测量误差分析与数据处理(1)
测量误差分析和实验数据处理
《力学实验原理与技术》复习提纲(参考)第二章测量误差分析和实验数据处理本章內容:1.测量误差基本概念2.随机误差3.系统误差4.间接误差5.测量结果的表示和不确定度6.实验数据处理2.1 测量误差基本概念1. 测量——比较∙测量的方式:(1)直接测量:米尺量桌子可直接知道桌子长度。
(2)间接测量:由直接测量的数据,通过一定的函数关系,计算求得结果的测量方法∙静态测量与动态测量:按照被测量在测量过程中的状态是否随时间变化判断静态/动态,常规、稳态/过程、瞬态2. 误差——测量的质量∙真值:在一定时空条件下,某物理量的理想值,表达为A。
真值仅为理想概念。
真值可以用修正过的测量值的算术平均值代替。
∙误差的表达方法:绝对误差: 测量值与被测量物理量的真值的差示值相对误差: 绝对误差与真值的百分比测量值相对误差:绝对误差与测量值x的百分比[例1] 仪表的精度用额定相对误差(满度误差)表示。
额定相对误差:绝对误差与仪器满度值A0的百分比。
A0——表盘上的最大值(满度值)。
仪器工作在满度值2/3以上区域。
思考题2:用万用表测电池电压1.5V,选2V档?200V档?允许误差更小?3. 误差分类∙系统误差——多次测量同一被测量量过程中,误差的数值在一定条件下保持恒定或以可预知方式变化的测量误差的分量。
来源于测量仪器本身精度、操作流程、操作方式、环境条件。
∙随机误差——多次测量同一被测量量过程中,绝对值和符号以不可预知方式变化着的测量误差的分量。
具有随机变量特点,一定条件下服从统计规率的误差。
来源于测量中的随机因素:实验装置操作上的变动性、观测者本人的判断和估计读数上的变动性等。
2.2 随机误差1.随机误差的特点随机变量——依赖随机因素,以一定概率取值的变量,如:交通事故随机误差——随机变量的一种具体形式,2. 随机误差的正态分布(1)随机误差分布特点:等精度条件下,对一物理现象测量N 次,得x1……xN 个值(i=1, N )。
测量误差分析与数据处理(1)
2.1.2 测量误差的表示方法(续)
• 二、相对误差
• 1 、实际相对误差——绝对误差与实际值之比。
A
x A
100%
x
A 100% A
– 只具有大小、正负,但无量纲
– 接上例可得:
A1
1 100
100%
1%;
A2
1 5
100%
20%
– 相对误差可以表征测量的准确程度。
x x A0
• 重点:
– 误差的表示和分类 – 三种误差的特征及其处理方法 – 数据的处理 – 误差的合成
• 难点:
– 三种误差的特征及其处理方法
2.1 测量误差的基本原理
• 2.1.1 误差的定义 • 2.1.2 测量误差的表示方法 • 2.1.3 电子测量仪器误差的表示方法 • 2.1.4 一次直接测量时最大误差的估计
例1:
• 一个被测电压,真值U0=100V,用一只电压 表测量,指示值U为101V,则绝对误差:
U U U0 101100 1V
• 表明: 测得值比真值大1V,为正误差。
2.1.2 测量误差的表示方法(续)
• 2 、修正值(校正值)
C x A x
– 给出:通过校准由上一级标准以表格或曲线的形 式给出受检仪器的修正值。
– 等级度越低,仪器越准确。0.1、0.2是精密仪器 。
2.1.3 电子测量仪器的表示方法(续)
• (2)附加误差
– 是指仪器在超过规定的正常条件下所增加的误差, 与影响误差相似。例如:环境温度、电源电压等
– 例:MF-20型晶体管万用表。
• 基本误差: – 直流电压、电流为±2.5%
• 附加误差:
– 根据误差的性质,测量误差可分为系统误差、 随机误差、疏失(粗大)误差三类。
误差分析和数据处理讲解
误差和分析数据处理1 数据的准确度和精度在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多少次测定,但是测定结果总不会是完全一样。
这说明在测定中有误差。
为此我们必须了解误差产生的原因及其表示方法,尽可能将误差减到最小,以提高分析结果的准确度。
1.1 真实值、平均值与中位数(一)真实值真值是指某物理量客观存在的确定值。
通常一个物理量的真值是不知道的,是我们努力要求测到的。
严格来讲,由于测量仪器,测定方法、环境、人的观察力、测量的程序等,都不可能是完善无缺的,故真值是无法测得的,是一个理想值。
科学实验中真值的定义是:设在测量中观察的次数为无限多,则根据误差分布定律正负误差出现的机率相等,故将各观察值相加,加以平均,在无系统误差情况下,可能获得极近于真值的数值。
故“真值”在现实中是指观察次数无限多时,所求得的平均值(或是写入文献手册中所谓的“公认值”)。
(二)平均值然而对我们工程实验而言,观察的次数都是有限的,故用有限观察次数求出的平均值,只能是近似真值,或称为最佳值。
一般我们称这一最佳值为平均值。
常用的平均值有下列几种:(1)算术平均值这种平均值最常用。
凡测量值的分布服从正态分布时,用最小二乘法原理可以证明:在一组等精度的测量中,算术平均值为最佳值或最可信赖值。
n x n x x x x ni in ∑=++==121 式中: n x x x 21、——各次观测值;n ――观察的次数。
(2)均方根平均值n x n x x x x n i in∑=++==1222221 均(3)加权平均值设对同一物理量用不同方法去测定,或对同一物理量由不同人去测定,计算平均值时,常对比较可靠的数值予以加重平均,称为加权平均。
∑∑=++++++===n i i n i ii n n n w x w w w w x w x w x w w 11212211式中;n x x x 21、——各次观测值;n w w w 21、——各测量值的对应权重。
物理实验中的测量数据处理与误差分析
物理实验中的测量数据处理与误差分析在进行物理实验时,测量数据的处理和误差分析起着至关重要的作用。
正确的数据处理可以帮助我们获得准确的实验结果,而误差分析则能帮助我们评估测量结果的可靠性和精确度。
本文将介绍物理实验中常用的测量数据处理方法和误差分析技巧。
一、测量数据处理方法1. 平均值的计算在物理实验中,重复测量同一物理量可以帮助我们减小随机误差的影响。
求得多次测量结果的平均值可以减小个别测量数据的偶然误差,得到更加可靠的实验结果。
计算平均值的方法为将多次测量结果相加后除以总次数。
例如,我们对某物体的长度进行了5次测量,分别得到测量结果为10.2cm、10.0cm、10.1cm、9.9cm、10.3cm,那么这5次测量结果的平均值为:(10.2 + 10.0 + 10.1 + 9.9 + 10.3)/ 5 = 10.1cm2. 不确定度的计算在测量过程中,我们无法完全排除系统误差和随机误差的影响,因此需要通过计算不确定度来反映测量结果的精确度。
常见的不确定度计算方法有标准偏差法和最小二乘法。
标准偏差法是通过计算多次测量数据与其平均值之差的平方根来得到不确定度。
公式为:s = √[(Σ(xi- x)²) / (n-1)]其中,s代表标准偏差,xi代表第i次测量结果,x代表平均值,n代表测量次数。
最小二乘法则适用于实验数据存在线性关系的情况。
通过拟合直线,可以得到与测量数据最接近的直线方程,并据此计算不确定度。
最小二乘法的详细公式和方法超出本文范围,可在相关物理教材或专业书籍中深入学习。
3. 数据的图表展示将实验数据以图表形式展示可以更加直观地观察数据的分布和规律。
常见的图表有折线图、散点图和柱状图等。
选择合适的图表形式能够更好地表达测量结果和实验过程中的变化趋势。
二、误差分析技巧1. 系统误差的评估与修正系统误差是由于实验设备、环境和实验操作等因素引起的,会对测量结果产生恒定的偏差。
评估系统误差的方法常用的有零点校正和仪器校准等。
测量误差与数据处理实验报告
测量误差与数据处理实验报告实验报告格式:
标题:测量误差与数据处理实验报告
摘要:本实验旨在探究测量误差的来源及其处理方法,通过自己设计的实验进行数据采集与处理,最后得出结论并分析误差的影响。
实验结果表明,合理控制误差和精准处理数据非常重要。
1. 实验目的:
通过自己设计的实验了解测量误差的来源和处理方法,掌握精度等基本概念。
2. 实验步骤:
(1) 设计实验:以电容为例,设计了“通过变化距离来测量电容的实验”。
(2) 组装仪器:根据实验设计,组装了测量电容的仪器。
(3) 测量数据:对实验进行了多次测量,得到了电容的测量值。
(4) 数据处理:使用 Excel 等工具处理数据,计算出各项指标和
误差范围,并进行精度等级划分。
3. 实验结果:
(1) 根据数据处理结果,得到平均电容值为3.5μF,标准差为
0.2μF。
(2) 通过进行误差分析,可知测量误差来源主要包括仪器本身
误差、环境因素干扰和人为误差等多方面因素。
(3) 在误差控制和数据处理方面可采用实验平均法、精度等级
标准等方法。
4. 实验结论:
通过本实验的设计和数据处理,在实验中了解了测量误差的来源和处理方法,识别出了各方面因素影响到精度结果的准确性。
同时也提醒了我们在进行实验操作时需严格控制误差,避免产生干扰和误差现象,最终希望以此为基础,提高本人的实验操作、数据分析和综合思考能力。
第02讲 误差与分析数据的处理1
1.66 1.63 1.54 1.66 1.64 1.64 1.64 1.62 1.62 1.65
1.60 1.63 1.62 1.61 1.65 1.61 1.64 1.63 1.54 1.61 1.60 1.64 1.65 1.59 1.58 1.59 1.60 1.67 1.68 1.69 数据以1.62为中心,按上述规律分布。 小于1.62的数据39个,大于1.62的数据有44个,等于1.62的数据 有7个。
三、过失误差
杜绝过失误差
在分析测定过程中因操作者的失误而引起的分析误差,称为 过失误差。 例如: 损失试样;
加错试剂;
记录或计算错误等。 存在过失误差的数据,无论好坏,均无任何分析价值,应舍弃。
课堂练习
下列情况各引起什么误差?如何消除? 1.砝码腐蚀。 仪器误差,校正或更换新砝码。 2.称量时试样吸收了空气中的水分。 试剂误差。对照试验。 3.称量过程中,天平的零点稍有变动。 随机误差。增加平行测定次数。 4.读取滴定管读数时,最后一位估测不准。 随机误差。增加平行测定次数。 5.以含≈98%的金属锌作为基准物质,标定EDTA的浓度。 试剂误差。提纯或更换试剂。 6.试剂中含有微量被测组分。 试剂误差。更换试剂或做空白试验。
滴定分析的量器或仪表的刻度不准而又未校正。
(三)试剂误差 提纯试剂或对照试验 由于试剂不纯或使用的溶剂中含有微量杂质所引起分析误差, 称为试剂误差。
(四)操作误差
空白试验和对照试验
在正常操作情况下,由于分析工作者掌握的操作规程与正确 的控制条件稍有出入而引起的测量误差,称为操作误差。 例如: 使用缺乏代表性的试样; 试样分解不完全;
个可变的偏差。自由度也可以理解为:数据中可供对比的数目。
测量数据的误差分析与处理方法
测量数据的误差分析与处理方法引言测量是科学研究和工程实践中不可或缺的一环。
无论是实验研究、生产制造还是日常生活中,我们都需要进行测量来获得准确的数据。
然而,由于各种因素的干扰,测量过程中往往伴随着一定的误差。
本文将分析测量数据的误差来源和常见的处理方法,旨在提高数据的精确性和可靠性。
一、误差的来源误差可以来源于多个方面,如仪器的精度、操作者的技术水平、环境的影响等。
下面我们将重点讨论一些常见的误差来源。
1. 仪器误差仪器的精度是影响测量结果准确性的主要因素之一。
仪器误差包括系统误差和随机误差。
系统误差是由于仪器固有的缺陷或校准不准确导致的,它会引起测量结果整体偏离真实值的情况。
随机误差则是由于测量仪器的不稳定性或环境噪声等原因造成的,它在多次重复测量中会呈现出随机分布的特点。
2. 操作者误差操作者的技术水平和经验也会对测量结果产生重要影响。
不同的操作者在测量过程中可能存在不同的观察角度、力度或反应速度等差异,从而导致数据的不一致性。
而且,由于人的视觉、听觉以及手部协调能力等方面的局限性,操作者误差是很难完全避免的。
3. 环境误差环境因素对测量数据的准确性也有明显影响。
例如,温度、湿度、气压等环境因素都会导致仪器传感器的性能发生变化,从而引起误差。
此外,电磁辐射、电源干扰等外部因素也可能对测量结果产生干扰。
二、误差分析方法误差分析是对测量数据中的误差进行评估和处理的过程。
以下是一些常见的误差分析方法。
1. 极差和标准差极差是一种简单直观的误差评估方法,它可以反映测量数据的离散程度。
通过计算最大值与最小值之间的差异,我们可以初步了解数据的分布情况。
而标准差则是一种更精确的误差评估方法,它衡量了数据离散程度的平均度量。
通过计算每个数据点与平均值之间的差异,并取平方后求和再开根号,我们可以得到数据的标准差。
2. 加权平均当不同测量结果的权重不同时,加权平均可以更精确地计算出最终的测量结果。
通过乘以每个测量值的权重并求和,再除以权重之和,我们可以得到加权平均值。
误差和数据处理-1
有效数字不仅表示数值大小,也反映测量仪器的精度。 记录的有效数字必须与所用的分析方法和使用仪器的准确 度相适应。 例如: 分析天平称准0.5g记为:0.5000g 台秤称取0.5g记为: 0.50g 量筒量取20ml溶液记为: 20ml 滴定管放出20ml溶液记为:20.00ml
有效数字的位数:
例如:将下列值修约为四位有效数字
0.24684 → 0.57218 → 101.25 → 101.15 → 7.06253 → 0.2468 0.5722 101.2 101.2 7.063 0.57 0.5749 ×
禁止分次修约
0.575
0.58
有效数字的运算规则
1、加减法 以各数中小数点后位数最少者为准
按有效数字计算下列结果:
213.64 + 4.4 + 0.3244 = 218.4
0.0982 × (20.00 − 14.39) × 162.206 / 3 × 100 = 2.10 1.4182 × 1000
pH=12.20溶液的[H+]
− lg[H + ] = 12.20 [H + ] = 6.3 × 10−13
n −1
2
=
2
∑d
2 i
测定次数 n < 20时 无限次测量时
n −1
σ=
∑ ( xi − μ )
n
相对标准偏差—变异系数(CV)
s CV % = ×100% x
绝对误差: 测定值与真值之间的差值 绝对误差=测定值-真实值 相对误差: 绝对误差占真值的百分比 相对误差=[(测定值-真实值)/真实值]×100% 误差有正、负。 测定值大于真值,误差为正;测定值小于真值,误差为负 误差越小,准确度越高
第二章 测量误差分析与数据处理
• 系统误差的特点是,测量条件一经确定, 误差就为一确切的值。用多次测量取平均 值的方法,并不能改变误差的大小。针对 其产生的根源采取一定的技术措施,以减 小它的影响。例如,仪器不准时,通过校 验取得修正值,即可减小系统误差。
– 系统误差的定量定义是:在重复性条件下,对同一被 测量进行无限多次测量所得结果的平均值与被测量的 真值之差。即
• [例] 某待测电流约为100mA,现有0.5级量程为 0~400mA和1.5级量程为0~100mA的两个电流表, 问用哪一个电流表测量较好?
解:用0.5级量程为0~400mA电流表测100mA时,最大 相对误差为
xm 400 x1 s% 0.5% 2% x 100
用1.5级量程为0~100mA电流表测量100mA时的最大相 对误差为 x 100
随机 误差
粗大 误差
1. 绝对误差(Absolute Error)
(1)绝对误差 用被测量对象的显示值(仪器上的示值) x减去被测量对象的真值A0,所得的数据Δx,叫做 绝对误差。 Δx= x – A0 真值A0无法求到,常用上一级标准仪器的示值 作为实际值A(约定真值)代替真值 △x=x- A 特点:
难点:
1.方差与标准差、权、加权平均值。 2.常用函数的合成误差推导与应用。 3.最佳测量条件的确定与测量方案的设
计。
本次课目标
本次课阐述测量误差的基本概念、误差的表 达形式、误差分类、误差来源;给出描述误差大 小的精度概念及其与误差各类误差的特性。 给出测量中的有效数字概念及其在数据处理 中的基本方法。通过学习本章内容,使读者对测 量误差分析及其数据处理的问题有一个概貌的了 解,为学习后面章节的内容奠定基础。
•
含有粗差的测量值称为坏值或异常值,在数 据处理时,应剔除掉。
1误差分析与数据处理
26
再例如:
某电阻值为 20000(欧姆),保留三位有效数字时写 成 2.00104
又 如 数 据 为 0.0000325m , 使 用 科 学 记 数 法 写 成 3.2510-5m
980cm / s2 9.80m / s2 0.00980km/ s2 9.8m / s2
(4)缓变误差: 是指数值上随时间缓慢变化的误差,一般它是由零部件的
老化、机械零件内应力变化引起的。由于它有不平稳随机 过程的特点,误差值在单调缓慢变化,因此不能象对系统 误差那样引进一次修正量即能校正,又不能象对一般随机 误差那样按平稳随机过程的特点来处理,因而常需不断进 行校正,测量准确度与对仪器仪表的校正周期有关。
7
➢发现系统误差的简单方法
通过观察偏差发现系统误差
1)将观测值依次排列,如偏差的大小有规则地向一个方向变化,即前面 为负号,后面为正号,且符号为(一一一一一十++十+)或相反(+ 十++十一一一一一),则说明该组观测值含有累进的系统误差。如中 间有微小波动,则说明有随机误差的影响。
2)将观测值依次排列,如偏差符号作有规律交替变化,则测量中含有周期 性误差。如中间有微小波动,则说明有随机误差的影响。
1) 直接测量和间接测量
➢ 直接测量: 凡是使用仪器 ➢间接测量:从一个或几个直接测
或量具就可直接得到被测量 量结果按一定的函数关系计算出来
值的测量;
的过程,称为间接测量。
➢例如:用直尺测量长度;
以表计时间;
天平称质量;
M
安培表测电流。
d
V hd 2
h
4
M V
4M
d 2h
1
2)等精度测量和非等精度测量
测量误差分析及数据处理
2. 基本误差和附加误差
任何测量装置都有一个正常的使用环境要求,这就是测量装置的规 定使用条件。根据测量装置实际工作的条件,可将测量所产生的误差分 为基本误差和附加误差。测量装置在规定使用条件下工作时所产生的误 差,称为基本误差。而在实际工作中,由于外界条件变动,使测量装置 不在规定使用条件下工作,这将产生额外的误差,这个额外的误差称为 附加误差。
3.投标阶段。投标人取得招标书之后,经过仔细的研究,可以 根据自己的意愿决定进入投标阶段。
4.评标阶段。招标方收到投标书后,只有在招标会那天,投标 人到达会场,才将投标书邮件交招标人检查,签封完好后,由招 标人当面打开,并宣布各投标人的标的,按招标文件中确定的程 序由全体评标人员进行分析评比,最后通过投票或打分方式选出 中标人。
5
(二)采购分类及方法
1.招标采购 2.询价采购 3.比价采购 4.议价采购 5.定价收购 6.公开市场采购
6
二、企业采购部门的建立、工作目标与工 作事项描述
(一)采购部门的建立 1.按物品类别建立 2.按采购地区建立 3.按采购价值或重要性建立 4.按采购过程建立 5.混合式的建立
29
七、采购绩效管理
(一)采购绩效的构成 由采购行为所产生的业绩和效果以及效率的
综合程度就是采购绩效。 (二)采购绩效的考核与评估的指标体系 1.采购绩效考核与评估的指标 2.采购绩效考核与评估方式 (1)定期绩效考核与评估 (2)不定期绩效考核与评估
(一)质量管理的方法 1.PDCA循环 (二)提高采购商品质量的途径 1.选择合适的供应商 2.正确评审供应商资格 3.制定并执行联合质量计划,建立良好供需
测量误差分析及处理
测量误差分析及处理测量误差是指测量结果与被测量真值之间的差异。
在实际测量中,由于各种因素的影响,几乎所有的测量都存在一定的误差。
因此,对测量误差进行分析和处理是保证测量结果准确性和可靠性的重要步骤。
一、测量误差的分类1.由人工操作引起的误差:如读数、估计误差、标志误差等。
2.由测量仪器本身引起的系统误差:如仪器固有误差、量程误差、灵敏度误差、非线性误差等。
3.由环境条件引起的误差:如温度、湿度、大气压力等变化引起的误差。
4.由被测量对象本身引起的误差:如形状、材质、表面状态等造成的误差。
二、测量误差的处理方法1.校正补偿法:通过对测量仪器进行校正,把系统误差减小到最小范围内,提高测量仪器的准确性和可靠性。
2.平均法:通过多次测量并取平均值,消除人为误差以及瞬时误差,提高测量结果的精度。
3.区间估计法:根据测量值的分布规律进行统计分析,得到误差范围,从而对测量结果进行合理的处理和评定。
4.转化法:将不确定因素转化为已知的误差,通过相应的公式计算测量结果的修正值,从而减小测量误差的影响。
5.误差传递定律:通过分析测量结果与各个误差之间的关系,计算各个误差对测量结果的影响程度,确定主要影响因素,采取相应措施减小误差。
三、测量误差的评定标准1.绝对误差:指测量结果与真实值之差的绝对值,常用百分数表示。
2.相对误差:指测量结果与真实值之差除以真实值的比值,常用百分数表示。
3.系统误差:指一组测量值质量上所表现出的系统性偏差,可以通过校正来消除。
系统误差一般由测量仪器本身引起,是可以预测和确定的。
4.随机误差:指一组测量值中各个测量结果与其算术平均值之差,常用标准差描述。
随机误差是由多种因素共同作用引起的,通常无法完全消除,但可以通过重复测量和平均值来降低。
四、测量误差的控制措施1.选择合适的测量仪器:根据测量要求选择适合的测量仪器,保证其准确度和稳定性。
2.采取科学合理的测量方法:合理安排测量程序,严格按照测量要求进行测量操作,提高测量的可再现性和准确性。
实验数据误差分析与数据处理 (1)
第一章实验数据误差分析与数据处理第一节实验数据误差分析一、概述由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验测量值和真值之间,总是存在一定的差异,在数值上即表现为误差。
为了提高实验的精度,缩小实验观测值和真值之间的差值,需要对实验数据误差进行分析和讨论。
实验数据误差分析并不是即成事实的消极措施,而是给研究人员提供参与科学实验的积极武器,通过误差分析,可以认清误差的来源及影响,使我们有可能预先确定导致实验总误差的最大组成因素,并设法排除数据中所包含的无效成分,进一步改进实验方案。
实验误差分析也提醒我们注意主要误差来源,精心操作,使研究的准确度得以提高。
二、实验误差的来源实验误差从总体上讲有实验装置(包括标准器具、仪器仪表等)、实验方法、实验环境、实验人员和被测量五个来源。
1.实验装置误差测量装置是标准器具、仪器仪表和辅助设备的总体。
实验装置误差是指由测量装置产生的测量误差。
它来源于:(1)标准器具误差标准器具是指用以复现量值的计量器具。
由于加工的限制,标准器复现的量值单位是有误差的。
例如,标准刻线米尺的0刻线和1 000 mm刻线之间的实际长度与1 000 mm单位是有差异的。
又如,标称值为1kg的砝码的实际质量(真值)并不等于1kg等等。
(2)仪器仪表误差凡是用于被测量和复现计量单位的标准量进行比较的设备,称为仪器或仪表.它们将被测量转换成可直接观察的指示值。
例如,温度计、电流表、压力表、干涉仪、天平,等等。
由于仪器仪表在加工、装配和调试中,不可避免地存在误差,以致仪器仪表的指示值不等于被测量的真值,造成测量误差。
例如,天平的两臂不可能加工、调整到绝对相等,称量时,按天平工作原理,天平平衡被认为两边的质量相等。
但是,由于天平的不等臂,虽然天平达到平衡,但两边的质量并不等,即造成测量误差。
(3)附件误差为测量创造必要条件或使测量方便地进行而采用的各种辅助设备或附件,均属测量附件。
如何进行测量数据处理和误差分析
如何进行测量数据处理和误差分析测量数据处理和误差分析是科学研究和实验设计中至关重要的一环。
在各个学科领域,准确地测量和分析数据对于取得可靠的研究结果和科学发现至关重要。
本文将介绍测量数据处理和误差分析的基本原理、方法以及应用。
一、测量数据处理的基本原理测量数据处理是对实验数据进行整理和分析的过程,其主要目的是为了获取可靠、准确的测量结果。
测量数据处理的基本原理包括:1. 数据采集:在实验或观测中,通过各种测量装置和方法,获取数据。
数据的正确采集是测量数据处理的第一步。
2. 数据整理:将采集到的数据按照一定的规则进行整理和分类,使其更易于分析和理解。
包括数据的录入、筛选、排序等。
3. 数据分析:对整理好的数据进行统计和分析,包括计算平均值、标准差、相关系数等。
4. 结果展示:将分析后的数据和结果以适当的形式进行展示,如制作图表、表格等,便于读者理解和参考。
二、误差分析的基本原理误差是测量中不可避免的因素,准确地评估和分析误差对于获得可靠的结果至关重要。
误差分析的基本原理包括:1. 系统误差:由于测量仪器、方法或操作等方面的不准确引起,是一种固定的误差。
系统误差可以通过校准仪器、改进测量方法等方式进行减小。
2. 随机误差:由于种种无法控制的因素所引起,是一种无规律的误差。
随机误差可以通过多次测量并取平均值来减小。
3. 误差来源分析:对于实验和测量过程中的误差来源进行分析,包括仪器误差、环境误差、人为误差等,并寻求适当的处理方法。
4. 不确定度评定:通过计算和评估测量结果的不确定度,准确地表示测量结果的可靠程度。
三、测量数据处理和误差分析的方法测量数据处理和误差分析的方法包括:1. 统计分析方法:包括平均值、标准差、相关系数等统计参数的计算和分析,通过统计学方法来处理和分析数据。
2. 敏感度分析方法:通过改变输入数据或模型参数的数值,评估其对测量结果的影响程度,找出影响结果稳定性的因素。
3. 不确定度评定方法:通过考虑测量装置精度、测量方法可靠性等,对测量结果的不确定度进行计算和评估。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A xC
– 实施:测量仪器定期送计量部门检定,获得修正 值,减少误差 。
2.1.2 测量误差的表示方法(续)
• 例2:
– 一台晶体管毫伏表的10mV档,用其测量时,示值 为8mV,检定时8mV处的修正值是-0.03mV,则 实际值是:
U x C 8 (0.03) 7.97mV
第2章 测量误差分析与数据处理
第2章 测量误差分析与数据处理
• 2.1 测量误差的基本原理 • 2.2 测量误差的分类 • 2.3 随机误差的统计特性及其估算方法 • 2.4 系统误差的特征及其减小的方法 • 2.5 疏失误差及其判断准则 • 2.6 测量数据的处理 • 2.7 误差的合成与分配
第2章 测量误差分析与数据处理
• 例4:测一放大器,已知 Ui=1.2mV,Uo=6000mV。
设Ui的误差忽略不计,而Uo的测量误差为±3% , 求放大倍数的绝对误差、相对误差及分贝误差。
– 放大倍数: A Uo 6000 5000 U I 1.2
– 绝对误差:
Gx 20 lg A 20 lg 5000 74dB
A Uo uU 3% 6000 150
2.1.3 电子测量仪器的表示方法(续)
• (4)稳定误差 – 稳定误差是仪器的标称值在其他影响量 和影响特性保持恒定的情况下,于规定 时间内产生的误差极限。 – 给出形式有两种:
• 以相对误差形式给出 • 注明最长连续工作时间
2.1.3 电子测量仪器的表示方法(续)
• 例:DS-33型交流数字电压表的误差标注:
• 二、相对误差
• 3 、分贝误差——用对数形式表示的误差。 dB 20 lg(1 A ) 20 lg(1 x )
– 具有大小、正负,及dB的单位 – A表实际相对误差, x 表示值相对误差 – 常用于表示增益或声强等传输函数的值 – 注意:若是功率增益,用10代替20
2.1.2 测量误差的表示方法(续)
– 工作误差(50Hz~1MHz, 10mV~1V) (±1.5%Ux± 0.5%Um)
– 固有误差(1KHz, 1V) (±0.4%Ux±1个字)
– 影响误差 温度影响误差(1KHz, 1V) :10-4/℃ 频率影响误差( 50Hz~1MHz ) : (±0.5%Ux± 0.1%Um )
– 稳定误差(-10 ~ +40℃,湿度≤80%,
2.1.1 误差的定义
• 测量误差—测量结果与实际值(真值)之差。包
括:
– 仪器不准确 – 方法不完善 – 环境不合要求 – 测量者的技术水平和责任心
• 认识
– 测量误差是不可避免的; – 寻找误差的来源,尽可能防止误差和减小误差; – 测量结果进行正确的处理,使测量结果接近被测量对象
的实际情况。
2.1.2 测量误差的表示方法
• 一、绝对误差
• 1 、定义——测量值与真值(实际值)之差。
x x A0
– 具有大小、正负和量纲 – 表示测得值偏离真值(实际值)程度和方向 – A0一般用实际值A代替, A的获取:
• 由高一级或数级的仪器测量得到 • 多次测量求平均值得到
2.1.2 测量误差的表示方法(续)
量的准确度相同吗?
2.1.2 测量误差的表示方法(续)
• 二、相对误差
• 1 、实际相对误差——绝对误差与实际值之比。
A
x A
100%
x
A 100% A
– 只具有大小、正负,但无量纲
– 接上例可得:
A1
1 100
100%
1%;
A2
1 5
100%
20%
– 相对误差可以表征测量的准确程度。
x x A0
例1:
• 一个被测电压,真值U0=100V,用一只电压 表测量,指示值U为101V,则绝对误差:
U U U0 101100 1V
• 表明: 测得值比真值大1V,为正误差。
2.1.2 测量误差的表示方法(续)
• 2 、修正值(校正值)
C x A x
– 给出:通过校准由上一级标准以表格或曲线的形 式给出受检仪器的修正值。
– 工作误差是在额定工作条件下仪器的误差极限 – 优点:可直接估计误差的最大范围 – 缺点:用工作误差估计测量结果误差偏大 • (2)固有误差 – 固有误差在规定的基准条件下给出的误差 – 作用:反映仪器固有性能,便于同类仪器的比较和
校准
2.1.3 电子测量仪器的表示方法(续)
• (3)影响误差 – 影响误差是用来表明一个影响量对仪器测量误 差的影响。例如温度误差、频率误差。 – 它是当一个影响量在其额定使用范围内取任一 值,而其它影响量和影响特性均处于基准条件 下测得的误差。 – 只有当某一影响量在工作误差中起重要作用时 才给出,是一种误差极限。
• 重点:
– 误差的表示和分类 – 三种误差的特征及其处理方法 – 数据的处理 – 误差的合成
• 难点:
– 三种误差的特征及其处理方法
2.1 测量误差的基本原理
• 2.1.1 误差的定义 • 2.1.2 测量误差的表示方法 • 2.1.3 电子测量仪器误差的表示方法 • 2.1.4 一次直接测量时最大误差的估计
UI
UI
1.2
– 相对误差: – 分贝误差: – 测量结果:
x
A A
150 100% 5000
3%
dB 20 lg(1 x ) 20 lg(1 3%) 0.26dB
Gx 74 0.26(dB)
2.1.3 电子测量仪器的表示方法
一、我国部颁标准规定用以下误差表征其性能: • (1)工作误差
– 修正值可减少误差,但要注意: • 修正值本身也有误差 • 修正值具有有效期
2.1.2 测量误差的表示方法(续)
• 例3:
– 测两个电压,其实际值分为U1=100V , U2=5V;而测得值分别为101V和6V,则绝对误 差分别是: U1 101100 1V
U2 6 5 1V
绝对误差相同,但他们测 不同
2.1.2 测量误差的表示方法(续)
• 二、相对误差
• 2 、示值相对误差——绝对误差与测得值之比。
有误差,适用于近似测量,只适用于误差
较小及要求不太严格的场合,多用于工程测量
– x 是由仪器的准确度等级定出的,一般表示
仪器在测量范围内最大的绝对误差。
2.1.2 测量误差的表示方法(续)