有限元基础课程复习题(内汉非常详细的解答方法)—湖南大学
有限单元法考试题及答案
![有限单元法考试题及答案](https://img.taocdn.com/s3/m/fed5404553d380eb6294dd88d0d233d4b04e3f47.png)
有限单元法考试题及答案一、选择题1. 有限元法是一种用于求解偏微分方程的数值方法,其基本思想是将连续域离散化成有限个互不重叠的子域。
这种说法正确吗?A. 正确B. 错误答案:A2. 在有限元法中,单元的选取通常遵循以下哪个原则?A. 单元越小越好B. 单元越大越好C. 单元大小应根据问题的具体需求来确定D. 单元大小固定不变答案:C3. 有限元分析中,边界条件的处理方式不包括以下哪一项?A. 强制边界条件B. 自然边界条件C. 忽略边界条件D. 周期性边界条件答案:C4. 在有限元法中,下列哪个不是常用的单元类型?A. 三角形单元B. 四边形单元C. 六面体单元D. 圆形单元答案:D5. 有限元法中,形函数的作用是什么?A. 描述单元的几何形状B. 描述单元的物理属性C. 用于构建单元的局部刚度矩阵D. 用于描述单元内部的位移场答案:D二、简答题1. 简述有限元法的基本步骤。
答案:有限元法的基本步骤包括:定义问题域和边界条件,划分网格,选择单元类型,定义形函数,组装全局刚度矩阵,施加边界条件,求解线性方程组,提取结果。
2. 有限元法中,局部刚度矩阵是如何构建的?答案:局部刚度矩阵是通过单元的形函数和材料属性来构建的。
首先,根据单元的形函数和材料属性,计算单元的应变和应力。
然后,利用应变和应力,通过积分得到单元的局部刚度矩阵。
三、计算题1. 给定一个简单的一维弹性杆问题,其长度为L,两端固定,中间受力P。
请使用有限元法求解该杆的位移和应力分布。
答案:首先,将杆划分为若干个单元,每个单元的长度为Δx。
然后,为每个单元定义形函数,通常是线性形函数。
接着,根据形函数和材料属性(如杨氏模量E),构建每个单元的局部刚度矩阵。
将所有单元的局部刚度矩阵组装成全局刚度矩阵。
由于杆两端固定,边界条件为位移为零。
最后,将力P施加到中间节点,求解全局刚度矩阵对应的线性方程组,得到节点位移。
应力可以通过位移和形函数计算得到。
有限元 复习题
![有限元 复习题](https://img.taocdn.com/s3/m/612d36ab541810a6f524ccbff121dd36a32dc435.png)
有限元复习题有限元复习题有限元方法是一种用于求解实际工程问题的数值计算方法。
它通过将复杂的连续体划分为有限数量的小单元,然后在每个小单元内进行数值计算,最终得到整个连续体的近似解。
在实际工程中,有限元方法被广泛应用于结构力学、流体力学、热传导等领域。
在复习有限元方法时,我们可以通过一些典型的问题来加深对该方法的理解和应用。
下面我将给出一些复习题,希望能帮助大家更好地掌握有限元方法的基本原理和解题技巧。
1. 一维热传导问题考虑一根长度为L的杆,两端固定,初始时整个杆的温度均匀为T0。
设杆的热导率为k,热扩散系数为α,求解杆上任意点x处的温度分布。
2. 二维弹性力学问题考虑一个矩形薄板,边界上固定,受到均匀分布的载荷。
假设薄板材料的弹性模量为E,泊松比为ν,求解薄板上任意点的位移和应力分布。
3. 三维流体力学问题考虑一个流体在三维空间中的流动问题,假设流体的密度为ρ,粘性系数为μ,流体受到外力的作用。
求解流体中任意点的速度和压力分布。
以上三个问题是有限元方法常见的应用场景,通过对这些问题的复习,我们可以熟悉有限元方法的基本步骤和求解思路。
在解题过程中,我们需要首先将连续体离散化为有限数量的单元。
对于一维问题,可以将杆划分为多个小段;对于二维问题,可以将薄板划分为多个小矩形单元;对于三维问题,可以将流体域划分为多个小立方体单元。
接下来,我们需要选择适当的数学模型和数值方法来描述和求解问题。
在有限元方法中,常用的数学模型包括弹性力学方程、热传导方程和流体力学方程。
对于这些方程,我们可以采用有限元离散化方法,将其转化为代数方程组。
最后,我们需要选择合适的数值方法来求解代数方程组。
常见的数值方法包括直接法和迭代法。
对于小规模的问题,我们可以使用直接法,如高斯消元法;对于大规模的问题,我们则需要使用迭代法,如共轭梯度法或雅可比迭代法。
通过对以上复习题的学习和解答,我们可以更好地理解有限元方法的原理和应用。
同时,我们也可以加深对数学模型和数值方法的理解和掌握。
有限元的考试试的题目及问题详解——第一组
![有限元的考试试的题目及问题详解——第一组](https://img.taocdn.com/s3/m/f83f15d55a8102d277a22f45.png)
有限元考试试题与答案一、简答题〔5道,共计25分〕。
1.有限单元位移法求解弹性力学问题的根本步骤有哪些?〔5分〕答:〔1〕选择适当的单元类型将弹性体离散化;〔2〕建立单元体的位移插值函数;〔3〕推导单元刚度矩阵;〔4〕将单元刚度矩阵组装成整体刚度矩阵;〔5〕代入边界条件和求解。
2.在划分网格数一样的情况下,为八节点四边形等参数单元精度大于四边形矩形单元?〔5分〕答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。
3.轴对称单元与平面单元有哪些区别?〔5分〕答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量,平面单元内任意一点非零独立应变分量有三个。
4.有限元空间问题有哪些特征?〔5分〕答:〔1〕单元为块体形状。
常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。
〔2〕结点位移3个分量。
〔3〕根本方程比平面问题多。
3个平衡方程,6个几何方程,6个物理方程。
5.简述四节点四边形等参数单元的平面问题分析过程。
〔5〕分〕答:〔1〕通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;〔2〕通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;〔3〕将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;〔4〕用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。
二、论述题〔3道,共计30分〕。
1. 简述四节点四边形等参数单元的平面问题分析过程。
〔10分〕答:〔1〕通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;〔2〕通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;〔3〕将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;〔4〕用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。
(完整word版)有限元法复习题(word文档良心出品)
![(完整word版)有限元法复习题(word文档良心出品)](https://img.taocdn.com/s3/m/4aac9f020912a21615792900.png)
《有限元法》复习题一. 单选题1.平面刚架单元坐标转换矩阵的阶数为( ) A .2⨯2 B .2⨯4 C .4⨯4 D .6⨯62.图示的四根杆组成的平面刚架结构,用杆单元进行有限元分析,单元和节点的划分如图示,则总体刚度矩阵的大小为( ) A.8⨯8阶矩阵 B.10⨯10阶矩阵 C.12⨯12阶矩阵 D.16⨯16阶矩阵3.坐标转换矩阵可归类为( )A.正交矩阵B.奇异矩阵C.正定矩阵D.对称矩阵 4.图示弹簧系统的总体刚度矩阵为( )A 11112322244434000000k k k k k k k k k k k k k k -⎡⎤⎢⎥-++-⎢⎥⎢⎥-+⎢⎥-+⎣⎦ B. 1111222244434000000k k k k k k k k k k k k k -⎡⎤⎢⎥-+-⎢⎥⎢⎥-+-⎢⎥-+⎣⎦C. 11112323224434340000k k k k k k k k k k k k k k k k -⎡⎤⎢⎥-++--⎢⎥⎢⎥-+-⎢⎥--+⎣⎦D. 1111223224434340000k k k k k k k k k k k k k k k -⎡⎤⎢⎥-+--⎢⎥⎢⎥-+⎢⎥--+⎣⎦5.确定已知三角形单元的局部码为1(e),2(e),3(e),对应总码依次为3,6,4,则其单元的刚度矩阵中的元素k 24应放在总体刚度矩阵的( )。
A.1行2列B.3行12列C.6行12列D.3行6列 6.对一根只受轴向载荷的杆单元,k 12为负号的物理意义可理解为( ) A.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相同 B.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相反 C.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相同 D.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相反7.平面桁架中,节点3处铅直方向位移为已知,若用置大数法引入支承条件,则应将总体刚度矩阵中的( )A.第3行和第3列上的所有元素换为大数AB.第6行第6列上的对角线元素乘以大数AC.第3行和第3列上的所有元素换为零D.第6行和第6列上的所有元素换为零 8.在任何一个单元内( )A.只有节点符合位移模式B.只有边界点符合位移模式C.只有边界点和节点符合位移模式D.单元内任意点均符合位移模式 9.平面应力问题中(Z 轴与该平面垂直),所有非零应力分量均位于( ) A.XY 平面内 B.XZ 平面内 C.YZ 平面内 D.XYZ 空间内 12.刚架杆单元与平面三角形单元( )A.单元刚度矩阵阶数不同B.局部坐标系的维数不同C.无任何不同D.节点截荷和位移分量数不同 13.图示平面结构的总体刚度矩阵[K]和竖带矩阵[K *]的元素总数分别是( )A.400和200B.400和160C.484和200D.484和160 14.在有限元分析中,划分单元时,在应力变化大的区域应该( )A.单元数量应多一些,单元尺寸小一些B.单元数量应少一些,单元尺寸大一些C.单元数量应多一些,单元尺寸大一些D.单元尺寸和数量随便确定 15.在平面应力问题中,沿板厚方向( )A.应变为零,但应力不为零B.应力为零,但应变不为零C.应变、应力都为零D.应变、应力都不为零16.若把平面应力问题的单元刚度矩阵改为平面应变问题的单元刚度矩阵只需将( ) A. E 换成E/(1-μ2),μ换成μ/(1-μ2) B. E 换成E/(1-μ2),μ换成μ/(1-μ) C. E 换成E/(1-μ),μ换成μ/(1-μ2) D. E 换成E/(1-μ),μ换成μ/(1-μ) 17.图示三角形单元非节点载荷的节点等效载荷为( ) A.F yi =-100KN F yj =-50KN F yk =0 B. F yi =-80KN F yj =-70KN F yk =0 C. F yi =-70KN F yj =-80KN F yk =0 D. F yi =-50KN F yj =-100KN F yk =018.半斜带宽矩阵r 行s 列的元素对应于竖带矩阵元素( )。
有限元考试复习资料(含计算题)
![有限元考试复习资料(含计算题)](https://img.taocdn.com/s3/m/44d99382dc3383c4bb4cf7ec4afe04a1b071b0b9.png)
有限元考试复习资料(含计算题)1试说明用有限元法解题的主要步骤。
(1)离散化:将一个受外力作用的连续弹性体离散成一定数量的有限小的单元集合体,单元之间只在结点上互相联系,即只有结点才能传递力。
(2)单元分析:根据弹性力学的基本方程和变分原理建立单元结点力和结点位移之间的关系。
(3)整体分析:根据结点力的平衡条件建立有限元方程,引入边界条件,解线性方程组以及计算单元应力。
(4)求解方程,得出结点位移(5)结果分析,计算单元的应变和应力。
2.单元分析中,假设的位移模式应满足哪些条件,为什么?要使有限元解收敛于真解,关键在于位移模式的选择,选择位移模式需满足准则:(1)完备性准则:(2)连续性要求。
P210面简单地说,当选取的单元既完备又协调时,有限元解是收敛的,即当单元尺寸趋于0时,有限元解趋于真正解,称此单元为协调单元;当单元选取的位移模式满足完备性准则但不完全满足单元之间的位移及其导数连续条件时,称为非协调单元。
3什么样的问题可以用轴对称单元求解?在工程问题中经常会遇到一些实际结构,它们的几何形状、约束条件和外载荷均对称某一固定轴,我们把该固定轴称为对称轴。
则在载荷作用下产生的应力、应变和位移也都对称此轴。
这种问题就称为轴对称问题。
可以用轴对称单元求解。
4什么是比例阻尼?它有什么特点?其本质反映了阻尼与什么有关?答:比例阻尼:由于多自由度体系主振型关于质量矩阵与刚度矩阵具有正交性关系,若主振型关于阻尼矩阵亦具有正交性,这样可对多自由度地震响应方程进行解耦分析。
比例阻尼的特点为具有正交性。
其本质上反应了阻尼与结构物理特性的关系。
5何谓等参单元?等参单元具有哪些优越性?①等参数单元(简称等参元)就是对坐标变换和单元内的参变量函数(通常是位移函数)采用相同数目的节点参数和相同的插值函数进行变换而设计出的一种单元。
②优点:可以很方便地用来离散具有复杂形体的结构。
由于等参变换的采用使等参单元特性矩阵的计算仍在单元的规则域内进行,因此不管各个积分形式的矩阵表示的被积函数如何复杂,仍然可以方便地采用标准化的数值积分方法计算。
有限元试题及答案
![有限元试题及答案](https://img.taocdn.com/s3/m/029d5c7253d380eb6294dd88d0d233d4b04e3f06.png)
有限元试题及答案一、选择题1. 有限元方法是一种用于求解工程和物理问题的数值技术,其核心思想是将连续域划分为有限数量的离散子域。
以下哪项不是有限元方法的特点?A. 网格划分B. 边界条件处理C. 局部近似D. 整体求解答案:D2. 在有限元分析中,以下哪项不是网格划分的常见类型?A. 三角形网格B. 四边形网格C. 六边形网格D. 圆形网格答案:D3. 对于线性弹性问题,以下哪种元素类型不适用于有限元分析?A. 线性三角形元素B. 二次三角形元素C. 线性四边形元素D. 三次四边形元素答案:D二、填空题1. 在有限元分析中,单元刚度矩阵的计算通常涉及到单元的_________。
答案:形状函数2. 有限元方法中,边界条件可以分为_________和_________。
答案:Dirichlet边界条件;Neumann边界条件3. 有限元软件通常采用_________方法来求解大型稀疏方程组。
答案:迭代三、简答题1. 简述有限元方法的基本步骤。
答案:有限元方法的基本步骤包括:- 定义问题的几何域和边界条件。
- 将几何域划分为有限数量的小单元。
- 为每个单元定义形状函数。
- 计算单元刚度矩阵和载荷向量。
- 组装全局刚度矩阵和载荷向量。
- 施加边界条件。
- 求解线性方程组,得到节点位移。
- 计算单元应力和应变。
2. 为什么在有限元分析中需要进行网格划分?答案:网格划分是有限元分析中的一个重要步骤,因为它允许将连续的几何域离散化,使得问题可以被数值方法求解。
通过网格划分,可以: - 简化复杂几何形状的分析。
- 适应不同的材料属性和边界条件。
- 提供足够的细节以捕捉应力和位移的局部变化。
- 减少计算复杂度,提高求解效率。
四、计算题1. 假设有一个平面应力问题,已知材料的弹性模量E=210GPa,泊松比ν=0.3。
请计算一个边长为10mm的正方形单元在单轴拉伸下的单元刚度矩阵。
答案:单元刚度矩阵\[ K \]可以通过以下公式计算:\[K = \frac{E}{(1-\nu^2)} \int_{\Omega} \left[ B^T B \right] d\Omega\]其中,\( B \)是应变-位移矩阵,\( \Omega \)是单元的面积。
有限元法基础试题
![有限元法基础试题](https://img.taocdn.com/s3/m/43046dcda0116c175e0e481a.png)
有限元法基础试题(A )一、填空题(5×2分) 1.1单元刚度矩阵eT k B DBd Ω=Ω⎰中,矩阵B 为__________,矩阵D 为___________。
1.2边界条件通常有两类。
通常发生在位置完全固定不能转动的情况为_______边界,具体指定有限的非零值位移的情况,如支撑的下沉,称为_______边界。
1.3内部微元体上外力总虚功:()(),,,,e x x xy y bx xy x y y by d W F u F v dxdy δστδτσδ⎡⎤=+++++⎣⎦+(),,,,x x y y xy y x u v u u dxdy σδσδτδδ⎡⎤+++⎣⎦的表达式中,第一项为____________________的虚功,第二项为____________________的虚功。
1.4弹簧单元的位移函数1N +2N =_________。
1.5 ij k 数学表达式:令j d =_____,k d =_____,k j ≠,则力i ij F k =。
二、判断题(5×2分)2.1位移函数的假设合理与否将直接影响到有限元分析的计算精度、效率和可靠性。
( ) 2.2变形体虚功原理适用于一切结构(一维杆系、二维板、三位块体)、适用于任何力学行为的材料(线性和非线性),是变形体力学的普遍原理。
( ) 2.3变形体虚功原理要求力系平衡,要求虚位移协调,是在“平衡、协调”前提下功的恒等关系。
( ) 2.4常应变三角单元中变形矩阵是x 或y 的函数。
( ) 2.5 对称单元中变形矩阵是x 或y 的函数。
( ) 三、简答题(26分)3.1列举有限元法的优点。
(8分)3.2写出有限单元法的分析过程。
(8分)3.3列出3种普通的有限元单元类型。
(6分)3.4简要阐述变形体虚位移原理。
(4分)四、计算题(54分)4.1对于下图所示的弹簧组合,单元①的弹簧常数为10000N/m ,单元②的弹簧常数为20000N/m ,单元③的弹簧常数为10000N/m ,确定各节点位移、反力以及单元②的单元力。
有限元试题及答案
![有限元试题及答案](https://img.taocdn.com/s3/m/48ea9e3603768e9951e79b89680203d8cf2f6a7c.png)
有限元试题及答案一、选择题1.有限元分析是一种利用计算机数值方法进行结构分析的方法,下面哪个说法是正确的?A. 有限元分析对结构的约束条件没有要求B. 有限元分析只适用于静力分析C. 有限元分析可以用来研究结构的动力响应D. 有限元分析的计算结果一定是精确的答案:C2.有限元法的基本步骤包括以下几个环节:I. 离散化II. 单元划分III. 节点连接IV. 计算材料性质V. 施加边界条件VI. 构建刚度矩阵和载荷向量VII. 求解节点位移和应力VIII. 后处理与结果分析请问选择项中正确的顺序是:A. IV – I – II – III – V – VI – VII – VIIIB. I – II – III – IV – V – VI – VII – VIIIC. II – III – V – IV – VI – I – VII – VIIID. I – III – II – IV – V – VI – VII – VIII答案:B3.在有限元分析中,单元是指将结构划分为有限个小单元来近似表示结构的方法。
下面哪个选项给出了常用的结构单元类型?A. 三角形单元,四面体单元,六面体单元B. 矩形单元,六面体单元,圆形单元C. 圆形单元,矩形单元,六面体单元D. 四面体单元,矩形单元,三角形单元答案:D二、填空题1.有限元分析中,刚度矩阵的计算需要根据单元的_________和材料的_________计算得到。
答案:几何形状,物理性质2.有限元法最常用的数学插值函数是_________函数。
答案:形函数3.在有限元分析中,自由度是指结构中的每个_________未知量。
答案:位移三、计算题1.给定如图所示的二维结构,使用有限元法进行分析。
假设结构材料为线性弹性材料,其杨氏模量为200 GPa,泊松比为0.3。
结构整体尺寸为5m x 3m,单元尺寸为1m x 1m。
分析载荷为2000 N,施加在结构的中心节点上。
有限元复习题及答案
![有限元复习题及答案](https://img.taocdn.com/s3/m/bac359f5844769eae109ed0f.png)
1.两种平面问题的根本概念和根本方程;答:弹性体在满足一定条件时,其变形和应力的分布规律可以用在某一平面内的变形和应力的分布规律来代替,这类问题称为平面问题。
平面问题分为平面应力问题和平面应变问题。
平面应力问题设有张很薄的等厚薄板,只在板边上受到平行于板面并且不沿厚度变化的面力,体力也平行于板面且不沿厚度变化。
由于平板很薄,外力不沿厚度变化,因此在整块板上有:,,剩下平行于XY面的三个应力分量未知。
平面应变问题设有很长的柱体,支承情况不沿长度变化,在柱面上受到平行于横截面而且不沿长度变化的面力,体力也如此分布。
平面问题的根本方程为:平衡方程几何方程物理方程〔弹性力学平面问题的物理方程由广义虎克定律得到〕•平面应力问题的物理方程平面应力问题有•平面应变问题的物理方程平面应变问题有在平面应力问题的物理方程中,将E替换为、替换为,可以得到平面应变问题的物理方程;在平面应变问题的物理方程中,将E替换为、替换为,可以得到平面应力问题的物理方程。
2弹性力学中的根本物理量和根本方程;答:根本物理量有:空间弹性力学问题共有15个方程,3个平衡方程,6个几何方程,6个物理方程。
其中包括6个应力分量,6个应变分量,3个位移分量。
平面问题共8个方程,2个平衡方程,3个几何方程,3个物理方程,相应3个应力分量,3个应变分量,2个位移分量。
根本方程有:1.平衡方程及应力边界条件:平衡方程:边界条件:2.几何方程及位移边界条件:几何方程:边界条件:3.物理方程:3.有限元中使用的虚功方程。
对于刚体,作用在其上的平衡力系在任意虚位移上的总虚功为0,这就是刚体的平衡条件,或者称为刚体的虚功方程。
对于弹性变形体,其虚位移原理为:在外力作用下处于平衡的弹性体,当给予物体微小的虚位移时,外力的总虚功等于物体的总虚应变能。
设想一处于平衡状态的弹性体发生了任意的虚位移,相应的虚应变为,作用在微元体上的平衡力系有〔X,Y,Z〕和面力。
外力的总虚功为实际的体力和面力在虚位移上所做的功,即:在物体产生微小虚变形过程中,整个弹性体内应力在虚应变上所做的功为总虚应变能,即:其中为弹性体单位体积内的应力在相应的虚应变上做的虚功,由此得到虚功方程:4.节点位移,单元位移及它们的关系。
有限元习题及答案
![有限元习题及答案](https://img.taocdn.com/s3/m/0429a30532687e21af45b307e87101f69e31fbf8.png)
有限元习题及答案有限元习题及答案有限元方法是一种常用的数值计算方法,用于求解各种工程和科学问题。
在学习有限元方法的过程中,练习习题是非常重要的,可以帮助学生巩固所学的知识,并提高解决实际问题的能力。
本文将介绍一些有限元习题及其答案,希望对学习有限元方法的同学有所帮助。
习题一:一维热传导问题考虑一个长度为L的一维杆,其两端固定,杆上的温度满足以下热传导方程:∂²T/∂x² = 0,其中T为温度,x为位置。
已知杆的两端温度分别为T1和T2,求解杆上的温度分布。
解答一:根据热传导方程,可以得到温度分布的一般解为T(x) = Ax + B,其中A和B为常数。
根据边界条件,可以得到方程组:T(0) = B = T1T(L) = AL + B = T2解方程组可得A = (T2 - T1) / L,B = T1。
因此,温度分布为T(x) = ((T2 - T1) / L) * x + T1。
习题二:二维弹性问题考虑一个矩形薄板,其长为L,宽为W,材料的弹性模量为E,泊松比为ν。
已知薄板的边界上施加了一定的边界条件,求解薄板上的位移场。
解答二:对于二维弹性问题,可以使用平面应力假设,即假设薄板内部的应力只有两个分量σx和σy,并且与z轴无关。
根据平面应力假设和胡克定律,可以得到位移场的偏微分方程:∂²u/∂x² + ν * (∂²u/∂y²) + (1 - ν) * (∂²v/∂x∂y) = 0∂²v/∂y² + ν * (∂²v/∂x²) + (1 - ν) * (∂²u/∂x∂y) = 0其中u和v分别为位移场在x和y方向上的分量。
边界条件根据具体情况给定。
通过数值方法,如有限元方法,可以求解位移场的近似解。
习题三:三维流体力学问题考虑一个三维流体力学问题,流体在一个封闭容器内流动,容器的形状为一个长方体,已知流体的速度场和压力场的初始条件,求解流体的运动状态。
有限元考试题库及答案
![有限元考试题库及答案](https://img.taocdn.com/s3/m/81a566afa0c7aa00b52acfc789eb172dec63996a.png)
有限元考试题库及答案一、单项选择题(每题2分,共10分)1. 有限元法中,单元刚度矩阵的计算是基于()。
A. 材料力学B. 结构力学C. 弹性力学D. 流体力学答案:C2. 在有限元分析中,边界条件不包括以下哪一项?()A. 位移边界条件B. 载荷边界条件C. 温度边界条件D. 速度边界条件答案:D3. 有限元分析中,以下哪种类型的单元是二维的?()A. 杆单元B. 梁单元C. 壳单元D. 体单元答案:C4. 有限元分析中,以下哪种类型的网格划分方法适用于复杂几何形状?()A. 结构化网格B. 非结构化网格C. 规则网格D. 混合网格答案:B5. 在有限元分析中,以下哪种方法用于求解线性方程组?()A. 高斯消元法B. 牛顿迭代法C. 有限差分法D. 有限体积法答案:A二、多项选择题(每题3分,共15分)6. 有限元分析中,以下哪些因素会影响网格划分的质量?()A. 网格大小B. 网格形状C. 网格数量D. 网格排列答案:ABCD7. 在有限元分析中,以下哪些是常见的单元类型?()A. 三角形单元B. 四边形单元C. 六面体单元D. 楔形单元答案:ABCD8. 有限元分析中,以下哪些是常见的边界条件?()A. 固定边界B. 自由边界C. 压力边界D. 位移边界答案:ACD9. 在有限元分析中,以下哪些是常见的求解器类型?()A. 直接求解器B. 迭代求解器C. 混合求解器D. 并行求解器答案:ABD10. 有限元分析中,以下哪些是常见的后处理技术?()A. 应力云图B. 位移云图C. 模态分析D. 频率响应分析答案:ABCD三、简答题(每题5分,共20分)11. 简述有限元分析中网格划分的基本原则。
答案:有限元分析中网格划分的基本原则包括:确保网格的几何形状规则、避免过度扭曲的单元、保持网格大小的一致性、在应力集中区域细化网格、以及考虑分析的精度和计算成本。
12. 描述有限元分析中单元刚度矩阵的物理意义。
有限元法基础习题答案
![有限元法基础习题答案](https://img.taocdn.com/s3/m/274e00fdc67da26925c52cc58bd63186bceb929d.png)
有限元法基础习题答案有限元法是一种常用的工程分析方法,广泛应用于结构力学、热传导、流体力学等领域。
它通过将复杂的物理问题离散化为一系列简单的子问题,并利用数值方法求解这些子问题,从而得到整体问题的近似解。
在学习有限元法的过程中,习题是必不可少的一环。
本文将给出一些有限元法基础习题的答案,希望能够帮助读者更好地理解和掌握这一方法。
习题一:一维线性弹性力学问题考虑一根长度为L的弹性杆,杆的截面积为A,杨氏模量为E。
在杆的一端施加一个沿杆轴向的拉力F,另一端固定。
假设杆轴向变形u(x)满足以下方程:EAu''(x) = -F,0 < x < Lu(0) = 0, u(L) = 0其中,u''(x)表示u(x)对x的二阶导数。
解答:根据上述方程,我们可以得到杆的位移函数u(x)的表达式。
首先,对方程两边进行积分,得到:EAu'(x) = -Fx + C1其中,C1为积分常数。
再次对方程两边进行积分,得到:EAu(x) = -F/2*x^2 + C1*x + C2其中,C2为积分常数。
根据边界条件u(0) = 0,可得C2 = 0。
代入边界条件u(L) = 0,可得:EAu(L) = -F/2*L^2 + C1*L = 0由此可得C1 = F/2*L。
将C1代入上式,可得:EAu(x) = -F/2*x^2 + F/2*L*x最终得到杆的位移函数u(x)的表达式为:u(x) = (-F/2*E)*(x^2 - L*x),0 < x < L习题二:二维平面弹性力学问题考虑一个正方形薄板,边长为L,板的厚度为h。
假设薄板的杨氏模量为E,泊松比为ν。
在薄板的一侧施加一个沿法向的均匀表面压力P,另一侧固定。
求薄板的位移和应力分布。
解答:根据平面弹性力学理论,我们可以得到薄板的位移和应力分布。
首先,根据杨氏模量E、泊松比ν和薄板的厚度h,可以计算出薄板的弹性模量D:D = E*h^3 / (12*(1-ν^2))接下来,根据薄板的边界条件和平衡方程,可以得到薄板的位移和应力分布。
有限元试题及答案
![有限元试题及答案](https://img.taocdn.com/s3/m/c1f8945078563c1ec5da50e2524de518964bd3cc.png)
有限元试题及答案一、选择题1. 有限元法是一种数值方法,主要用于求解什么类型的数学问题?A. 线性代数方程B. 微分方程C. 积分方程D. 偏微分方程答案:D2. 在有限元分析中,以下哪项不是网格划分的基本原则?A. 网格应尽量均匀B. 网格应避免交叉C. 网格应尽量小D. 网格应适应几何形状答案:C3. 有限元方法中,单元的局部刚度矩阵可以通过以下哪种方式获得?A. 直接积分B. 矩阵乘法C. 线性插值D. 经验公式答案:A二、填空题1. 有限元方法中,______ 是指将连续的域离散化成有限数量的小单元。
答案:离散化2. 在进行有限元分析时,______ 是指在单元内部使用插值函数来近似求解场变量。
答案:近似3. 有限元法中,______ 是指在单元边界上满足的连续性条件。
答案:边界条件三、简答题1. 简述有限元法的基本步骤。
答案:有限元法的基本步骤包括:(1)定义问题域;(2)离散化问题域,生成网格;(3)为每个单元定义局部坐标系和形状函数;(4)组装全局刚度矩阵和载荷向量;(5)施加边界条件;(6)求解线性代数方程;(7)提取结果并进行后处理。
2. 描述有限元分析中的单元类型有哪些,并简述每种单元的特点。
答案:常见的单元类型包括:(1)一维单元,如杆单元和梁单元,特点是沿一个方向传递力;(2)二维单元,如三角形和四边形单元,特点是在平面内传递力;(3)三维单元,如四面体和六面体单元,特点是在空间内传递力。
每种单元都有其特定的形状函数和刚度矩阵。
四、计算题1. 给定一个简单的一维弹性杆问题,其长度为L,两端固定,中间施加集中力P。
使用有限元法求解该杆的位移和应力分布。
答案:首先,将杆离散化为一个单元。
使用一维杆单元的局部刚度矩阵和形状函数,可以推导出全局刚度矩阵。
然后,施加边界条件,即杆的两端位移为零。
最后,将集中力P转换为等效节点载荷,求解线性代数方程,得到节点位移。
应力可以通过位移和杆的截面特性计算得出。
有限元基础知识 归纳 复习题
![有限元基础知识 归纳 复习题](https://img.taocdn.com/s3/m/7c5c6d12cc7931b765ce152d.png)
有限元分析的基本步骤
(1)将结构进行离散化,包括单元划分、结点编 号、单元编号、结点坐标计算、位移约束条件确定 (2)等效结点力的计算 (3)刚度矩阵的计算(先逐个计算单元刚度,再 组装成整体刚度矩阵) (4)建立整体平衡方程,引入约束条件,求解结 点位移 (5)应力计算
8 单元位移函数应满足什么条件
9 刚度矩阵具有什么特点
A、 刚度矩阵是对称矩阵,每个元素有明确的物理 意义。刚度矩阵的主对角线上的元素总是正的, B、 刚度矩阵是一个稀疏矩阵, C、 刚度矩阵是一个奇异阵; 1.
2
单元分析(平面桁架单元、平面梁单元、平面
3 节点三角形单元、平面 4 节点四边形单元、平面 8 节点四边形单元)
u = α1 + α 2 x + α 3 ( Ax + B) v = α 4 + α 5 x + α 6 ( Ax + B)
u = α1 + α 2 x + α3 y 3 节点 三角 形单元的位移函 v = α 4 + α5 x
2.) 插值函数法——即将位移函数表示为各个节 点位移与已知插值基函数积的和。
u = α1 − θ 0 y , (平动和转动) v = α 4 + θ0 x
而在其他节点上的值为 0。 3) 单元 内 任 一 点的 三 个 形 函数 之和 恒 等 于 1 。
等参单元定义、存在条件及特性
定义:矩形单元比三角形有更高的精度,而三 角 形有较 矩 形单元 更好 的边界 适 应性。实际 工程 中,往往更希望有单元精度高、边界适应性好的单 元。等参单元具有此特点。即以规则形状单元(如 正四边形、正六面体单元等)的位移函数相同阶次 函数为单元几何边界的变换函数,进行坐标变换所 获得的单元。由于单元几何边界的变换式与规则单
有限元期末考试试题及答案—湖南大学
![有限元期末考试试题及答案—湖南大学](https://img.taocdn.com/s3/m/398a578202d276a200292eb9.png)
(7 分)
a 0 0 0 -a 0 1 1 1 B1 2 0 -a , B2 2 0 a , B3 2 0 0 ; B B1 a a a -a a a 0 0 -a
B2
B3
a
y
2N / m 1N / m 2
O
x
2N / m 2m 2m
(a ) 2、解: (1) 对称性及计算模型正确 (2) 正确标出每个单元的合理局部编号 (3) 求单元刚度矩阵 K e () (4 分) (3 分)
(5) 应用适当的位移约束之后,给出可供求解的整体平衡方程(不需要求解) 。 (5 分)
1、有限元分析的基本思路(3 分)
首先,将物体或求解域离散为有限个互不重叠仅通过节点互相连接的子域(即单元),原始边界条件也被转化为节点上的边界条件, 此过程称为离散化。其次,在单元内,选择简单近似函数来分片逼近未知的求解函数,即分片近似。具体做法是在单元上选择一些合适的 节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,这是有限元 法的创意和精华所在。而整体区域上的解函数就是这些单元上的简单近似函数的组合。最后,基于与原问题数学模型(基本方程和边界条 件)等效的变分原理或加权残值法,建立有限元方程(即刚度方程),从而将微分方程转化为一组变量或其导数的节点值为未知量的代数 方程组。从而借助矩阵表示和计算机求解代数方程组得到原问题的近似解。
(1)位移模式必须包含单元刚体位移;(2)位移模式必须包含单元的常应变;(3)位移模式在单元内要连续,且唯一在相邻单元 之间要协调。
4、写出弹性力学的基本方程、基本假设和基本变量(3 分)
平衡方程 几何方程 物理方程 具体方程见笔记
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EA 2 a 1
11uu32
,即
2u 2
u3
2 pa EA
u2
u3
pa EA
解得
u2
pa EA
u3 0
即
uC
pa EA
uD 0
练习2:已知:p、a、EA, 求A、B处的反力。
解:
方法1:按有限元法计算,,略。 方法2:利用例题1的结果并采用迭加
法。
X
A
X
p A
X
2p A
5a 6a
p
3a 6a
2p
p 6
XB
X
p B
X
2 B
p
a 6a
p
3a 6a
2p
5p 6
练习1:推导单元刚度矩阵
M M
e i
e j
Yi
e
K
e
i j
vi
Y
e j
v j
注:v 、 的正方向如图(a)。Y、M产生的v 、 与图(a)一致为正,相反
为负。
解:可用(1)式,左端 Y j Y j ,右端 v j v j ,重新组装整理可得
2i 4i 6i
6i a 6i a 12i
6i
a 6i a 12i
2 v23
Y3②
a 6i
a 6i
a2 12i
a2 12i
v3
a a a2 a2
式中 i EI a
式中 i EI a
(3)引入边界条件: v1 0,1 0, v2 0,2 0, v3 0,3 0
代入2个单元的单元刚度方程中,得
M
① 1
2i 2
①
M
① 2
4i 2
②
Y1①
6i a
2
③
Y2①
6i a
2
④
M
② 2
4i 2
⑤
M
② 3
2i 2
⑥
Y2②
6i a
2
⑦
Y3②
6i a
2
⑧
取节点2为研究对象,受力如图(b),列平衡方程
Y 0, Yc Y2① Y2② , Yc Y2② Y2①
⑨
mc 0,
(1)划分单元,给节点编号。
(2)单元分析:设2节点的挠度为v( 向
下),则
v2①
v,
v
2 2
v,
① 2
② 2
,
1 0, v1 0, v3 0
1单元:
YMM1①12① ① Y2①
4i
2i 6i l 6i
2i
4i 6i l 6i
6i
l 6i
l 12i
l2 12i
6i
4i
M M
e i
e j
Yi
e
2i 6i
2i 4i 6i
6i l 6i l 12i
6i
l 6i l
i j
12i
vi
Y
e j
l
6i l
l 6i l
l2 12i l2
l2 12i l2
v
j
式中
i EI l
Ke
例1. 已知:EI,m,a。求C点的转角及单元节点力。 解:方法1:(1)划分单元。给节点编号,共分2个单元,3个节点。
m
M
① 2
M
② 2
4i 2
4i2 ,
解得
2
m 8i
ma 8EI
把 2 的值代入①~⑨式,得
M
① 1
m 4
,
M
① 2
m 2
,
Y1①
3m 4a
,
Y2①
3m 4a
M
② 2Βιβλιοθήκη m 2,M
② 3
m 4
,
Y2②
3m 4a
,
Y3②
3m 4a
,
Yc
0
例2.已知:EI,p,a。求C点的挠度、转角及B点的转角。
解:方法1:有限元法。(节点分析平衡)
p
( EA a
EA) b
u
2
,解得
u2
ab EA(a b)
p
把 u2 代入整体刚度方程中,解得
X
A
a
b b
p,
X
B
a
a b
p
(负号为与假设方向相反)
节点载荷符号规定:与坐标轴方向一致为正
练习1: 已知:p、a、EA,求C、D两处的节点位移。 解:解法1:用材料力学求解
2 pa pa pa
uC
EA
a EA
a
0
EA a
EA EA ab EA
b
0
EA
b
EA
uu12 u3
b
——称整体刚度方程
或简写为 F K、δ
式中: F δ ——分别为节点载荷和节点位移的列阵
K ——整体刚度矩阵,它是对称矩阵
节点力和节点载荷不要混淆,节点力是内力,节点载荷是外力
4、引入边界条件:
u1 0, u3 0
EA EA
(拉)
uD
2 pa EA
p 2a EA
0
解法2:用有限元法计算 1)划分单元,给节点编号
(共分两个单元,3个节点)
(2)单元分析
X ①单元:
X
1112
EA a
1
1
1 1
uu12
②单元:
X X
2 2
2 3
EA a
1
1
1 1
u u
2 3
B
(3)整体分析
1节点:
XB
l 6i
l 12i
l2 12i
1 v12
v2
l
l
l2
l2
2单元:
M M
② 2
② 3
Y2②
Y3②
4i
2i 6i l 6i
2i
4i 6i l 6i
6i
l 6i
l 12i
l2 12i
6i
l 6i
l 12i
l2 12i
2 v23
v3
l
l
l2
l2
(3)引入边界条件,得
M
1 1
2i 2
6i a
v
M
1 2
4i 2
6i a
v
Y11
6i a
2
12i a2
v
Y21
6i a
2
12i a2
v
M
2 2
4i2
2i3
6i a
v
M
2 3
2i2
4i3
6i a
v
Y22
6i a
2
6i a
3
12i a2
v
Y32
6i a
2
6i a
3
3、整体分析(分析每个节点的平衡问题)(也可用对号入座法)
1节点:
XA
X1①
EA a
(u1
u2)
2节点:
p
X
① 2
X
② 2
EA a
(u
2
u1)
EA b
(u2
u3)
3节点:
X X u u ② EA( )
B
3
b
3
2
用节点位移表示的平衡方程的矩阵形式为
EA
XA p XB
例1:已知 p、a、b、EA,用有限元计算两端反力。(重解绪论中 的例1)
解:1、划分单元,给节点编号:共分两个单元,3个节点。
2、单元分析
①单元:
X u
X u
1① ① 2
EA 1 a 1
1
1
1 2
②单元:
X
X
② ②2 3
EA 1 b 1
1
1
uu32
(注:位移是连续的,所以无上标,不用标哪个单元。)
(2)单元分析
①单元:
4i
YMM1①12① ①
2i 6i
2i 4i 6i
6i a 6i a 12i
6i
a 6i a 12i
1 v12
Y2①
a
6i a
a 6i a
a2 12i a2
a2 12i a2
v2
②单元:
4i
YMM2②32② ②
2i 6i
X11
EA a (u1
u2)
2节点:
2p
X
1 2
X
2 2
EA a (u2
u1)
EA a (u2
u3)
EA a
(u1
2u2
u3)
3节点:
p
X
2 3
EA a
(u2
u3 )
XB
2
p
p
1 1
EA a
1 0
2 1
0 u1
1
u2
1 u3
(4)引入边界条件: u1 0 ,划去一行一列,得
2 p p