复变函数第一章单元测试题
复变函数总练习题1
![复变函数总练习题1](https://img.taocdn.com/s3/m/a9d0f1d00d22590102020740be1e650e52eacfb2.png)
复变函数总练习题1第⼀章练习题1、已知⽅程i e z 31+=,则z Im 为()A. ln2B.32π C. ,...1,0,2±=k k π D. ,...1,0,23±=+k k ππ2、设210z z ++=,则1173z z z ++= () A.0 B. i C.-i D.13、设iy x z +=,则zw 1=将圆周222=+y x 映射为()A .通过0=w 的直线B .圆周21=wC .圆周22=-wD .圆周2=w4、已知⽅程(1+2i)z=4+3i ,则z 为 ( )A. 2+iB. -2+iC. 2-iD. -2-i5、复数)3sin 3(cos z ππi +-=的三⾓形式是 ( )A. 32sin 32cos ππi +B. 3sin 3cos ππi +C. 32sin 32cos ππ-+iD. 3sin 3cos ππ-+-i 6、⽅程1Re 2=z 所表⽰的平⾯曲线为() A.圆B.直线C.椭圆D.双曲线7、(1cos )(2sin ),02z t i t t π=+++≤≤所表⽰的曲线为A. 直线B. 双曲线C. 抛物线D. 椭圆 8、点集{}:5E z i i +- 表⽰的图形是()A.半平⾯B.圆域C.直线D.点9、下列集合为有界单连通区域的是()A. 10<B. 0Re >zC. 2<-i zD. ππ<10、若13-=z 且0Im >z ,则Z ⼀定等于()A .-1 B. i 2321--C. i 2321+ D. i 31+-11、211limz z +∞→的值为()A .0 B. i π2- C. 1 D.012、则3Im z =__________________________ 13、知⽅程(12)43i z i +=+,则z =___________; 14、31z =且Im 0z >,则z =___________;15 、数()2arg(3)f z z =-在复平⾯除去实轴上⼀区间______ __ 外是连续解析函数。
复变函数单元测题集
![复变函数单元测题集](https://img.taocdn.com/s3/m/537bfd0979563c1ec5da71c6.png)
第一章 复数与复变函数 测试题1一、单项选择:1、),1(22i z -=则150100++z z 的值( )。
A 、i - B 、i C 、1 D 、1- 2、设复数z 满足,3)2arg(π=+z ,65)2arg(π=-z 那么=z ( ) A 、i 31+- B 、i +-3 C 、i 2321+-D 、i 2123+- 3、集合},10{<<=z z D 则D 是( )A 、无界域B 、多连域C 、单连域D 、闭区域4、下列方程所表示的曲线中,( )是椭圆A 、522=++-z zB 、211=+-z z C 、1Re =+z z D 、2Re 2=z 5、=--→0Im Im limz z z z zz ( )A 、iB 、i -C 、0D 、不存在二、填空题1、 设2512)42()1)(23(i i i i z +++=,则=z 。
2、 已知方程i y i x i 31)53()21(-=-++,则=x =y 。
3、 已知iz 312+-=,则z 的辐角主值是 。
4、 满足不等式210<++<i z 的集合是 。
5、 映射zi+=1ω将圆周422=+y x 映成ω平面上 。
三、求满足下列条件的点的存在范围1、1Im 2≤z 2、411<++-z z四、求复数)1(11≠-+=z zzω的实部、虚部和模。
五、若θcos 21=+-z z ,求证θn z z n n cos 2=+- 。
第一章 复数与复变函数 测试题2一、单项选择:1、当n 为3的倍数时,复数11[(1)][(122nnz =-+-的值( )。
A 、1-B 、1C 、2-D 、2 2、已知81()1i z i-=+则663322z z +-的值为( ) A 、i - B 、1 C 、i D 、1-3、方程2Re 1z =所代表的曲线是( )A 、圆周B 、椭圆C 、双曲线D 、抛物线4、下列函数中,都有(0)0f =。
复变第一章作业答案
![复变第一章作业答案](https://img.taocdn.com/s3/m/7de3cefa9e3143323968939a.png)
A.1 复数与复变函数(第一章)1.1 复数1.选择题 (1) Re()iz =( B )(A )Re()iz - (B )Im()z - (C )Im()z (D )Im()iz (2) 下列对任意复数z 均成立的等式为( A )(A )22zz= (B )()22zz=(C )()22arg arg z z = (D )()22Re Re z z =(3) 复数2z =所属区域为( B )(A )01z << (B )0arg 2z π≤≤ (C )12z << (D )11z i>- (4) 设复数z 满足:arg(2)3z π+=,且5a r g (2)6z π-=,则z =(A )(A )1- (B )i(C )12- (D )12i +2. 将下例函数化为三角表达式和指数表达式 (1) i +1 解 因 2|1|=+i ,ππk i Arg 24)1(+=+,0,1,2,k =±±所以,1cos 2sin 244i k i k ππππ⎫⎛⎫⎛⎫+=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎭24i k ππ⎛⎫+ ⎪⎝⎭=(2) i解 cos 2sin 222i k i k ππππ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 22k e ππ+=,0,1,2,k =±±(3) 21i -解 241cos 2sin 2244k i k i k ππππππ--⎫⎛⎫⎛⎫=-+-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 0,1,2,k =±±3. 证明:当1z<时,()2Im 12z z -+<.证 因()()222Im 1Im 12z z x iy x y i xy -+=-++-+=22y xy y xy +≤+,又因1y z ≤=<,且22221x y x y z ⋅≤+=<,所以,()2Im 12z z -+<4. 填空题(1) 设8214z i i i =-+,则复数z x iy =+的形式为 13i -复数z 的模为辐角主值为 arctan3-(2) 设121i z i-=+,则其实部为12-虚部为32-共轭复数为1322i-+(3) 设复数5z i =-,则其三角形式5cos sin 22i i ππ⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭指数形式 25i eπ⎛⎫- ⎪⎝⎭(4) 当z 满足12z i =+条件时,21zz +是实数. (5) 设811i z i -⎛⎫= ⎪+⎝⎭,则663322z z +-的值为___1__5.选择题(1) 设12z i =+,则3Im z =( A )(A )-2 (B )1 (C )8 (D )14(2) 设)2z i =-,则100501z z ++的值为( A ) (A )i - (B )i (C )1 (D )-16.计算下例各题的值(1) 8(1)i -+解8833(1)cos 2sin 244i k i k ππππ⎤⎫⎛⎫⎛⎫-+=+++⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎭⎦()()()42cos 616sin 616k i k ππππ=+++16=(2) 13(1)i + 解132244(1)sin )33k k i i ππππ+++=+,0,1,2k =解()()16cos 2sin 2k i k ππππ=+++⎡⎤⎣⎦=22cos sin 66k k i ππππ++⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭, 0,1,,6k =(4) 10(1)-解10(1)-102cos 2sin 233k i k ππππ-⎡⎤⎛⎫⎛⎫⎛⎫=+++⎢⎥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦=1010102cos sin 33i ππ-⎛--⎫⎛⎫⎛⎫+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭=()1121--+1.2 复变函数7. 选择题 (1) 12(1)-=( D )(A )无定义 (B )-1 (C )cos()2k ππ+(D )sin()2i k ππ+(2) 方程()2Re 1z =所代表的曲线为( C )(A )圆周 (B )椭圆 (C )双曲线 (D )抛物线 (3) 下例正确的是( D )(A )()Ln z 在1z =-处无定义 (B )(1)0Ln -= (C )(1)Ln -的虚部等于π (D )(1)Ln -的实部等于0(4) 若z e 为纯虚数,则z 有( C )(A )Re()0z = (B )Im()z k π=(C )Im()2z k ππ=+ (D )Im()2z π=(5) 下例中为单值函数的为( A )(A )rg a z (B )rg A z (C(D )求z 的值 (1) 23iz e π-= 8.解 2223333cos sin 33i ii i z e e ee i ππππ⎛⎫-- ⎪⎝⎭⎛⎫⎛⎫⎛⎫==⋅=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2312e ⎛=- ⎝⎭(2) 211z e -=解 因211z e -=,有211z Ln -=,所以,()11ln 112z iArg =++=()()1122i k π+ 0,1,2,k =±±(3)(1)z Ln =解(1)z Ln =()ln 11iArg =+ln 223i k ππ⎛⎫=+-+ ⎪⎝⎭0,1,2,k =±±(4) ln(1)z i =-解 ln(1)z i =-()1ln 1arg 1ln 224i i i i π⎛⎫=-+-=+- ⎪⎝⎭9. 选择题 (1) 设函数1z e i =-则Im z =( C )(A )4π- (B )4π (C )24k ππ- (D)24k ππ+(2) 设0y >,则sin()iy 的模为( D )(A )2y ye e i -- (B )2y ye e i -- (C )2y ye e -- (D )2y ye e --(3) 设{}01D z z =<<,则D 为( B )(A )无界区域 (B )复连通域(C )单连通域 (D )闭区域(4) 下例正确的是( D )(A )z e 为单调函数. (B )z e 为有界函数.(C )z e 为多值函数. (D )z e 为周期函数.10. 判断正误(1) 因为12(1)i i +<+,所以12(1)i i +<+. ( × )(2)sin ,cos z z为有界函数. ( × )(3)2()2Ln z Lnz=.( × )(4) {}Re()D z z z=≤所表示的为整个复平面.( √ )11. 计算下例各值(1) (1)i i + 解()1ln22124(1)i i k iLn i ii eeππ⎛⎫⎛⎫++ ⎪ ⎪+⎝⎭⎝⎭+==12ln 242k i eππ⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭=,0,1,2,k =±±(2)解))l n 11221i A r g i k eπ+===,0,1,2,k =±±(3) 32(1)-解 (3233ln2212322(1i k Ln eeππ⎛⎫⎛⎫++ ⎪- ⎪⎝⎭⎝⎭-==()()3l n 232i k ee ππ+=⋅=±12. 计算下例各值(1) cos(2)i -解 ()(2)(2)12121cos(2)22i i i i i ie e i e e ---+--+-==+ 11cos 2sin 222e e e e i --+-=⋅+⋅(2) sin i解1s i n 22i i i i e e e e i ii ⋅-⋅---==(3) ()tan 2Arc i解()()221211t a n 2l n 22122323ii i i A r c i L n L n i k i ππ+-⎡⎤=-=-=-++⎢⎥-⎣⎦1ln322i k π⎛⎫=++ ⎪⎝⎭0,1,2,k =±±。
复变函数第一章单元测试题
![复变函数第一章单元测试题](https://img.taocdn.com/s3/m/654096f0ac51f01dc281e53a580216fc700a531e.png)
复变函数第一章单元测试题复变函数第一章单元测试题一、判断题(正确打√,错误打?)1.复数i i 3167+>+. ( )2.若z 为纯虚数,则z z ≠. ( )3.处不连续在函数3)arg(-==z z w 。
()4.()f z u iv =+在000iy x z +=点连续的充分必要条件是(,),(,)u x y v x y 在 00(,)x y 点连续。
()5.参数方程ti t z +=2 (t 为实参数)所表示的曲线是抛物线2x y =. ( )二、填空题1.若等式))(()75(i y i x i i -+=-成立,则=x ______, =y _______.2.方程3)Im(=-z i 表示的曲线是__________________________.3.方程0273=+z 的根为_________________________________.4.复变函数12+-=z z w 的实部=),(y x u _________,虚部=),(y x v _________. 5.设i z 21=,i z -=12,则)(21z z Arg = _ _____.6.复数i z 212--=的三角表示式为 _________________,指数表示式为_________________.三、计算、证明题1.求出复数4)31(i z +-=的模和辐角。
2.设iy x z +=满足,4)3Re(2=+z 求x 与y 的关系式。
3.求)(z f =z 1将z 平面上的直线1=y 所映射成w 平面上的曲线方程。
4.求角形域3/)arg(0π<5.将直线方程132=+y x 化为复数形式。
《复变函数与积分变换》习题册
![《复变函数与积分变换》习题册](https://img.taocdn.com/s3/m/d42e1ece227916888586d7ca.png)
第一章 复数与复变函数本章知识点和基本要求掌握复数的概念和它的各种表示方法及运算; 熟悉复平面、模与辐角的概念;熟练掌握乘积与商的模、隶莫弗公式、方根运算公式; 了解区域的概念;理解复变函数的概念; 理解复变函数的极限和连续的概念。
一、填空题1、若等式))(()75(i y i x i i -+=-成立,则=x ______, =y _______.2、设(12)(35)13i x i y i ++-=-,则x = ,y =3、若1231izi i,则z4、若(3)(25)2i i zi,则Re z5、若421iz i i+=-+,则z = 6、设(2)(2)z i i =+-+,则arg z =7复数1z i =-的三角表示式为 ,指数表示式为 。
8、复数i z 212--=的三角表示式为 _________________,指数表示式为_________________.9、设i z 21=,i z -=12,则)(21z z Arg = _ _____.10、设4i e 2z π=,则Rez=____________. Im()z = 。
z11、.方程0273=+z 的根为_________________________________.12、一曲线的复数方程是2z i -=,则此曲线的直角坐标方程为 。
13、方程3)Im(=-z i 表示的曲线是__________________________. 14、复变函数12+-=z z w 的实部=),(y x u _________,虚部=),(y x v _________.15、不等式114z z -++<所表示的区域是曲线 的内部。
16二、判断题(正确打√,错误打⨯)1、复数7613i i +>+. ( )2、若z 为纯虚数,则z z ≠. ( )3、若 a 为实常数,则a a = ( )4、复数0的辐角为0.5、()f z u iv =+在000iy x z +=点连续的充分必要条件是(,),(,)u x y v x y 在00(,)x y 点连续。
复变函数论第一章作业及答案
![复变函数论第一章作业及答案](https://img.taocdn.com/s3/m/2141d0bd81c758f5f61f67e9.png)
习题1第一章 复数与复变函数1.11222z ==-求|z|,Argz 解:1232122=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=zArgz=arctan 212-+2k π=23k ππ+-, ,2,1,0±±=k2.已知211i z +=,=2z i -3,试用指数形式表示2121z z z z 及解:211i z +=i e 4π==2z i -3i e62π-=所以21z z =i e62π-ie4πie122π-=21z z ii i ie e e e 125)64(6421212πππππ===+- 3. 解二项方程440z a += )0(>a 解 由440z a +=得44z a =- 则二次方程的根为k w a = (k=0,1,2,3) =24k i ea ππ+⋅(k=0,1,2,3)0w =4i ea π⋅=23441(1)2i i a w ea ea i πππ+⋅===-+542(1)2i a w ea i π==--743(1)2i a w ea i π==-4 .设1z 、2z 是两个复数,求证:),Re(2||||||212221221z z z z z z -+=-证明:()()2121221z z z z z z --=-()2122212121222112212221Re 2z z z z z z z z z z z z z z z z -+=--+=---=5. 设123z ,z ,z 三点适合条件:1230z z z ++=及1231z z z ===试证明123z ,z ,z 是一个内接于单位圆周1z =的正三角形的顶点。
证明:设111z x iy =+,222z x iy =+,333z x iy =+因为1230z z z ++=∴1230x x x ++=,1230y y y ++= ∴123x x x =--,123y y y =--又因为1231z z z ===∴三点123z ,z ,z 在单位圆周上,且有222222112233x y x y x y +=+=+而()()2222112323x y x x y y +=+=+()()2223231x x y y ∴+++=()232321x x y y ∴+=-同理=+)(22121y y x x ()()131********x x y y x x y y +=+=-可知()()()()()()222222121223231313x x y y x x y y x x y y -+-=-+-=-+-即122313z z z z z z -=-=-123z ,z ,z 是一个内接于单位圆周1z =的正三角形的顶点得证。
(完整版)复变函数测验题库第一章复数与复变函数
![(完整版)复变函数测验题库第一章复数与复变函数](https://img.taocdn.com/s3/m/02750a55d15abe23492f4d86.png)
第一章 复数与复变函数一、 选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.设复数z 满足3)2(π=+z arc ,65)2(π=-z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+- 3.复数)2(tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos(sec θπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( )(A )z z z z 222≥- (B )z z z z 222=-(C )z z z z 222≤- (D )不能比较大小5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转3π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( )(A )2 (B )i 31+(C )i -3 (D )i +37.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +-43 (B )i +43 (C )i -43 (D )i --43 9.满足不等式2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域10.方程232=-+i z 所代表的曲线是( )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周(C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为( )(A )221=+-z z (B )433=--+z z (C ))1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( )(A )i 44-- (B )i 44+ (C )i 44- (D )i 44+-13.00)Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )(A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续(C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续15.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为( ) (A )3- (B )2- (C )1- (D )1二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z 2.设)2)(32(i i z +--=,则=z arg3.设43)arg(,5π=-=i z z ,则=z 4.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 5.以方程i z 1576-=的根的对应点为顶点的多边形的面积为 6.不等式522<++-z z 所表示的区域是曲线 的内部 7.方程1)1(212=----zi i z 所表示曲线的直角坐标方程为 8.方程i z i z +-=-+221所表示的曲线是连续点 和 的线段的垂直平分线 9.对于映射z i =ω,圆周1)1(22=-+y x 的像曲线为 10.=+++→)21(lim 421z z iz 三、若复数z 满足03)21()21(=+++-+z i z i z z ,试求2+z 的取值范围.四、设0≥a ,在复数集C 中解方程a z z =+22.五、设复数i z ±≠,试证21z z+是实数的充要条件为1=z 或0)(=z IM .六、对于映射)1(21z z +=ω,求出圆周4=z 的像.七、试证1.)0(0221≠≥z z z 的充要条件为2121z z z z +=+; 2. )),,2,1,,,0(021n j k j k z z z j Λ=≠≠≥的充要条件为 n n z z z z z z +++=+++ΛΛ2121.八、若0)(lim 0≠=→A z f x x ,则存在0>δ,使得当δ<-<00z z 时有A z f 21)(>.九、设iy x z +=,试证y x z yx +≤≤+2.十、设iy x z +=,试讨论下列函数的连续性: 1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f 2.⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x yx z f .答案。
完整版)复变函数测试题及答案
![完整版)复变函数测试题及答案](https://img.taocdn.com/s3/m/89d76c98294ac850ad02de80d4d8d15abe230018.png)
完整版)复变函数测试题及答案复变函数测验题第一章复数与复变函数一、选择题1.当 $z=\frac{1+i}{1-i}$ 时,$z+z+z$ 的值等于()A) $i$ (B) $-i$ (C) $1$ (D) $-1$2.设复数 $z$ 满足 $\operatorname{arc}(z+2)=\frac{\pi}{3}$,$\operatorname{arc}(z-2)=\frac{5\pi}{6}$,那么 $z$ 等于()A) $-1+3i$ (B) $-3+i$ (C) $-\frac{2}{3}+\frac{2\sqrt{3}}{3}i$ (D) $\frac{1}{3}+2\sqrt{3}i$3.复数 $z=\tan\theta-i\left(\frac{1}{2}\right)$,$0<\theta<\pi$,则 $[0<\theta<\frac{\pi}{2}$ 时,$z$ 的三角表示式是()A) $\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (B)$\sec\theta[\cos\theta+i\sin\theta]$ (C) $-\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (D) $-\sec\theta[\cos\theta+i\sin\theta]$4.若 $z$ 为非零复数,则 $z^2-\bar{z}^2$ 与$2\operatorname{Re}(z)$ 的关系是()A) $z^2-\bar{z}^2\geq 2\operatorname{Re}(z)$ (B) $z^2-\bar{z}^2=2\operatorname{Re}(z)$ (C) $z^2-\bar{z}^2\leq2\operatorname{Re}(z)$ (D) 不能比较大小5.设 $x,y$ 为实数,$z_1=x+1+\mathrm{i}y,z_2=x-1+\mathrm{i}y$ 且有 $z_1+z_2=12$,则动点 $(x,y)$ 的轨迹是()A) 圆 (B) 椭圆 (C) 双曲线 (D) 抛物线6.一个向量顺时针旋转 $\frac{\pi}{3}$,向右平移 $3$ 个单位,再向下平移 $1$ 个单位后对应的复数为 $1-3\mathrm{i}$,则原向量对应的复数是()A) $2$ (B) $1+3\mathrm{i}$ (C) $3-\mathrm{i}$ (D)$3+\mathrm{i}$7.使得 $z=\bar{z}$ 成立的复数 $z$ 是()A) 不存在的 (B) 唯一的 (C) 纯虚数 (D) 实数8.设 $z$ 为复数,则方程 $z+\bar{z}=2+\mathrm{i}$ 的解是()A) $-\frac{3}{3}+\mathrm{i}$ (B) $-\mathrm{i}$ (C)$\mathrm{i}$ (D) $-\mathrm{i}+4$9.满足不等式$|z+i|\leq 2$ 的所有点$z$ 构成的集合是()A) 有界区域 (B) 无界区域 (C) 有界闭区域 (D) 无界闭区域10.方程 $z+2-3\mathrm{i}=2$ 所代表的曲线是()A) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周 (B) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (C) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (D) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周11.下列方程所表示的曲线中,不是圆周的为()A) $\frac{z-1}{z+2}=2$ (B) $z+3-\bar{z}-3=4$ (C) $|z-a|=1$ ($a0$)12.设 $f(z)=1-z$,$z_1=2+3\mathrm{i}$,$z_2=5-\mathrm{i}$,则 $f(z_1-z_2)$ 等于()A) $-2-2\mathrm{i}$ (B) $-2+2\mathrm{i}$ (C)$2+2\mathrm{i}$ (D) $2-2\mathrm{i}$1.设 $f(z)=1$,$f'(z)=1+i$,则 $\lim_{z\to 0}\frac{f(z)-1}{z}=$ $f(z)$ 在区域 $D$ 内解析,且 $u+v$ 是实常数,则$f(z)$ 在 $D$ 内是常数。
复变函数第一章复习题-ch1
![复变函数第一章复习题-ch1](https://img.taocdn.com/s3/m/3ca48e0453d380eb6294dd88d0d233d4b14e3fb4.png)
复变函数复习题 CH1 复数与复变函数1. (cos θ+i sin θ)3=( ) A.cos(3θ)+i sin(3θ)B.cos3sin3θθi + C.cos(3θ)+3i sin(3θ)D.cos3sin 33θθi +2. 下列集合为无界单连通区域的是( ) A.Re(z-5i )2≥ B.| z-5i |3≤ C.| z-5i |>0D.Im(z-5i )<-13. Re(e2x+iy)=()A.e 2xB.e yC.e 2xcosyD.e 2xsiny4. Re(cosi)=()A .2e e 1-+B .2e e 1--C .2ee 1+--D .2ee 1--5. 复数e 3-2i 所对应的点( )。
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限6. 设z=(-i)i ,则|z|=__________.7. Z=4i 3i 3e e 2ππ则argZ=________.8. 23.设z=e 2+i ,则argz=. 9. 5.复数e3+i所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限 10. 复数z=--355(cos sin )ππi 的三角表示式为( D )A.-+34545(cossin )ππi B.34545(cos sin )ππ-i C. 34545(cos sin )ππ+i D.--34545(cos sin )ππi 11. 在w=Z 3的映射下,Z 平面上的区域-6π<argZ<6π映射成W 平面上的区域________. 12. 下列集合为有界单连通区域的是()A.0<|z-3|<2B.Rez>3C.|z+a|<1D.π≤<πargz 2113. 设z=x+iy ,则|e 2i+2z |=( )A.e 2+2x B.e |2i+2z|C.e 2+2z D.e 2x 14. 下列集合为无界多连通区域的是( )A.0<|z-3i|<1B.Imz>πC.|z+ie|>4D.π<<π2z arg 2315. 设z=cos(π+5i),则Rez 等于( )。
复变函数复习题
![复变函数复习题](https://img.taocdn.com/s3/m/93a5eec49ec3d5bbfd0a74a7.png)
第一章复习题1. 设z=1+2i ,则Im z 3=( ) A. -2 B. 1 C. 8 D. 142. z=2-2i ,|z 2|=( ) A. 2 B.8 C. 4 D. 83. z=(1+cost)+i(2+sint),0≤t<2π所表示的曲线为( ) A.直线B.双曲线C.抛物线D.圆4. 设z=x+iy,则(1+i )z 2的实部为( )A.x 2-y 2+2xyB.x 2-y 2-2xyC.x 2+y 2+2xyD.x 2+y 2-2xy5. arg(2-2i)=( ) A.43π- B.4π- C.4π D.43π6.设2,3z w i z =+=,则( ) A .3arg π=w B .6arg π=w C .6arg π-=w D .3arg π-=w7.设z 为非零复数,a ,b 为实数,若ib a zz+=_,则a 2+b 2的值( )A .等于0B .等于1C .小于1D .大于18.设11z i=-+,则z 为( ) A .21i +- B .21i -- C .21i - D .21i + 9. 设z=x+iy ,则|e 2i+2z |=( ) A. e 2+2x B. e |2i+2z| C. e 2+2z D. e 2x 10. Re(e 2x+iy )=( )A. e 2xB. e yC. e 2x cosyD. e 2x siny11. 包含了单位圆盘|z|<1的区域是( ) A.Re z<-1 B.Re z<0 C.Re z<1D.Im z<012. 复数方程z=3t+it 表示的曲线是( ) A.直线 B.圆周 C.椭圆 D.双曲线13 .下列集合为无界多连通区域的是( )A.0<|z-3i|<1B.Imz>πC.|z+ie|>4D.π<<π2z arg 2314.复数方程z=cost+isint 的曲线是( ) A.直线 B.圆周 C.椭圆 D.双曲线 15.下列集合为有界单连通区域的是( ) A.0<|z-3|<2 B.Rez>3 C.|z+a|<1D.π≤<πargz 2116.下列集合为有界闭区域的是( ) A .0< arg (z+3)≤2πB .Re (z-i)<1C .1≤Imz ≤2D . 1≤||z i -≤417. arg(3-i)=___________.18. arg (-1+3i )= .19. 若i3i1z -+=,则z =___________.20.设i z 101103+-=,则=_z ____________. 21. 若z 1=e 1+i π,z 2=3+i ,则z 1·z 2=________.22. 复数1-3i 的三角表达式是_________________.23. 求方程z 3+8=0的所有复根. 24. 解方程z 4=-1.25 计算复数z=327-的值.26.求z =(-1+i )6的共轭复数z 及共轭复数的模|z |.27.设复数)2)(1(--=i i iz(1)求z 的实部和虚部;(2)求z 的模;(3)指出z 是第几象限的点. 28. 设t 为实参数,求曲线z=re it +3 (0≤t <2π的直角坐标方程.29.设iy x z +=.将方程1Re ||=+z z 表示为关于x ,y 的二元方程,并说明它是何种曲线. 30.用θcos 与θsin 表示θ5cos .第二章复习题1. ln(-1)为( ) A.无定义的B.0 C .πi D.(2k+1)πi(k 为整数)2.=i 2ln ( ) A .2ln B .i 22ln π+C .i 22ln π-D .i i 2Arg 2ln +3.Ln(-4+3i)的主值是( ) A .ln5+i(-π-arctg43) B .ln5+i(π-arctg 43) C .ln5+i(-π-arctg 34) D .ln5+i(π-arctg 34) 4. 设z=x+iy ,解析函数f(z)的虚部为v=y 3-3x 2y ,则f(z)的实部u 可取为( ) A.x 2-3xy 2B.3xy 2-x 3C.3x 2y-y 3D.3y 3-3x 35. 设f(z)=e x (xcosy+aysiny)+ie x (ycosy+xsiny)在Z 平面上解析,则a=( ) A. -3 B. -1 C. 1 D. 36. 设f(z)=x 3-3xy 2+(ax 2y-y 3)i 在Z 平面上解析,则a=( ) A. -3 B. 1 C. 2 D. 37. 若f(z)=u(x,y)+iv(x,y)在Z 平面上解析,u(x,y)=x 2-y 2+x ,则v(x,y)=( )A.xy+xB.2x+2yC.2xy+yD.x+y8. 若f(z)=u(x ,y)+iv(x ,y)在Z 平面上解析,v(x,y)=e x (ycosy+xsiny),则u(x ,y)=( )A. e x (ycosy-xsiny)B. e x (xcosy-xsiny)C. e x (ycosy-ysiny)D. e x (xcosy-ysiny)9. 设v(x,y)=e axsiny 是调和函数,则常数a=( )A. 0 B. 1 C.2 D.3 10. 设f(z)=z 3+8iz+4i ,则f ′(1-i)=( ) A. -2i B. 2i C. -2 D. 2 11.正弦函数sinz=( )A .i e e iz iz 2-- B .2iz iz e e -- C .i e e iz iz 2-+D .2iziz e e -+12. 对数函数w=ln z 的解析区域为___________. 13.已知f(z)=u+iv 是解析函数,其中u =)ln(2122y x +,则=∂∂yv. 14. 若sinz=0,则z=___________. 15. 若cosz=0,则z=________.16.方程i z 31ln π+=的解为____________. 17. tgz 的所有零点为_________________.18. 设f(z)=x 2+axy+by 2+i(-x 2+2xy+y 2)为解析函数,试确定a ,b 的值. 19.设)()(2323y cx y i bxy ax z f +++=为解析函数,试确定a,b,c 的值. 20. 设f(z)=my 3+nx 2y+i(x 3-3xy 2)为解析函数,试确定m 、n 的值.21.函数f(z)=x2-y2-x+i(2xy-y2)在复平面上何处可导?何处解析?22. 已知调和函数v=arctg x y,x>0,求f ′(z),并将它表示成z 的函数形式.23.设),(),()(y x iv y x u z f +=是解析函数,其中xy x y y x u 2),(22--=,求),(y x v . 24.设u=x 2-y 2+xy 是解析函数f(z)的实部,其中z=x+iy.求f ′(z)并将它表示成z 的函数形式. 25.设v=e ax siny ,求常数a 使v 成为调和函数.26.已知调和函数u=(x-y)(x 2+4xy+y 2),求f ′(z),并将它表示成z 的函数形式. 27. 设u=e 2x cos 2y 是解析函数f(z)的实部,求f(z).28.已知z ≠0时,22x yu x y -=+为调和函数,求解析函数()f z u iv =+的导数f ′(z),并将它表示成z 的函数形式.29.求方程sin z +cos z =0 的全部根.第三章复习题1.设C 为正向圆周|z|=1,则⎰=C2zdz ( )A. 0 B. 1 C.πi D. 2πi2.设C 为从-i 到i 的直线段,则⎰=Cdz |z |( )A. i B. 2i C. -i D. -2i3.设C 为正向圆周|z|=1,则⎰=-Cz dz 1e z sin ( )A.2πi ·sin 1B.-2πiC.0D.2πi4.⎰==-2|z |2)i z (dz( ) A. 0 B. 1 C. 2π D. 2πi5.⎰=-=2|1z |dz z zcos ( ) A. 0 B. 1 C. 2π D. 2πi 6.⎰+=i220zdz ( ) A. i B. 2i C. 3i D. 4i7.设C 为正向圆周|z-a|=a(a>0),则积分⎰-Ca z dz22=( )A. a i 2π-B. ai π- C. a i 2π D. ai π8.设C 为正向圆周|z-1|=1,则⎰=-C dz z z 53)1(( )A.0 B.πi C.2πi D.6πi9.设C 为正向圆周|z |=1,则⎰=czdz cot ( )A. -2πi B. 2πi C. -2π D.2π10.⎰=-3|i z |z dz=( ) A. 0 B. 2π C. πi D. 2πi 11.⎰=---11212z z sinzdz |z |=( )A. 0 B. 2πisin1 C. 2πsin1 D.1sin 21iπ 12.⎰32dz zcosz =( ) A.21sin9 B.21cos9 C.cos9 D.sin913.设C 为正向圆周|z |=1,则dz z C⎰=( )A .i π6 B .i π4 C .i π2 D .0 14.设C 为正向圆周|z -1|=2,则dz z e zC2-⎰=( ) A .e 2 B .i e 22π C .i e 2π D .i e 22π-15.设C 为正向圆周|z |=2,则dz z e z zC4)1(++⎰=( )A .i e 3π B .e6πC .ei π2D .i e3π 16.复积分iizedz ⎰的值是( )A . 1(1)e i ---B .1e i -C .1(1)e i --D .1e i --17.复积分|1|2z z i e z i --=-⎰ dz 的值是( )A .i e B .i e - C .2πi i e D .2πi ie -18.设C 为正向圆周⎰=ξ-ξξ=<=ξC3d )z (2sin )z (f 1|z |1||时,,则当___________.19.设⎰==ζ<ζ-ζζ=L )z (f 3|:|L ),3|z (|,d zsin )z (f ,则___________. 20.设f ′(z)=⎰==ζ<-ζζζL )z (f L )|z (|,则|:|, 55d ζz)( cos e 2________.21.设C 为正向圆周|z |=1,则=-⎰dz ie cz 22π. 22. 设C 为正向圆周|z|=1,则积分⎰=Cdz z1___________.23.设C 为从i 到1+i 的直线段,则=⎰zdz CRe ____________.24.设C 为正向单位圆周在第一象限的部分,则积分=⎰dz z z C 3_)(____________.25.设C 为正向圆周|z |=2,则⎰=-Cdz z z 32)2(cos π____________.26.|3|1cos z z i e zdz -=⎰=______________.27. 设C 为正向圆周|z|=1,计算积分⎰+-=C 2.dz )2z )(21z (zsin I28. 计算积分⎰-=C3z dz )a z (e I ,其中C 为正向圆周|z|=1,|a|≠1.29. 计算积分⎰+-=C2dz z)i 1(z 1I ,其中C 为正向圆周|z|=2.30. 求积分⎰++-Cdz i z 22z 3I )(=的值,其中C:|z|=4为正向. 31. 求积分⎰-C4z dz z 3e I =的值,其中C:|z|=1为正向.32.设C 为正向圆周|z|=1,求I=dz zec z ⎰21.33.设C 为正向圆周|z-i |=21,求I =⎰+c z z dz )1(2.34.设C 为正向圆周|z|=1,求I=⎰C zdz ze 5.35. 求积分I=⎰+Cdz z i 的22值,其中C :|z|=4为正向.36. 求积分I=⎰+C zdz )i z (e 的42值,其中C :|z|=2为正向.37.设C 为正向简单闭曲线,a 在C 的内部,计算I =.)(213dz a z ze izC-⎰π38.计算积分I=2()cx y ix dz -+⎰,其中C 为从0到1+i 的直线段.39.计算积分I=221(1)(1)Cdz z z -+⎰ ,其中C 为正向圆周2220x y x +-= 第四章复习题1. 复数列i2n n e z π=的极限为() A.-1B.0C.1D.不存在 2. 设∑∞==0n n!n z )z (f ,则f (10)(0)为( )A.0B.!101C.1D.10!3.z-21的幂级数展开式∑∞=0n nnza 在z =-4处( )A .绝对收敛B .条件收敛C .发散D .收敛于61 4.幂级数∑∞=+0)1(1n nn z i 的收敛半径为( ) A .2 B .1 C .21 D .0 5. 下列级数中绝对收敛的是( )A.∑∞=+1!)43(n nn i B.nn i∑∞=+1)231( C. ∑∞=1n nni D.∑∞=+-11)1(n n n i6. 1e 1)z (f z-=在z=πi 处的泰勒级数的收敛半径为( )A. πiB. 2πiC. πD. 2π7. 处在0z )i z )(2z (1)z (f =--=泰勒展开式的收敛半径是( ) A. 0 B. 1 C. 2 D. 3 8. f(z)=211z +在z=1处的泰勒展开式的收敛半径为( ) A.23B. 1C.2D.3 9. f(z)=2i)z(z cosz -在z=1处泰勒展开式的收敛半径是( )A.0B.1C.2D.310. z=2i 为函数222z )4z (z e )z (f +=的( )A.可去奇点B.本性奇点C.极点D.解析点11. 以z=0为本性奇点的函数是( )A.z zsin B.)1z (z 1- C.2z z cos 1-D.z1sin12.点z=-1是f(z)=(z+1)5sin)1(1+z 的( )A.可去奇点B.二阶极点C.五阶零点D.本性奇点13. z=0为函数cos z1的( )A.本性奇点B.极点C.可去奇点D.解析点14.z=0是函数2zcos 1z -的( )A .本性奇点B .可去奇点C .一阶极点D .二阶极点15. 2)1z (z 1)z (f -=在0<|z-1|<1内的罗朗展开式是( )A.∑∞=-0n nnz )1( B.∑∞=-0n n2z)1z (1 C.∑∞=--0n nn)1z ()1(D.∑∞=---0n 2n n)1z ()1(16. 可以使f(z)=3)3(1+z z 在点z=0处的罗朗展开式收敛的区域是( ) A.0<|z|<2或2<|z|<+∞ B. 0<|z|<+∞ C. 0<|z-2|<2 D. 0<|z-2|<+∞17. f(z)=)z )(z (121--在0<|z-2|<1内的罗朗展开式是( )A.∑∞=-01n nn z )( B.∑∞=-021n n z )z ( C.∑∞=-02n n)z ( D.∑∞=---0121n n n )z ()(18. 设i 1a a lim n 1n n +=+∞→,则幂级数∑∞=+0n nn z 1n a 的收敛半径为___________.19. 幂级数∑∞=0n n nz 3n的收敛半径是___________.20. 幂级数∑∞=1n n nz n!n 的收敛半径是________.21.若在幂级数∑∞=0n n n z b 中,i b b nn n 43lim1+=+∞→,则该幂级数的收敛半径为____________.22.幂级数∑∞-12n n nnz 的收敛半径是____________.23.设n z z f nn n2)1()(0∑∞=-=,则)0()10(f =___________.24. z =0是f(z)=zz )1ln(+的奇点,其类型为 . 25. f(z)=21z z -在圆环域0<|z|<1内的罗朗展开式为 . 26.设zz f -=11sin )(的幂级数展开式为∑∞=0n nnza ,求它的收敛半径,并计算系数a 1,a 2.27. 求f(z)=ln z 在点z=2的泰勒级数展开式,并求其收敛半径.28 将函数0z )2z )(1z (1)z (f =++=在展开为泰勒级数. 29.求)2)(1(1)(--=z z z f 在z =0处的泰勒展开式.30. 将函数f(z)=ln(3+z)展开为z 的泰勒级数.31.将函数f(z)=ln(z2-3z+2)在z=0处展开为泰勒级数.32. (1)求z 1在圆环域1<|z-1|<+∞内的罗朗级数展开式; (2)求2z1在圆环域1<|z-1|<+∞内的罗朗级数展开式.33. 将函数)1z (z 1)z (f -=在圆环域1<|z-1|<+∞内展开为罗朗级数.34. 将函数f(z)=()22+z z 在圆环域0<|z|<2内展开为罗朗级数.35.求)2)(4(2)(---=z z z f 在圆环域3|1|1<-<z 内的罗朗级数展开式.36.将函数)1(1)(2-+=z z z z f 在圆环域0<z <1内展开为罗朗级数.第五章复习题1. 设函数22iz )1z (e )z (f +=,则Res[f(z),-i]=( )A.0 B.4ie -C.4ie D.4e2. 设f(z)=1z z 22-,则Res[f(z),1]=( ) A.0 B.1 C.π D.2π3. 若f(z)=tgz ,则Res[f(z),2π]=( ) A. -2π B. -π C. -1 D. 04.函数z z tan 在z =0点的留数为( )A .2B .iC .1D .05.函数2z e e ibziaz -(a 、b 为实数,a ≠b)在z=0点的留数为( )A .)(a b i -B .a b -C .b a -D .)(b a i -6.Re [cot ,1]s z π=( ) A .1π- B .1πC .-2iD .2i7.设f(z)=+--++--+---nn z z z z )1()1()1(1)1(1)1(12,则Res[f(z),1]= . 8.利用留数计算积分⎰=+-=2|z |4zdz )4z )(1z (e I9.(1)求)4z )(1z (1)z (f 22++=在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数; (3)利用以上结果计算积分⎰+∞∞-++=)4x )(1x (dx I 22.10.(1)求2z 2i z 4e )z (f +=在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数;(3)利用以上结果计算积分⎰+∞∞-+=.dx 4x x2cos I 211.(1)求f(z)=12+z z在上半平面内的孤立奇点,并指出其类型; (2)求f(z)e iz 在以上奇点的留数; (3)利用以上结果,求I=⎰+∞∞-+dx x xx 1sin 2. 12. 利用留数计算积分I=⎰C zsinzdz,其中C 为正向圆周|z|=1.13.(1)求f(z)=iz e z z21+在上半平面的所有孤立奇点;(2)求f(z)在以上各孤立奇点的留数;(3)利用以上结果计算积分I=⎰+∞∞-+x d x 1xsinx214.求)(1)(3i z z z f -=在各个孤立奇点处的留数.15.利用留数计算积分⎰+∞∞-++=dx x x x I )9)(1(222. 16.利用留数计算积分I=22(1)zc e dz z -⎰ ,其中C 为正向圆周||z =2.17.(1)求242()1z f z z z =++在上半平面内的所有孤立奇点. (2)求)(z f 在以上各孤立奇点的留数. (3)利用以上结果计算积分I=2421x dx x x +∞-∞++⎰.第六章复习题1. 把点z=1,i,-1分别映射为点w=∞,-1,0的分式线性映射为( )A.1z 1z w +-=B.z 1)1z (i w -+=C.z 11z w -+= D.1z )1z (i w +-=2. w=e z 把带形区域0<Im z<2π映射成W 平面上的( ) A.上半复平面B.整个复平面C.割去负实轴及原点的复平面D.割去正实轴及原点的复平面3. 线性变换z1z2+=ω( )A.将上半平面Imz>0映射为上半平面Im ω>0B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<14. 线性变换ω=iz zi +-( )A.将上半平面Imz>0映射为上半平面Im ω>0B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<15.3z =ω把Z 平面上区域0<θ<π映射成W 平面上的区域( )A .-3π<ϕ<0B .3π-<ϕ<0 C .0<ϕ<3πD .0<ϕ<3π6. 映射z1=ω是关于___________的对称变换.7. 线性映射ω=z 是关于________的对称变换.8.分式线性映射i z i z +---=11ω把上半平面Imz>0映射成___________. 9. 设D 是上半单位圆:Im z>0,|z|<1,求下列保角映射: (1)w 1=f(z)把D 映射为第Ⅱ象限D 1,且f(1)=0;(2)w 2=g(w 1)把D 1映射为第Ⅰ象限D 2; (3)w=h(w 2)把D 2映射为上半平面D 3; (4)求把D 映射为D 3的保角映射w=F(z).10. 设D 是Z 平面上的带形区域:10<Imz<10+π,试求下列保角映射: (1)ω1=f 1(z)把D 映射成ω1平面上的带形区域D 1:0<Im ω1<π; (2)ω2=f 2(ω1)把D 1映射成ω2平面上的上半平面D 2:Im ω2>0; (3)ω=f 3(ω2)把D 2映射成ω平面上的单位圆域D 3:|ω|<1,且f 3(i)=0; (4)综合以上三步,试用保角映射ω=f(z)把D 映射成单位圆域D 3. 11.设D 为Z 平面的单位圆盘去掉原点及正实轴的区域. 求下列保角映射: (1)w 1=f 1(z)把D 映射成W 1平面的上半单位圆盘D 1; (2)w=f 2(w 1)把D 1映射成W 平面的第一象限;(3)w=f(z)把D 映射成W 平面的第一象限..12. 设D 是Z 平面上的带形区域:1<Rez<1+π,求下列保角映射: (1)ω1=f 1(z)把D 映射成ω1平面上的带形区域D 1:0<Re ω1<π; (2)ω2=f 2(ω1)把D 1映射成ω2平面上的带形区域D 2:0<Im ω2<π; (3)ω=f 3(ω2)把D 2映射成ω平面上的上半平面D 3:Im ω>0; (4)综合以上三步,求把D 映射成D 3的保角映射ω=f(z). 13.设D 为Z 平面上的扇形区域.1||,3arg 0<<<z z π求下列保角映射:(1))(11z f w =把D 映射为W 1平面的上半单位圆盘D 1; (2))(12w f w =把D 1映射为W 平面上的第一象限; (3))(z f w =把D 映射为W 平面上的第一象限.14.设Z 平面上区域D :||z <2且||z i ->1.试求以下保角映射:(1))(11z f =ω把D 映射成W1平面上的带形域D1:41<Im 1ω<21;(2))(122ωωf =把D1映射成W2平面上的带形域D2:0<Im 2ω<π; (3))(23ωωf =把D2映射成W 平面上的区域D3:Im ω>0;(4)综合以上三步,求保角映射)(z f =ω把D 映射成Im ω>0.第二篇复习题1.δ函数的傅氏变换F )]t ([δ为( ) A.-2 B.-1 C.1 D.22. 函数f(t)=t 的傅氏变换F [f(t)]为( )A.δ(ω)B.2πi δ(ω)C.2πi δ'(ω)D.δ'(ω) 3.函数f(t)=π2122t e -的傅氏变换F [])(t f 为( )A . 2ω-eB . 22ω-eC .22ωeD . 2ωe4.求函数)t (f 3)t (2-δ的傅氏变换,其中⎩⎨⎧≤>=-.0t ,00t ,te )t (f t5.求函数3f(t)+2sint 的付氏变换,其中 f(t)=⎩⎨⎧>≤1||,01||,1t t6. (1)求e -t 的拉氏变换F [e -t ];(2)设F(p)=F [y(t)],其中函数y(t)二阶可导,F [y ′(t)]、F [y ″(t)]存在,且y(0)=0, y ′(0)=1,求F [y ′(t)]、F [y ″(t)];(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧='==-'+''-1)0(y ,0)0(y e 2y 3y 2y t7.(1)求e t 的拉氏变换L [e t ];(2)设F (p )=L [y(t)],其中函数y(t)二阶可导,L [y ′(t)]、L [y ″(t)]存在,且y(0)=0, y ′(0)=0,求L [y ′(t)]、L [y ″(t)]; (3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧='==+'-''.)(y ,)(y e y y y t000028.求函数222)4(4)(-+=p p p F 的拉氏逆变换9.(1)求sint 的拉氏变换(sint ); (2)设F (p )=[])(t y ,其中函数)(t y 可导,且1)0(-=y ,求[])(t y '.(3)利用拉氏变换求解常微分方程初值问题:⎩⎨⎧-==+'1)0(sin y ty y全国2009年4月自考复变函数与积分变换试题一、单项选择题(本大题共10小题,每小题2分,共20分)1.设z =1-i ,则Im(21z )=( )A .-1B .-21C .21D .12.复数z =ii-+23的幅角主值是( ) A .0 B .4π C .2π D .43π3.设n 为整数,则Ln (-ie )=( )A .1-2πi B .)22(πn π-i C .1+)i π(n π22-D .1+i π(n π)22+4.设z =x +iy .若f (z )=my 3+nx 2y +i (x 3-3xy 2)为解析函数,则( ) A .m =-3,n =-3 B .m =-3,n =1 C .m =1,n =-3 D .m =1,n =15.积分⎰=2iiπz dz e ( )A .)1(1i +πB .1+iC .πi2 D .π26.设C 是正向圆周,11=-z 则⎰-C dz z z 1)3/sin(2π=( )A .i π23-B .i π3-C .i π43D .i π237.设C 是正向圆周3=z ,则⎰-Cdz z z 3)2(sin π=( ) A .i π2- B .i π- C .i π D .2i π 8.点z =0是函数)1(sin )1()(2--=z z ze zf z 的( )A .可去奇点B .一阶极点C .二阶极点D .本性奇点9.函数)3)(2()(-+=z z zz f 在1=z 的泰勒展开式的收敛圆域为( )A .z <2B .1-z <2C .z <3D .1-z <3 10.设)1(sin )(2z z zz f -=,则Res[f (z ),0]=( )A .-1B .-21 C .21D .1二、填空题(本大题共6小题,每小题2分,共12分) 11.复数-1-i 的指数形式为__________.12.设z =x +iy 满足x -1+i (y +2)=(1+i )(1-i ),则z =__________. 13.区域0<arg z<4π在映射w =z 3下的像为__________.14.设C 为正向圆周,2=z 则⎰=-Czdz z e 12__________. 15.函数)1(1)(2z z z f -=在圆环域0<z <1内的罗朗展开式为__________.16.设)1()(1-=ze z zf ,则Res[f (z ),0]=__________.三、计算题(本大题共8小题,共52分)17.(本题6分)将曲线的参数方程z =3e it +e -it (t 为实参数)化为直角坐标方程. 18.(本题6分)设C 是正向圆周⎰+-=-C zdz z z e z .23,2112计算19.(本题6分)求0)2)(1()(=-+=z z z zz f 在处的泰勒展开式,并指出收敛圆域. 20.(本题6分)求)2)(1(12)(+-+=z z z z f 在圆环域1<z <2内的罗朗展开式.21.(本题7分)计算z =(1+i )2i 的值.22.(本题7分)设v (x ,y )=arctan )(),0(z f x xy>是在右半平面上以v (x ,y )为虚部的解析函数,求f (z ).23.(本题7分)设C 是正向圆周2=z ,计算.)1(2dz z z e I Cz⎰-=24.(本题7分)设C 是正向圆周1=z ,计算⎰+=C dz zz I .2sin )1(2 四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题。
最新复变函数第一章答案
![最新复变函数第一章答案](https://img.taocdn.com/s3/m/89a1225d6bec0975f565e2a9.png)
第一章 复数与复变函数1.1计算下列各式:(1) (1)(32);i i +--解: (1)(32)(1)322 3.i i i i i +--=+-+=-+(2) ;(1)(2)i i i -- 解:2(13)3.(1)(2)2213101010i i i i i i i i i i i i +-====+----+- (3) 1(1);1z z x iy z -=+≠-+ 解: 2222222211(1)(1)12.11(1)(1)(1)z x iy x iy x iy x y y i z x iy x y x y x y-+--++-+-===++++++++++ 1.2 将直线方程220(0)ax by c a b ++=+≠写成复数形式.[提示: 记.x iy z +=] 解: 由,22z z z z x y i+-== 代入直线方程,得 ()()0,22()20,()()20,0,,2.a b z z z z c iaz az bi z z c a bi z a bi z c Az Az B A a ib B c ++-+=+--+=-+++=++==+=故其中1.3 将圆周方程22()0(0)a x y bx cy d a ++++=≠写成复数形式(即可z 与z 表示,其中z x iy =+).解: 把22,,22z z z z x y x y z z i+-==+=⋅代入圆周方程得: ()()0,222()()20,0.b c az z z z z z d iaz z b ic z b ic z d Az z Bz Bz C ⋅+++-+=⋅+-+++=⋅+++=故其中2,,2.A a B b ic C d ==+=1.4 求下列复数的模与辐角主值.(1) 2;i -解: 2i -== 11arg(2)arctan arctan .22i --==- (2) 13;i -+解: 13i -+== 3arg(13)arctanarctan 3.1i ππ-+=+=-- 1.5 将下列各复数写成三角形式.(1) sin cos ;i αα+解: sin cos 1,i αα+=故sin cos cos()sin().22i i ππαααα+=-+- (2) sin cos .66i ππ-- 解: 2arg(sincos )arctan(cot ),666263i ππππππππ--=-=--=- sin cos 66i ππ--=2222cos()sin()cos()sin .3333i i ππππ-+-=- 1.6 利用复数的三角表示计算下列各式:(1) 31();2解: 由乘幂公式知3cos3()sin 3() 1.33i ππ⎡⎤=⋅-+-=-⎢⎥⎣⎦(2)解: 因32222),4i i π-+=-+=所以由开方公式知3838sin ),0,1,2,3.1616k k i k ππ++=+= 1.7 指出满足下列各式的点z 的轨迹是什么曲线? (1) 1;z i +=解: 以(0,1)-为圆心,1为半径的圆周. (2) 0,zz az az b +++=其中a 为复数,为b 实常数;解: 由题设可知 2()()||0,z a z a b a +++-=即22||||,z a a b +=-若2||,a b =则z 的轨迹为一点;a -若2||,a b >则z 的轨迹为圆,圆心在a -,若2||,a b <无意义.1.8 用参数方程表示下列各曲线.(1) 连接1i +与14i --的直线段;解: 法一:由直线段的复参数方程直接得 211()()[14(1)](1)1(25),01z t z z t z i i t i i i t t =-+=---+++=++--≤≤法二:由直线段的实参数方程间接得平面上连接点(1,1)与(1,4)--的直线段,其参数方程可写为: 1(11),011(41),x t t y t =+--⎧≤≤⎨=+--⎩故其复数形式的参数方程为: 12(15)1(25),01z t i t i i t t =-+-=++--≤≤ (2) 试证0Re limz z z →不存在. 证: 000Re limlim ,z x y z x z x iy →→→=+令,y kx =则上述极限为1,1ki +随k 变化而变化,因而极限不存在.全国2009年4月高等教育自学考试英语语法试题课程代码:00831一、单项选择题(本大题共20小题,每小题1分,共20分)Choose the best answer from the choices given and put the letters A, B, C or D in the brackets.1.——Did you hear what she said? ( )——Well, I heard her say something, but I ______.So I don ’t know exactly what she said.A .would not listenB .were not listeningC .had not listenedD .shouldn ’t listen2.When I got to the top of the mountain, the sun ______.()A.shoneB.shinesC.has shoneD.was shining3.The building suddenly collapsed while it ______ down.()A.pulledB.had been pulledC.was being pulledD.was pulled4.Most of my saving ______ in stocks.()A.has been investedB.is being investedC.have investedD.have been invested5.The manager insisted that the chief engineer ______ testing the new model immediately.()A.startB.startsC.startedD.will start6.Great as Newton was, many of his principles ______ and modified by contemporary scientists。
复变函数习题总汇与参考答案
![复变函数习题总汇与参考答案](https://img.taocdn.com/s3/m/dc7434bc312b3169a551a480.png)
复变函数习题总汇与参考答案(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--复变函数习题总汇与参考答案第1章 复数与复变函数一、单项选择题1、若Z 1=(a, b ),Z 2=(c, d),则Z 1·Z 2=(C )A (ac+bd, a )B (ac-bd, b)C (ac-bd, ac+bd )D (ac+bd, bc-ad)2、若R>0,则N (∞,R )={ z :(D )}A |z|<RB 0<|z|<RC R<|z|<+∞D |z|>R3、若z=x+iy, 则y=(D) A B C D4、若A= ,则 |A|=(C ) A 3 B 0 C 1 D 2二、填空题1、若z=x+iy, w=z 2=u+iv, 则v=( 2xy )2、复平面上满足Rez=4的点集为( {z=x+iy|x=4} )3、( 设E 为点集,若它是开集,且是连通的,则E )称为区域。
2zz +2z z -izz 2+iz z 2-)1)(4()1)(4(i i i i +--+4、设z 0=x 0+iy 0, z n =x n +iy n (n=1,2,……),则{z n }以z o 为极限的充分必要条件是 x n =x 0,且 y n =y 0。
三、计算题1、求复数-1-i 的实部、虚部、模与主辐角。
解:Re(-1-i)=-1 Im(-1-i)=-1|-1-i|=2、写出复数-i 的三角式。
解:3、写出复数 的代数式。
解:4、求根式的值。
+∞→n lim +∞→n lim ππ45|11|arctan ),1(12)1()1(=--+=--∴--=-+-i ary i 在第三象限 ππ23sin 23cos i i +=-i i i i i i i i i i i i i i i 212312121)1()1)(1()1(11--=--+-=⋅-++-+=-+-ii i i -+-11327-解:四、证明题1、证明若 ,则a 2+b 2=1。
复变函数测试题及答案
![复变函数测试题及答案](https://img.taocdn.com/s3/m/bd751d291ed9ad51f01df296.png)
第一章 复数与复变函数一、 选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A)i (B)i - (C)1 (D)1- 2.设复数z 满足3)2(π=+z arc ,65)2(π=-z arc ,那么=z ( ) (A)i 31+- (B)i +-3 (C)i 2321+-(D)i 2123+- 3.复数)2(tan πθπθ<<-=i z 的三角表示式就是( ) (A))]2sin()2[cos(sec θπθπθ+++i (B))]23sin()23[cos(sec θπθπθ+++i (C))]23sin()23[cos(sec θπθπθ+++-i (D))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系就是( ) (A)z z z z 222≥- (B)z z z z 222=- (C)z z z z 222≤- (D)不能比较大小5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹就是( )(A)圆 (B)椭圆 (C)双曲线 (D)抛物线 6.一个向量顺时针旋转3π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数就是( )(A)2 (B)i 31+(C)i -3 (D)i +37.使得22z z =成立的复数z 就是( )(A)不存在的 (B)唯一的 (C)纯虚数 (D)实数 8.设z 为复数,则方程i z z +=+2的解就是( )(A)i +-43 (B)i +43 (C)i -43 (D)i --439.满足不等式2≤+-iz iz 的所有点z 构成的集合就是( ) (A)有界区域 (B)无界区域 (C)有界闭区域 (D)无界闭区域 10.方程232=-+i z 所代表的曲线就是( )(A)中心为i 32-,半径为2的圆周 (B)中心为i 32+-,半径为2的圆周 (C)中心为i 32+-,半径为2的圆周 (D)中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不就是圆周的为( ) (A)221=+-z z (B)433=--+z z (C))1(11<=--a azaz (D))0(0>=-+++c c a a z a z a z z12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A)i 44-- (B)i 44+ (C)i 44- (D)i 44+- 13.00)Im()Im(lim0z z z z x x --→( )(A)等于i (B)等于i - (C)等于0 (D)不存在14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件就是( ) (A)),(y x u 在),(00y x 处连续 (B)),(y x v 在),(00y x 处连续(C)),(y x u 与),(y x v 在),(00y x 处连续(D)),(),(y x v y x u +在),(00y x 处连续15.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为( )(A)3- (B)2- (C)1- (D)1 二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg3.设43)arg(,5π=-=i z z ,则=z 4.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 5.以方程i z 1576-=的根的对应点为顶点的多边形的面积为 6.不等式522<++-z z 所表示的区域就是曲线 的内部7.方程1)1(212=----zi iz 所表示曲线的直角坐标方程为8.方程i z i z +-=-+221所表示的曲线就是连续点 与 的线段的垂直平分线9.对于映射zi =ω,圆周1)1(22=-+y x 的像曲线为 10.=+++→)21(lim 421z z iz三、若复数z 满足03)21()21(=+++-+z i z i z z ,试求2+z 的取值范围.四、设0≥a ,在复数集C 中解方程a z z =+22、五、设复数i z ±≠,试证21zz+就是实数的充要条件为1=z 或0)(=z IM 、六、对于映射)1(21zz +=ω,求出圆周4=z 的像、 七、试证1、)0(0221≠≥z z z 的充要条件为2121z z z z +=+; 2、)),,2,1,,,0(021n j k j k z z z j Λ=≠≠≥的充要条件为 n n z z z z z z +++=+++ΛΛ2121、八、若0)(lim 0≠=→A z f x x ,则存在0>δ,使得当δ<-<00z z 时有A z f 21)(>、 九、设iy x z +=,试证y x z y x +≤≤+2、十、设iy x z +=,试讨论下列函数的连续性:1、⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f2、⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f第二章 解析函数一、选择题:1.函数23)(z z f =在点0=z 处就是( )(A)解析的 (B)可导的(C)不可导的 (D)既不解析也不可导 2.函数)(z f 在点z 可导就是)(z f 在点z 解析的( )(A)充分不必要条件 (B)必要不充分条件(C)充分必要条件 (D)既非充分条件也非必要条件3.下列命题中,正确的就是( )(A)设y x ,为实数,则1)cos(≤+iy x(B)若0z 就是函数)(z f 的奇点,则)(z f 在点0z 不可导(C)若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析 (D)若)(z f 在区域D 内解析,则)(z if 在D 内也解析 4.下列函数中,为解析函数的就是( )(A)xyi y x 222-- (B)xyi x +2(C))2()1(222x x y i y x +-+- (D)33iy x +5.函数)Im()(2z z z f =在=z 处的导数( )(A)等于0 (B)等于1 (C)等于1- (D)不存在6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常 数=a ( )(A)0 (B)1 (C)2 (D)2-7.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( )(A)0 (B)1 (C)1- (D)任意常数 8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的就是(A)若)(z f 在D 内就是一常数,则)(z f 在D 内就是一常数 (B)若))(Re(z f 在D 内就是一常数,则)(z f 在D 内就是一常数 (C)若)(z f 与)(z f 在D 内解析,则)(z f 在D 内就是一常数 (D)若)(arg z f 在D 内就是一常数,则)(z f 在D 内就是一常数 9.设22)(iy x z f +=,则=+')1(i f ( )(A)2 (B)i 2 (C)i +1 (D)i 22+10.ii 的主值为( )(A)0 (B)1 (C)2πe (D)2π-e11.ze 在复平面上( )(A)无可导点 (B)有可导点,但不解析 (C)有可导点,且在可导点集上解析 (D)处处解析 12.设z z f sin )(=,则下列命题中,不正确的就是( )(A))(z f 在复平面上处处解析 (B))(z f 以π2为周期(C)2)(iziz e e z f --= (D))(z f 就是无界的13.设α为任意实数,则α1( )(A)无定义 (B)等于1(C)就是复数,其实部等于1 (D)就是复数,其模等于1 14.下列数中,为实数的就是( )(A)3)1(i - (B)i cos (C)i ln (D)i e 23π-15.设α就是复数,则( )(A)αz 在复平面上处处解析 (B)αz 的模为αz(C)αz 一般就是多值函数 (D)αz 的辐角为z 的辐角的α倍 二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(lim2.设iv u z f +=)(在区域D 内就是解析的,如果v u +就是实常数,那么)(z f 在D 内就是3.导函数xv i x u z f ∂∂+∂∂=')(在区域D 内解析的充要条件为4.设2233)(y ix y x z f ++=,则=+-')2323(i f 5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f 6.函数)Re()Im()(z z z z f -=仅在点=z 处可导7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 8.复数ii 的模为 9.=-)}43Im{ln(i 10.方程01=--ze 的全部解为三、设),(),()(y x iv y x u z f +=为iyx z +=的解析函数,若记)2,2()2,2(),(izz z z iv i z z z z u z z w -++-+=,则0=∂∂z w . 四、试证下列函数在z 平面上解析,并分别求出其导数 1.;sinh sin cosh cos )(y x i y x z f -=2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=五、设023=+-ze zw w ,求22,dz wd dz dw 、 六、设⎪⎩⎪⎨⎧=≠++=0,00,)()(422z z y x iy x xy z f 试证)(z f 在原点满足柯西-黎曼方程,但却不可导、七、已知22y x v u -=-,试确定解析函数iv u z f +=)(、 八、设s ρ与n ρ为平面向量,将s ρ按逆时针方向旋转2π即得n ρ、如果iv u z f +=)(为解析函数,则有s v n u n v s u ∂∂-=∂∂∂∂=∂∂,(s ∂∂与n∂∂分别表示沿s ρ,n ρ的方向导数)、 九、若函数)(z f 在上半平面内解析,试证函数)(z f 在下半平面内解析、 十、解方程i z i z 4cos sin =+、第三章 复变函数的积分一、选择题:1.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2( )(A)i 6561- (B)i 6561+- (C)i 6561-- (D)i 6561+ 2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc ⎰+-2)1)(1(为( ) (A)2i π (B)2i π- (C)0 (D)(A)(B)(C)都有可能 3.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz zzc c c 212sin ( ) (A ) i π2- (B)0 (C)i π2 (D)i π4 4.设c 为正向圆周2=z ,则=-⎰dz z zc2)1(cos ( ) (A)1sin - (B)1sin (C)1sin 2i π- (D)1sin 2i π5.设c 为正向圆周21=z ,则=--⎰dz z z z c23)1(21cos( )(A))1sin 1cos 3(2-i π (B)0 (C)1cos 6i π (D)1sin 2i π-6.设ξξξξd ze zf ⎰=-=4)(,其中4≠z ,则=')i f π(( ) (A)i π2- (B)1- (C)i π2 (D)17.设)(z f 在单连通域B 内处处解析且不为零,c 为B 内任何一条简单闭曲线,则积分dz z f z f z f z f c⎰+'+'')()()(2)( ( )(A)于i π2 (B)等于i π2- (C)等于0 (D)不能确定 8.设c 就是从0到i 21π+的直线段,则积分=⎰cz dz ze ( )(A)21eπ-(B) 21eπ-- (C)i e21π+(D) i e21π-9.设c 为正向圆周0222=-+x y x ,则=-⎰dz z z c1)4sin(2π( ) (A)i π22(B)i π2 (C)0 (D)i π22- 10.设c 为正向圆周i a i z ≠=-,1,则=-⎰c dz i a zz 2)(cos ( ) (A)ie π2 (B)eiπ2 (C)0 (D)i i cos 11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( )(A)等于0 (B)等于1 (C)等于2 (D)不能确定 12.下列命题中,不正确的就是( ) (A)积分⎰=--ra z dz az 1的值与半径)0(>r r 的大小无关 (B)2)(22≤+⎰cdz iy x,其中c 为连接i -到i 的线段(C)若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析 (D)若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则)(z f 在0=z 处解析13.设c 为任意实常数,那么由调与函数22y x u -=确定的解析函数iv u z f +=)(就是 ( )(A)c iz +2(B) ic iz +2(C)c z +2(D)ic z +214.下列命题中,正确的就是( )(A)设21,v v 在区域D 内均为u 的共轭调与函数,则必有21v v = (B)解析函数的实部就是虚部的共轭调与函数 (C)若iv u z f +=)(在区域D 内解析,则xu∂∂为D 内的调与函数 (D)以调与函数为实部与虚部的函数就是解析函数15.设),(y x v 在区域D 内为),(y x u 的共轭调与函数,则下列函数中为D 内解析函数的就是( )(A)),(),(y x iu y x v + (B)),(),(y x iu y x v -(C)),(),(y x iv y x u - (D)xv i x u ∂∂-∂∂ 二、填空题1.设c 为沿原点0=z 到点i z +=1的直线段,则=⎰cdz z 22.设c 为正向圆周14=-z ,则=-+-⎰c dz z z z 22)4(233.设⎰=-=2)2sin()(ξξξξπd zz f ,其中2≠z ,则=')3(f4.设c 为正向圆周3=z ,则=+⎰cdz zzz 5.设c 为负向圆周4=z ,则=-⎰c zdz i z e 5)(π 6.解析函数在圆心处的值等于它在圆周上的 7.设)(z f 在单连通域B 内连续,且对于B 内任何一条简单闭曲线c 都有0)(=⎰cdz z f ,那么)(z f 在B 内8.调与函数xy y x =),(ϕ的共轭调与函数为9.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a10.设),(y x u 的共轭调与函数为),(y x v ,那么),(y x v 的共轭调与函数为 三、计算积分 1、⎰=+-R z dz z z z)2)(1(62,其中1,0≠>R R 且2≠R ; 2、⎰=++22422z z z dz. 四、设)(z f 在单连通域B 内解析,且满足)(1)(1B x z f ∈<-、试证1.在B 内处处有0)(≠z f ; 2.对于B 内任意一条闭曲线c ,都有0)()(=''⎰cdz z f z f 五、设)(z f 在圆域R a z <-内解析,若)0()()(max R r r M z f ra z <<==-,则),2,1()(!)()(Λ=≤n r r M n a fnn 、六、求积分⎰=1z zdz z e ,从而证明πθθπθ=⎰0cos )cos(sin d e 、 七、设)(z f 在复平面上处处解析且有界,对于任意给定的两个复数b a ,,试求极限⎰=+∞→--R z R dz b z a z z f ))(()(lim并由此推证)()(b f a f =(刘维尔Liouville 定理)、八、设)(z f 在)1(><R R z 内解析,且2)0(,1)0(='=f f ,试计算积分⎰=+122)()1(z dz z z f z 并由此得出⎰πθθθ202)(2cos d e f i 之值、九、设iv u z f +=)(就是z 的解析函数,证明222222222))(1()(4))(1ln())(1ln(z f z f y z f x z f +'=∂+∂+∂+∂、十、若)(22y x u u +=,试求解析函数iv u z f +=)(、第四章 级 数一、选择题:1.设),2,1(4)1(Λ=++-=n n nia n n ,则n n a ∞→lim ( ) (A)等于0 (B)等于1 (C)等于i (D)不存在2.下列级数中,条件收敛的级数为( )(A)∑∞=+1)231(n ni (B)∑∞=+1!)43(n n n i(C) ∑∞=1n nn i (D)∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为( )(B ) ∑∞=+1)1(1n n in(B)∑∞=+-1]2)1([n n n i n (C)∑∞=2ln n nni (D)∑∞=-12)1(n nn n i 4.若幂级数∑∞=0n nnz c在i z 21+=处收敛,那么该级数在2=z 处的敛散性为( ) (A)绝对收敛 (B)条件收敛(C)发散 (D)不能确定 5.设幂级数∑∑∞=-∞=01,n n n n nn znc z c 与∑∞=++011n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系就是( )(A)321R R R << (B)321R R R >> (C)321R R R <= (D)321R R R == 6.设10<<q ,则幂级数∑∞=02n n n z q 的收敛半径=R ( )(A)q (B)q1(C)0 (D)∞+ 7.幂级数∑∞=1)2(2sinn n z n n π的收敛半径=R ( ) (A ) 1 (B)2 (C)2 (D)∞+8.幂级数∑∞=++-011)1(n n n z n 在1<z 内的与函数为 (A))1ln(z + (B))1ln(z -(D)z +11ln(D) z-11ln 9.设函数z e z cos 的泰勒展开式为∑∞=0n n n z c ,那么幂级数∑∞=0n nn z c 的收敛半径=R ( )(A)∞+ (B)1 (C)2π(D)π 10.级数Λ+++++22111z z z z的收敛域就是( ) (A)1<z (B)10<<z (C)+∞<<z 1 (D)不存在的11.函数21z 在1-=z 处的泰勒展开式为( ) (A))11()1()1(11<++-∑∞=-z z n n n n(B))11()1()1(111<++-∑∞=--z z n n n n(C))11()1(11<++-∑∞=-z z n n n (D))11()1(11<++∑∞=-z z n n n12.函数z sin ,在2π=z 处的泰勒展开式为( )(A))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B))2()2()!2()1(02+∞<---∑∞=ππz z n n n n(C))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n(D))2()2()!2()1(021+∞<---∑∞=+ππz z n n n n13.设)(z f 在圆环域201:R z z R H <-<内的洛朗展开式为∑∞-∞=-n n nz z c)(0,c 为H 内绕0z 的任一条正向简单闭曲线,那么=-⎰c dz z z z f 2)()(( )(A)12-ic π (B)12ic π (C)22ic π (D))(20z f i 'π14.若⎩⎨⎧--==-+=ΛΛ,2,1,4,2,1,0,)1(3n n c nn n n ,则双边幂级数∑∞-∞=n nn z c 的收敛域为( ) (A)3141<<z (B)43<<z (C)+∞<<z 41 (D)+∞<<z 3115.设函数)4)(1(1)(++=z z z z f 在以原点为中心的圆环内的洛朗展开式有m 个,那么=m ( )(A)1 (B)2 (C)3 (D)4 二、填空题 1.若幂级数∑∞=+0)(n n ni z c在i z =处发散,那么该级数在2=z 处的收敛性为 .2.设幂级数∑∞=0n nn z c与∑∞=0)][Re(n nnz c 的收敛半径分别为1R 与2R ,那么1R 与2R 之间的关系就是 . 3.幂级数∑∞=+012)2(n n nz i 的收敛半径=R4.设)(z f 在区域D 内解析,0z 为内的一点,d 为0z 到D 的边界上各点的最短距离,那么当d z z <-0时,∑∞=-=00)()(n n n z z c z f 成立,其中=n c .5.函数z arctan 在0=z 处的泰勒展开式为 .6.设幂级数∑∞=0n nnzc的收敛半径为R ,那么幂级数∑∞=-0)12(n n n nz c 的收敛半径为 .7.双边幂级数∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 的收敛域为 . 8.函数zze e 1+在+∞<<z 0内洛朗展开式为 . 9.设函数z cot 在原点的去心邻域R z <<0内的洛朗展开式为∑∞-∞=n n nz c,那么该洛朗级数收敛域的外半径=R . 10.函数)(1i z z -在+∞<-<i z 1内的洛朗展开式为 .三、若函数211z z --在0=z 处的泰勒展开式为∑∞=0n nn z a ,则称{}n a 为菲波那契(Fibonacci)数列,试确定n a 满足的递推关系式,并明确给出n a 的表达式. 四、试证明 1.);(11+∞<≤-≤-z ez ee zzz2.);1()1(1)3(<-≤-≤-z ze e z e z五、设函数)(z f 在圆域R z <内解析,∑==nk kk n z k f S 0)(!)0(试证 1.)()(21)(111R r z d z z f iz S n rn n n <<--=+=++⎰ξξξξξπξ、2.)()()(2)((11R r z d z f iz z S z f r n n n <<-=-⎰=++ξξξξπξ)。
复变函数1到5章测试题及答案
![复变函数1到5章测试题及答案](https://img.taocdn.com/s3/m/61273442f111f18582d05a16.png)
第一章复数与复变函数(答案)一、选择题1.当时,的值等于(B )ii z -+=115075100z z z ++(A ) (B ) (C ) (D )i i -11-2.设复数满足,,那么(A )z arg(2)3z π+=5arg(2)6z π-==z (A ) (B ) (C ) (D )i 31+-i +-3i 2321+-i 2123+-3.复数的三角表示式是(D ))2(tan πθπθ<<-=i z (A ) (B ))]2sin()2[cos(sec θπθπθ+++i )]23sin()23[cos(sec θπθπθ+++i (C )(D ))]23sin()23[cos(sec θπθπθ+++-i )]2sin()2[cos(sec θπθπθ+++-i 4.若为非零复数,则与的关系是(C )z 22z z -z z 2(A ) (B )z z z z 222≥-z z z z 222=-(C ) (D )不能比较大小z z zz 222≤-5.设为实数,且有,则动点y x ,yi x z yi x z +-=++=11,11211221=+z z 的轨迹是(B )),(y x (A )圆 (B )椭圆 (C )双曲线 (D )抛物线6.一个向量顺时针旋转,对应的复数为,则原向量对应的复数是(A )3πi 31-(A ) (B ) (C ) (D )2i 31+i -3i+37.使得成立的复数是(D )22z z =z(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数8.设为复数,则方程的解是(B )z i z z +=+2(A ) (B ) (C ) (D )i +-43i +43i -43i --439.满足不等式的所有点构成的集合是(D )2≤+-iz iz z (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域10.方程所代表的曲线是(C )232=-+i z (A )中心为,半径为的圆周 (B )中心为,半径为2的圆周i 32-2i 32+-(C )中心为,半径为的圆周 (D )中心为,半径为2的圆周i 32+-2i 32-11.下列方程所表示的曲线中,不是圆周的为(B )(A ) (B )221=+-z z 433=--+z z (C ) (D ))1(11<=--a azaz )0(0>=-+++c c a a z a z a z z 12.设,则(C ),5,32,1)(21i z i z z z f -=+=-=12()f z z -=(A ) (B ) (C ) (D )i 44--i 44+i 44-i 44+-13.(D )000Im()Im()limz z z z z z →--(A )等于 (B )等于 (C )等于 (D )不存在i i -014.函数在点处连续的充要条件是(C )),(),()(y x iv y x u z f +=000iy x z +=(A )在处连续 (B )在处连续),(y x u ),(00y x ),(y x v ),(00y x (C )和在处连续(D )在处连续),(y x u ),(y x v ),(00y x ),(),(y x v y x u +),(00y x15.设且,则函数的最小值为(A )C z ∈1=z zz z z f 1)(2+-=(A ) (B ) (C ) (D )3-2-1-1二、填空题1.设,则)2)(3()3)(2)(1(i i i i i z ++--+==z 22.设,则)2)(32(i i z +--==z arg 8arctan -π3.设,则 43)arg(,5π=-=i z z =z i 21+-4.复数的指数表示式为 22)3sin 3(cos )5sin5(cos θθθθi i -+ie θ165.以方程的根的对应点为顶点的多边形的面积为 i z 1576-=6.不等式所表示的区域是曲线(或522<++-z z 522=++-z z ) 的内部1)23()25(2222=+y x 7.方程所表示曲线的直角坐标方程为 1)1(212=----zi iz 122=+y x 8.方程所表示的曲线是连接点 和 的线段的垂i z i z +-=-+22112i -+2i -直平分线9.对于映射,圆周的像曲线为zi =ω1)1(22=-+y x ()2211u v -+=10. =+++→)21(lim 421z z iz 12i -+三、若复数满足,试求的取值范围.z 03)21()21(=+++-+z i z i z z 2+z((或))]25,25[+-25225+≤+≤-z 四、设,在复数集中解方程.0≥a C a z z =+22(当时解为或10≤≤a i a )11(-±±)11(-+±a 当时解为)+∞≤≤a 1)11(-+±a 五、设复数,试证是实数的充要条件为或.i z ±≠21zz+1=z Im()0z =六、对于映射,求出圆周的像.)1(21zz +=ω4=z (像的参数方程为.表示平面上的椭圆)π≤θ≤⎪⎩⎪⎨⎧θ=θ=20sin 215cos 217v u w 1)215()217(2222=+v u 七、设,试讨论下列函数的连续性:iy x z +=1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f 2..⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f (1.在复平面除去原点外连续,在原点处不连续;)(z f 2.在复平面处处连续))(z f 第二章 解析函数(答案)一、选择题:1.函数在点处是( B )23)(z z f =0=z(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导2.函数在点可导是在点解析的( B ))(z f z )(z f z (A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件3.下列命题中,正确的是( D )(A )设为实数,则y x ,1)cos(≤+iy x (B )若是函数的奇点,则在点不可导0z )(z f )(z f 0z (C )若在区域内满足柯西-黎曼方程,则在内解析v u ,D iv u z f +=)(D (D )若在区域内解析,则在内也解析)(z f D )(z if D 4.下列函数中,为解析函数的是( C )(A ) (B )xyi y x 222--xyi x +2(C ) (D ))2()1(222x x y i y x +-+-33iy x +5.函数在处的导数( A ))Im()(2z z z f =0z =(A )等于0 (B )等于1 (C )等于 (D )不存在1-6.若函数在复平面内处处解析,那么实常)(2)(2222x axy y i y xy x z f -++-+=数( C )=a (A ) (B ) (C ) (D )0122-7.如果在单位圆内处处为零,且,那么在内( C ))(z f '1<z 1)0(-=f 1<z ≡)(z f (A ) (B ) (C ) (D )任意常数011-8.设函数在区域内有定义,则下列命题中,正确的是( C ))(z f D (A )若在内是一常数,则在内是一常数)(z f D )(z f D (B )若在内是一常数,则在内是一常数))(Re(z f D )(z f D (C )若与在内解析,则在内是一常数)(z f )(z f D )(z f D(D )若在内是一常数,则在内是一常数)(arg z f D )(z f D 9.设,则( A )22)(iy x z f +==+')1(i f (A ) (B ) (C ) (D )2i 2i +1i 22+10.的主值为( D )ii (A ) (B ) (C ) (D )012πe 2eπ-11.在复平面上( A )ze (A )无可导点 (B )有可导点,但不解析(C )有可导点,且在可导点集上解析 (D )处处解析12.设,则下列命题中,不正确的是( C )z z f sin )(=(A )在复平面上处处解析 (B )以为周期)(z f )(z f π2(C ) (D )是无界的2)(iziz e e z f --=)(z f 13.设为任意实数,则( D )αα1(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于114.下列数中,为实数的是( B )(A ) (B ) (C ) (D )3)1(i -i cos i ln e 23π-15.设是复数,则( C )α(A )在复平面上处处解析 (B )的模为αz αz αz(C )一般是多值函数 (D )的辐角为的辐角的倍αz αz z α二、填空题1.设,则i f f +='=1)0(,1)0(=-→zz f z 1)(limi +12.设在区域内是解析的,如果是实常数,那么在内是 常数iv u z f +=)(D v u +)(z f D3.导函数在区域内解析的充要条件为 可微且满足x vix u z f ∂∂+∂∂=')(D xvx u ∂∂∂∂, 222222,xvy x u y x v x u ∂∂-=∂∂∂∂∂∂=∂∂4.设,则2233)(y ix y x z f ++==+-')2323(i f i 827427-5.若解析函数的实部,那么或iv u z f +=)(22y x u -==)(z f ic xyi y x ++-222为实常数ic z +2c 6.函数仅在点处可导)Re()Im()(z z z z f -==z i 7.设,则方程的所有根为 z i z z f )1(51)(5+-=0)(='z f 3,2,1,0),424sin 424(cos 28=π+π+π+πk k i k 8.复数的模为ii ),2,1,0(2L ±±=π-k ek 9.=-)}43Im{ln(i 34arctan -10.方程的全部解为01=--ze),2,1,0(2L ±±=πk i k 三、试证下列函数在平面上解析,并分别求出其导数z 1.();sinh sin cosh cos )(y x i y x z f -=;sin )(z z f -='2.());sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=.)1()(ze z zf +='四、已知,试确定解析函数.22y x v u -=-iv u z f +=)((.为任意实常数)c i z i z f )1(21)(2++-=c 第三章 复变函数的积分(答案)一、选择题:1.设为从原点沿至的弧段,则( D )c x y =2i +1=+⎰cdz iy x )(2(A )(B ) (C ) (D )i 6561-i 6561+-i 6561--i 6561+2.设为不经过点与的正向简单闭曲线,则为( D)c 11-dz z z zc ⎰+-2)1)(1((A )(B ) (C ) (D )(A)(B)(C)都有可能2iπ2iπ-03.设为负向,正向,则( B )1:1=z c 3:2=z c =⎰+=dz zzc c c 212sin (A )(B ) (C ) (D )i π2-0iπ2iπ44.设为正向圆周,则( C)c 2=z =-⎰dz z zc2)1(cos (A ) (B ) (C ) (D )1sin -1sin 1sin 2i π-1sin 2i π5.设为正向圆周,则 ( B)c 21=z =--⎰dz z z z c23)1(21cos(A ) (B ) (C ) (D ))1sin 1cos 3(2-i π01cos 6i π1sin 2i π-6.设,其中,则( A )ξξξξd ze zf ⎰=-=4)(4≠z =')i f π((A ) (B ) (C ) (D )i π2-1-i π217.设在单连通域内处处解析且不为零,为内任何一条简单闭曲线,则积分)(z f B c B( C )dz z f z f z f z f c⎰+'+'')()()(2)((A )于 (B )等于 (C )等于 (D )不能确定i π2i π2-08.设是从到的直线段,则积分( A )c 0i 21π+=⎰cz dz ze (A ) (B) (C) (D) 21eπ-21eπ--i e21π+ie21π-9.设为正向圆周,则( A )c 0222=-+x y x =-⎰dz z z c1)4sin(2π(A )(B ) (C ) (D )i π22i π20i π22-10.设为正向圆周,则( C)c i a i z ≠=-,1=-⎰cdz i a zz 2)(cos (A ) (B )(C ) (D )ie π2eiπ20i i cos 11.设在区域内解析,为内任一条正向简单闭曲线,它的内部全属于.如果)(z f D c D D 在上的值为2,那么对内任一点,( C ))(z f c c 0z )(0z f (A )等于0 (B )等于1 (C )等于2 (D )不能确定12.下列命题中,不正确的是( D )(A )积分的值与半径的大小无关⎰=--ra z dz az 1)0(>r r (B ),其中为连接到的线段2)(22≤+⎰cdz iy xc i -i (C )若在区域内有,则在内存在且解析D )()(z g z f ='D )(z g '(D )若在内解析,且沿任何圆周的积分等于零,则)(z f 10<<z )10(:<<=r r z c 在处解析)(z f 0=z 13.设为任意实常数,那么由调和函数确定的解析函数是 ( D)c 22y x u -=iv u z f +=)((A) (B ) (C ) (D )c iz +2ic iz +2c z +2ic z +214.下列命题中,正确的是(C)(A )设在区域内均为的共轭调和函数,则必有21,v v D u 21v v =(B )解析函数的实部是虚部的共轭调和函数(C )若在区域内解析,则为内的调和函数iv u z f +=)(D xu∂∂D (D )以调和函数为实部与虚部的函数是解析函数15.设在区域内为的共轭调和函数,则下列函数中为内解析函数的是( ),(y x v D ),(y x u D B )(A ) (B )),(),(y x iu y x v +),(),(y x iu y x v -(C ) (D )),(),(y x iv y x u -xv i x u ∂∂-∂∂二、填空题1.设为沿原点到点的直线段,则 2c 0=z i z +=1=⎰cdz z 22.设为正向圆周,则c 14=-z =-+-⎰c dz z z z 22)4(23i π103.设,其中,则 0 ⎰=-=2)2sin()(ξξξξπd zz f 2≠z =')3(f 4.设为正向圆周,则=+⎰cdz zzz c 3=z i π65.设为负向圆周,则 c 4=z =-⎰c z dz i z e 5)(π12iπ6.解析函数在圆心处的值等于它在圆周上的 平均值7.设在单连通域内连续,且对于内任何一条简单闭曲线都有,)(z f B B c 0)(=⎰cdz z f 那么在内 解析)(z f B 8.调和函数的共轭调和函数为xy y x =),(ϕC x y +-)(21229.若函数为某一解析函数的虚部,则常数 -323),(axy x y x u +==a 10.设的共轭调和函数为,那么的共轭调和函数为 ),(y x u ),(y x v ),(y x v ),(y x u -三、计算积分1.,其中且;⎰=+-R z dz z z z)2)(1(621,0≠>R R 2≠R (当时,; 当时,; 当时,)10<<R 021<<R i π8+∞<<R 202..(0)⎰=++22422z z z dz四、求积分,从而证明.()⎰=1z zdz z e πθθπθ=⎰0cos )cos(sin d e i π2五、若,试求解析函数.)(22y x u u +=iv u z f +=)(((为任意实常数))321ln 2)(ic c z c z f ++=321,,c c c 第四章 级 数(答案)一、选择题:1.设,则( C )),2,1(4)1(L =++-=n n nia n n n n a ∞→lim (A )等于 (B )等于 (C )等于 (D )不存在01i2.下列级数中,条件收敛的级数为( C )(A ) (B )∑∞=+1)231(n n i ∑∞=+1!)43(n nn i (C ) (D )∑∞=1n n n i ∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为(D )(B ) (B )∑∞=+1)1(1n n i n ∑∞=+-1]2)1([n n n in (C) (D )∑∞=2ln n n n i ∑∞=-12)1(n n nn i 4.若幂级数在处收敛,那么该级数在处的敛散性为( A )∑∞=0n n nz ci z 21+=2=z (A )绝对收敛 (B )条件收敛(C )发散 (D )不能确定5.设幂级数和的收敛半径分别为,则∑∑∞=-∞=01,n n n n nnznc z c∑∞=++011n n n z n c 321,,R R R 之间的关系是( D )321,,R R R (A ) (B ) 321R R R <<321R R R >>(C ) (D )321R R R <=321R R R ==6.设,则幂级数的收敛半径( D )10<<q ∑∞=02n n n z q =R (A ) (B )(C ) (D )q q10∞+7.幂级数的收敛半径( B )∑∞=1)2(2sinn n z n n π=R(A )(B ) (C ) (D )122∞+8.幂级数在内的和函数为( A )∑∞=++-011)1(n n n z n 1<z (A ) (B ))1ln(z +)1ln(z -(D ) (D) z +11lnz-11ln 9.设函数的泰勒展开式为,那么幂级数的收敛半径( C )z e z cos ∑∞=0n n n z c ∑∞=0n nn z c =R (A ) (B ) (C )(D )∞+12ππ10.级数的收敛域是( B )L +++++22111z z z z(A ) (B ) (C ) (D )不存在的1<z 10<<z +∞<<z 111.函数在处的泰勒展开式为( D)21z1-=z (A )(B ))11()1()1(11<++-∑∞=-z z n n n n)11()1()1(111<++-∑∞=--z z n n n n (C ) (D ))11()1(11<++-∑∞=-z z n n n )11()1(11<++∑∞=-z z n n n 12.函数,在处的泰勒展开式为( B )z sin 2π=z (A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n nn (C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n (D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n nn 13.设在圆环域内的洛朗展开式为,为内)(z f 201:R z z R H <-<∑∞-∞=-n n nz z c)(0c H 绕的任一条正向简单闭曲线,那么( B )0z =-⎰c dz z z z f 20)()((A) (B ) (C ) (D )12-ic π12ic π22ic π)(20z f i 'π14.若,则双边幂级数的收敛域为( A )⎩⎨⎧--==-+=L L ,2,1,4,2,1,0,)1(3n n c nn n n ∑∞-∞=n nn z c (A )(B ) 3141<<z 43<<z (C )(D )+∞<<z 41+∞<<z 3115.设函数在以原点为中心的圆环内的洛朗展开式有个,那么)4)(1(1)(++=z z z z f m ( C )=m (A )1 (B )2 (C )3 (D )4二、填空题1.若幂级数在处发散,那么该级数在处的收敛性为 发散∑∞=+0)(n n ni z ci z =2=z 2.设幂级数与的收敛半径分别为和,那么与之间的关∑∞=0n nnz c∑∞=0)][Re(n n n z c 1R 2R 1R 2R系是 .12R R ≥3.幂级数的收敛半径∑∞=+012)2(n n nz i =R 224.设在区域内解析,为内的一点,为到的边界上各点的最短距离,那么)(z f D 0z d 0z D 当时,成立,其中d z z <-0∑∞=-=0)()(n n nz z cz f 或=n c ),2,1,0()(!10)(L =n z f n n ().)0,2,1,0()()(21010d r n dz z z z f irz z n <<=-π⎰=-+L 5.函数在处的泰勒展开式为 .z arctan 0=z )1(12)1(012<+-∑∞=+z z n n n n 6.设幂级数的收敛半径为,那么幂级数的收敛半径为∑∞=0n nn z c R ∑∞=-0)12(n n n n z c 2R .7.双边幂级数的收敛域为 .∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 211<-<z 8.函数在内洛朗展开式为 .zze e 1++∞<<z 0nn nn z n z n ∑∑∞=∞=+00!11!19.设函数在原点的去心邻域内的洛朗展开式为,那么该洛朗级数z cot R z <<0∑∞-∞=n n nz c收敛域的外半径 .=R π10.函数在内的洛朗展开式为)(1i z z -+∞<-<i z 1∑∞=+--02)()1(n n n n i z i三、若函数在处的泰勒展开式为,则称为菲波那契(Fibonacci)211z z --0=z ∑∞=0n nn z a {}n a 数列,试确定满足的递推关系式,并明确给出的表达式.n a n a (,)2(,12110≥+===--n a a a a a n n n )),2,1,0(}251()251{(5111L =--+=++n a n n n 四、求幂级数的和函数,并计算之值.∑∞=12n nz n ∑∞=122n n n (,)3)1()1()(z z z z f -+=6五、将函数在内展开成洛朗级数.)1()2ln(--z z z 110<-<z ()n n nk k z k n z z z z z z )1(1)1(()2ln(111)1()2ln(001-+--=-⋅⋅-=--∑∑∞==+第五章 留 数(答案)一、选择题:1.函数在内的奇点个数为 ( D )32cot -πz z2=-i z (A )1 (B )2 (C )3 (D )42.设函数与分别以为本性奇点与级极点,则为函数)(z f )(z g a z =m a z =)()(z g z f 的( B )(A )可去奇点 (B )本性奇点(C )级极点 (D )小于级的极点m m 3.设为函数的级极点,那么( C )0=z zz e xsin 142-m =m(A )5 (B )4 (C)3 (D )24.是函数的( D )1=z 11sin)1(--z z (A)可去奇点 (B )一级极点(C ) 一级零点 (D )本性奇点5.是函数的( B )∞=z 2323z z z ++(A)可去奇点 (B )一级极点(C ) 二级极点 (D )本性奇点6.设在内解析,为正整数,那么( C )∑∞==)(n n n z a z f R z <k =]0,)([Re kz z f s (A ) (B ) (C ) (D )k a k a k !1-k a 1)!1(--k a k 7.设为解析函数的级零点,那么='],)()([Re a z f z f s ( A )a z =)(z f m (A) (B ) (C ) (D )m m -1-m )1(--m 8.在下列函数中,的是( D )0]0),([Re =z f s (A )(B )21)(ze zf z -=z z z z f 1sin )(-=(C ) (D) z z z z f cos sin )(+=ze zf z 111)(--=9.下列命题中,正确的是( C )(A )设,在点解析,为自然数,则为的)()()(0z z z z f mϕ--=)(z ϕ0z m 0z )(z f 级极点.m (B )如果无穷远点是函数的可去奇点,那么∞)(z f 0]),([Re =∞z f s (C )若为偶函数的一个孤立奇点,则0=z )(z f 0]0),([Re =z f s(D )若,则在内无奇点0)(=⎰c dz z f )(z f c 10. ( A )=∞],2cos[Re 3ziz s (A ) (B ) (C ) (D )32-32i 32i32-11. ( B)=-],[Re 12i e z s iz (A ) (B ) (C ) (D )i +-61i +-65i +61i +6512.下列命题中,不正确的是( D)(A )若是的可去奇点或解析点,则)(0∞≠z )(z f 0]),([Re 0=z z f s (B )若与在解析,为的一级零点,则)(z P )(z Q 0z 0z )(z Q )()(],)()([Re 000z Q z P z z Q z P s '=(C )若为的级极点,为自然数,则0z )(z f m m n ≥)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-=(D )如果无穷远点为的一级极点,则为的一级极点,并且∞)(z f 0=z )1(zf )1(lim ]),([Re 0zzf z f s z →=∞13.设为正整数,则( A )1>n =-⎰=211z ndz z (A) (B ) (C )(D )0i π2niπ2i n π214.积分( B )=-⎰=231091z dz z z (A ) (B ) (C ) (D )0i π2105iπ15.积分( C )=⎰=121sin z dz z z (A ) (B ) (C ) (D )061-3i π-iπ-二、填空题1.设为函数的级零点,那么 9 .0=z 33sin z z -m =m 2.函数在其孤立奇点处的留数zz f 1cos1)(=),2,1,0(21L L ±±=+=k k z k ππ.=]),([Re k z z f s 2)2()1(π+π-k k3.设函数,则 0 }1exp{)(22zz z f +==]0),([Re z f s 4.设为函数的级极点,那么 .a z =)(z f m ='],)()([Re a z f z f s m -5.设,则 -2 .212)(zzz f +==∞]),([Re z f s 6.设,则 .5cos 1)(z z z f -==]0),([Re z f s 241-7.积分.=⎰=113z zdz e z 12iπ8.积分.=⎰=1sin 1z dz z i π2三、计算积分.()⎰=--412)1(sin z z dz z e z z i π-316四、设为的孤立奇点,为正整数,试证为的级极点的充要条件是a )(z f m a )(z f m ,其中为有限数.b z f a z m az =-→)()(lim 0≠b 五、设为的孤立奇点,试证:若是奇函数,则;a )(z f )(z f ]),([Re ]),([Re a z f s a z f s -=若是偶函数,则.)(z f ]),([Re ]),([Re a z f s a z f s --=。
(完整版)复变函数测试题及答案
![(完整版)复变函数测试题及答案](https://img.taocdn.com/s3/m/4648488890c69ec3d4bb7586.png)
第一章 复数与复变函数一、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3)2(π=+z arc ,65)2(π=-z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+- 3.复数)2(tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos(sec θπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转3π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( )(A )2 (B )i 31+(C )i -3 (D )i +37.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( )(A )i +-43 (B )i +43 (C )i -43 (D )i --439.满足不等式2≤+-iz iz 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232=-+i z 所代表的曲线是( )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A )221=+-z z (B )433=--+z z (C ))1(11<=--a azaz (D ))0(0>=-+++c c a a z a z a z z12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.00)Im()Im(lim0z z z z x x --→( )(A )等于i (B )等于i - (C )等于0 (D )不存在14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续(C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续15.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为( )(A )3- (B )2- (C )1- (D )1二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg3.设43)arg(,5π=-=i z z ,则=z 4.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 5.以方程i z 1576-=的根的对应点为顶点的多边形的面积为 6.不等式522<++-z z 所表示的区域是曲线 的内部7.方程1)1(212=----zi iz 所表示曲线的直角坐标方程为8.方程i z i z +-=-+221所表示的曲线是连续点 和 的线段的垂直平分线9.对于映射zi =ω,圆周1)1(22=-+y x 的像曲线为 10.=+++→)21(lim 421z z iz三、若复数z 满足03)21()21(=+++-+z i z i z z ,试求2+z 的取值范围.四、设0≥a ,在复数集C 中解方程a z z =+22.五、设复数i z ±≠,试证21zz+是实数的充要条件为1=z 或0)(=z IM .六、对于映射)1(21zz +=ω,求出圆周4=z 的像.七、试证1.)0(0221≠≥z z z 的充要条件为2121z z z z +=+; 2.)),,2,1,,,0(021n j k j k z z z j =≠≠≥的充要条件为 n n z z z z z z +++=+++ 2121.八、若0)(lim 0≠=→A z f x x ,则存在0>δ,使得当δ<-<00z z 时有A z f 21)(>.九、设iy x z +=,试证y x z y x +≤≤+2.十、设iy x z +=,试讨论下列函数的连续性:1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f2.⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f第二章 解析函数一、选择题:1.函数23)(z z f =在点0=z 处是( )(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导 2.函数)(z f 在点z 可导是)(z f 在点z 解析的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件 3.下列命题中,正确的是( )(A )设y x ,为实数,则1)cos(≤+iy x(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析 (D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析 4.下列函数中,为解析函数的是( )(A )xyi y x 222-- (B )xyi x +2(C ))2()1(222x x y i y x +-+- (D )33iy x +5.函数)Im()(2z z z f =在=z 处的导数( )(A )等于0 (B )等于1 (C )等于1- (D )不存在6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常 数=a ( )(A )0 (B )1 (C )2 (D )2-7.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( )(A )0 (B )1 (C )1- (D )任意常数 8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数 (B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数 (C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数 (D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数 9.设22)(iy x z f +=,则=+')1(i f ( )(A )2 (B )i 2 (C )i +1 (D )i 22+ 10.ii 的主值为( )(A )0 (B )1 (C )2πe (D )2π-e11.z e 在复平面上( )(A )无可导点 (B )有可导点,但不解析 (C )有可导点,且在可导点集上解析 (D )处处解析 12.设z z f sin )(=,则下列命题中,不正确的是( )(A ))(z f 在复平面上处处解析 (B ))(z f 以π2为周期(C )2)(iziz e e z f --= (D ))(z f 是无界的13.设α为任意实数,则α1( )(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于1 14.下列数中,为实数的是( )(A )3)1(i - (B )i cos (C )i ln (D )i e 23π-15.设α是复数,则( )(A )αz 在复平面上处处解析 (B )αz 的模为αz(C )αz 一般是多值函数 (D )αz 的辐角为z 的辐角的α倍二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(lim2.设iv u z f +=)(在区域D 内是解析的,如果v u +是实常数,那么)(z f 在D 内是 3.导函数xvix u z f ∂∂+∂∂=')(在区域D 内解析的充要条件为 4.设2233)(y ix y x z f ++=,则=+-')2323(i f 5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f 6.函数)Re()Im()(z z z z f -=仅在点=z 处可导7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 8.复数ii 的模为 9.=-)}43Im{ln(i 10.方程01=--ze 的全部解为三、设),(),()(y x iv y x u z f +=为iyx z +=的解析函数,若记)2,2()2,2(),(izz z z iv i z z z z u z z w -++-+=,则0=∂∂z w .四、试证下列函数在z 平面上解析,并分别求出其导数 1.;sinh sin cosh cos )(y x i y x z f -=2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=五、设023=+-ze zw w ,求22,dz w d dz dw .六、设⎪⎩⎪⎨⎧=≠++=0,00,)()(422z z y x iy x xy z f 试证)(z f 在原点满足柯西-黎曼方程,但却不可导.七、已知22y x v u -=-,试确定解析函数iv u z f +=)(.八、设s 和n 为平面向量,将s按逆时针方向旋转2π即得n .如果iv u z f +=)(为解析函数,则有s v n u n v s u ∂∂-=∂∂∂∂=∂∂,(s ∂∂与n∂∂分别表示沿s ,n 的方向导数).九、若函数)(z f 在上半平面内解析,试证函数)(z f 在下半平面内解析.十、解方程i z i z 4cos sin =+.第三章 复变函数的积分一、选择题:1.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2( )(A )i 6561- (B )i 6561+- (C )i 6561-- (D )i 6561+ 2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc⎰+-2)1)(1(为( ) (A )2i π (B )2iπ- (C )0 (D )(A)(B)(C)都有可能 3.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz z zc c c 212sin ( ) (A ) i π2- (B )0 (C )i π2 (D )i π4 4.设c 为正向圆周2=z ,则=-⎰dz z zc 2)1(cos ( ) (A )1sin - (B )1sin (C )1sin 2i π- (D )1sin 2i π5.设c 为正向圆周21=z ,则=--⎰dz z z z c23)1(21cos( )(A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-6.设ξξξξd ze zf ⎰=-=4)(,其中4≠z ,则=')i f π(( ) (A )i π2- (B )1- (C )i π2 (D )17.设)(z f 在单连通域B 内处处解析且不为零,c 为B 内任何一条简单闭曲线,则积分dz z f z f z f z f c⎰+'+'')()()(2)( ( )(A )于i π2 (B )等于i π2- (C )等于0 (D )不能确定8.设c 是从0到i 21π+的直线段,则积分=⎰cz dz ze ( )(A )21eπ-(B) 21eπ-- (C)i e21π+(D) i e21π-9.设c 为正向圆周0222=-+x y x ,则=-⎰dz z z c1)4sin(2π( ) (A )i π22 (B )i π2 (C )0 (D )i π22- 10.设c 为正向圆周i a i z ≠=-,1,则=-⎰c dz i a zz 2)(cos ( ) (A )ie π2 (B )eiπ2 (C )0 (D )i i cos 11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( )(A )等于0 (B )等于1 (C )等于2 (D )不能确定 12.下列命题中,不正确的是( ) (A )积分⎰=--ra z dz az 1的值与半径)0(>r r 的大小无关 (B )2)(22≤+⎰cdz iy x ,其中c 为连接i -到i 的线段 (C )若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析 (D )若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则)(z f 在0=z 处解析13.设c 为任意实常数,那么由调和函数22y x u -=确定的解析函数iv u z f +=)(是 ( )(A)c iz +2(B ) ic iz +2(C )c z +2(D )ic z +214.下列命题中,正确的是( )(A )设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v = (B )解析函数的实部是虚部的共轭调和函数 (C )若iv u z f +=)(在区域D 内解析,则xu∂∂为D 内的调和函数 (D )以调和函数为实部与虚部的函数是解析函数15.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( )(A )),(),(y x iu y x v + (B )),(),(y x iu y x v -(C )),(),(y x iv y x u - (D )xv i x u ∂∂-∂∂二、填空题1.设c 为沿原点0=z 到点i z +=1的直线段,则=⎰cdz z 22.设c 为正向圆周14=-z ,则=-+-⎰c dz z z z 22)4(233.设⎰=-=2)2sin()(ξξξξπd zz f ,其中2≠z ,则=')3(f 4.设c 为正向圆周3=z ,则=+⎰cdz zzz 5.设c 为负向圆周4=z ,则=-⎰c zdz i z e 5)(π6.解析函数在圆心处的值等于它在圆周上的 7.设)(z f 在单连通域B 内连续,且对于B 内任何一条简单闭曲线c 都有0)(=⎰cdz z f ,那么)(z f 在B 内8.调和函数xy y x =),(ϕ的共轭调和函数为9.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a10.设),(y x u 的共轭调和函数为),(y x v ,那么),(y x v 的共轭调和函数为三、计算积分 1.⎰=+-Rz dz z z z)2)(1(62,其中1,0≠>R R 且2≠R ; 2.⎰=++22422z z z dz.四、设)(z f 在单连通域B 内解析,且满足)(1)(1B x z f ∈<-.试证1.在B 内处处有0)(≠z f ; 2.对于B 内任意一条闭曲线c ,都有0)()(=''⎰cdz z f z f五、设)(z f 在圆域R a z <-内解析,若)0()()(max R r r M z f ra z <<==-,则),2,1()(!)()( =≤n rr M n a f nn .六、求积分⎰=1z zdz z e ,从而证明πθθπθ=⎰0cos )cos(sin d e .七、设)(z f 在复平面上处处解析且有界,对于任意给定的两个复数b a ,,试求极限⎰=+∞→--R z R dz b z a z z f ))(()(lim并由此推证)()(b f a f =(刘维尔Liouville 定理).八、设)(z f 在)1(><R R z 内解析,且2)0(,1)0(='=f f ,试计算积分⎰=+122)()1(z dz z z f z 并由此得出⎰πθθθ202)(2cos d e f i 之值.九、设iv u z f +=)(是z 的解析函数,证明222222222))(1()(4))(1ln())(1ln(z f z f y z f x z f +'=∂+∂+∂+∂.十、若)(22y x u u +=,试求解析函数iv u z f +=)(.第四章 级 数一、选择题:1.设),2,1(4)1( =++-=n n nia n n ,则n n a ∞→lim ( ) (A )等于0 (B )等于1 (C )等于i (D )不存在2.下列级数中,条件收敛的级数为( )(A )∑∞=+1)231(n ni (B )∑∞=+1!)43(n n n i(C ) ∑∞=1n nni (D )∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为( )(B ) ∑∞=+1)1(1n n in(B )∑∞=+-1]2)1([n n n i n (C)∑∞=2ln n nn i (D )∑∞=-12)1(n nn n i 4.若幂级数∑∞=0n n nz c在i z 21+=处收敛,那么该级数在2=z 处的敛散性为( )(A )绝对收敛 (B )条件收敛(C )发散 (D )不能确定 5.设幂级数∑∑∞=-∞=01,n n n n nn znc z c 和∑∞=++011n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系是( )(A )321R R R << (B )321R R R >> (C )321R R R <= (D )321R R R == 6.设10<<q ,则幂级数∑∞=02n n n z q 的收敛半径=R ( )(A )q (B )q1(C )0 (D )∞+ 7.幂级数∑∞=1)2(2sinn n z n n π的收敛半径=R ( ) (A ) 1 (B )2 (C )2 (D )∞+8.幂级数∑∞=++-011)1(n n n z n 在1<z 内的和函数为 (A ))1ln(z + (B ))1ln(z -(D )z +11ln(D) z-11ln 9.设函数z e z cos 的泰勒展开式为∑∞=0n n n z c ,那么幂级数∑∞=0n nn z c 的收敛半径=R ( )(A )∞+ (B )1 (C )2π(D )π 10.级数+++++22111z z z z的收敛域是( ) (A )1<z (B )10<<z (C )+∞<<z 1 (D )不存在的11.函数21z在1-=z 处的泰勒展开式为( ) (A ))11()1()1(11<++-∑∞=-z z n n n n(B ))11()1()1(111<++-∑∞=--z z n n n n(C ))11()1(11<++-∑∞=-z z n n n (D ))11()1(11<++∑∞=-z z n n n12.函数z sin ,在2π=z 处的泰勒展开式为( )(A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n n n(C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n(D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n n n13.设)(z f 在圆环域201:R z z R H <-<内的洛朗展开式为∑∞-∞=-n n nz z c)(0,c 为H 内绕0z 的任一条正向简单闭曲线,那么=-⎰c dz z z z f 20)()(( )(A)12-ic π (B )12ic π (C )22ic π (D ))(20z f i 'π14.若⎩⎨⎧--==-+= ,2,1,4,2,1,0,)1(3n n c nn n n ,则双边幂级数∑∞-∞=n nn z c 的收敛域为( ) (A )3141<<z (B )43<<z (C )+∞<<z 41 (D )+∞<<z 3115.设函数)4)(1(1)(++=z z z z f 在以原点为中心的圆环内的洛朗展开式有m 个,那么=m ( )(A )1 (B )2 (C )3 (D )4二、填空题 1.若幂级数∑∞=+0)(n n ni z c在i z =处发散,那么该级数在2=z 处的收敛性为 . 2.设幂级数∑∞=0n nnz c与∑∞=0)][Re(n n n z c 的收敛半径分别为1R 和2R ,那么1R 与2R 之间的关系是 . 3.幂级数∑∞=+012)2(n n nz i 的收敛半径=R4.设)(z f 在区域D 内解析,0z 为内的一点,d 为0z 到D 的边界上各点的最短距离,那么当d z z <-0时,∑∞=-=0)()(n n nz z cz f 成立,其中=n c .5.函数z arctan 在0=z 处的泰勒展开式为 . 6.设幂级数∑∞=0n nnz c的收敛半径为R ,那么幂级数∑∞=-0)12(n n n nz c 的收敛半径为 .7.双边幂级数∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 的收敛域为 . 8.函数zze e 1+在+∞<<z 0内洛朗展开式为 . 9.设函数z cot 在原点的去心邻域R z <<0内的洛朗展开式为∑∞-∞=n n nz c,那么该洛朗级数收敛域的外半径=R . 10.函数)(1i z z -在+∞<-<i z 1内的洛朗展开式为 .三、若函数211z z --在0=z 处的泰勒展开式为∑∞=0n nn z a ,则称{}n a 为菲波那契(Fibonacci)数列,试确定n a 满足的递推关系式,并明确给出n a 的表达式.四、试证明 1.);(11+∞<≤-≤-z ez ee zzz2.);1()1(1)3(<-≤-≤-z z e e z e z五、设函数)(z f 在圆域R z <内解析,∑==nk kk n z k f S 0)(!)0(试证 1.)()(21)(111R r z d z z f iz S n rn n n <<--=+=++⎰ξξξξξπξ.2.)()()(2)((11R r z d z f iz z S z f r n n n <<-=-⎰=++ξξξξπξ)。
复变函数习题总汇与参考答案
![复变函数习题总汇与参考答案](https://img.taocdn.com/s3/m/e10f5c3bb14e852459fb57c9.png)
复变函数习题总汇与参考答案第1章 复数与复变函数一、单项选择题1、假设Z 1=〔a, b 〕,Z 2=(c, d),那么Z 1·Z 2=〔C 〕 A 〔ac+bd, a 〕 B (ac-bd, b) C 〔ac-bd, ac+bd 〕 D (ac+bd, bc-ad)2、假设R>0,那么N 〔∞,R 〕={ z :〔D 〕} A |z|<R B 0<|z|<R C R<|z|<+∞ D |z|>R3、假设z=x+iy, 那么y=(D)A B C D4、假设A= ,那么|A|=〔C 〕A 3B 0C 1D 2二、填空题1、假设z=x+iy, w=z 2=u+iv, 那么v=〔 2xy 〕2、复平面上满足Rez=4的点集为〔 {z=x+iy|x=4} 〕3、〔 设E 为点集,假设它是开集,且是连通的,那么E 〕称为区域。
2zz +2z z -iz z 2+iz z 2-)1)(4()1)(4(i i i i +--+4、设z 0=x 0+iy 0, z n =x n +iy n (n=1,2,……),那么{z n }以z o 为极限的充分必要条件是 x n =x 0,且 y n =y 0。
三、计算题1、求复数-1-i 的实部、虚部、模与主辐角。
解:Re(-1-i)=-1 Im(-1-i)=-1 |-1-i|=2、写出复数-i 的三角式。
解:3、写出复数 的代数式。
解:4、求根式 的值。
+∞→n lim +∞→n limππ45|11|arctan ),1(12)1()1(=--+=--∴--=-+-i ary i 在第三象限 ππ23sin 23cos i i +=-i i i i i i i i i i i i i i i 212312121)1()1)(1()1(11--=--+-=⋅-++-+=-+-ii i i -+-11327-解:四、证明题1、证明假设 ,那么a 2+b 2=1。
复变函数第1章测验题参考解答
![复变函数第1章测验题参考解答](https://img.taocdn.com/s3/m/61ddef3f76c66137ee06195b.png)
3 3 3 , 2 2
x2 y2 1 , 所以复数 z 构成的平 【解析】因为复数方程 z i z i 6 可化为直角方程 8 9
面点集为椭圆.或者由等式的几何意义,它表示动点 z 到两定点 i 的距离之和为常数 6 ,因 此 z 的集合表示平面上的椭圆. 3. sin
【答案】B 【解析】设 z r (cos i sin ) ,则
2
,故选 B.
2
【答案】 C 【解析】因为
3 3
科
( 3 i ) 2 cos i sin 23 cos i sin , 6 6 2 2
3
i cos
3
的三角表示为 cos(
) i sin( ) . 6 6
(
3
3
6
【答案】错误
是正三角形.
5. 在球极射影下, xOy 平面上的圆 z 1 上的点不变.(
科
大
【解析】例如 z1 1 i, z2 1 i, z3 2 满足 z1 z2 z3 0 ,但以它们为顶点的三角形不
函
数
). ).
国
防
科
(A)
大
(C) 【答案】A 6. 满足不等式
z 1 2 的复数 z 表示的平面点集所对应的阴影图形是( z 1
“复
(B) (D)
变
”
(A)
(B)
(C) 【答案】A 二、 是非题 1. 点集 E 的聚点一定是 E 中的点. 【答案】错误 (
(D)
【解析】例如 z 0 是点集 E { | n 1, 2,} 的聚点,但 0C) 0 arg z
复变函数测试题及答案
![复变函数测试题及答案](https://img.taocdn.com/s3/m/1a83b587dc3383c4bb4cf7ec4afe04a1b171b05a.png)
复变函数测试题及答案第一章复数与复变函数一、选择题1.当ii z -+=11时,5075100z z z ++的值等于()(A )i (B )i - (C )1 (D )1- 2.设复数z 满足3)2(π=+z arc ,65)2(π=-z arc ,那么=z ()(A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2123+- 3.复数)2(tan πθπθ<<-=i z 的三角表示式是()(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是()(A )z z z z 222≥- (B )z z z z 222=-(C )z z z z 222≤- (D )不能比较大小5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是()(A )圆(B )椭圆(C )双曲线(D )抛物线6.一个向量顺时针旋转3π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是()(A )2 (B )i 31+ (C )i -3 (D )i +37.使得22z z =成立的复数z 是()(A )不存在的(B )唯一的(C )纯虚数(D )实数8.设z 为复数,则方程i z z +=+2的解是()(A )i +-43 (B )i +43 (C )i -43 (D )i --439.满足不等式2≤+-iz iz 的所有点z 构成的集合是()(A )有界区域(B )无界区域(C )有界闭区域(D )无界闭区域 10.方程232=-+i z 所代表的曲线是()(A )中心为i 32-,半径为2的圆周(B )中心为i 32+-,半径为2的圆周(C )中心为i 32+-,半径为2的圆周(D )中心为i32-,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为()(A )221=+-z z (B )433=--+z z (C ))1(11<=--a azaz (D ))0(0>=-+++c c a a z a z a z z12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ()(A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.00)Im()Im(lim0z z z z x x --→()(A )等于i (B )等于i - (C )等于0 (D )不存在14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是()(A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续(C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续15.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为()(A )3- (B )2- (C )1- (D )1二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg3.设43)arg(,5π=-=i z z ,则=z 4.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 5.以方程i z 1576-=的根的对应点为顶点的多边形的面积为6.不等式522<++-z z 所表示的区域是曲线的内部7.方程1)1(212=----zi iz 所表示曲线的直角坐标方程为8.方程i z i z +-=-+221所表示的曲线是连续点和的线段的垂直平分线9.对于映射zi =ω,圆周1)1(22=-+y x 的像曲线为 10.=+++→)21(lim 421z z iz三、若复数z 满足03)21()21(=+++-+z i z i z z ,试求2+z 的取值范围.四、设0≥a ,在复数集C 中解方程a z z =+22.五、设复数i z ±≠,试证21zz+是实数的充要条件为1=z 或0)(=z IM .六、对于映射)1(21zz +=ω,求出圆周4=z 的像.七、试证1.)0(0221≠≥z z z 的充要条件为2121z z z z +=+;2.)),,2,1,,,0(021n j k j k z z z j =≠≠≥的充要条件为 n n z z z z z z +++=+++ 2121.八、若0)(lim 0≠=→A z f x x ,则存在0>δ,使得当δ<-<00z z 时有A z f 21)(>.九、设iy x z +=,试证y x z y x +≤≤+2.十、设iy x z +=,试讨论下列函数的连续性:1.??=≠+=0,00,2)(22z z y x xyz f2.??=≠+=0,00,)(223z z y x y x z f第二章解析函数一、选择题:1.函数23)(z z f =在点0=z 处是( )(A )解析的(B )可导的(C )不可导的(D )既不解析也不可导 2.函数)(z f 在点z 可导是)(z f 在点z 解析的( )(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既非充分条件也非必要条件3.下列命题中,正确的是( )(A )设y x ,为实数,则1)cos(≤+iy x(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析(D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析 4.下列函数中,为解析函数的是( )(A )xyi y x 222-- (B )xyi x +2(C ))2()1(222x x y i y x +-+- (D )33iy x +5.函数)Im()(2z z z f =在=z 处的导数( )(A )等于0 (B )等于1 (C )等于1- (D )不存在6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常数=a ( )(A )0 (B )1 (C )2 (D )2-7.如果)(z f '在单位圆1<="" f="" p="" 内≡)(z="" 内处处为零,且1)0(-="f" ,那么在1(A )0 (B )1 (C )1- (D )任意常数 8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数(B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数(C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数(D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数 9.设22)(iy x z f +=,则=+')1(i f ( )(A )2 (B )i 2 (C )i +1 (D )i 22+ 10.ii 的主值为( )(A )0 (B )1 (C )2πe (D )2π-e11.z e 在复平面上( )(A )无可导点(B )有可导点,但不解析(C )有可导点,且在可导点集上解析(D )处处解析 12.设z z f sin )(=,则下列命题中,不正确的是( )(A ))(z f 在复平面上处处解析(B ))(z f 以π2为周期(C )2)(iziz e e z f --= (D ))(z f 是无界的13.设α为任意实数,则α1( )(A )无定义(B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于1 14.下列数中,为实数的是( )(A )3)1(i - (B )i cos (C )i ln (D )i e 23π-15.设α是复数,则( )(A )αz 在复平面上处处解析(B )αz 的模为αz(C )αz 一般是多值函数(D )αz 的辐角为z 的辐角的α倍二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(lim2.设iv u z f +=)(在区域D 内是解析的,如果v u +是实常数,那么)(z f 在D 内是 3.导函数xv i x u z f ??+??=')(在区域D 内解析的充要条件为 4.设2233)(y ix y x z f ++=,则=+-')2323(i f 5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f 6.函数)Re()Im()(z z z z f -=仅在点=z 处可导7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 8.复数ii 的模为9.=-)}43Im{ln(i 10.方程01=--ze 的全部解为三、设),(),()(y x iv y x u z f +=为iyx z +=的解析函数,若记)2,2()2,2(),(i zz z z iv i z z z z u z z w -++-+=,则0=??zw .四、试证下列函数在z 平面上解析,并分别求出其导数1.;sinh sin cosh cos )(y x i y x z f -=2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=五、设023=+-ze zw w ,求22,dz wd dz dw .六、设??=≠++=0,00,)()(422z z y x iy x xy z f 试证)(z f 在原点满足柯西-黎曼方程,但却不可导.七、已知22y x v u -=-,试确定解析函数iv u z f +=)(.八、设s 和n 为平面向量,将s按逆时针方向旋转2π即得n .如果iv u z f +=)(为解析函数,则有s vn u n v s u ??-==??,(s ??与n分别表示沿s ,n 的方向导数).九、若函数)(z f 在上半平面内解析,试证函数)(z f 在下半平面内解析.十、解方程i z i z 4cos sin =+.第三章复变函数的积分一、选择题:1.设c 为从原点沿x y =2至i +1的弧段,则=+?cdz iy x )(2( )(A )i 6561- (B )i 6561+- (C )i 6561-- (D )i 6561+ 2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc ?+-2)1)(1(为( ) (A )2i π (B )2i π- (C )0 (D )(A)(B)(C)都有可能 3.设1:1=z c 为负向,3:2=z c 正向,则=?+=dz z zc c c 212sin ( ) (A )i π2- (B )0 (C )i π2 (D )i π4 4.设c 为正向圆周2=z ,则=-?dz z zc2)1(cos ( ) (A )1sin - (B )1sin (C )1sin 2i π- (D )1sin 2i π5.设c 为正向圆周21=z ,则=--?dz z z z c23)1(21cos( )(A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-6.设ξξξξd ze zf ?=-=4)(,其中4≠z ,则=')i f π(( ) (A )i π2- (B )1- (C )i π2 (D )17.设)(z f 在单连通域B 内处处解析且不为零,c 为B 内任何一条简单闭曲线,则积分dz z f z f z f z f c+'+'')()()(2)( ( ) (A )于i π2 (B )等于i π2- (C )等于0 (D )不能确定8.设c 是从0到i 21π+的直线段,则积分=?cz dz ze ()(A )21eπ-(B) 21eπ-- (C)i e21π+(D) i e21π-9.设c 为正向圆周0222=-+x y x ,则=-?dz z z c1)4sin(2π( )(A )i π22 (B )i π2 (C )0 (D )i π22-10.设c 为正向圆周i a i z ≠=-,1,则=-?c dz i a zz 2)(cos ( ) (A )ie π2 (B )eiπ2 (C )0 (D )i i cos 11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( )(A )等于0 (B )等于1 (C )等于2 (D )不能确定 12.下列命题中,不正确的是( ) (A )积分=--ra z dz a z 1的值与半径)0(>r r 的大小无关(B )2)(22≤+?cdz iy x ,其中c 为连接i -到i 的线段(C )若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析(D )若)(z f 在10<<<="r" 的积分等于零,则<="">)(z f 在0=z 处解析13.设c 为任意实常数,那么由调和函数22y x u -=确定的解析函数iv u z f +=)(是 ( )(A)c iz +2(B ) ic iz +2(C )c z +2(D )ic z +214.下列命题中,正确的是( )(A )设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v = (B )解析函数的实部是虚部的共轭调和函数(C )若iv u z f +=)(在区域D 内解析,则xu为D 内的调和函数(D )以调和函数为实部与虚部的函数是解析函数15.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( )(A )),(),(y x iu y x v + (B )),(),(y x iu y x v -(C )),(),(y x iv y x u - (D )xv i x u ??-??二、填空题1.设c 为沿原点0=z 到点i z +=1的直线段,则=?c dz z 22.设c 为正向圆周14=-z ,则=-+-?c dz z z z 22)4(233.设?=-=2)2sin()(ξξξξπd zz f ,其中2≠z ,则=')3(f 4.设c 为正向圆周3=z ,则=+?cdz zzz 5.设c 为负向圆周4=z ,则=-?c zdz i z e 5)(π6.解析函数在圆心处的值等于它在圆周上的 7.设)(z f 在单连通域B 内连续,且对于B 内任何一条简单闭曲线c 都有0)(=?c dz z f ,那么)(z f 在B 内8.调和函数xy y x =),(?的共轭调和函数为9.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a 10.设),(y x u 的共轭调和函数为),(y x v ,那么),(y x v 的共轭调和函数为三、计算积分 1.=+-Rz dz z z z)2)(1(62,其中1,0≠>R R 且2≠R ; 2.?=++22422z z z dz.四、设)(z f 在单连通域B 内解析,且满足)(1)(1B x z f ∈<-.试证1.在B 内处处有0)(≠z f ;2.对于B 内任意一条闭曲线c ,都有0)()(=''?cdz z f z f五、设)(z f 在圆域R a z <-内解析,若)0()()(max R r r M z f ra z <<==-,则),2,1()(!)()( =≤n r r M n a f nn .六、求积分?=1z zdz z e ,从而证明πθθπθ=?0cos )cos(sin d e .七、设)(z f 在复平面上处处解析且有界,对于任意给定的两个复数b a ,,试求极限=+∞→--R z R dz b z a z z f ))(()(lim并由此推证)()(b f a f =(刘维尔Liouville 定理).八、设)(z f 在)1(><="" p="" r="" z="" 内解析,且2)0(,1)0(="=f f ,试计算积分</p><p>?</p><p>=+1</p><p>2</p><p>2</p><p>)</p>< p>()1(z dz z z f z 并由此得出?</p><p>π</p><p>θθθ</p><p>20</p><p>2</p><p>)(2 </p><p>cos d e f i 之值.</p><p> </p><p>九、设iv u z f +=)(是z 的解析函数,证明</p><p>2</p><p>222</p><p>2</p><p>22</p><p>2</p> <p>2)</p><p>)(1()</p><p>(4)</p><p>)(1ln()</p><p>)(1ln(z f z f y z f x z f +">+?++?.十、若)(22y x u u +=,试求解析函数iv u z f +=)(.第四章级数一、选择题:1.设),2,1(4)1( =++-=n n nia n n ,则n n a ∞→lim ( ) (A )等于0 (B )等于1 (C )等于i (D )不存在2.下列级数中,条件收敛的级数为( )(A )∑∞=+1)231(n n i (B )∑∞=+1!)43(n nn i (C )∑∞=1n n n i (D )∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为( )(B )∑∞=+1)1(1n n i n (B )∑∞=+-1]2)1([n n n in(C)∑∞=2ln n n n i (D )∑∞=-12)1(n nnn i 4.若幂级数∑∞=0n n nz c在i z 21+=处收敛,那么该级数在2=z 处的敛散性为( )(A )绝对收敛(B )条件收敛(C )发散(D )不能确定5.设幂级数∑∑∞=-∞=01,n n n n nnznc z c和∑∞=++011n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系是( )(A )321R R R << (B )321R R R >> (C )321R R R <= (D )321R R R == 6.设10<∑∞=0n n n z q 的收敛半径=R ( )(A )q (B )q1(C )0 (D )∞+ 7.幂级数∑∞=1)2(2sinn n z n n π的收敛半径=R ( ) (A ) 1 (B )2 (C )2 (D )∞+8.幂级数∑∞=++-011)1(n n n z n 在1<="">(A ))1ln(z + (B ))1ln(z - (D )z +11ln(D) z-11ln 9.设函数z e z cos 的泰勒展开式为∑∞=0n n n z c ,那么幂级数∑∞=0n nn z c 的收敛半径=R ( )(A )∞+ (B )1 (C )2π(D )π 10.级数+++++2111z z z z的收敛域是( ) (A )1<<<=""> 11.函数21z在1-=z 处的泰勒展开式为( ) (A ))11()1()1(11<++-∑∞=-z z n n n n(B ))11()1()1(111<++-∑∞=--z z n n n n(C ))11()1(11<++-∑∞=-z z n n n (D ))11()1(11<++∑∞=-z z n n n12.函数z sin ,在2π=z 处的泰勒展开式为( )(A ))2()2()!12()1(01 2+∞<--+-∑∞=+ππz z n n n n (B ))2()2()!2()1(02+∞<- --∑∞=ππz z n n nn(C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n (D ))2 ()2()!2()1(021+∞<- --∑∞=+ππz z n n nn13.设)(z f 在圆环域201:R z z R H <-<内的洛朗展开式为∑∞-∞=-n n nz z c)(0,c 为H 内绕0z 的任一条正向简单闭曲线,那么=-?c dz z z z f 20)()(( )(A)12-ic π (B )12ic π (C )22ic π (D ))(20z f i 'π14.若?--==-+= ,2,1,4,2,1,0,)1(3n n c nn n n ,则双边幂级数∑∞-∞=n nn z c 的收敛域为( ) (A )3141<<<="">+∞<<="" 41="" p="" (d="" )+∞<115.设函数)4)(1(1)(++=z z z z f 在以原点为中心的圆环内的洛朗展开式有m 个,那么=m ( )(A )1 (B )2 (C )3 (D )4二、填空题 1.若幂级数∑∞=+0)(n n ni z c在i z =处发散,那么该级数在2=z 处的收敛性为. 2.设幂级数∑∞=0n nnz c与∑∞=0)][Re(n n n z c 的收敛半径分别为1R 和2R ,那么1R 与2R 之间的关系是. 3.幂级数∑∞=+012)2(n n nz i 的收敛半径=R4.设)(z f 在区域D 内解析,0z 为内的一点,d 为0z 到D 的边界上各点的最短距离,那么当d z z <-0时,∑∞=-=0)()(n n nz z cz f 成立,其中=n c .5.函数z arctan 在0=z 处的泰勒展开式为. 6.设幂级数∑∞=0n nnz c的收敛半径为R ,那么幂级数∑∞=-0)12(n n n nz c 的收敛半径为.7.双边幂级数∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 的收敛域为. 8.函数zze e 1+在+∞<<<0内的洛朗展开式为∑∞<="" cot="" p="" z="" 在原点的去心邻域r="" .="">-∞=n n nz c,那么该洛朗级数收敛域的外半径=R . 10.函数)(1i z z -在+∞<-三、若函数211z z --在0=z 处的泰勒展开式为∑∞=0n nn z a ,则称{}n a 为菲波那契(Fibonacci)数列,试确定n a 满足的递推关系式,并明确给出n a 的表达式.四、试证明 1.);(11+∞<≤-≤-z ez ee zzz2.);1()1(1)3(<-≤-≤-z ze e z e z五、设函数)(z f 在圆域R z <内解析,∑==nk kk n z k f S 0)(!)0(试证 1.)()(21)(111R r z d z z f iz S n rn n n <<--=+=++?ξξξξξπξ.2.)()()(2)((11R r z d z f iz z S z f r n n n <<-=-?=++ξξξξπξ)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数第一章单元测试题
一、 判断题(正确打√,错误打⨯)
1.复数i i 3167+>+. ( )
2.若z 为纯虚数,则z z ≠. ( )
3.处不连续在函数3)arg(-==z z w 。
( )
4.()f z u iv =+在000iy x z +=点连续的充分必要条件是(,),(,)u x y v x y 在 00(,)x y 点连续。
( )
5.参数方程ti t z +=2 (t 为实参数)所表示的曲线是抛物线2x y =. ( )
二、填空题
1.若等式))(()75(i y i x i i -+=-成立,则=x ______, =y _______.
2.方程3)Im(=-z i 表示的曲线是__________________________.
3.方程0273=+z 的根为_________________________________.
4.复变函数1
2+-=z z w 的实部=),(y x u _________,虚部=),(y x v _________. 5.设i z 21=,i z -=12,则)(21z z Arg = _ _____.
6.复数i z 212--=的三角表示式为 _________________,指数表示式为_________________.
三、计算、证明题
1.求出复数4)31(i z +-=的模和辐角。
2.设
iy x z +=满足,4)3Re(2=+z 求x 与y 的关系式。
3.求)(z f =z 1将z 平面上的直线1=y 所映射成w 平面上的曲线方程。
4.求角形域3/)arg(0π<<z 在映射z w =下的象。
5.将直线方程132=+y x 化为复数形式。