24333≥++c b a .例14 设z y x ,,是3个不全为零的实数,求2222z y x yzxy +++的最大值.标准化(归一化)当不等式为齐次式的时候,常可设变量之和为k (某个常数),这样不仅简化了式子,而且增加了条件,有助于我们解决问题.例15 设c b a ,,是正实数,求证:8)(2)2()(2)2()(2)2(222222222≤++++++++++++++b a c b a c a c b a c b c b a c b a .例16 已知0,02=++>++c bx ax c b a 有实根,求证:{}{}c b a c b a c b a ,,max 49,,min 4≤++≤.习题1.设R z y x ∈,,,求证:[][]2222222222222)()()()()()(zx yz xy z y x z y x zx yz xy z y x z y x ++-++++≥++-++++.2.设+∈R c b a ,,,求证:333888111c b a c b a c b a ++≤++.3.设实数10021,,,a a a 满足: (1)010021≥≥≥≥a a a ; (2)10021≤+a a ;(3)10010043≤+++a a a . 求21002221a a a +++ 的最大值.4.如果+∈R c b a ,,,求证:2222222)())()((ca bc ab a ca c c bc b b ab a ++≥++++++.5.设0,,≥z y x ,求证:xyz z y x z y x z y x z y x 3)()()(222≥-++-++-+.并确定等号成立的条件.6.设+∈R c b a ,,,求证:49)(1)(1)(1)(222≥⎥⎦⎤⎢⎣⎡+++++++x z z y y x zx yz xy .7.求证:161cos sin 1010≥+αα.变量代换法变量代换是数学中常用的解题方法之一.将一个较复杂的式子视为一个整体,用一个字母去代换它,从而使复杂问题简单化.有时候.有些式子可以用三角换元,从而使问题简化.当问题的条件或结论中出现“222r y x =+”,“222r y x ≤+”,“22x r -”或“1≤x ”等形式时,可以考虑用“sin α”与“cos α”代换;问题的条件或结论中出现“22x r +”.“22r x -”形式时,可作“αtan r x =”或“αsec r x =”代换等.在作代换时,要特别注意α的取值范围是由原变量x 的取值范围决定.例l 已知00≤α≤900,求证:49sin sin 452≤+-≤αα.例2 已知实数y x ,满足096422=+--+y x y x ,求证:996121922≤+++≤y x y x .例3 设c b a ,,是三角形的三边长,求证:0)()()(222≥-+-+-a c a c c b c b b a b a .已知。
证明不等式的基本方法
![证明不等式的基本方法](https://img.taocdn.com/s3/m/278b5fc676a20029bd642d1b.png)
恒成立,求实数a的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”; 乙说:“把不等式变形为左边含变量x的函数,右边仅含常 数,求函数的最值”; 丙说:“把不等式两边看成关于x的函数,作出函数图象”;
参考上述解题思路,你认为他们所讨论的问题的正确结论,
即a的取值范围是________. [答案] a≤10
[点评与警示] 论证过程中,执果索因与由因导果总是不
断变化,交替出现.尤其综合题推理较盲目时,利用分析法从
要证的问题入手,逐步推求,再用综合法逐步完善,最后找到 起始条件为止.
(人教版选修 4—5 第 30 页第 1 题)已知 a, b, c∈(0,1), 1 求证:(1-a)b,(1-b)c,(1-c)a 不同时大于4.
[证明]
(反证法)假设(1-a)b,(1-b)c,(1-c)a 都大于 ①
1 1 (1-b)c· (1-c)a>64 4,则(1-a)b· 1 即[a(1-a)· b(1-b)· c(1-c)]>64
a+1-a 2 1 而 0<a(1-a)≤[ ]= , 2 4
1 1 0<b(1-b)≤ ,0<c(1-c)≤ 4 4 1 ∴[a(1-a)][b(1-b)][c(1-c)]≤ 与①矛盾 64 1 ∴(1-a)b,(1-b)c,(1-c)a 不同时大于 . 4
) B.a2>b2 1a 1b D.(2) <(2)
1 2 .若 a > b > 1 , P = lga· lgb , Q = (lga + lgb) , R = 2 a+b lg( ),则( 2 A.R<P<Q C.Q<P<R
[解析]
) B.P<Q<R
D.P<R<Q 1 ∵lga>lgb>0,∴ (lga+lgb)> lga· lgb,即 Q 2
初中数学不等式证明方法总结
![初中数学不等式证明方法总结](https://img.taocdn.com/s3/m/5ca93405bb1aa8114431b90d6c85ec3a87c28bd4.png)
初中数学不等式证明方法总结通常不等式中的数是实数,字母也代表实数。
初中数学不等式证明方法总结,希望可以帮助到大家,我们来看看。
初中数学不等式证明方法总结1知识要点:不等式两边乘或除以同一个负数,不等号的方向改变。
(÷或×1个负数的时候要变号)。
不等式的证明1、比较法包括比差和比商两种方法。
2、综合法证明不等式时,从命题的已知条件出发,利用公理、定理、法则等,逐步推导出要证明的命题的方法称为综合法,综合法又叫顺推证法或因导果法。
3、分析法证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,最后将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法。
4、放缩法证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法。
5、数学归纳法用数学归纳法证明不等式,要注意两步一结论。
在证明第二步时,一般多用到比较法、放缩法和分析法。
6、反证法证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。
知识要领总结:证明不等式要注意不等式两边都乘以或除以一个负数,要改变不等号的方向。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
第2讲 不等式的证明
![第2讲 不等式的证明](https://img.taocdn.com/s3/m/1b1708d20975f46527d3e1c4.png)
第2讲 不等式的证明[学生用书P223]1.不等式证明的方法 (1)比较法 ①作差比较法:知道a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b 只要证明a -b >0即可,这种方法称为作差比较法.②作商比较法:由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时,要证明a >b ,只要证明ab >1即可,这种方法称为作商比较法.(2)综合法从已知条件出发,利用不等式的有关性质或定理,经过推理论证,最终推导出所要证明的不等式成立,这种证明方法叫综合法.即“由因导果”的方法.(3)分析法从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等),从而得出要证的不等式成立,这种证明方法叫分析法.即“执果索因”的方法.(4)反证法和放缩法①先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,这种方法叫做反证法.②在证明不等式时,有时要把所证不等式的一边适当地放大或缩小,此利于化简并使它与不等式的另一边的关系更为明显,从而得出原不等式成立,这种方法称为放缩法.(5)数学归纳法一般地,当要证明一个命题对于不小于某正整数n 0的所有正整数n 都成立时,可以用以下两个步骤:①证明当n =n 0时命题成立;②假设当n =k (k ∈N *,且k ≥n 0)时命题成立,证明n =k +1时命题也成立.在完成了这两个步骤后,就可以断定命题对于不小于n 0的所有正整数都成立.这种证明方法称为数学归纳法.2.几个常用基本不等式(1)二维形式的柯西不等式 ①定理1(二维形式的柯西不等式)若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立. ②(二维变式)a 2+b 2·c 2+d 2≥|ac +bd |,a 2+b 2·c 2+d 2≥|ac |+|bd |.③定理2(柯西不等式的向量形式)设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.④定理3(二维形式的三角不等式)设x 1,y 1,x 2,y 2∈R ,那么x 21+y 21+x 22+y 22≥⑤(三角变式)设x 1,y 1,x 2,y 2,x 3,y 3∈R ,则(x 1-x 3)2+(y 1-y 3)2+(x 2-x 3)2+(y 2-y 3)2≥(2)柯西不等式的一般形式设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.(3)排序不等式设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 为b 1,b 2,…,b n 的任一排列,则有:a 1b n +a 2b n -1+…+a n b 1≤a 1c 1+a 2c 2+…+a n c n ≤a 1b 1+a 2b 2+…+a n b n ,当且仅当a 1=a 2=…=a n 或b 1=b 2=…=b n 时,反序和等于顺序和.排序原理可简记作:反序和≤乱序和≤顺序和.若a >b >1,x =a +1a ,y =b +1b ,则x 与y 的大小关系是( )A .x >yB.x <y C .x ≥y D .x ≤y解析:选A .x -y =a +1a -⎝⎛⎭⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab .由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0,即x -y >0,所以x >y .下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③|b a +ab |≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A .1B.2 C .3 D .4解析:选C .log x 10+lg x =1lg x+lg x ≥2(x >1);①正确.ab ≤0时,|a -b |=|a |+|b |,②不正确; 因为ab ≠0,b a 与ab 同号,所以|b a +b a |=|b a |+|ab |≥2,③正确;由|x -1|+|x -2|的几何意义知, |x -1|+|x -2|≥1恒成立,④也正确, 综上①③④正确.设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________. 解析:由柯西不等式得(ma +nb )2≤(m 2+n 2)(a 2+b 2),即m 2+n 2≥5,所以m 2+n 2≥ 5,所以m 2+n 2的最小值为5.答案: 5若a ,b ,c ∈(0,+∞),且a +b +c =1,求a +b +c 的最大值. 解:(a +b +c )2=(1×a +1×b +1×c )2 ≤(12+12+12)(a +b +c )=3. 当且仅当a =b =c =13时,等号成立.所以(a +b +c )2≤3. 故a +b +c 的最大值为3.设x >0,y >0,若不等式1x +1y +λx +y ≥0恒成立,求实数λ的最小值.解:因为x >0,y >0,所以原不等式可化为-λ≤(1x +1y )(x +y )=2+y x +x y .因为2+y x +xy ≥2+2y x ·xy=4,当且仅当x =y 时等号成立.所以⎣⎡⎦⎤(1x +1y )(x +y )min=4, 即-λ≤4,λ≥-4. 所以λ的最小值为-4.用综合法、分析法证明不等式 [学生用书P224][典例引领](2017·高考全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.【证明】 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2.用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.[通关练习]1.设a >0,b >0,若3是3a 与3b 的等比中项,求证:1a +1b ≥4.证明:由3是3a 与3b 的等比中项得 3a ·3b =3,即a +b =1,要证原不等式成立, 只需证a +b a +a +b b ≥4成立,即证b a +ab ≥2成立,因为a >0,b >0,所以b a +a b ≥2b a ·ab=2, (当且仅当b a =a b ,即a =b =12时,“=”成立),所以1a +1b≥4.2.设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ca ≤13;(2)a 2b +b 2c +c 2a≥1. 证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1, 所以3(ab +bc +ca )≤1, 即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,所以a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ),即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a≥1.放缩法证明不等式[学生用书P225][典例引领]若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.【证明】 当|a +b |=0时,不等式显然成立. 当|a +b |≠0时, 由0<|a +b |≤|a |+|b | ⇒1|a +b |≥1|a |+|b |,所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |=|a |1+|a |+|b |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |.在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有: (1)变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1.上面不等式中k ∈N *,k >1.(2)利用函数的单调性.(3)真分数性质“若0<a <b ,m >0,则a b <a +mb +m”.[注意] 在用放缩法证明不等式时,“放”和“缩”均需把握一个度.[通关练习]设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明: 由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n,所以12=n 2n ≤1n +1+1n +2+…+12n <n n=1.所以原不等式成立.柯西不等式的应用[学生用书P225][典例引领]已知x ,y ,z 均为实数.(1)若x +y +z =1,求证:3x +1+3y +2+3z +3≤33; (2)若x +2y +3z =6,求x 2+y 2+z 2的最小值. 【解】 (1)证明:因为(3x +1+3y +2+3z +3)2≤(12+12+12)(3x +1+3y +2+3z+3)=27.所以3x +1+3y +2+3z +3≤33. 当且仅当x =23,y =13,z =0时取等号.(2)因为6=x +2y +3z ≤x 2+y 2+z 2·1+4+9,所以x 2+y 2+z 2≥187,当且仅当x =y 2=z 3即x =37,y =67,z =97时,x 2+y 2+z 2有最小值187.(1)使用柯西不等式证明不等式的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为:(a 21+a 22+…+a 2n)(1a 21+1a 22+…+1a 2n )≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.[通关练习]1.设x ,y ,z ∈R ,x 2+y 2+z 2=25,试求x -2y +2z 的最大值与最小值. 解: 根据柯西不等式,有(1·x -2·y +2·z )2≤[12+(-2)2+22](x 2+y 2+z 2), 即(x -2y +2z )2≤9×25, 所以-15≤x -2y +2z ≤15,故x -2y +2z 的最大值为15,最小值为-15.2.已知大于1的正数x ,y ,z 满足x +y +z =33.求证:x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ≥32.证明: 由柯西不等式及题意得,⎝ ⎛⎭⎪⎫x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ·[(x +2y +3z )+(y +2z +3x )+(z +2x +3y )]≥(x +y +z )2=27.又(x +2y +3z )+(y +2z +3x )+(z +2x +3y )=6(x +y +z )=183, 所以x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ≥27183=32,当且仅当x =y =z =3时,等号成立.排序不等式的应用[学生用书P226][典例引领]设a ,b ,c 为任意正数,求a b +c +b c +a +c a +b的最小值. 【证明】 不妨设a ≥b ≥c ,则a +b ≥a +c ≥b +c ,1b +c ≥1c +a ≥1a +b ,由排序不等式得,a b +c +b c +a +c a +b ≥b b +c +c c +a +a a +b , a b +c +b c +a +c a +b ≥c b +c +a c +a +b a +b , 上述两式相加得:2⎝ ⎛⎭⎪⎫ab +c +b c +a +c a +b ≥3,即a b +c +b c +a +c a +b ≥32. 当且仅当a =b =c 时, a b +c +b c +a +c a +b 取最小值32.求最小(大)值时,往往所给式子是顺(反)序和式.然后利用顺(反)序和不小(大)于乱序和的原理构造出适当的一个或两个乱序和,从而求出其最小(大)值.[通关练习]设0<a ≤b ≤c 且abc =1.试求1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值.解: 令S =1a 3(b +c )+1b 3(a +c )+1c 3(a +b ),则S =(abc )2a 3(b +c )+(abc )2b 3(a +c )+(abc )2c 3(a +b )=bc a (b +c )·bc +ac b (a +c )·ac +abc (a +b )·ab .由已知可得:1a (b +c )≥1b (a +c )≥1c (a +b ),ab ≤ac ≤bc .所以S ≥bc a (b +c )·ac +ac b (a +c )·ab +abc (a +b )·bc=c a (b +c )+a b (a +c )+bc (a +b ).又S ≥bc a (b +c )·ab +ac b (a +c )·bc +abc (a +b )·ac=b a (b +c )+c b (a +c )+ac (a +b ),两式相加得:2S ≥1a +1b +1c ≥331abc=3.所以S ≥32,即1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值为32.证明不等式的常用方法与技巧(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的基本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.证明不等式需要注意的2个问题(1)在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要分析每次使用时等号是否成立.(2)柯西不等式使用的关键是出现其结构形式,也要注意等号成立的条件.[学生用书P353(单独成册)]1.(2018·长春质量检测(二))(1)如果关于x 的不等式|x +1|+|x -5|≤m 的解集不是空集,求实数m 的取值范围;(2)若a ,b 均为正数,求证:a a b b ≥a b b a .解:(1)令y =|x +1|+|x -5|=⎩⎪⎨⎪⎧-2x +4,x ≤-16,-1<x <52x -4,x ≥5,可知|x +1|+|x -5|≥6,故要使不等式|x +1|+|x -5|≤m 的解集不是空集,只需m ≥6.(2)证明:因为a ,b 均为正数,所以要证a a b b ≥a b b a ,只需证a a -b b b -a ≥1,即证(a b )a -b ≥1,当a ≥b 时,a -b ≥0,a b ≥1,可得(ab )a -b ≥1;当a <b 时,a -b <0,0<a b <1,可得(a b )a -b >1,故a ,b 均为正数时,(ab )a -b ≥1,当且仅当a =b 时等号成立,故a a b b≥a b b a 成立.2.(2018·湘中名校联考)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值;(2)求at +12+3bt 的最大值.解:(1)由|x +a |<b ,可得-b -a <x <b -a , 所以-b -a =2且b -a =4.解得a =-3,b =1. (2)利用柯西不等式,可得-3t +12+3t =3(4-t +t )≤3(1+1)(4-t +t )=6×4-t +t =26,当且仅当t =4-t ,即t =2时等号成立.当t =2时,at +12+3bt 的最大值为26.3.已知实数a ,b ,c ,d 满足a >b >c >d ,求证:1a -b +1b -c +1c -d ≥9a -d. 证明: 法一:因为⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d (a -d )=⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d [(a -b )+(b -c )+(c -d )] ≥331a -b ·1b -c ·1c -d·33(a -b )(b -c )(c -d )=9, 当且仅当a -b =b -c =c -d 时取等号,所以1a -b +1b -c +1c -d ≥9a -d. 法二:因为⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d (a -d ) =⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d [(a -b )+(b -c )+(c -d )] ≥⎝ ⎛⎭⎪⎫ 1a -b ·a -b +1b -c ·b -c +1c -d ·c -d 2=9, 当且仅当a -b =b -c =c -d 时取等号,所以1a -b +1b -c +1c -d ≥9a -d. 4.设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3;(2)a bc +b ac +c ab≥3(a +b +c ). 证明:(1)要证a +b +c ≥3;由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)证得.所以原不等式成立.(2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac 2, b ac ≤ab +bc 2,c ab ≤bc +ac 2, 所以a bc +b ac +c ab ≤ab +bc +ca .(当且仅当a =b =c =33时等号成立) 所以原不等式成立.1.求证:112+122+132+ (1)2<2. 证明:因为1n 2<1n (n -1)=1n -1-1n, 所以112+122+132+…+1n 2<1+11×2+12×3+13×4+…+1(n -1)×n=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =2-1n <2. 2.(2018·成都第二次诊断性检测)(1)求证:a 2+b 2+3≥ab +3(a +b );(2)已知a ,b ,c 均为实数,且a =x 2+2y +π2,b =y 2+2z +π3,c =z 2+2x +π6,求证:a ,b ,c 中至少有一个大于0.证明:(1)因为a 2+b 2≥2ab ,a 2+3≥23a ,b 2+3≥23b ,将此三式相加得2(a 2+b 2+3)≥2ab +23a +23b ,所以a 2+b 2+3≥ab +3(a +b ).(2)假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0,因为a =x 2+2y +π2,b =y 2+2z +π3,c =z 2+2x +π6, 所以a +b +c =(x 2+2y +π2)+(y 2+2z +π3)+(z 2+2x +π6)=(x +1)2+(y +1)2+(z +1)2+π-3>0,即a +b +c >0与a +b +c ≤0矛盾,故假设错误,原命题成立,即a , b ,c 中至少有一个大于0.3.设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ; (2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd ,得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1),得a +b >c +d . ②若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |.综上,a +b > c +d 是|a -b |<|c -d |的充要条件.4.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪13a +16b <14.(2)比较|1-4ab |与2|a -b |的大小.解:(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x ≤1,-3,x >1,由-2<-2x -1<0 解得-12<x <12,即M =⎝⎛⎭⎫-12,12, 所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14,因为|1-4ab |2-4|a -b |2 =(1-8ab +16a 2b 2)-4(a 2-2ab +b 2) =(4a 2-1)(4b 2-1)>0,故|1-4ab |2>4|a -b |2,即|1-4ab |>2|a -b |.。
(完整版)不等式的证明方法大全,推荐文档
![(完整版)不等式的证明方法大全,推荐文档](https://img.taocdn.com/s3/m/2441bb9c376baf1ffd4fad37.png)
不等式的证明一、比较法:比较法是证明不等式的最基本、最重要的方法,它常用的证明方法有两种:1.作差比较法(1)应用范围:当欲证的不等式两端是多项式、分式或对数式时,常用此法。
(2)方法:欲证A>B,只需要证A-B>0(3)步骤:“作差----变形----判断符号”。
(4)使用此法作差后主要变形形式的处理:○将差变形为常数或一常数与几个平方和的形式常用配方法或实数特征a2≥0判断差符号。
○将差变形为几个因式的积的形式,常用因式分解法。
○若变形后得到二次三项式,常用判别式定符号。
2.作商比较法(1)应用范围:当要证的式子两端是乘积的形式或幂、指数时常用此法。
(2)方法:要证A>B,常分以下三种情况:若B>0,只需证明1A B >;若B=0,只需证明A>0;若B<0,只需证明1AB<。
(3)步骤:“作商-----变形-----判断商数与1的大小”例1 已知a ,b ∈R ,且a+b=1. 求证:()()2252222≥+++b a . 解析:用作差比较法a b b a R b a -=∴=+∈1,1,,()()2222259224()22a b a b a b ∴+++-=+++-2222911(1)4222(0222a a a a a =+-+-=-+=-≥即()()2252222≥+++b a (当且仅当21==b a 时,取等号)例2:已知a , b , m 都是正数,并且a < b ,求证:bam b m a >++解析:用作差比较法∵)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++∵a ,b ,m 都是正数,并且a <b ,∴b + m > 0 , b a > 0∴0)()(>+-m b b a b m即:bam b m a >++例3:已知a>b>0,求证:()2a b a ba b ab +>解析:用作商比较法∵()222222a b a b a b a b a b a b a b a b a ba aabb ab -++-----+⎛⎫=== ⎪⎝⎭又∵a>b>0,()221,012a b a ba ba ab a b b a b ab -+-⎛⎫∴>>∴> ⎪⎝⎭∴>练习:已知a ,b∈R +,求证a a b b ≥a b b a .例4:已知0 < x < 1, 0 < a < 1,试比较|)1(log | |)1(log |x x a a +-和的大小。
高中数学证明不等式的九种常用方法
![高中数学证明不等式的九种常用方法](https://img.taocdn.com/s3/m/d453b04bf705cc1754270933.png)
ab-a-b+1≥a+b-3 即ab≥a+b+(a+b-4) ∵a≥2,b≥2 ∴a+b-4≥0 ∴ab≥a+b 当且仅当a=b=2时等号成立 证毕
6 Math Part
构造法
6 Math Part 构造法
构造法:通过构造函数、图形、方程、数列、 向量等来证明不等式的方法。
本题我们使用构造函数和几何图形两种方法 来说明构造法的使用。
=a(b-1)-(b-1)-1
∴ab-a-b≥0
=(a-1)(b-1)-1
即ab≥a+b
∵a≥2,b≥2
证毕
2 Math Part
综合法
2 Math Part 综合法
综合法:综合法是从命题的已知条件出发, 利用公理、已知定义及定理,逐步推导,从 而最后推导出要证明的命题。
2 Math Part 综合法
4 Math Part 反证法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 假设ab<a+b ab-a-b =a(b-1)-b =a(b-1)-(b-1)-1 =(a-1)(b-1)-1 ∵ab<a+b
∴(a-1)(b-1)<1
①
∵a≥2,b≥2
∴a-1≥1,b-1≥1
∴(a-1)(b-1)≥1
与①式矛盾
所以原命题成立
证毕
5 Math Part
公式法
5 Math Part 公式法
伯公努式利法不:等利式用:已有的不等式的定理、公式等 (1证+x明1)不(1等+x式2)…的(一1+种xn方) ≥法1。+x高1+中x2常…+见xn的公式有: 对基 栖于本 西任不不意等等1≤式式i,、、j≤绝加n都对权有值平x不均i>-等不1且式 等所、 式有均 、x值 切i与不 比x等雪j同式夫号、不
数学(选修4-5)课件1.2比较法证不等式
![数学(选修4-5)课件1.2比较法证不等式](https://img.taocdn.com/s3/m/fe794588d05abe23482fb4daa58da0116d171f18.png)
1.2 比较法证不等式
学习目标
重点难点
1.了解比较法证明不等式的意义.
2.理解比较法的解题步骤及书面表
1.重点是利用比较法 证明不等式.
达.
2.难点是利用分类讨
3.能够应用比较法证明简单的不等
式.
论思想证不等式.
1.比较法 (1)求差比较法 我们已经知道a>b⇔a-b>0,a<b⇔a-b<0,因此,要 证明a>b,只要证明__a_-__b_>__0__即可,这种方法称为求差比较 法. (2)求商比较法 由于 a>b>0⇔ba>1 且 a>0,b>0,因此,当 a>0,b>0 时,要证明 a>b,只要证明___ba_>__1____即可,这种方法称为求
;
当 b>a>0 时,0<ab<1,a-2 b<0,
由指数函数的性质,得aba-2 b
a+b
>1,∴aabb>(ab) 2
.
a+b
综上知,aabb>(ab) 2 .
【点评】 当被证明的不等式(或变形后)的两端都是正数 且为乘积形式或幂指数形式时,一般用求商比较法.
a+b
2.当 a,b∈(0,+∞)时,求证:abba≤(ab) 2 .
商比较法.
(1)求差比较法主要适用的类型是什么?实质是什么? (2)求商比较法主要适用的类型是什么? 提示:(1)求差比较法主要适用于具有多项式结构特征的不 等式证明.实质是把判断两个数(或式子)大小的问题转化为判 断一个数(或式子)与0大小的问题. (2)求商比较法主要适用于积(商)、幂(根式)、指数式形式 的不等式证明.
点击进入WORD链接
点击进入WORD链接
谢谢观看!
3.已知-π2≤α≤π2,-π2≤β≤π2,求α+2 β,α-2 β的取值范
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明不等式的基本方法现实世界中的量,相等是相对的、局部的,而不等的绝对的、普遍的。
不等式的本质是研究“数量关系”中的“不等关系”。
对于两个量,我们常要比较它们之间的大小,或者证明一个量大于另一个,这就是不等式的证明。
不等式的证明因题而异,灵活多变,常常要用到一些基本的不等式,如柯西不等式、平均值不等式等等,其中还需要用一些技巧性高的代数变形。
在这一部分我们主要来学习一些证明不等式的基本方法。
一.比较法一般而言,比较法有两种形式:(1)差值比较法:欲证B A ≥,只需证0≥-B A 即可; (2)商值比较法:若0>B ,欲证B A ≥,只需证1≥BA即可。
注意在利用比较法证明不等式时,常需要对所要证明的不等式进行恰当的变形,如因式分解、拆项、合并项等。
一.差值比较法要证明b a >,最基本的方法就是证明0>-b a ,即把不等式的两边相减,转化为比较差与0的大小问题。
这种方法称为差值比较法,有时也叫做比差法。
差值比较法证明不等式的步骤:“作差――变形――判断符号”,为了便于判断符号,往往把差式变形为积的形式或完全平方形式。
例1.已知b a ,都是正数,且b a ≠,求证:2233ab b a b a +>+。
分析:可以把不等式两边相减,通过适当的变形,转化为一个能明确确定正负的代数式。
证明:)()()()()()(b a b b a a b ab b a a ab b a b a ---=---=+-+2232232233=222))(())((b a b a b a b a -+=-- 因为b a ,都是正数,所以0>+b a ,又因为b a ≠,所以0)(2>-b a从而0))((2>-+b a b a , 即0)()(2233>+-+ab b a b a 所以2233ab b a b a +>+。
评注:此题是不等式证明的典型题目,其拆项是有一定的技巧的,需要有较强的观察能力。
例2.设122+=x x f )(,且b a ,同号,1=+b a ,求证对任意的实数q p ,恒有)()()(bq ap f q bf p af +≥+成立。
分析:将欲证不等式的左、右两边具体化,是多项式,因此可以用作差比较法,注意在推证的过程中,注意到1=+b a 这一条件,应及时将差式化简。
证明:121212222-+-+++=++)()()(()()(bq ap q b p a bq ap f q bf p af )-=124222222222+---+b q abpq p a bq ap =14121222+--+-abpq b bq a ap )()( =122+-)(q p ab由于b a ,同号,所以122+-)(q p ab 0≥成立,从而原不等式成立。
评注:在作差比较中,变形是关键,这里灵活运用1=+b a 的变式,用配方法完成变形。
例3.已知b a ,都是正数,求证:22333b a b a +<+。
分析:由于两边都含有根号,应先将根号去掉,然后再作差比较。
证明:因为322233)()(b a b a +-+=642246336332b b a b a b b a a ---++ =-])[(2222983b b a b a +- 由于b a ,都是正数,所以-])[(2222983b b a b a +-<0 又033>+b a ,022>+b a 从而有22333b a b a +<+。
评注:在利用差值比较法证明不等式时,若变形以后出现了二次函数,则常配方法或判别式法来判定其符号。
比如在课本上的一道例题―――“利用定义判定3x x f =)(的单调性”,就是一个非常经典的例子。
二.商值比较法除了将不等式的两边相等相减,通过比较差与0的大小来证明不等式外,有时也可以通过把等式的两边相除,转化为证明所得的商式与1比较大小关系。
此种方法称为商值比较法,有时也叫做比商法。
商值比较法证明不等式的步骤:“作商――变形――判断与1的大小”。
此时应注意商值比较法仅适用于分母恒为正数的不等式的证明。
例4.若+∈N n ,求证:313)2311()711)(411)(11(+>-++++n n 。
分析:此题我们一般想到的就是数学归纳法,但是利用数学归纳法在处理不等式的证明问题时步骤较为繁琐,下面我们利用商值比较法来处理。
证明:设313)2311()711)(411)(11(+-++++=n n a n ,则14365427836542713)13(23323233321>++++++=+⋅++=+n n n n n n n n n a a n n , 所以数列{}n a 是递增数列。
又1211311331>=+⨯+=a ,11a a a n n >>>- , 故313)2311()711)(411)(11(+>-++++n n (+∈N n )。
例5.已知函数)(,)(R x x x f ∈+=21,求证:|||)()(|b a b f a f -≤-。
分析:观察所要证明的式子,可知利作商值比较法来证明。
因为有等号,所以可以先证明等式成立,分为b a =与b a ≠两种情况。
证明:若b a =时,|||)()(|b a b f a f -=-=0;若b a ≠时,因为0>-|)()(|b f a f ,0>-||b a 。
22222222111111b a b a b a b a b a b a b a b a b f a f ++++=+++--=-+-+=--))((|||||||)()(|122≤++=++<||||b a ba b a b a即|||)()(|b a b f a f -≤-成立。
综合上面两种情况可知不等式|||)()(|b a b f a f -≤-成立。
评注:(1)作商法通在两个正数之间进行。
本题若采用直接作差,则需证0122≤--+-|||1|b a b a +成立,但因表达式较为复杂,很难奏效。
但是考虑到|1|221b a +-+与||b a -均为非负,平方后并不改变它们之间的大小,故右以先平方去掉绝对值等号后再作差。
因此本题民可以采用差值比较法来作。
方法二:-+2|1|221b a +-2||b a - =]))(()[(222111b a ab ++-+=01122≤-++-+])()()[(2b a ab ab ,当且仅当b a =时取等号。
例6.已知b a ,都是正数,求证:ab b a b a b a ≥,当且仅当b a =时取等号。
分析:由于b a ,都是正数,所以不等式的两边都是正数。
由于所要证的不等式的两边都是指数的形式,从而将它们相除并考察商式与1的大小关系即可。
证明:将所要证的不等式的两边相除,得b a a b ba ab b a b a b aba b a ---=⋅=)(, 根据所要证的不等式的特点(交换b a ,的位置,不等式不变),不妨设0>≥b a ,于是0,1≥-≥b a b a ,从而1)(≥-b a ba,当仅当b a =时取等号,所以ab b a b a b a ≥,当且仅当b a =时取等号。
例7.设+∈R c b a ,,,求证:b a c a c b c b ac b a c b a+++⋅⋅≥⋅⋅222。
证明:由于不等式是关于c b a ,,对称的,不妨设c b a ≥≥,于是1222≥⎪⎭⎫ ⎝⎛⋅⎪⎭⎫⎝⎛⋅⎪⎭⎫ ⎝⎛=⋅⋅⋅⋅---+++ca cb ba b a c a c b c b a c a c b b a c b a c b a ,所以b a c a c b c b ac b a c b a+++⋅⋅≥⋅⋅222。
评注:由本题的结论可以推广得:cb a cb a cb ac b acbac b a++++++⋅⋅≥⋅⋅333即3)(cb a cb a abc c b a ++≥。
其实,一般来说,如果n i R x i ,2,1,=∈+,则有nx x x n x nx x nnx x x x x x +++≥ 2121)(2121成立,其证法与本题的证法完全一样,请同学们在课下完成此题的证明。
三.综合应用比较法在高考试题和竞赛试题中很难单独出题,但它常与其它知识结合在一起出题,如下例:例8.已知数列{bn }是等差数列,b1=1,b1+b2+…+b10=100.(1)求数列{bn }的通项公式bn ;(2)设数列{a n }的通项a n =lg (1+nb 1),记S n 为{a n }的前n 项和,试比较S n 与 21lg bn +1的大小,并证明你的结论. 解:(1)容易得bn =2n -1.(2)由bn =2n -1,知S n =lg (1+1)+1g (1+31)+…+lg (1+121-n ) =lg (1+1)(1+31)·…·(1+121-n ). 又211g b n +1=1g 12+n , 因此要比较S n 与211g b n +1的大小,可先比较(1+1)(1+31)·…·(1+121-n )与12+n 的大小. 取n =1,2,3时可以发现:前者大于后者,由此推测(1+1)(1+31)· …· (1+121-n )>12+n . ① 下面用数学归纳法证明上面猜想:当n =1时,不等式①成立.假设n =k 时,不等式①成立,即(1+1)(1+31)·…·(1+121-k )>12+k .那么n =k +1时,(1+1)(1+31)·…·(1+121-k )(1+121+k )又因为[1212)1(2+++k k k ]2-(32+k )2=121+k >0,∴1212)1(2+++k k k >32+k =.1)1(2++k∴当n =k +1时①成立.综上所述,n ∈N*时①成立. 由函数单调性可判定S n >211g b n +1. 四.创新应用例9.设1,,,222=++∈+c b a R c b a ,求abc c b a cb a S )(2111333222++-++=的最小值。
分析:在处理大多数极值问题时,先猜后证是一种十分重要的手段:猜,一猜答案;二猜等号成立的条件。
在证明时要特别注意等号能否取到。
解:由于当c b a ==时,3=S ,故可猜测3≥S 。
事实上, abc c b a cb a S )(231113333222++--++=-)(23222222222222222ab c ac b bc a c c b a b c b a a c b a ++--++++++++=)(2)11()11()11(222222222222ab c ac b bc a ba c c abc b a ++-+++++= 0)11()11()11(222222≥-+-+-=b a c a c b c b a 。