大学物理之刚体的基本运动
大学物理第四章刚体转动
进动和章动在自然界中实例
陀螺仪
地球极移
陀螺仪的工作原理即为进动现象。当 陀螺仪受到外力矩作用时,其自转轴 将绕某固定点作进动,通过测量进动 的角速度可以得知外力矩的大小和方 向。
地球极移是指地球自转轴在地球表面 上的移动现象,其产生原因与章动现 象类似。地球极移的周期约为18.6年 ,且极移的幅度会受到地球内部和外 部因素的影响。
天体运动
许多天体的运动都涉及到进动和章动 现象。例如,月球绕地球运动时,其 自转轴会发生进动,导致月球表面的 某些特征(如月海)在地球上观察时 会发生周期性的变化。同时,行星绕 太阳运动时也会发生章动现象,导致 行星的自转轴在空间中的指向发生变 化。
感谢观看
THANKS
02
刚体定轴转动动力学
转动惯量定义及计算
转动惯量定义
刚体绕定轴转动时,其惯性大小的量度称为转动惯量,用字母$J$表示。它是一个与刚体质量分布和转轴位置有 关的物理量。
转动惯量计算
对于形状规则的均质刚体,可以直接套用公式计算其转动惯量;对于形状不规则的刚体,则需要采用间接方法, 如分割法、填补法等,将其转化为规则形状进行计算。
刚体性质
刚体是一个理想模型,它在力的作用 下,只会发生平动和转动,不会发生 形变。
转动运动描述方式
01
02
03
定轴转动
平面平行运动
ห้องสมุดไป่ตู้
定点转动
物体绕一固定直线(轴)作转动。
物体上各点都绕同一固定直线作 不同半径的圆周运动,同时物体 又沿该固定直线作平动。
物体绕一固定点作转动。此时物 体上各点的运动轨迹都是绕该固 定点的圆周。
非惯性系下刚体转动描述方法
欧拉角描述法
大学物理第3章刚体的转动
T2
( 2 m1 m / 2 ) m 2 g m 2 M f / R m1 m 2 m / 2
例4.如图所示长度不等的A ,B两个匀质细棒(材料粗细均相 同), 从竖直位置由静止开始自由倒向地面,问:A B棒哪根先倒地?
M rF
M mg l 2 sin( )
三. 转动惯量
I
m
i 1
n
r i i
2
是刚体转动惯性大小的量度 (质量是物体惯性大小的量度) 1. 刚体的质量 由三个因素决定: 2. 质量的分布 3. 转轴的位置
物理意义:
M I
2 如果刚体是连续分布的质点系 I r d m 单位:kg m2
质量为体分布: d m d V 质量为面分布: d m d s
dm m l d x
1 2
1
l
I I
r
2
dm
O
dm
x
l
2
x dm
I
1 l
2
2 1 l 2
m l
l
m l
x dx
2
0
1 3
ml
2
x d x
l 2
2
z l
ml
2
3 mx l 3
l 2
1 12
o
dx
x
例2: 计算质量为m, 半径为R的均匀细圆环的转动惯量. 轴与圆环平面垂直并通过圆心。 解: 如图各质元到轴的垂直距离相等 m
质点角动量 L r p r m v
刚体的角动量(定轴转动)
L I
大学物理刚体力学
4-2-1力矩 1.外力F在转动平面内:
Mi ri Fi
ri : 转动平面与转轴交点 o指向力的作用点的矢量 。
z
Fi
Fi
i
Fin
大小:Miz ri Fi sini ri Fi
(Fi Fi sini : 力的切向分量)
方向:右手螺旋,图中向上
2.外力 F不在转动平面内,将其分解为F和F||
解 (1)碰撞过程经历的时间极短,因此,系统所受外力(重力与轴的支持力)对于
轴O的力矩都为零,因而系统对轴O的角动量守恒。
碰前角动量
L1
mv l 2
碰后角动量
L2 J
J 为子弹与杆组成的系统相对于O的转动惯量,且:
M
J J 杆 J子弹
由角动量守恒
M l2 12
m( l )2 2
•O l mv
Md
dA Md M与d同向,dA为正;否则为负。
当刚体由
1
位置,外力矩作功:
2
A dA 2 Md 1
若M为恒力矩
A
2 Md M
1
2 1
d
M (1
2)
功— —力矩的角积累(空间积累)效应。
4-3-2刚体定轴转动的动能
mi:
Eki
1 2
mi
vi2
1 2
mi
ri2
2
总转动动能: Ek
此平行
转动:刚体上所有质元都绕同一直线(转轴)作圆周运动
如转轴相对所选参照系固定不动,称定轴转动
刚体运动=平动+转动
•A
•A
•C •A
•C •B •C
•B
•B
o
o
图4-1 刚体的平动
大学物理第三章刚体力学
薄板的正交轴定理:
Jz Jx J y
o x
y
X,Y 轴在薄板面上,Z轴与薄板垂直。
例3、质量m,长为l 的四根均匀细棒, O 组成一正方形框架,绕过其一顶点O 并与框架垂直的轴转动,求转动惯量。 解:由平行轴定理,先求出一根棒 对框架质心C的转动惯量:
C
m, l
1 l 2 1 2 2 J ml m( ) ml 12 2 3
M F2 d F2 r sin
若F位于转动平面内,则上式简化为
M Fd Fr sin
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
例9 行星运动的开普勒第二运动定律:行星对太阳 的位矢在相等的时间内扫过相等的面积。 解:行星在太阳引力(有心 力)作用下沿椭圆轨道运动, 因而行星在运行过程中,它 对太阳的角动量守恒不变。
L rmvsin 常量
因而掠面速度:
dS dt
r dr sin 2dt
1 rv sin 常量 2
Fi fi Δmi ai
切向的分量式为
Fi sin i f i sin i mi ri
Fi sin i f i sin i mi ri
两边同乘ri,得
Fi ri sin i fi ri sin i mi ri2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
质点的角动量一质量为m的质点以速度v运动相对于坐标原点o的位置矢量为r定义质点对坐标原点o的角动量为sinrmv282质点的角动量定理质点所受的合外力对某一参考点的力矩等于质点对该点的角动量对时间的变化率角动量定理
1.3大学物理(上)刚体力学基础
dm ds dm dV
面密度和体密度。
线分布
面分布
体分布
注 意
只有对于几何形状规则、质量连续且均匀分布
的刚体,才能用积分计算出刚体的转动惯量。
[例3.1]: 求长为L、质量为m的均匀细棒对图中不同 轴的转动惯量。 [分析]:取如图坐标,dm=dx
A B
L
X
J A r dm
2
x dx mL / 3
T1 mg sin ma 1 2 T2 R T1 R J mR 2 mg T2 ma
a R
mg
[例3.4]: 转动着的飞轮的转动惯量为J,在t=0时角速度 为ω0。此后飞轮经历制动过程,阻力矩M的大小与角速度 ω的平方成正比,比例系数为k(k>0),当ω= ω0/3时,飞 轮的角速度及从开始制动到现在的时间分别是多少? [分析]: (1)已知 M k 2
练习:右图所示,刚体对经过
棒端且与棒垂直的轴的转动惯
mL
量如何计算?(棒长为L、球
半径为R)
mO
J L1
1 2 mL L 3
2 2 J o mo R 5
2 2
J L 2 J 0 m0 d J 0 m0 ( L R)
1 2 2 2 2 J mL L mo R mo ( L R) 3 5
dL d ( mv ) dr d (mv ) dr r mv F , v dt dt dt dt dt dL v mv 0, r F M r F v mv dt dL 角动量定理的微分形式 M dt
平均角速度
角速度
t
大学物理_第06章 刚体力学
接触点相同线速度时: 1r1 2r2
联立解得:
1
J1
J1 ( r1 r2
)2
J2
0
2
r1 r2
J1
J1
(
r1 r2
)2
J
2
0
书上177页
解: dm
2 rdr
m2 rdr R2
2mrdr R2
df
2mrdr R2
g
dM
r
2mrdr R2
g et
2mr 2dr R2
g
M
R
dM
0
R 0
2mr 2 dr R2
dm dV
其中、、分别为质量线密度、面密度和体密度。
转动惯量
2). 转动惯量的计算:
质点、圆环、圆筒绕中心轴转动
z
z
Rm
oR m
R
m
o
质点的转动惯量为
Jo mR2
对于匀质圆环和薄圆筒,因各质元到轴的垂直距
离都相同,则有
Jo mR2
圆盘、圆柱绕中心轴转动
对于质量为m、半径为R、厚为l 的均匀圆盘取半径为 r宽
需要一个动力学方程 — 角动量定理
角动量定理: M dL
dt
转轴转动角动量表达式:
Mz
dLz dt
转轴分量角动量定理表达式:
n
Lz z mi (xi2 yi2 ) z J i1
转动定律:
Mz
dLz dt
d (J)
dt
J
d
dt
J
z v
r
P
当刚体绕固定轴转动时,刚体对该轴的转动惯量与角加速 度的乘积等于外力对此轴的合力距。 — 定轴转动定律
大学物理教程-刚体的定轴转动
大学物理教程
哈尔滨工业大学(威海)
5.1 刚体的运动 Harbin Institute of Technology at Weihai
1.平动:
刚体在平动时,在任意一段时间内,刚体
中所有质点的位移都是相同的。而且在任何
时刻,各个质点的速度和加速度也都是相同
5.2.1 对轴的力矩
M ro F (r rz ) F
M z (r F ) z r (F Fz )z r F
M z rF sin r F rF
➢ 说明: ① 只有垂直于轴的分量(或在转动平面内的分量)
才能产生沿轴方向的力矩! ② 作用点到轴的垂直距离决定对轴的力矩
大学物理教程
例3. 圆环绕中心轴旋转的转动惯量。
解: 选圆环上dl长度质量微元dm,
设线密度为 m 2 R
dl
m R
Jz R2 d m R2 d l
O
R22 R
mR2
大学物理教程
延伸:
薄壁圆筒: J mR2
哈尔滨工业大学(威海)
5.2 刚体定轴转动定律 Harbin Institute of Technology at Weihai
(A)
(B)
解: (A)
M J
FR 1 mR2
2F mR
2
2F
mR
a R 2F / m
R
R
m
m
(B) m1g T m1a
TR J 1 mR2
2
a R
m1
g
m1
1 2
m
R
a
m1
g
m1
1 2
m
恒力 F
大学物理刚体的定轴转动
2l
l
17
例 一匀质细杆,长为 l 质量为 m ,在摩擦系数为
的水平桌面上转动,求摩擦力的力矩 M阻。 解: 建立如图坐标,取质元
dm dx
质元受阻力矩:
dM 阻 dmgx
o
xl dm m dx
x
细杆受的阻力矩
M阻
dM
阻
0l
gxdx
1 mgl
2
18
例 一半径为R,质量为m的均匀圆盘平放在粗糙的
令 J miri2
刚体绕Z轴转动的转动惯量
即
M z J ----刚体的定轴转动定律
说明
1. 上式是矢量式(力矩只有两个方向)。
2. M、J、是对同一轴而言的。
3. 具有瞬时性,是力矩的瞬时效应。
4. 转动惯量J是刚体转动惯性大小的量度。
8 8
3、转动惯量的计算
转动惯量: J miri2
l
r
dr
d
dm g
M
dM
l
0
mg l
r
cosdr
mg
l 2
cos
16
M J 1 ml2
3
3g cos
2l
(2) d d d d 3g cos dt d dt d 2l
分离变量积分 g cos d l d
02
03
(3g sin ) l
300 , 3g 900 , 3g
i
质量连续分布的刚体: J r2dm
质量为线分布: dm dl
面分布: dm ds
体分布: dm dV
1)总质量
转动惯量与下列因素有关: 2)质量分布 3)转轴位置
9
✓ J与质量分布有关:
大学物理刚体部分知识点总结
大学物理刚体部分知识点总结大学物理质心刚体部分知识点总结一、刚体的简单运动知识点总结1.刚体运动的最简单形式型态为平行移动和绕定轴转动。
2.刚体平行移动。
刚体内任一直三角形在运动运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。
刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能出现是直线,也可能是曲线。
刚体作平移时,在同一瞬时刚体内各点的加速度和加速度大小、方向都相同。
3.刚体绕定轴转动。
刚体运动时,其中有两点保持不动,此运动称为参考点绕定轴转动,或转动。
刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。
角速度ω坦言刚体转动快慢程度和转向,是代数量,,当α与ω。
角速度也可以用矢量表示,角加速度表示角速度对时间的变化率,是代数量,同号时,刚体作匀迟滞转动;当α与ω异号时,刚体作匀减速转动。
角加速度也可以用矢量表示,绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系:速度、加速度的第六代数值为。
传动比。
二.转动定律转动惯量转动定律力矩相同,若转动惯量不同,产生的角加速度不同与牛顿定律比较:转动惯量刚体绕给定车轴的转动惯量J等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总和。
定义式质量不连续分布质量连续分布物理意义转动惯量是描述刚体在转动中的惯性大小的物理量。
它与刚体的形状、质量原产以及转轴的位置有关。
计算转动惯量的三个要素:(1)总质量;(2)质量分布;(3)转轴的位置(1)J与刚体的总质量有关几种典型性的匀质惯性力刚体的转动惯量刚体细棒(质量为m,长为l)细棒(质量为m,长为l)转轴位置过中心与棒垂直过一点与棒垂直转动惯量Jml212ml23细环(质量为m,半径为R)过中心对称轴与环面横向垂直细环(质量为m,半径为R)圆盘(质量为m,半径为R)圆盘(质量为m,半径为R)球体(质量为m,半径为R)薄球壳(质量为m,半径为R)平行轴定理和转动惯量的可加性1)平行轴定理直径过中心与盘面直径过球心过球心mR2mR22mR22mR242mR252mR23设刚体相对于通过质心轴线的转动惯量为Ic,相对于与之平行的另一轴的转动惯量为I,则可以证明I与Ic之间有下列关系IIcmd22)转动惯量的可加性对同一转轴而言,物体各部分转动惯量之和等于整个物体的转动惯量。
大学物理第八讲、刚体运动学
2. 各质元作圆周运动的半径在相同的时间内转过的 角度相同。 ω 推论:所有质元都具有相同的角位 移、角速度和角加速度。 vi 三、刚体定轴转动的描述 ★用角量描述最为方便。
角速度矢量
o
ri
)
θ
∆mi
x
ω的方向平行于转轴。与转动方向成右旋关系时为
正,反之为负。
dθ ω= ω = dt
dt = J
ω
J
M0 M1
∫
ω
0
kt t dt − dω 1 J =∫ = ω M − e (1 ) 0 0 M 0 − kω J a
21
例:质量为m的均质细杆长为l,可绕过一端的O轴转 动。设杆自水平静止释放,求: ⑴当杆与水平方向成 θ 角时的角加速度; ⑵杆过铅直位置时的角速度; ⑶ 杆过铅直位置时,轴作用于杆上的力N。 解:杆受重力和轴的支承力,后者对轴无力矩。 y l ⑴ 重力矩:M = mg cosθ N z l 2 x o θ 转动定理: M = J α 1 2 J = ml 3
j
i
∆rij = c
ri
rj
o
3
刚体平动的特征 对上式求导得
结论
rj = ri + ∆rij v j = vi
c 平动:∆rij = a j = ai
∆rij
j
i
ri
rj
o
刚体平动时,其上各点具有相同的速度、加速度, 和相同的运动轨迹。 ●任意一点的运动规律即可代表整个刚体的平动 规律。 ●通常用质心的运动来描述刚体整体的平动规律。
2 l /2 2
J= J C + md A
2
转动力学刚体在大学物理中的运动分析
转动力学刚体在大学物理中的运动分析转动力学是大学物理中的一个重要分支领域,研究的是刚体在转动运动下的力学性质和规律。
刚体指的是在运动过程中形状和大小不变的物体。
一、刚体的基本概念和特性刚体是指在外力作用下,各点之间相对位置不变的物体。
刚体可以看作由无穷多个质点组成,质点之间的距离始终保持不变。
在刚体的运动过程中,刚体内部各点都具有相同的转动角度和转动速度。
二、刚体的转动中心和转动轴刚体的转动中心是指在转动过程中,仍然保持位置不变的点。
对于一个刚体而言,转动中心可以是任意点,但通常选择质量分布均匀的位置作为转动中心。
刚体绕着转动轴进行转动,转动轴可以是任意直线,刚体绕转动轴旋转的角速度是一致的。
三、刚体转动的基本量刚体转动的角位移是刚体绕转动轴转过的角度,用Δθ表示。
刚体转动的角速度是指角位移随时间的变化率,用ω表示。
刚体转动的角加速度是指角速度随时间的变化率,用α表示。
四、刚体的转动惯量刚体的转动惯量是刻画刚体难以改变其转动状态的物理量。
刚体的转动惯量与刚体质量的分布有关,质量分布越分散,转动惯量越大。
转动惯量用I表示,单位是kg•m²。
对于简单形状的刚体,可以根据几何形状和质量分布求解转动惯量。
五、刚体的转动动力学刚体的转动动力学是研究刚体在受力作用下转动运动规律的学科。
刚体所受的合外力矩等于刚体转动惯量与刚体角加速度的乘积。
即M = Iα,其中M表示合外力矩,I表示刚体转动惯量,α表示刚体的角加速度。
根据这个关系,可以求解刚体在受力作用下的转动加速度和转动角速度。
六、刚体的转动定律刚体的转动定律包括角动量定理和角动量守恒定律。
角动量定理指出,刚体所受的合外力矩等于刚体角动量的变化率。
角动量守恒定律指出,在没有外力矩作用下,刚体的初始角动量等于其最终角动量。
这两个定律为研究刚体的转动运动提供了基本的理论依据。
七、刚体转动的应用刚体转动的运动规律和性质在实际中有着广泛的应用。
例如,汽车的方向盘、舞蹈中的旋转动作、田径项目中的标枪投掷等都涉及到刚体的转动运动。
大学物理03-刚体力学基础
J
r
m
2
dm
• 刚体的形状(质量分布)
16
J
注 意
r
m
2
dm
只有对于几何形状规则、质量连续且均匀分布 的刚体,才能用积分计算出刚体的转动惯量
例3-2 一均匀细棒,质量为 m ,长为 l 。求该棒对下列转轴 的转动惯量:(1)通过棒中心且与棒垂直的轴;(2)通过 棒的一端且与棒垂直的轴。 解:取如图坐标,在棒上任取质元,到转轴的垂直距离为x, 长度为 d x,该质元的质量为 dm = (m/l )dx (质量为线分布)。 A L/2 C
S
O
Mz r d
P
F
M r F
O r
F
P
F
F //
大小: M rF sin Fd 方向: 由右手螺旋法则确定
转动平面
F 应该理解为外力在转动平面内的 分力F//
转动平面
在定轴转动中,M 的方向只有两种可能指向。若先选 定了转轴的正方向,则 M 与转轴方向一致时取正 值,反之为负值
11
(3) 如果有几个外力矩作用在刚体上,则合力矩等 于各个力矩的代数和
M
i i i
ri Fi
12
2
二 刚体绕定轴的转动定律
刚体可视为由许多质点组成的,而每一个质点都遵从质点力学 的规律。刚体转动定律可由牛顿第二定律直接导出。
Fi f i mi ai mi ri
一、力对转轴的力矩
力是引起质点运动状态变化的原因,而力 矩是引起转动物体运动状态变化的原因
(2) 外力F 不在转动平面内(任意力) 可将 F 分解为转动平面内的分力 F// 和垂直于转动平面的分力F F不能引起刚体转动状态的变化 力矩:
大学物理教程第五章刚体的转动
⼤学物理教程第五章刚体的转动第五章刚体的转动§5-1 刚体的平动、转动和定轴转动⼀、刚体在外⼒作⽤下形状和⼤⼩都不变化的物体称为刚体.和这定义等价的另⼀定义是:如果物体在外⼒作⽤下它的任意两点之间的距离保持不变,则这物体称为刚体.刚体是⼀种理想模型,在⾃然界中是找不到的.实际上任何物体在外⼒作⽤下,它的形状和⼤⼩都或多或少要发⽣变化.但有许多物体,如果外⼒不甚⼤的话,它的形状和⼤⼩的改变不显著,这样的物体和刚体很接近,刚体⼒学中的结论对于这样的物体⼤致与经验符合.因此在实际问题中这样的物体可以当刚体来处理.⼆、平动和转动刚体的最简单的运动是平动和转动.在§1-3中关于参考系的平动的定义对刚体也适⽤.即如果刚体运动时,它⾥⾯任⼀直线的⽅位始终保持不变,则其运动称为平动.平动的特点是,任⼀时刻刚体中各点的速度和加速度都相等,任⼀点的运动都可以代表整个刚体的运动.刚体运动时,如果刚体中所有质点都绕着⼀条直线作圆周运动(如图5-1),则这刚体的运动称为转动,这条直线称为转轴.座钟的指针、CD 光碟、涡轮发电机的叶⽚和车辆的轮⼦的运动都是转动.转动刚体的转轴可以是固定的(例如涡轮叶⽚的转轴),也可以是运动的(例如车轮的转轴).转轴固定的转动称为定轴转动.可以证明,刚体的⼀般运动可以当作是由⼀平动和⼀绕瞬时轴的转动组合⽽成.例如车轮在地⾯上滚动(图5-2a),可以看成是由车轮随轮轴的平动以及车轮绕轮轴的转动组合⽽成.车轮上任⼀点P 的瞬时速度v ,等于轮轴的瞬时速度v 0与由于该点随车轮绕轮轴转动所具有的速度v r 的⽮量和,如图5-2(b)所⽰.三、定轴转动如图5-1,P 为刚体中⼀质点,当刚体绕定轴转动时,P 作圆周运动,圆⼼O 为转轴与圆平⾯的交点.由于刚体中任意两点之间的距离是固定不变的,刚体中各质点在同⼀时间Δt 内具有相同的⾓位移Δθ,因此在任⼀时刻各质点具有相同的⾓速度ω和⾓加速度α.所以我们可以⽤Δθ、ω和α作为描写刚体绕定轴转动的物理量,称为刚体的⾓位移、⾓速度和⾓加速度.我们在§1-4中讲过的⾓位移、⾓速度和⾓加速度等概念都适⽤于刚体的定轴转动.如果将⾓位移Δθ图5-1图5-2改为θ,则§1-4中公式θ = ωt ,ω = ω0 + αt 及θ = ω0t +21αt 2对刚体的定轴转动亦适⽤.⾄于刚体内各质点的速度和加速度则由于各质点到转轴的距离不同⽽各不相同,但这些线量与⾓量之间的关系仍然由(1-49)式、(1-51)式及(1-52)式表⽰.例题5-1 ⼀转速为1.80×103 r/min 的飞轮,因受制动⽽均匀地减速,经20.0s 停⽌转动.(1) 求⾓加速度和从制动开始到停⽌转动飞轮转过的转数;(2) 求制动开始后t = 10.0s 时飞轮的⾓速度;(3) 设飞轮半径为0.500m ,求在t = 10.0s 时飞轮边缘上⼀点的线速度和切向与法向加速度.解 (1) 设ω0为初⾓速度,由题意得rad/s π60rad/s 60101.80π2π230=??==n ω s 0.20 ,0==t ω因飞轮均匀减速,其转动为匀变速转动,由§1-4公式,⾓加速度为220rad/s π3rad/s 20.0π60-=-=-=t ωωα从开始制动到停⽌转动飞轮的⾓位移θ及转过的转数N 依次为rad π600rad 20.03π2120.0π6021220=??-=+=t t αωθ 300 2ππ600π2===θN (2) t = 10.0s 时飞轮的⾓速度为()rad/s π30rad/s 10.03ππ600=?-=+=t αωω(3) t = 10.0s 时,飞轮边缘上⼀点的线速度为m/s 1.47m/s 30π.5000=?==ωr v相应的切向加速度及法向加速度为22t m/s 71.4m/s 3π.5000-=?-==αr a()23222n m/s 1044.4m/s 30π.5000?=?==ωr a §5-2 ⼒矩转动定律转动惯量⼀、⼒对转轴的⼒矩根据经验,⼒可以使物体转动.但使物体转动的作⽤,不仅与⼒的⼤⼩有关,⽽且与⼒的⽅向以及⼒的作⽤线和转轴的距离有关.例如当我们⽤⼿关门时,⼒的作⽤线和门的转轴的距离越⼤,越容易把门关上.如果⼒的作⽤线通过门的转轴,或⼒的⽅向与转轴平⾏,则不论⽤多⼤的⼒也不能把门关上.⾸先讨论⼒在垂直于转轴的平⾯内的情形.图5-3为与转轴垂直的刚体的截⾯图,⼒F 在此平⾯内,⼒的作⽤线与转轴的距离为d ,d 称为⼒臂,⼒的⼤⼩F 与⼒臂d 的乘积称为⼒F 对转轴的⼒矩,⽤M 表⽰,则M = Fd (5-1)设r 为从转轴到⼒的作⽤点P 的径⽮,φ为r 与F 之间的夹⾓,由图5-3看出,d = r sin φ,故(5-1)式可写为r F Fr M ⊥==?sin (5—2)其中⊥F 为⼒F 在垂直于r ⽅向的分量.上式表⽰,只有⼒F 在垂直于r ⽅向的分量才对⼒矩有贡献.当φ = 0或φ =180°时M = 0,此时⼒的作⽤线通过转轴,0=⊥F ,d = 0.如果⼒F 不在垂直于转轴的平⾯内,则将F 分解为⼆分⼒F l 、F 2.F l 在垂直于转轴的平⾯内,F 2与转轴平⾏(图5-4).由于平⾏分⼒F 2对物体转动不起作⽤,可以不考虑,因此在⼒矩定义式(5-1)或式(5-2)中,F 应理解为外⼒在垂直于转轴的平⾯内的分⼒.⼒对定轴的⼒矩不但有⼤⼩,⽽且有转向.⼀般规定,如果⼒矩使刚体沿反时针⽅向转动,⼒矩为正;如果⼒矩使刚体沿顺时针⽅向转动,⼒矩为负.如果同时有⼏个⼒作⽤于刚体,则刚体所受的合⼒矩等于各个⼒对转轴的⼒矩的代数和.⼒对转轴的⼒矩与⼒对⼀点的⼒矩之间的关系如上所述,如果⼒F 与转轴不垂直,可将它分解为垂直于转轴的分⼒F l 和平⾏于转轴的分⼒F 2.设O 为通过⼒F 的作⽤点P ⽽垂直于转轴的平⾯与转轴的交点.r 为从O 点到P 点的径⽮(图5-4).则由(4-37)式得⼒F 对O 点的⼒矩为M = r × F = r × (F l + F 2) = r × F l + r × F 2将上式两边投影在转轴上.现在来看左右两边投影的意义.左边为⼒F 对O 点的⼒矩在转轴上的投影,右边r × F 2与转轴垂直,它在转轴上的投影为零.r × F l 与转轴平⾏,它在转轴上的投影等于F l r sin φ(图5-4).⽽后者等于⼒F 对转轴的⼒矩.故得结论:⼒F 对转轴的⼒矩等于⼒F 对O 点的⼒矩M 在转轴上的投影,其中O 为通过⼒F 的作⽤点P ⽽垂直于转轴的平⾯与转轴的交点.应当注意,⼒对⼀点的⼒矩是⽮量,⼒对转轴的⼒矩是标量.这是因为后者是前者的投影之故.⼆、转动定律刚体可看成是由⽆数质点组成,当刚体绕定轴转动时,各个质点都绕定轴作圆周运动,取质点P i 来考虑,设其质量为Δm i ,与转轴的距离为r i ,图5-5为经过P i ⽽垂直于转轴的刚体的截⾯图,作⽤于P i 的⼒有外⼒F i 及内⼒F ’i ,令F i t 及F ’i t 分别表⽰F i 及F ’i 沿切线⽅向的分量,则由切向运动⽅程得F i t + F ’i t = Δm i · r i α两边乘以r i :F i t r i + F ’i t r i = (Δm i r i 2)α将此式对刚体中⼀切质点求和得图5-3 图5-4∑∑∑='+ii i i ii i i i r m r F r F α)Δ(2t t (5-3) ∑'i ii r F t 为所有内⼒对转轴的⼒矩的代数和,即合内⼒矩.下⾯证明此合内⼒矩等于零.取刚体中两质点P i 及P j 来考虑.根据⽜顿第三定律,这两质点相互作⽤的⼒⼤⼩相等⽅向相反,且在同⼀直线上(图5-6),此⼆⼒有相同的⼒臂d ,但因⼆⼒⽅向相反,故其对转轴的合⼒矩为零.⼜因内⼒总是成对的,每⼀对内⼒的合⼒矩既然等于零,所以所有内⼒的合⼒矩亦必等于零,即0t ='∑iii r F 因此,(5-3)式化为∑∑=ii i i i i r m r F α)Δ(2t (5-4)∑iii r F t 为所有外⼒对转轴的⼒矩的代数和,即合外⼒矩,⽤M 表⽰,则上式化为∑=ii i r m M α)Δ(2 (5-5)对于⼀定刚体及⼀定转轴来说,上式中∑ii i r m 2Δ为⼀恒量,称为刚体对该转轴的转动惯量,⽤J 表⽰,即∑=ii i r m J 2Δ (5-6)这样(5-5)式便化为αJ M = (5-7)此式表⽰,刚体的⾓加速度与它所受的合外⼒矩成正⽐,与刚体的转动惯量成反⽐,这⼀关系称为转动定律.这是刚体绕定轴转动的基本定律.刚体绕定轴转动的其他定律都可以由这条定律导出.值得注意,这条定律是从⽜顿第⼆、第三定律推出的.三、转动惯量把转动定律αJ M =与⽜顿第⼆定律F = ma ⽐较,可以看出,这两个式⼦⼗分相似,M 对应于F ,α对应于a ,J 对应于m .我们知道,物体的质量m 是物体的平动惯性⼤⼩的量度,与此类似,物体的转动惯量J 是物体的转动惯性⼤⼩的量度.这可以从转动定律αJ M =看出.转动惯量不同的两个刚体,在相同的图5-5 图5-6外⼒矩作⽤下,转动惯量⼤的刚体⾓加速度⼩,就是它的⾓速度难于改变,也就是转动惯性⼤;反之,转动惯量⼩的刚体,它的转动惯性⼩.根据转动惯量定义:∑=ii i r m J 2Δ如果刚体是由若⼲个质量为m 1,m 2,m 3,…的质点组成,在(5-6)式中Δm i 应代以m i ,得+++=233222211r m r m r m J (5-8)如果刚体的质量连续分布在⼀体积内,(5-6)式中总和式应代以积分式,Δm 应代以d m (刚体中的质量元),得==VV V r m r J d d 22ρ(5-9)其中d V 为刚体的体积元,ρ为体积元d V 处的质量体密度,此积分遍及于刚体的整个体积V .(5-9)式可推求如下:将刚体划分为许许多多⼩部分,每⼀部分的线度极⼩,使它可以看成⼀质点.设各⼩部分的质量为Δm 1,Δm 2,…,Δm i ,…,与转轴的距离依次为r 1,r 2,…,r i ,…,按照(5-6)式,刚体的转动惯量J 近似地等于∑i i m r Δ2,即∑≈ii i m r J Δ2设λ为各⼩部分的线度的最⼤值,λ越⼩,每⼀⼩部分越接近于⼀质点,因此和数∑i i m r Δ2越接近于J ,所以当0→λ时,和数∑i i m r Δ2的极限值便完全等于J 了,即∑→=ii i m r J Δlim 20λ按照⾼等数学,上式中右式就是定积分?Vm r d 2,于是得 ??==VV V r m r J d d 22ρ这就是(5-9)式如果刚体的质量连续分布在⼀⾯上或⼀细线上,则需引⽤质量⾯密度或线密度概念,计算转动惯量公式与上式相同,只需将体密度换为⾯密度或线密度,将体积元换为⾯积元或线元即可.参看例题5-2及5-3.在国际单位制中转动惯量单位为千克平⽅⽶,符号为kg·m 2,转动惯量的量纲为ML 2.⼏何形状简单的刚体,其转动惯量可⽤积分法算出,见表5-1.表5-1 质量分布均匀的⼏种刚体的转动惯量a) 细棒(转轴通过中⼼与棒垂直) b) 细棒(转轴过棒的⼀端与棒垂直) 2121ml J = 231ml J =c) 圆柱体(转轴沿⼏何轴) d) 球体(转轴沿球的任⼀直径)221mR J = 252mR J =e) 薄圆筒(转轴沿⼏何轴) f ) 圆筒(转轴沿⼏何轴)2mR J = )(212221R R m J +=例题5-2 求质量为m 、板长为l 的均匀细棒对于通过棒的中点⽽与棒垂直的轴的转动惯量.解在棒上取与轴OO ’距离为x 、长为d x 的⼀⼩段来考虑(图5-7),这⼀⼩段的质量为d m = λd x .其中λ为棒的质量线密度.根据转动惯量定义,棒对轴OO ’的转动惯量为32222121d d l x x m x J l l -λλ===?? 棒的质量线密度lm =λ,代⼊上式得 2121ml J = 例题5-3 求质量为m 、半径为r 的匀质圆盘对于通过圆⼼⽽垂直于圆平⾯的轴的转动惯量.解在圆盘上取⼀半径为x ,宽为d x 的圆环来考虑(图5-8),这圆环的⾯积为2πx d x ,质量为d m = 2πσx d x ,其中σ为圆盘的质量⾯密度.根据转动惯量定义,圆盘对通过圆⼼O ⽽垂直圆平⾯的轴的转动惯量为4032π21d π2d r x x m x J r σσ===?? 圆盘的质量⾯密度2πrm =σ,代⼊上式得 221mr J = 上式对匀质圆柱体对于它的⼏何轴的转动惯量亦适⽤.决定刚体的转动惯量J 的⼤⼩因素有三:①刚体的质量;②刚体质量分布情况;③刚体的转轴的位置.例如质量均匀、⼤⼩相同的铅球和铜球,由于铅球质量较⼤,所以对于位置相同的轴来说,铅球的J 较⼤.⼜如有两个圆柱体,外径相等,质量也相等,但其中⼀个为实⼼,另⼀个为空⼼(质量分布不同),则对于它们的⼏何轴来说空⼼的圆柱体的J 较⼤.⼜如同⼀根棒对于通过棒的中⼼与棒垂直的轴与对于通过棒的⼀端与棒垂直的轴的J 不相同.例题 5-4 在半径分别为R 1、R 2的阶梯形滑轮上反向绕有两根轻绳,各悬挂质量为m 1、m 2的物体,如图5-9所⽰.若滑轮与轴间的摩擦忽略不计,滑轮的转动惯量为J ,求滑轮的⾓加速度α及各绳中张⼒F T1、F T2.解分析各物体的受⼒情况,如图5-9右图,对于滑轮,重⼒和轴的⽀承⼒通过轴⼼,其⼒矩为零.由于是轻绳,应有F T1 = F’T1,F T2 = F ’T2.先假设物体运动⽅向为:m 1的加速度a 1向下,m 2的加速度a 2向上,滑轮沿顺时针⽅向转动.选取物体运动⽅向为坐标轴正向,根据⽜顿第⼆定律和转动定律可得111T 1a m F g m =- 2222T a m g m F =- αJ R F R F =-22T 11T 滑轮边缘的切向加速度等于物体的加速度:αα2211 ,R a R a == 解以上各式得 g R m R m J R m R m 2222112211++-=α g m R m R m J R R m R m J R g m F 1222211212222111T )(???? ?++++=-=α图5-7 图5-8图5-9gm R m R m J R R m R m J R g m F 2222211211211222T )(???? ?++++=+=α讨论:1) 当m 1gR 1 > m 2gR 2 时,物体运动⽅向与原假定⽅向相同.2) 当m 1gR 1 = m 2gR 2 时,α = 0,滑轮作匀速转动或静⽌,运动状态或⽅向由初时刻条件决定.3) 当m 1gR 1 < m 2gR 2时,物体运动⽅向与原假定⽅向相反,即m 1向上,m 2向下,滑轮沿反时针⽅向转动.§5-3 转动动能⼒矩的功⼀、转动动能如图5-10,设刚体绕通过O 点⽽垂直于图平⾯的定轴转动,⾓速度为ω.当刚体转动时,刚体中各质点都绕定轴作圆周运动,因⽽都有动能.刚体的转动动能等于刚体中所有质点的动能之和.设各质点的质量为Δm 1,Δm 2,Δm 3,…,与转轴的距离为r 1,r 2,r 3,…,线速度为v 1 = r 1ω,v 2 = r 2ω,v 3 = r 3ω,…,则刚体的转动动能为22223322222211k Δ21 Δ21Δ21Δ21ωωωω??=+++=∑i i i r m r m r m r m E 但J r m ii i =∑2Δ为刚体的转动惯量,故E k ⼜可写为2k 21ωJ E =(5-10)即刚体的转动动能等于刚体的转动惯量与⾓速度的平⽅的乘积的⼀半,(5-10)式与平动动能公式2k 21v m E =形式相似,⽽且量纲也相同.⼆、⼒矩的功如图5-11,设绕定轴转动的刚体在外⼒F 作⽤下有⼀⾓位移d θ,⼒F 在垂直于转轴的平⾯上,从转轴到⼒的作⽤点的径⽮为r ,则⼒的作⽤点的位移d r 的⼤⼩为d s = r d θ.根据定义,⼒F 在位移d r 中的功为d W = F · d r = F cos α d s因α与φ互为余⾓,cos α = sin φ,故上式可写为d W = Fr sin φd θ⼜由(5-2)式Fr sin φ = M 为⼒F 对转轴的⼒矩,故⼜可写为图5-10 图5-11d W = M d θ(5-11)这就是⼒矩M 在微⼩⾓位移d θ中的功的公式.当刚体在⼒矩M 作⽤下产⽣⼀有限⾓位移θ时,⼒矩的功等于(5-11)式的积分:=θθ0d M W (5-12)如果⼒矩M 为常量,则θθθθθM M M W ===??00d d (5-13)如果刚体同时受到⼏个⼒作⽤,则(5-11)及(5-12)式中M 应理解为这⼏个⼒的合⼒矩.当外⼒矩对刚体作功时,刚体的转动动能就要变化,下⾯我们来求⼒矩的功与刚体转动动能的变化之间的关系.由转动定律tJ J M d d ωα== 其中M 为作⽤于刚体的合外⼒矩,在d t 时间内刚体的⾓位移为d θ = ωd t ,合外⼒矩的功为ωωωωθd d d d d d J t t J M W =??== 当刚体的⾓速度由ω1变为ω2时,合外⼒矩对刚体所作的功等于上式的积分,即21222121d 21ωωωωωωJ J J W -==? (5-14)上式指出,合外⼒矩对刚体所作的功等于刚体的转动动能的增量.例题5-5 ⼀长为l 质量为m 的均匀细长杆OA ,绕通过其⼀端点O 的⽔平轴在铅垂⾯内⾃由摆动.已知另⼀端点A 过最低点时的速率为v 0,杆对通过端点O ⽽垂直于杆长的轴的转动惯量231ml J =,若空⽓阻⼒及轴上的摩擦⼒都可以忽略不计,求杆摆动时A 点升⾼的最⼤⾼度h .解作⽤于杆的⼒有重⼒m g 及轴对杆的⽀承⼒F N ,⽀承⼒F N 通过O 点,其⼒矩为零.重⼒m g 作⽤于杆的质⼼C ,⼒矩为θsin 2l mg ,当杆沿升⾼⽅向有⾓位移d θ时,由于重⼒矩与⾓位移转向相反.其元功为θθd sin 2d l mg W -= 设θm 为杆的最⼤⾓位移,当杆从平衡位置转到最⼤⾓位移θm 位置时,重⼒矩所作的总功为)cos 1(2d sin 2d m 0m θθθθ--=-==??l mg l mg W W 由图5-12看出,h = l (1-cos θm ),代⼊上式得图5-12mgh W 21-= 杆在平衡位置时的⾓速度l00v =ω,在⾓位移最⼤时的⾓速度0m =ω.由于合外⼒矩的功等于转动动能的增量,故得 20220220613121 21021v v m l m l J m gh W -=??-=-=-=ω由此得 gh 320v = §5-4 绕定轴转动的刚体的⾓动量和⾓动量守恒定律当刚体以⾓速度ω绕定轴转动时,刚体中各质点都绕定轴作圆周运动.设质点P i 的质量为Δm i ,与轴的距离为r i ,线速度的⼤⼩为v i ,则质点P i 的动量的⼤⼩为Δm i v i (图5-13),P i 对转轴的⾓动量为Δm i v i r i .刚体中所有质点的⾓动量之和称为刚体对转轴的⾓动量,⽤L 表⽰,则ωωωJ r m r m r m L i i i i i i i i i i =??===∑∑∑22ΔΔΔv这样,刚体的转动定律可写为tL t J t JM d d d )d(d d ===ωω即 tJ t L M d )d(d d ω== (5-15)可以证明:(5-15)式不但适⽤于绕定轴转动的刚体,⽽且适⽤于绕定轴转动的任意物体或物体系.所不同的是,对于绕定轴转动的刚体来说,转动惯量J 是不变的,但对于绕定轴转动的任意物体或物体系来说,J 是可以变化的.在特殊情形下,如果作⽤于转动物体的合外⼒矩M = 0,则由(5-15)式,我们有L = J ω = 常量(5-16)即当物体所受的合外⼒矩等于零时,物体的⾓动量J ω保持不变,这⼀结论称为⾓动量守恒定律.⾓动量守恒有两种情形:① J 不变的情形,由(5-16)式得知ω亦不变,地球的⾃转差不多是这种情形;② J 是变化的情形,由(5-16)式得知,当J 减⼩时,ω增⼤;当J 增⼤时,ω减⼩.例如⼀⼈坐在可以绕铅直轴⾃由转动的凳⼦上,⼿中握着两个很重的哑铃.当他两臂伸开时,使凳⼦和⼈⼀起转动起来,假设轴承处的摩擦很⼩可以忽略不计,则凳⼦和⼈没有受到外⼒矩作⽤,其⾓动量J ω保持不变(图5-14a).当⼈把两臂收缩时,转动惯量J 减⼩,⾓速度ω就增⼤,即是说⽐两臂伸开时要转得快些(图5-14b).⼜如跳⽔运动员在空中翻筋⽃图5-13时,先把两臂伸直,当他从跳板跳起时使他⾃⼰以某⼀⾓速度绕通过腰部的⼀⽔平轴线转动,在空中时使臂和腿尽量蜷缩起来,以减⼩转动惯量,因⽽⾓速度增⼤,在空中迅速翻转,当他快要接近⽔⾯时,再伸直两臂和腿以增⼤转动惯量,减⼩⾓速度,以便竖直地进⼊⽔中.⾓动量守恒定律,与前⾯介绍过的动量守恒定律和能量守恒定律⼀样,是⾃然界中的普遍规律之⼀,不但适⽤于宏观物体的机械运动,也适⽤于原⼦、原⼦核和基本粒⼦等微观粒⼦的运动.例题5-6 ⼀⽔平放置的圆盘形转台.质量为m ’,半径为R ,可绕通过中⼼的竖直轴转动,摩擦阻⼒可以忽略不计.有⼀质量为m 的⼈站在台上距转轴为2R 处.起初⼈和转台⼀起以⾓速度ω1转动,当这⼈⾛到台边后,求⼈和转台⼀起转动的⾓速度ω2.解以⼈和转台为⼀系统,该系统没有受到外⼒矩作⽤,因此⾓动量守恒:J 1ω1 = J 2ω2 =常量即 22212221421ωω??? ??+'=???? ?+'mR R m R m R m 由此得 12422ωωmm m m +'+'= 思考题5-1 对于定轴转动刚体上的不同点来说,下⾯的物理量中哪些具有相同的值,哪些具有不同的值?线速度、法向加速度、切向加速度、⾓位移、⾓速度、⾓加速度.5-2 飞轮转动时,在任意选取的⾓位移间隔Δθ内,⾓速度的增量Δω相等,此飞轮是在作匀加速转动吗?5-3 作⽤在刚体上的合外⼒为F ,合外⼒矩为M ,举例说明在什么情况下(1) F ≠ 0⽽M = 0;(2) F = 0⽽M ≠ 0;(3) F = 0且M = 0.5-4 当刚体受到若⼲外⼒作⽤时,能否⽤平⾏四边形法先求它们的合⼒,再求合⼒的⼒矩?其结果是否等于各外⼒的⼒矩之和?5-5 在磁带录⾳机中,驱动装置将磁带匀速拉过读写磁头,于是磁带被拉出的⼀端卷带轴上剩余的磁带半径逐渐减⼩,作⽤在该卷带轴上的⼒矩随时间如何变化?该卷带轴的⾓速度随时间如何变化?5-6 如果要设计⼀个存储能量的飞盘,在质量和半径相同的情况下,应该选取质量均匀分布的圆盘形的还是质量集中在边缘的圆环形的呢?当⾓速度相同时,⼆者的转动动能之⽐为多少?图5-145-7 ⼏何形状完全相同的铁圆盘与铝圆盘,哪⼀个绕中⼼对称轴的转动惯量⼤?要使它们由静⽌开始绕轴转动并获得相同的⾓速度,对哪⼀个圆盘外⼒矩要作更多的功?5-8 恒星起源于缓慢旋转的⽓团,在重⼒作⽤下,这些⽓团的体积逐渐减⼩,在恒星尺度收缩的过程中,它的⾓速度如何变化?习题5-1 ⼀个螺丝每厘⽶长度上有20条螺纹,⽤电动螺丝起⼦驱动,在12.8s 内推进了1.37cm ,求螺丝的平均⾓速度.5-2 转盘半径为10.0cm ,以⾓加速度10.0 rad/s 2由静⽌开始转动,当t = 5.00s 时,求(1) 转盘的⾓速度;(2) 转盘边缘的切向加速度和法向加速度.5-3 ⼀个匀质圆盘由静⽌开始以恒定⾓加速度绕过中⼼⽽垂直于盘⾯的定轴转动.在某⼀时刻,转速为10.0 r/s ,再转60转后,转速变为15.0 r/s ,试计算:(1)⾓加速度;(2)由静⽌达到10.0 r/s 所需时间;(3)由静⽌到10.0 r/s 时圆盘所转的圈数.5-4 如图所⽰,半径r 1 = 30.0 cm 的A 轮通过⽪带被半径为r 2 = 75.0 cm 的B 轮带动,B 轮以π rad/s 的匀⾓加速度由静⽌起动,轮与⽪带间⽆滑动发⽣,试求A 轮⾓速度达到3.00×103 r/min 所需要的时间.5-5 在边长为b 的正⽅形的顶点上,分别有质量为m 的四个质点,求此系统绕下列转轴的转动惯量:(1)通过其中⼀质点A ,平⾏于对⾓线BD 的转轴,如图所⽰.(2)通过A 垂直于质点所在平⾯的转轴.5-6 求半径为R ,质量为m 的均匀半圆环相对于图中所⽰轴线的转动惯量.5-7 代换汽车引擎盖密封垫时要求对螺栓的扭矩达到90.0N·m(扭矩过⼤会使密封垫失效),如果使⽤长度为45.0 cm 的扳⼿,如图所⽰,在垂直于扳⼿⼿柄⽅向⽤多⼤的作⽤⼒可以完成这⼀⼯作?5-8 ⽔井上提⽔的辘轳为圆柱形,半径为0.200m ,质量为5.00kg ,辘轳缠绕的轻绳上悬挂的⽔桶质量为3.00kg ,如图所⽰.辘轳失去控制使⽔桶⽆初速地下落,在2.00s 后达到井下⽔⾯,忽略辘轳轴上的摩擦阻⼒,求(1) ⽔桶下落的加速度;(2) 井⼝到⽔⾯的深度;(3) 辘轳的⾓加速度.题5-4图题5-5图题5-6图题5-7图5-9 圆盘形飞轮直径为1.25m ,质量为80.0kg ,飞轮上附着的滑轮半径为0.230m ,质量可以忽略,电动机通过环绕滑轮的⽪带驱动飞轮顺时针旋转,如图所⽰.当飞轮的⾓加速度为1.67rad/s 2时,上段⽪带中的张⼒为135N ,忽略轴上的摩擦阻⼒,求下段⽪带中的张⼒.5-10 制陶旋盘半径为0.500m ,转动惯量为12.0kg·m 2,以转速50.0r/min 旋转.陶⼯⽤湿抹布沿径向施加70.0N 的⼒按住旋盘的边缘,使之在6.00s 内制动,求旋盘的边缘和湿抹布之间的有效滑动摩擦系数.5-11 ⼀轻绳跨过滑轮悬有质量不等的⼆物体A 、B ,如图所⽰,滑轮半径为20.0 cm ,转动惯量等于50.0 kg·m 2,滑轮与轴间的摩擦⼒矩为98.1N·m ,绳与滑轮间⽆相对滑动,若滑轮的⾓加速度为2.36 rad/s 2,求滑轮两边绳中张⼒之差.5-12 如图所⽰的系统中,m 1 = 50.0 kg ,m 2 = 40.0 kg ,圆盘形滑轮质量m = 16.0 kg ,半径R = 0.100 m ,若斜⾯是光滑的,倾⾓为30°,绳与滑轮间⽆相对滑动,不计滑轮轴上的摩擦,(1)求绳中张⼒;(2)运动开始时,m 1距地⾯⾼度为1.00 m ,需多少时间m 1到达地⾯?5-13 飞轮质量为60.0 kg ,半径为0.250 m ,当转速为1.00×103 r/min 时,要在5.00 s 内令其制动,求制动⼒F ,设闸⽡与飞轮间摩擦系数µ = 0.400,飞轮的转动惯量可按匀质圆题5-8图题5-9图题5-11图题5-12图题5-13图题5-15图盘计算,闸杆尺⼨如图所⽰.5-14 ⼀个风扇转速为900 r/min ,当马达关闭后,风扇均匀减速,⽌动前它转过了75转,在此过程中制动⼒作的功为44.4 J ,求风扇的转动惯量和摩擦⼒矩.5-15 如图所⽰,质量为24.0 kg 的⿎形轮,可绕⽔平轴转动,⼀绳缠绕于轮上,另⼀端通过质量为5.00 kg 的圆盘形滑轮悬有10.0 kg 的物体,当重物由静⽌开始下降了0.500 m 时,求:(1)物体的速度;(2)绳中张⼒.设绳与滑轮间⽆相对滑动.5-16 蒸汽机的圆盘形飞轮质量为200 kg ,半径为1.00 m ,当飞轮转速为120 r/min 时关闭蒸汽阀门,若飞轮在5.00 min 内停下来,求在此期间飞轮轴上的平均摩擦⼒矩及此⼒矩所作的功.5-17 长为85.0 cm 的均匀细杆,放在倾⾓为45°的光滑斜⾯上,可以绕过上端点的轴在斜⾯上转动,如图所⽰,要使此杆实现绕轴转动⼀周,⾄少应给予它的下端多⼤的初速度? 5-18 如图所⽰,滑轮转动惯量为0.0100 kg·m 2,半径为7.00 cm ,物体质量为5.00 kg ,由⼀绳与劲度系数k = 200 N/m 的弹簧相连,若绳与滑轮间⽆相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧⽆伸长时,使物体由静⽌⽽下落的最⼤距离;(2)物体速度达最⼤值的位置及最⼤速率. 5-19 圆盘形飞轮A 质量为m ,半径为r ,最初以⾓速度ω0转动,与A 共轴的圆盘形飞轮B 质量为4m ,半径为2r ,最初静⽌,如图所⽰,两飞轮啮合后,以同⼀⾓速度ω转动,求ω及啮合过程中机械能的损失. 5-20 ⼀⼈站在⼀匀质圆板状⽔平转台的边缘,转台的轴承处的摩擦可忽略不计,⼈的质量为m ’,转台的质量为10 m ’,半径为R .最初整个系统是静⽌的,这⼈把⼀质量为m 的⽯⼦⽔平地沿转台的边缘的切线⽅向投出,⽯⼦的速率为v (相对于地⾯).求⽯⼦投出后转台的⾓速度与⼈的线速度.5-21 ⼀⼈站⽴在转台上,两臂平举,两⼿各握⼀个m = 4.00 kg 的哑铃,哑铃距转台轴r 0 = 0.800 m ,起初,转台以ω0 = 2π rad/s 的⾓速度转动,然后此⼈放下两臂,使哑铃与轴相距r = 0.200 m ,设⼈与转台的转动惯量不变,且J = 5.00 kg·m 2,转台与轴间摩擦忽略不计,求转台⾓速度变为多⼤?整个系统的动能改变了多少?5-22 证明刚体中任意两质点相互作⽤⼒所作之功的和为零.如果绕定轴转动的刚体除受到轴的⽀承⼒外仅受重⼒作⽤,试证明它的机械能守恒.5-23 ⼀块长L = 0.500 m ,质量为m =3.00 kg 的均匀薄⽊板竖直悬挂,可绕通过其上端的⽔平轴⽆摩擦地⾃由转动,质量m = 0.100 kg 的球以⽔平速度v 0 = 50.0 m/s 击中⽊板中题5-17图题5-18图题5-19图⼼后⼜以速度v = 10.0 m/s 反弹回去,求⽊板摆动可达到的最⼤⾓度.⽊板对于通过其上端轴的转动惯量为231L m J '= . 5-24 半径为R 质量为m '的匀质圆盘⽔平放置,可绕通过圆盘中⼼的竖直轴转动.圆盘边缘及R /2处设置了两条圆形轨道,质量都为m 的两个玩具⼩车分别沿⼆轨道反向运⾏,相对于圆盘的线速度值同为v .若圆盘最初静⽌,求⼆⼩车开始转动后圆盘的⾓速度.5-25 花样滑冰运动员起初伸展⼿臂以转速1.50r/s 旋转,然后他收拢⼿臂紧靠⾝体,使他的转动惯量减少到原来的3/4,求该运动员此时的转速.5-26 旋转⽊马转盘半径为2.00m ,质量为25.0kg ,假设可视为圆盘形刚体,转速为0.200r/ s ,⼀个质量为80.0kg 的⼈站在转盘边缘.当此⼈⾛到距转轴1.00m 处时,求转盘的⾓速度和⼈和转盘组成的系统转动动能的改变量.。
大学物理-刚体定轴转动
F Fz F
其中 Fz对转 轴的
力矩为零,故 F 对转
轴的力矩 M zk
r
F
z
F
k
O Fz r
F
M z rF sin
18
(2)合力矩等于各分力 矩的矢量和 M M1 M2 M3
(3)刚体内作用力和反作用力的力矩 互相抵消.
M ij
rj
j
O
d ri
i Fji
Fij
M ji
第5 刚体的定轴转动 §1 刚体的运动 §2 刚体定轴转动的运动定律
1
刚体:在外力作用下,形状和大小都不 发生变化的物体.(任意两质点间距离保持 不变的特殊质点组.)
说明:⑴ 刚体是理想模型 ⑵ 刚体模型是为简化问题引进的.
刚体的运动形式:平动、转动.
2
平动:刚体中所 有点的运动轨迹都保 持完全相同.
j
定义转动惯量
J mjrj2 J r2dm j
z
O rj
Fej
m j
Fij
转动定律 M J
刚体定轴转动的角加速度与它所受的合 外力矩成正比,与刚体的转动惯量成反比.
24
转动定律 M J
讨论 (1)M 0, ω不变
(2) M
J (3) M J J d
dt
25
三 转动惯量
J mjrj2 J r2dm j
特点:各点运动
状态一样,如:v、a
等都相同.
刚体平动 质点运动
3
转动:分定轴转动和非定轴转动 刚体的平面运动
4
一般运动
= (平动)+(转动)
原则: 随某点(基点)的平动
+ 过该点的定轴转动 基点任选。
大学物理刚体力学基础
i
1 2
mi
vi2
i
1 2
mi
ri
2
2
1 2
(
i
miri2 ) 2
1 J2
2
可见,刚体的转动动能等于刚体的转动惯量与角速度平方
乘积的一半。
转动动能
Ek
1 2
J2
注意比较
平动动能
Ek
1 mv 2 2
2、力矩的功
对于i 质点 其受 外力为 Fi,
dAi Fi dri Fi cosi dri Fidsi
§3-1刚体 刚体的定轴转动的描述
一、 刚体
质点模型基本上只能表征物体的平动特征。
当物体自身线度l与所研究的物体运动的空间范围r相比不 可以忽略;物体又不作平动而作转动时,即必须考虑物体 的空间方位时,我们可以引入刚体模型。
刚体是指在任何情况下,都没有形变的物体。
刚体也是一个各质点之间无相对位置变化且质量连续分布 的质点系。
大于零的常数),当ω= 1 现在经历的时间是多少?3
0
时,飞轮的角加速度是多少?从开始制动到
解 (1)由题知 M k 2 ,故由转动定律有 k2 J
即
k2
J
将
1 3
0
代入,求得这时飞轮的角加速度为
k02
9J
(2)为求经历的时间t,将转动定律写成微分方程的形式,即
M J J d
转动定律说明了 J是物体转动惯性大小的量度。因为:
M一定时J J
即 J 越大的物体,保持原来转动状态的性质就越强,转动惯性 就越大;反之,J越小,越容易改变其转动状态,保持原有状态 的能力越弱,或者说转动惯性越小。
如一个外径和质量相同的实心圆柱与空心圆筒, 若 受力和力矩一样,谁转动得快些呢?
§3-1刚体运动学
0 t v v 0 at 2 1 x x0 v 0 t 2 at 0 0t 1 t 2 2
v v 2a( x x0 ) 2 ( 0 )
2 2 0
质点匀变速直线运动
刚体绕定轴作匀变速转动
2
2 0
太原理工大学物理系
例1 一飞轮转速n=1500r/min,受到制动后均匀 地减速,经t=50 s后静止。 (1)求角加速度 和飞轮从制动开始到静止所转过 的转数N; 解 (1)设初角度为0方向如图所示, 量值为
0
0=21500/60=50 rad/s 在t=50s 时刻 =0
太原理工大学物理系
三、角量与线量的关系 对点P有
υ r
an
r
p
at
v
r v at r
an
太原理工大学物理系
四、匀变速转动公式
当刚体绕定轴转动的角加速度为恒量时,刚体做 匀变速转动 .
x
3. 角位移 t时间内刚体角位置的改变量 (t t ) (t ) 4. 角速度矢量
d 大小: dt
方向:沿转轴(右手螺旋方向) 5. 角加速度 d d2 2 大小: dt dt 方向:沿轴
与 方向相同,加速转动 与 方向相反,减速转动
的方向垂直于 和 构成的平面,如 图所示相应的切向加速度和向心加速度分别为
太原理工大学物理系
边缘上该点的加速度
与
为
v
其中
的方向
的方向相反,
的方向指向轴心,
大学物理学第五版马文蔚ch.ppt
§4-2 力矩 转动定律转动惯量
一、力矩 ①力臂:从转轴 z 与 截面的交点O到力 F 的作用线的垂直距离 d~力 F 对转轴的力臂
M
z
o
r
d
F
②力矩:
在垂直与转轴的平 面内,外力 F 与力线到 转轴的距离d(力臂)的乘 积定义为对转轴的力矩。
M r F
为正。 定轴转动,规定: 力矩逆时针方向 M
Fi
mi
F i Fi mi ai
建立自然坐标:切向、法向;
切向分量式为: Fit Fit mi ait mi ri
法向分量式为: mi ain Fin Fin ②利用 M r F ,即为:M ri Fit
注:切向分力与圆的半径及转轴三者互相垂直。
二、刚体定轴转动的转动定律
~利用力矩定义+牛顿第二定律,研究刚体作定 轴转动的动力学规律。
设:oz 为定轴, P为 刚体中任一质点 i ,其 质量为 mi。质点 i 受外力 F i ,内力 Fi 的作用,均在与 Oz 轴 相垂直的同一平面内。 ①牛顿第二定律:
z
Fi
Oi r i
Fit F it
v
r
d 角加速度矢量: dt
刚体运动学中所用 d 的角量关系及角量 = dt 和线量的关系如下: v r
d d 2 2 dt dt at r an r 2
注意:、是矢量,由于在定轴转动中轴的方 位不变,故用正负表示其方向。 在刚体作匀加 0 0t 1 t 2 2 速转动时,相 2 应公式如下: 0 t 2 0 2 作业:P143 4-6 4-11
角动量 变化率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、刚体的定轴转动
程英豪
5-1 刚体运动的基本概念
一、刚体模型
刚体:在外力的作用下,大小和形状都不变的物体。
(物体内任意两点的距离不变)
二、刚体的运动
平动:刚体运动时,其内部任何一条直线,在运动中方向始终不变(各点位移、速度、加速度均相同,可视为质点,刚体质心的
运动代表了刚体平动中每一质元的运动)
转动:刚体的各个质点都绕同一直线(转动轴)作圆周运动。
质心轴:通过质心的转动轴。
定轴转动:转轴固定不动的转动。
旋进(进动):转轴上一点静止,转轴方向变化。
平面平行运动:刚体内所有运动点都平行于某一平面(参考平面)。
刚体的一般运动:可以视为平动以及转动的合成。
三、转动惯性的量度(转动惯量)
1、转动惯量
定义:
∑∆
=
i
i
i
z
r
m
I2
——对z轴的转动惯量
连续分布有:
⎰=dm
r
I
z
2
刚体的转动动能:
2
21ωz k
I E =
转动惯量的物理意义:Iz 表示刚体转动时惯性的大小。
转动惯量Iz 的大小决定于:
1)刚体的质量:同形状的刚体,ρ越大,Iz 就越大;
(2)质量的分布:质量相同,dm 分布在 r 越大的地方,则Iz 越大; (3)刚体的转轴位置:同一刚体依不同的转轴而有不同的Iz 。
2、、平行轴定理
2
md
J J C +=——平行轴定理
3、薄板的垂直轴定理
z 轴与x 轴、y 轴两两垂直。
4、常见刚体的转动惯量
5-2 刚体定轴转动的运动学规律1、角量与线量之间的关系
对刚体上的质元 Pi ,
2、角速度矢量
5-3 刚体定轴转动的动力学规律
一、刚体定轴转动定律
dt
d I M z
z ω
=
(Mz :总外力矩,各外力对转轴对z 轴的力矩代数和) Mz=0 时,刚体将保持静止或匀速(匀角速度)转动。
二、刚体定轴转动的动量矩定理 守恒定律 1.刚体定轴转动的动量矩 刚体对定轴 z 的动量矩:
2.刚体定轴转动的动量矩定理
I 可变化的质点系或非刚体的定轴转动
⎰
-=t
t z z z I I dt M 0
0ωω
3、刚体定轴转动动量矩守恒
注意:(1)守恒条件为M=0;
(2)内力矩不改变系统的动量矩;
(3)动量矩守恒定律是自然界的一个基本定律。
三、刚体定轴转动的功能原理 1.力矩的功
⎰=
2
1
θθ
θ
d M A z
(Mz 外力在z 轴上对刚体的合外力矩) 2、刚体定轴转动的动能定理
3、刚体的重力势能
c
p mgz E =
刚体重力势能由刚体的质心相对于参考零点的高度决定,
可视为质量
集中在质心的势能。