第12章 核磁共振波谱

合集下载

【2024版】核磁共振波谱

【2024版】核磁共振波谱
10
按原子核种类可分为1H、13C、19F、31P等核磁共振谱。
➢ 氢谱 主要是给出三方面的结构信息: 1. 质子类型(-CH3、-CH2-、 CH 、=CH2、 -OH、-CHO)及质子化学环境; 2. 氢分布;
3. 核间关系。 但不能给出不含氢基团的共振信号。
CH 、Ar-H、
➢ 碳谱 可给出丰富碳骨架的信息,但其峰面积与碳数一 般不成比例关系。因而氢谱和碳谱可互为补充。
与H原子相连的C上连的原子或基团的电负 性越大,H的化学位移值越大。
36
H
Electronegativity Values
2.2
for Some Elements
Li Be B C N O F 1.0 1.5 2.0 2.5 3.1 3.5 4.1
Na Mg Al Si P S Cl
0.9 1.2 1.5 1.7 2.1 2.4 2.8
K Ca Ga Ge As Se Br 0.8 1.0 1.8 2.0 2.2 2.5 2.7
37
典型的吸电子取代基:
OO

-NR3, -NO2, -CN, -SO3H, -CH, C-R, -COOH, -COOR
stronger
locating effect
weaker
38
化合物 电负性 δH/ppm
δ(CH3)=[(134-0)/60×106]×106 = 2.23 δ(CH2)=[(240-0)/60×106]×106 = 4.00
33
但同一化合物在100MHz仪器测得的1H-NMR谱 上,两者化学位移值(δ)虽无改变,但它们与TMS 峰的间隔以及两者之间的间隔(△v)却明显增大了。 CH3基为223Hz,CH2基则为400Hz。由此可见,随着 照射用电磁辐射频率的增大,共振峰频率及NMR谱 中横坐标的幅度也相应增大,但化学位移值并无改 变。

《核磁共振波谱法》PPT课件

《核磁共振波谱法》PPT课件

采样间隔
扫描次数
选择适当的采样间隔,以确保谱图的准确 性和分辨率。
增加扫描次数可以提高谱图的信噪比,但 也会增加实验时间。因此,需要权衡信噪 比和实验时间,选择适当的扫描次数。
定性分析与定量分析
定性分析
通过比较已知样品和未知样品的NMR谱图,确定未知样品的组成和结构。
定量分析
通过测量样品中不同组分的峰面积或峰高,计算各组分的含量。需要建立标准 曲线或使用内标法进行定量分析。
样品稳定性
确保样品在NMR实验过程中保 持稳定,避免由于化学变化导 致谱图失真。
样品溶剂
选择适当的溶剂,以保证样品 的溶解和稳定性,同时避免对
NMR谱图产生干扰。
实验参数的选择与优化
磁场强度
脉冲宽度
根据实验需求选择适当的磁场强度,以提 高检测灵敏度和分辨率。
选择合适的脉冲宽度,以获得最佳的信号 强度和分辨率。
《核磁共振波谱法》ppt课件
汇报人:可编辑 2024-01-11
目录
• 核磁共振波谱法概述 • 核磁共振波谱法的基本原理 • 核磁共振波谱仪 • 核磁共振波谱法的实验技术 • 核磁共振波谱法的应用实例
01
核磁共振波谱法概述
定义与原理
定义
核磁共振波谱法是一种利用核磁共振现象进行物质结构和动力学研究的分析方法 。
化学位移是由于不同化学环境中的原子核受到不 同程度的磁场扰动,导致其能级分裂的差异。
通过测量化学位移,可以推断出原子核所处的化 学环境,进而确定分子的结构。
耦合与裂分
当两个或多个相邻的原子核相互作用 时,它们之间的能级会发生耦合,导 致谱线裂分。
通过分析裂分的谱线,可以进一步解 析分子内部的相互作用和结构信息。

第十二章 核磁共振波谱分析

第十二章 核磁共振波谱分析

4.3实验部分实验4-1 有机化合物的氢核磁共振谱一、实验目的1. 学习核磁共振波谱的基本原理及基本操作方法。

2. 学习1H核磁共振谱的解析方法。

3. 了解电负性元素对邻近氢质子化学位移的影响。

二、基本原理一张NMR波谱图,通常会提供化学位移值、耦合常数和裂分峰形以及各峰面积的积分线的信息,据此,我们可以推测有机化合物的结构。

化学位移值主要用于推测基团类型及所处化学环境。

化学位移值与核外电子云密度有关,凡影响电子云密度的因素都将影响磁核的化学位移,其中包括邻近基团的电负性、非球形对称电子云产生的磁各向异性效应、氢键以及溶剂效应等,这种影响有一定规律可循,测试条件一定时,化学位移值确定并重复出现,前人也已总结出了多种经验公式,用于不同基团化学位移值的预测。

耦合常数和裂分峰形主要用于确定基团之间的连接方式。

对于1H NMR,邻碳上的氢耦合,即相隔三个化学键的耦合最为重要,自旋裂分符合向心规则和n+1规则。

裂分峰的裂距表示磁核之间相互作用的程度,称作耦合常数J,单位为赫兹,是一个重要的结构参数,可从谱图中直接测量,但应注意从谱图上测得的裂距是以化学位移值表示的数据,将其乘以标准物质的共振,即仪器的频率,才能得到以赫兹为单位的耦合常数。

积分曲线的高度代表相应峰的面积,反映了各种共振信号的相对强度,因此与相应基团中磁核数目成正比。

通过对1H-NMR积分高度的计算,可以推测化合物中各种基团所含的氢原子数和总的氢原子数。

核磁共振谱图的解析就是综合利用上述三种信息推测有机物的结构。

用1H-NMR波谱图上的化学位移值(δ或τ),可以区别烃类不同化学环境中的氢质子,如芳香环上的氢质子、与不饱和碳原子直接相连的氢质子、与芳香环直接相连-CH2或-CH3上氢质子、与不饱和碳原子相连的-CH2或-CH3上的氢质子、正构烷烃,支链烃和环烷烃上的氢质子。

化学位移的产生是由于电子云的屏蔽作用,因此,凡能影响电子云密度的因素,均会影响化学位移值。

化学位移

化学位移
h h E H 0 2 1 H 0 2
2019/4/3
讨论:
在1950年,Proctor等人研究发现:质子的共振频率与其结 构(化学环境)有关。在高分辨率下,吸收峰产生化学位移 和裂分,如右图所示。 由有机化合物的核磁共振图,可获得质子所处化学环境的 信息,进一步确定化合物结构。
—NH伸缩振动:
3500 3100 cm-1
2019/4/3
(2)饱和碳原子上的—C—H
—CH3 —CH2— 2960 cm-1 反对称伸缩振动
2870 cm-1
2850 cm-1
对称伸缩振动
对称伸缩振动
2930 cm-1 反对称伸缩振动
—C—H
2890 cm-1
弱吸收
(3)不饱和碳原子上的=C—H( C—H )
产生红外吸收需要满足两个条件: (1)辐射应具有能满足物质产生振动跃迁所需的能量; (2)辐射与物质间有相互偶合作用。
对称分子:没有偶极矩,辐射不能引起共振,
无红外活性。 如: N2、O2、Cl2 等。 非对称分子:有偶极矩, 红外活性。 振动频率与哪些因素有关?
2019/4/3
分子振动方程
不同基团有不同的振动频率。由经典力学可导出双 原子分子的分子振动方程式。该式表明了影响伸缩振 动频率的因素。
0 1,2,3……
I 1, 2 H 1 ,14 N 7 , I 3,10 B5
2019/4/3
讨论:
(1) I=0 的原子核 16 O; 12 C; 22 S等 ,
无自旋,没有磁矩,不产生共振吸收 (2) I=1 或 I >0的原子核 I=1 :2H,14N I=3/2: 11B,35Cl,79Br,81Br I=5/2:17O,127I

核磁共振波谱法(NMR)

核磁共振波谱法(NMR)

振实验时,所用的磁强强度越高,发生核磁共振所
需的射频频率也越高。
讨论:
(1)磁场固定时( B0一定),不同的核具有不同的共振频率, 共振频率取决于核本身,大的核,发生共振所需的照射频率也大; 反之,则小。 (2)同样的核(一定),外加磁场B0越大,共振频率越大。 (3)若共振频率一定, 越大, B0越小。 例:外磁场B0=4.69T(特斯拉,法定计量单位) 1H 和13C的共振 频率为
样品,溶剂CDCl3, CD2Cl2, THF, etc.
当B = B0 +δB,使ν恰好等于照射样品的固定无线电波
频率ν0,样品中的氢原子核发生自旋能级跃迁。 B0 为核磁共振仪电磁铁的磁场强度,δB为扫描线圈产
生的磁场增量,5-10mG· min-1。
要满足核磁共振条件,可通过二种方法来实现
1. I=0 的原子核O(16);C(12);S(32)等 ,无自旋, 无磁性,称为非磁性核,这类核不会发生核磁共振。不产生 共振吸收。
2. I=1 或 I>0的原子核: I=1 : 2H,14N, I=3/2: 11B,35Cl,79Br,81Br I=5/2: 17O,127I
这类原子核的核电荷分布可看作一个椭圆体,电荷分布 不均匀,共振吸收复杂,研究应用较少;
频率扫描(扫频):固定磁场强度,改变射频频率 磁场扫描(扫场):固定射频频率,改变磁场强度 各种核的共振条件不同,如:在1.4092特斯拉的磁场,各 种核的共振频率为:
1H 13C 19F 31P
60.000 15.086 56.444 24.288
MHZ MHZ MHZ MHZ
磁场强度 0.9400 特斯拉 1.4092 2.3500 4.7000 7.1000 11.7500

核磁共振波谱法

核磁共振波谱法

核磁共振波谱法一、概述早在1924年Pauli就预见某些原子核具有自旋和磁矩的性质,它们在磁场中可以发生能级的分裂。

1946年美国科学家布洛赫(Bloch,斯坦福大学)和珀塞尔(Purcell,哈佛大学)分别发现在射频区(频率0.1~100MHz,波长1~1000m)的电磁波能与暴露在强磁场中的磁性原子核(或称磁性核或自旋核)相互作用,引起磁性原子核在外磁场中发生核自旋能级的共振跃迁,从而产生吸收信号,他们把这种原子对射频辐射的吸收称为核磁共振(nuclear magnetic resonance spectroscopy,NMR),他们也因此分享了1952年的诺贝尔物理奖。

所产生的波谱,叫核磁共振(波)谱。

通过研究核磁共振波谱获得相关信息的方法,称为核磁共振波谱法。

NMR和红外光谱、紫外—可见光谱相同之处是微观粒子吸收电磁波后发生能级上的跃迁,但引起核磁共振的电磁波能量很低,不会引起振动或转动能级跃迁,更不会引起电子能级跃迁。

.1949年,Kight第一次发现了化学环境对核磁共振信号的影响,并发现了信号与化合物结构有一定的关系。

而1951年Arnold等人也发现了乙醇分子由三组峰组成,共振吸收频率随不同基团而异,揭开了核磁共振与化学结构的关系。

1953年出现了世界上第一台商品化的核磁共振波谱仪。

1956年,曾在Block实验室工作的Varian制造出第一台高分辩率的仪器,从此,核磁共振波谱法成了化学家研究化合物的有力工具,并逐步扩大其应用领域。

七十年代以后,由于科学技术的发展,科学仪器的精密化、自动化,核磁共振波谱法得到迅速发展,在许多领域中已得到广泛应用,特别在有机化学、生物化学领域中的研究和应用发挥着巨大的作用。

八十年代以来,又不断出现新仪器,如高强磁场的超导核磁共振波谱仪,脉冲傅里叶变换核磁共振波谱仪,大大提高灵敏度和分辨率,使灵敏度小的原子核能被测定;计算机技术的应用和多脉冲激发方法的采用,产生二维谱,对判断化合物的空间结构起重大作用。

第十二章 核磁共振波谱法优秀课件

第十二章 核磁共振波谱法优秀课件
如何避免饱和?——让高能级的核回到低能级(弛豫), 且弛豫的速度比激发跃迁的速度快,至少一样快
弛豫的方式 (1)发射辐射:几乎不可能 (2)非辐射弛豫:主要方式 A、自旋-晶格弛豫(spin-lattice or longitudinal relaxation)
核自旋体系将能量传递给周围环境 B、自旋-自旋弛豫(spin-spin or transverse relaxation)
Nj/N0=exp(-γhB0 /2πkT)
例题:计算当质子处于B0=4.69 T的磁场中时高能级和低能
级的数目之比,温度为20 oC。
Nj exp( E)exp( hB0 )
N0
kT
2kT
Nj N0
2.6 81 08T1 s1 6.6 31 034J s4.6 9T exp( 23.141.381023JK1293K
和标准的共振频率(分别为νx和νs ),以两共振频率的差 值同所用仪器的射频频率ν0的比值来表示化学位移δ
δ= ( νx -νs )/ ν0×106 (ppm) 扫场模式: δ= (Bx-Bs)/ B0 ×106(ppm) δ与仪器的频率无关: 如:112-三氯丙烷甲基质子:2.23ppm
(4)以谁为参考标准? 最佳选择:没有任何化学位移的氢核——不可能 选择TMS(四甲基硅烷)
主要内容
第一节 概述 第二节 核磁共振的基本原理 第三节 化学位移与其影响因素 第四节 自旋耦合与自旋裂分 第五节 核磁共振波谱仪 第六节 核磁共振波谱法的应用
第一节
概述
核磁共振波谱法是一种基于测量物质对电磁辐射吸收的分 析方法。
(1)与紫外-可见光谱法和红外光谱法原理相似,都是基 于物质对电磁辐射的吸收的测量方法;

核磁共振波谱学习课件(共88张PPT)可修改文字

核磁共振波谱学习课件(共88张PPT)可修改文字
大,屏蔽弱,共振需要 的磁场强度小,在低场出现, 图左侧。
= [(样 - TMS)/ TMS ] ×106
二、影响化学位移的因素
1.电负性--去屏蔽效应
与质子相连元素的电负性越 强,吸电子作用越强,价电子偏 离质子,屏蔽作用减弱,信号峰 在低场出现。
电负性对化学位移的影响
H 3 C B H 3 r C 2 C B H C 3 r (C 2 H ) 2 B H C r 3 (C 2 H ) 3 B H
备的超导线圈;在低温4K,处于超导状 态;磁场强度>100 T
开始时,大电流一次性励磁后,闭合 线圈,产生稳定的磁场,长年保持不变; 温度升高,“失超”;重新励磁。 超导核磁共振波谱仪:
200~400MHz;600~800MHz。
(2)试样中加入几滴D2O,摇荡片刻,试样中的–OH或 –NH2基中的1H被重氢D交换。 由于屏蔽作用的存在,氢核产生共振需要更大的外磁场强度(相对于裸露的氢核),来抵消屏蔽影响。 (2)与外磁场相反,能量高,磁量子数 m =-1/2。 谱图解析与结构确定步骤 (1)偶合常数( J 值)相等 通常两组相互偶合的峰都是相应“内侧”峰偏高,而“外侧”峰偏低,在偶合信号的强峰上画一对相应的斜线,形成屋顶形状。 两种进动取向不同的氢核之间的能级差: 恒定磁场,施加全频脉冲,产生共振,采集产生的感应电流信号,经过傅里叶变换获得一般核磁共振谱图。 没有直接与吸电子基团(或元素)相连,在高场出现。 磁各向异性是指质子在分子中所处的空间位置不同,屏蔽作用不同的现象。 为什么1H比6H的化学位移大? (2)试样中加入几滴D2O,摇荡片刻,试样中的–OH或 –NH2基中的1H被重氢D交换。 超导磁体:铌钛或铌锡合金等超导材料制备的超导线圈; 方向相同,核所感受到的实际磁场 B有效 大于外磁场。 傅里叶变换核磁共振波谱仪需要纯试样品 1 mg 。

核磁共振 波谱分析

核磁共振 波谱分析

现采用相对数值。通常以四甲基硅(TMS)为标准物质,
规定:它的化学位移为零,然后,根据其它吸收峰与零点 的相对距离来确定它们的化学位移值。 低场 9 高场
8 7 6 6 5 4 3 2 1 零 点 -1 -2 -3
TMS
化学位移用表示,以前也用表示, 与的关系为:
= 10 -
25
16
自旋-自旋弛豫 (spin-spin Relaxation):
高能态核把能量传给同类低能态的自旋核,本身回到低 能态,维持Boltzmann分布。结果是高低能态自旋核总 数不变。 自旋-自旋弛豫过程的半衰期用T2表示。 液体T2~1s, 固体或粘度大的液体,T2很小,104~10-5s
晶格泛指环境,即高能态自旋核把能量传给周围环境 (同类分子、溶剂小分子、固体晶格等)转变为热运动 而本身回到低能态维持Boltzmann分布。 自旋-晶格弛豫过程的半衰期用T1表示 (T1与样品状 态及核的种类、温度有关),液体T1~1s,固体或粘度 大的液体T1 很大。 自旋-晶格弛豫又称纵向弛豫。
·
式中: h为普朗克常数 自旋不为0的原子核,都有磁矩,用μ 表示, 磁矩随角动量增加成正比增加.
μ = r· P
式中r 为磁旋比, 不同的核具有不同的磁旋比。
9
NMR技术是观察原子序数或其质量数为奇数的原子核自旋 的手段。质子是最简单的原子核,它的原子序数是奇数且 最小为1,可以自旋。自旋的质子相当于带正电荷的小球 在旋转运动中产生磁场。
第三章
核磁共振氢谱
核磁共振基本原理 核磁共振仪与实验方法 1H的化学位移 各类质子的化学位移 自旋偶合和自旋分裂 自选系统及图谱分类 核磁共振氢谱的解析
1

核磁共振波谱PPT课件

核磁共振波谱PPT课件

H C C H
H
δ =5.28
δ =3.57
H
H
δ =3.99
..
C H OCH3
C H
H C C H
O C CH3
H
δ =5.50
乙烯醚
p-π 共轭
乙烯酮 π -π 共轭
四、氢键效应
H H C C H H O H O C C H H
正丁烯-2-醇 δ 1% 1 纯液体 5
H 小, δ 大, H0 低
NMR信号

有 有 有
11B 5 1H 1 35Cl
原子核 12C 16O 32S 6 8 16
13C 6 17 19F 9 15N 7 31P 15 33S 16 79Br 81Br 17O 35 35 8 2H 1 14N 7
3/2 5/2… 1,2,3
具有自旋角动量(p)的核在自旋时会产生核磁矩(μ) :
五、各种环境中质子的化学位移
酚-OH
醇-OH 硫醇-SH 氨-NH2 羧酸-OH
HO Ar
C OH
C SH
O C OH
C NH2
H

杂环 芳香 烯
O
C H
H N
N
H
H
C CH2
C H
醇、醚

O CH
H2 O C
C CH
O CH3
δ/ppm
12
11
S CH3
10
9
N CH3
8
7
6
5
4
O
3
C CH3
2
射频辐射→原子核(强磁场下能级分裂) →吸收→能级跃迁→NMR
测定有机化合物的结构,1H NMR─氢原子的位置、环境以 及官能团和C骨架上的H原子相对数目) 与UV-Vis和红外光谱法类似,NMR也属于吸收光谱,只是研究 的对象是处于强磁场中的原子核自旋能级对射频辐射的吸收。 2. 发展历史 1924年:Pauli 预言了NMR的基本理论,即:有些核同时具 有自旋和磁量子数,这些核在磁场中会发生分裂;

仪器分析核磁共振波谱分析课件

仪器分析核磁共振波谱分析课件

2024/4/7
仪器分析核磁共振波谱分析课件
图12.9
·共轭效应:影响电子云密度,如,甲氧基苯环上的H,邻位的化学位移为 6.84,对位的化学位移为6.99,间位的化学位移为7.81。杂化影响:若无其它 效应的影响,杂化轨道随S成分增加而电子云密度降低,屏蔽作用减小,化
学位移增大
2024/4/7
仪器分析核磁共振波谱分析课件
2024/4/7
仪器分析核磁共振波谱分析课件
因此,处于高能级的核必须回到低能态,才能维持处
于低能态的核的微弱的数量优势,使得核磁共振信号得以 检测。这一过程以非辐射的形式实现,称为驰豫过程,可 分为: 1、自旋--晶格驰豫,又称纵向驰豫:
自旋核与周围分子交换能量的过程,如固体的晶格, 液体则为周围的同类分子或溶剂分子。用弛豫时间T1 示。 2、自旋--自旋驰豫,又称横向驰豫:
2024/4/7
(a)在CDCl3中 (b)~(d)中为逐步加入苯 4 二甲基甲酰胺的溶剂效应
仪器分析核磁共振波谱分析课件
2024/4/7
图12.15 苯环对二甲基甲酰胺甲基的屏蔽
仪器分析核磁共振波谱分析课件
交换反应: 1.位置交换: 活泼氢,如-OH, -SH,-COOH, -NH2 2.构象交换: 环己烷平伏键与直立键
2024/4/7
图12.13 单键的各向异性
仪器分析核磁共振波谱分析课件
(二) 氢键的影响:分子形成氢键后,使质子周围电子云密度降低,产生去屏
蔽作用而使化学位移向低场移动,如醇类、胺类和酸类等。
1. 分子间氢键:受溶液浓度、温度和溶剂的影响较显著; 2. 分子内氢键:几乎不受溶液浓度、温度和溶剂的影响。 溶剂效应:如二甲基甲酰胺,随各向异性溶剂苯的加入,两个甲基化学位移 发生变化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波谱仪的三大技术指标:分辨率、稳定性、灵敏度
12.5、一维核磁共振氢谱:
1、NMR氢谱
低场
向左
向右 磁场强度
高场
核磁共振氢谱图示
从NMR谱图,可以得到如下信息:
1)、吸收峰的组数,不同化学环境质子组数
2)、吸收峰出现的频率,即化学位移,说明分子 中基团情况
3)、峰的分裂个数及偶合常数,基团间的连接关 系,分裂数符合n+1规律和2项式展开系数比
12.3 NMR仪器
一、分类: 按磁场来源:永久磁铁、电磁铁、超导磁铁 按照射频率:60MHz、90MHz、200MHz………….. 按扫描方式:连续波NMR仪(CW-NMR)和脉冲傅立叶变换NMR仪
(PFT-NMR) 二、仪器组成:如图。
1、磁体:产生一个恒定的、均匀的磁场。磁场强度增加,灵敏度增加。 永久磁铁、电磁铁、超导磁铁:
也即表示 H 核在磁场中,自旋轴只有两种取向: 与外加磁场方向相同,m=+1/2,磁能级较低 与外加磁场方向相反,m=-1/2,磁能级较高
在外磁场中,当外来射频辐射的频率满足 一定 条件时, 就会引起能级跃迁并产生射频吸收。 这种现象称为核磁共振现象。
产生NMR条件
(1) I 0的自旋核
(2) 外磁场B0 (3) 与B0相互垂直的射频场B1,
PN
I (I 1) h
2
I (I 1)
P
其中h为Planck常数 (6.62410-27erg.sec);
很明显,当I=0时, P= 0,即原子核没有自旋现象。只有当I 〉0时, 原子核才有自旋角动量和自旋现象。
自旋量子数与原子的质量数及原子序数的关系
• 质子数与中子数均为双数,如C12,O16, 没有自旋现象。I=0 非磁性核
4)、阶梯式积分曲线高度,基团的质子比
2、试样的制备
1、试样管
2、溶液的配制
3、标准试样 通常以四甲基硅烷(TMS)作标准物,因为: a) 由于四个甲基中12 个H 核所处的化学环境完全相同,因此在核磁共振 图上只出现一个尖锐的吸收峰;
b) 屏蔽常数 较大,因而其吸收峰远离待研究的峰的高磁场(低频)区;
2、探头:由样品管、扫描线圈和接收线圈组成。样品管要在磁场中以几十Hz 的速率旋转,使磁场的不均匀平均化。扫描线圈与接收线圈垂直放置,以防相 互干扰。在CW-NMR中,扫描线圈提供10-5T的磁场变化来进行磁场扫描。
3、射频源 1)、射频源和音频调制 2)、扫描单元
CW-NMR: 扫场法:固定照射频率,改变磁场强度; 扫频法:固定磁场强度,改变照射频率; 4)、接受机 5)、匀场线圈 6)、计算机系统
• 质子数与中子数一个为奇数,如H1,C13, N15 , F19 , P31 。 I 为 半 整 数 , 1/2 , 3/2 , 5/2……
• 质子数与中子都是奇数,如H2,N14,I为 整数,1,2……
必须注意:在无外加磁场时,核能级是简并的,各状态的能量相同。
对氢核来说,I=1/2,其m值只能有21/2+1=2个取向:+1/2和-1/2。
x s 106 ( ppm)
无量纲,对于给定的质子峰,其值与射频辐射无关。
以前用Δυ表示, υ=Bo/2, Δυ= Bo/2(υ标准- υ试样),与Bo有关
3、 影响化学位移(屏蔽常数)的因素
从前式 B B0 B0 ( 1 )B0 可知,凡是影响屏蔽常数
(电子云P321 1)诱导效应使1H周围电子云密度降低,屏蔽减小(左移,化 学位移增大);共轭效应(右移) 2)磁各向异性效应(屏蔽与去屏蔽) 3)范德华力(原子靠近,电子云排斥,屏蔽减小) 4)氢键(形成氢键,电子云密度下降,屏蔽减小)
脉冲傅立叶变换NMR (PFT-NMR):
以等距脉冲调制的RF信号作多道发射机,以快速傅立叶变换作多道 接收机,它在一个脉冲中给出所有的激发频率,如果此脉冲满足NMR条 件,则在脉冲之后,于接收线圈上能感应出该样品所有的共振吸收信号 的干涉图(自由感应衰减,FID)信号。它包括分子中所有信息,是时间 的函数,对此函数作傅立叶变换处理后,可将FID信号转换为常用的扫场 波谱。
第12章 基本原理
核磁共振波谱法
化学位移
自旋-自旋偶合
核磁共振谱仪
一维核磁共振氢谱
其它核磁共振谱
12.1 NMR基本原理
带电原子核自旋 自旋磁场
磁矩 (沿自旋轴方向)
磁矩 的大小与磁场方向的角动量 P 有关: 为磁旋比)
每种核有其固定 值(H核为2.68×108T-1s-1)。其中,
且 1 = 0
12.2 化学位移
1. 化学位移产生 产生原因:分子中的原子核处在核外电子氛围中,电子在外加磁场B0的的作用下
产生次级磁场,该原子核受到了屏蔽:
B B0 B0 (1 )B0
B为核实际受到的磁场, 由电子云密度决定的屏蔽常数,与化学结构密切相关。
2、表示方法:由于不同核化学位移相差不大,有时会发生共振吸收频率漂移,因 此,实际工作中,化学位移不能直接精确测定,一般以相对值表示。 于待测物中加一标准物质(如TMS),分别测定待测物和标准物 的吸收频率x 和s,以下式来表示化学位移 :
c) TMS—化学惰性、溶于有机物、易被挥发除去; 此外,也可根据情况 选择其它标准物。六甲基二硅醚(高温),3-三甲基硅丙烷磺酸钠
4、溶剂 1H 谱的理想溶剂是四氯化碳和二硫化碳。
3、 核磁共振谱的应用 1)、结构鉴定 2)、定量分析 3)、相对分子量的测定 4)、化学动力学研究中的应用
9.7 其它核磁共振谱
影响屏蔽常数的因数:原子屏蔽、分子内屏蔽和分子间屏蔽
12.3 自旋-自旋偶合
1、现象:CH3CH2OH中有三个不同类型 的质子,因此有三个不同位置的吸收峰。
然而,在高分辨 NMR 中,—CH2 和CH2中的质子出现了更多的峰,这 表明它们发生了分裂。如右图。 2、 偶合常数 自旋偶合产生峰的分裂后,两峰间的间距称 为偶合常数。电子结构和几何结构有影响 3、自旋-自旋偶合分裂规律 谱线分裂数 N=2nI + 1 I = ½ N = n + 1 谱线强度:2项式展开式的系数比
相关文档
最新文档