第四章沉淀分离法

合集下载

沉淀分离技术.

沉淀分离技术.

蛋白质聚集沉淀
(1)破坏水化膜,分子间易碰撞聚集,将大量盐 加到蛋白质溶液中,高浓度的盐离子有很强的水化 力,于是蛋白质分子周围的水化膜层减弱乃至消失, 使蛋白质分子因热运动碰撞聚集。
(2)破坏水化膜,暴露出憎水区域,由于憎水区域间作用使蛋 白质聚集而沉淀,憎水区域越多,越易沉淀。
(3)中和电荷,减少静电斥力,中性盐加入蛋白质溶液后,蛋 白质表面电荷大量被中和,静电斥力降导致蛋白溶解度降低, 使蛋白质分子之间聚集而沉淀。
亲水胶体在水中的 稳定因素
水化膜
水化膜
+ + + + + + ++ +
带正电荷蛋白质 (亲水胶体) 脱水
碱 酸 等点电时的蛋白质 (亲水胶体) 脱水
碱 酸 带负电荷蛋白质 (亲水胶体) 脱水
+ + + + + + ++ +
带正电荷蛋白质 (疏水胶体)
阴离子 不稳定蛋白颗粒
阳离子
带负电荷蛋白质 (疏水胶体)
7.65 6.85
(1)忽略溶液体积的变化,若回收90%的BSA,需要加 入多少固体硫酸铵?(37.27Kg) (2)沉淀中BSA的纯度是多少?(95.34%)
KS分段盐析法
在一定pH、温度条件下,改变离子强度。 适用于早期粗提阶段的分步分离。
虽然这个理论所假定的条件并不完全适合于蛋白质分子,但该 理论对于理解破坏蛋白质溶液的稳定性仍有很大帮助,同时还 有助于针对具体蛋白质选择最合适的沉淀剂及技术。
DLVO理论
颗粒间的相互作用的位能取决于离子强度。 在低离子强度时,颗粒距离处在中间状态,双 电层斥力占优势,可看为一个凝聚的势垒;在 高离子强度时,吸引力超过排斥力,相互间的 总位能表现为吸引位能。 虽然这个理论所假定 的条件并不完全适合于蛋白质分子,但该理论 对于理解破坏蛋白质溶液的稳定性仍有很大帮 助,同时还有助于针对具体蛋白质选择最合适 的沉淀剂及技术。

沉淀分离法

沉淀分离法

二、优缺点
优点: 其原理简单,又不需要特殊的装置,是一种古老、经典 的化学分离方法。 缺点:需经过滤、洗涤等手续,操作较繁杂费时;某些组分的沉 淀分离选择性较差,分离不够完全。 但由于分离操作的改进,加快了过滤洗涤的速度;另一方面,通过使 用选择性较好的有机沉淀剂,提高了分离效率,因而到目前为止,还 是一种常用的分离方法。
2-
SO4
2-
Ba2+
SO4
2-
SO4
2-
Ba2+ Ba2+
SO4
2-
Ba2+
SO4
2-
SO4
2-
Ba2+
2014-8-1
SO4
2-
Ba2+
Ba2+
21
SO4
SO4
2-
Ba2+
2-
Ba2+
SO4 Ba2+ 2- 2+ SO Ba 2- 4 Ba2+ SO 4 SO4 2Ba2+
2-
Ba2+SO4
2-
-
SO42
-
Ba2+
Ba
-4
Ba2+ Ba2+
SO42
-
SO42
-ቤተ መጻሕፍቲ ባይዱ
Ba2+
SO42
-
SO42
-
SO42
-
Ba2+
2014-8-1
24
2SO42- Ba2+ SO 4 2Ba2+ SO Ba2+ 24 2SO4 Ba2+ SO4 22+ SO Ba2+ Ba 4 22+ SO42SO4 Ba 2+ SO42- Ba2+ Ba 2SO42- Ba2+ SO 4 2Ba2+ SO Ba2+ 24 2SO4 Ba2+ SO4 22+ SO Ba2+ Ba 4 22+ SO42SO4 Ba 2+ SO42- Ba2+ Ba 2SO42- Ba2+ SO 4 2Ba2+ SO Ba2+ 24 2SO4 Ba2+ SO4

沉淀分离法的原理是

沉淀分离法的原理是

沉淀分离法的原理是沉淀分离法是一种常用的分离和净化混合物中固体与液体的方法。

它是利用溶液中存在不溶性物质产生沉淀现象的原理进行分离的。

其基本原理可概括为两个步骤:沉淀生成和沉淀收集。

首先,沉淀生成是指在溶液中加入适当的试剂,通过反应产生不溶性的物质,使之形成沉淀。

这通常涉及到离子反应或者共价键制约中离子间距离的约束。

例如,当有两种溶液A和B中存在可沉淀物质时,可以根据化学反应的原理,向其中一种溶液中加入适当的试剂反应生成沉淀。

在沉淀反应中,通常需要考虑如溶液的pH值、温度、沉淀物质的溶解度等因素。

通过控制这些因素,在试管或反应容器中可以观察到沉淀生成。

其次,在沉淀生成后,沉淀收集是指将沉淀与溶液分离开来。

这可以通过过滤、离心、沉淀沉淀、再溶解等方式进行。

其中,最常用的方法是过滤。

通过将溶液通入一个过滤纸上,不溶性沉淀物质会被留下,而溶液则通过过滤纸流入集液瓶中。

过滤后的沉淀可以用水或其他溶剂进行洗涤以去除溶液中残留的杂质,然后进行干燥,最终得到纯净的沉淀。

沉淀分离法在实际应用中具有广泛的用途。

例如,在环境保护中,它可以用于处理含有悬浮颗粒物的废水。

通过添加适当的化学试剂,使颗粒物形成沉淀,从而将废水中的固体分离出来。

此外,在化学实验室中,沉淀分离法也常用于从复杂的混合物中提取所需的化合物。

例如,可以通过沉淀分离法从矿石中提取金属元素,或者从植物中提取活性成分。

总结来说,沉淀分离法利用沉淀生成和沉淀收集两个步骤,通过反应生成不溶性的物质,然后将沉淀与溶液分离开来,以实现固体与液体的分离。

这一方法在实验和工业生产中具有广泛的应用,为提取纯净的物质,并满足各种需求提供了有效的手段。

水质工程学第4章沉淀与澄清3

水质工程学第4章沉淀与澄清3
—— 清水与固体有清晰界面,该界面等速 下降 ——压缩区内部自上而下,沉速递减
——沉淀过程中,清水区高度不断增加
A澄清液层、B受阻沉降层、C过渡层、D压缩层
拥挤沉淀试验
——利用沉淀过程线分析: Kynch 法、 Fitch 法
——建立沉速—浓度函数关系v=f(C) (多筒试验):固体通量法、吉冈法
——作用:用于分析静置沉淀;确定水中悬 浮颗粒的沉降特性
1、自由沉淀试验 2、絮凝沉淀 3、拥挤沉淀(高浓度悬浮液的沉淀试验)
自由沉淀试验
自由沉淀一般采用单筒沉淀柱试验确定悬 浮颗粒的沉降特性。
1)试验装置 2)试验方法 3)沉淀效率η的求取
自由沉淀试验
沉淀柱有效水深H,
悬浮物原始浓度为C0。 在时间t1时从水深H处取样测得C1,则认为沉速大于 u1(H/t1)的颗粒均已通过H,残余颗粒必然具有小 于u1的沉速,则沉速小于u1的颗粒与全部颗粒的比 例x1=C1/C0。
——沉淀时间: 絮凝沉淀
因此,设计沉淀池时,除了对表面负荷率有要 求外,还对停留时间、池深、进出水构造、排泥 方式等均有要求。通常,对于静置沉淀得出的试 验结果,在用于设计时还需考虑一定的安全系数。 一般在设计时:
q=q0/1.25~1.75,T=(1.5~2.0)T0
沉淀池
概述
一、平流式沉淀池 (horizontal flow Sedimentation Tank) 二、竖流式沉淀池 (vertical flow ST) 三、斜板(管)沉淀池(tilted-plate ST) 四、澄清池(clarifier,clarification tank)
概述
沉淀池构造根据功能分为五个区:
进水区: 保证进水均匀分布在整个进水断 面上,避免短流,减少死角和紊流影响,提 高容积利用系数。 出水区: 均匀出水(目的同上),阻拦浮渣 沉淀区: 污水与颗粒分离,工作区 污泥区: 污泥贮放、浓缩、排除 缓冲区: 分隔沉淀区,保证沉下的颗粒不 因水流搅动而再次浮起进入沉淀区。

生物分离工程4沉淀法

生物分离工程4沉淀法

第四章沉淀法在分离制备中,沉淀主要用于浓缩目的,或用于除去留在液相或沉淀在固相中的非必要成分。

沉淀:流体中分散悬浮的固体或液体,在重力、离心力、静电力等各种力场内,将粒子互相或自流体分离的作业。

例:澄清(clarification)、稠化(thickening)、类析(classification)、浮选(floatation)、重液分离(heavy liquid separation)、集尘(dust collection)。

其中使用离心力场的特称为离心分离。

一、沉淀的类型沉淀按其物理性质不同,可粗略分成两类:晶形沉淀和无定形沉淀 ( 又称非晶形沉淀或胶状沉淀 ) 。

晶形沉淀如:BaSO4,MgNH4PO4, CaC2O4·2H2O , PbSO4其颗粒直径约0.1 ~ 1 μ m 。

非晶形沉淀: Fe2O3·nH2O , ZnS ,Al2O3·nH2O[Al(OH)3] 其颗粒直径一般 <0.02 μ m 。

晶形沉淀:内部排列较规则,结构紧密,整个沉淀所占体积较小,易沉降于容器底部。

无定形沉淀,由许多疏松聚集在一起的微小沉淀颗粒组成,排列杂乱无章,有时又包含大量数目的 H2O ,所以是疏松的絮状沉淀。

介于晶形沉淀与无定形沉淀之间的为凝乳状沉淀,颗粒大小 0.1>d>0.02 μ m ,如 AgCl 。

二、沉淀的形成沉淀的形成一般经过晶核形成和晶核长大两个过程。

将沉淀剂加入试液中,当形成沉淀的离子浓度乘积大于其 KSP ,离子通过静电引力结合成一定数目的离子群,即为晶核。

晶核形成后,构晶离子向晶核表面沉积,晶核就逐渐长大成微粒。

聚集速度 V :由离子聚集成晶核,再进一步积集成沉淀颗粒的速度。

定向速度 V ′:在聚集的同时,构晶离子又按一定晶格排列,这种定向排列速度。

若聚集速度 V 大,而定向排列速度 V ′小,即离子很快聚集来生成沉淀微粒,却来不及进行晶格排列,则得到的是非晶形沉淀。

分离分析化学沉淀分离法

分离分析化学沉淀分离法
14
K : 常 数,取 决 于 沉 淀 本 性,介 质, 温 度
2.3 生成沉淀类型
2.3.1 分级沉淀 2.3.2 共沉淀 2.3.3 均相沉淀
15
2.3.1 分级沉淀
两种阴离子(或阳离子)与相同的阳离子 (或阴离子)形成难溶盐,其溶度积相差足 够大时,加入沉淀剂可从混合溶液中将其分 别沉淀出来加以分离。 分级沉淀的顺序取决于:溶度积和离子浓度
33
2.5.2 有机沉淀剂分离法
2.5.2.1 生成鳌合物的沉淀剂
两种基团
酸性:-OH -COOH -SO3H -SH (其H+可被金属离子置换)
碱性:-NH2 NH N CO CS (以配位键与金属离子鳌合)
34
(1)8-羟基喹啉
N OH
O
NMN
O
35
(2)丁二酮肟
H3C C NOH H3C C NOH
MnXm(s)
nMm+ + mXn-
溶度积 Ksp = [Mm+ ]n[Xn- ]m
Ksp是衡量沉淀溶解能力的尺度。 Ksp越小,溶解度越小。
5
2.1.1 溶度积
MnXm(s)
nMm+ + mXn-
任一状态下:Q = [Mm+ ]n [Xn-]m
达到平衡时:Ksp = [Mm+ ]n[Xn- ]m 溶度积规则
各种氢氧化物和含水氧化物沉淀时的pH值范围
元素 Nb,Si,Ta,W Sb(Ⅴ),Sn(Ⅳ) Mn(Ⅳ) Pb(Ⅳ) Os(Ⅳ) Ce(Ⅳ),Sb(Ⅲ),Ti,Zr Fe(Ⅲ),Hg(I),Hg(NO3)2 Sn(Ⅱ),Th U(Ⅵ) Al,Be,Cr(Ⅲ),Ir(Ⅳ) Cu,Fe(Ⅱ),Nd,Pb,Pd,Rh Ru,Sm,Y,Yb Cd,Ce(Ⅲ),Co,La,Ni,Pr,Zn HgCl2,Mn(Ⅱ),Ag Mg

沉淀的分离的方法

沉淀的分离的方法

沉淀的分离的方法
沉淀分离是一种常用的分离方法,适用于固体和液体之间的分离。

下面是几种常见的沉淀分离方法:
1. 重力沉淀:利用物质的密度差异,引入重力将悬浮在液体中的颗粒沉淀到底部。

2. 离心沉淀:通过高速旋转离心机,可加速颗粒的沉降速度,从而更快地进行分离。

3. 过滤:将混合物通过滤纸或其他滤膜进行过滤,使得固体颗粒被滤出,而液体透过滤膜。

4. 沉淀剂法:添加一种特定的化学物质(沉淀剂),能够与溶液中的物质发生反应生成沉淀,使其从溶液中沉淀出来。

5. 蒸发结晶:将溶液加热蒸发,使得固体物质从溶液中结晶出来,实现固液分离。

6. 电沉积:利用电解作用,通过外加电压或电流将带电的物质沉积到电极上进行分离。

需要根据具体的实验要求和分离对象选择适合的方法。

第4章沉淀法和结晶及区域熔炼和晶体生长

第4章沉淀法和结晶及区域熔炼和晶体生长
过饱和度 = U - S 相对过饱和度是一个更好的参数: 为了产生某些沉淀,所需的相对饱和度如下:
AgCl,1.7 SrSO4,10 BaSO4,32 PbCrO4,45
正如在化学反应中有一个活化能的势垒一样,在结晶之前存在着 一个需要克服的势垒,而过饱和度就是表示这个势垒的大小。
2。依前题若是纯品甲的溶解度大于乙的溶解度, 比如说在室温时(15℃)每100毫升溶剂能溶解纯 晶甲10克,溶解乙2克,若此粗制品在100毫升 热溶剂中已能全部溶解。那么待冷至室温,坶液中 含有纯品甲10克,乙2克,析出结晶中含有纯品 甲37.5克,乙0.5克。这样杂质的含量已相对地 减少了。若再将其溶解于80毫升的热溶剂中。待 冷至室温,母液中含有纯品甲8克及乙0.5克而析 出的结晶为纯品甲29.5克。若将第二次母液蒸千, 残渣再用20毫升溶剂重结晶,这时母液中含有纯 品甲2克,乙0.4克,而析出的结晶中含纯品甲6 克,乙0.1克。再用6毫升溶剂重结晶一次,可得 到纯品甲5.4克。连前共得纯品甲34.9克。
因为
一方面由于乙醚的易燃性,用起来应特别小心; 另一方面乙醚易沿瓶壁挥发而被溶物质析出于瓶壁上,以致影 响结晶的纯度。
在选择溶剂时必须考虑到被溶解物质的结构,因为溶质往往易溶于 与其结构近似的溶剂中。极性物质较易溶于极性溶剂,而难溶于非 极性溶剂,这种溶解度的规律对实验工作有一定的指导作用。例如 欲纯化的物质是非极性的化合物。试验巳知其在异丙醇中的溶解度 太小,不合于做溶剂之用,则一般不必再试验极性更强的溶剂,如 甲醇、水,而相反地应试验极性较小的溶剂。当然,溶剂最终选择, 只能用实验方法来决定。 若不能选择出一种单一的溶剂进行重结晶,则可应用混合溶剂。混 合溶剂一般现两种能以任何比例互溶的溶剂组成,其中一种较易溶 解待结晶的物质,另一种较难溶解。一般常用的混合溶剂有乙醇与 水,乙醇与乙醚,乙醇与丙酮,乙醇与氯仿,二氧六环与水。乙醚 与石油醚等。

沉淀分离的三种方法

沉淀分离的三种方法

沉淀分离的三种方法
沉淀分离是一种常见的实验技术,主要通过将化学混合物中的沉淀与上清液分离开来,从而得到目标物质。

以下是三种常用的沉淀分离方法:
1. 重力沉淀法:该方法主要根据沉淀和上清液的比重差异进行分离。

将混合物放置一段时间后,较重的沉淀会沉到容器底部,上清液则漂浮在沉淀上方,通过倾斜容器或吸取器取出上清液即可。

2. 离心沉淀法:该方法使用离心机对混合物进行离心,通过离心力将沉淀与上清液分离。

该方法适用于沉淀量较小的混合物。

离心后,将离心管中的上清液倒出即可。

3. 过滤法:该方法主要利用过滤器对混合物进行过滤,将沉淀与上清液分离。

选用的过滤器要根据沉淀的性质和大小来选择。

过滤后,将上清液从过滤器中收集即可。

以上是三种常用的沉淀分离方法,不同的方法适用于不同的混合物,选择合适的方法能够提高实验效率和准确性。

- 1 -。

4.结晶与升华

4.结晶与升华

(2) 一个试样可依次用中性、碱性醋酸铅将试液的组分分成三
部分:
中性 试 液 Pb(OAC)2
沉淀 水洗
沉淀(Ⅰ) 洗液
碱式醋酸铅 滤液(Ⅰ)
沉淀 水洗
沉淀(Ⅱ) 洗液
(3) 脱铅方法 :
滤液(Ⅱ)
①通H2S气体(使沉淀转化为溶解度更小的PbS↓) ②加入强酸性阳离子交换树脂(使铅离子转移到树脂上)
(2)溶剂的选择: ①溶质在水(A)中溶解度大,在有机溶剂(B)中不溶。 ②溶剂(B)与水(A)互溶。 ③溶剂与提取物无化学作用。 ④无毒性、价廉。
(3)应用 例子:高分子材料中“高聚物”与“添加剂”分离。
高分子材料 +溶剂
浓溶液
不断搅拌,逐滴 +沉淀溶剂
添加剂+溶剂 +沉淀剂
高聚物 洗涤 纯品高聚物
样品 溶解 溶液 趁热过滤 洗涤 干燥 测熔点
固体杂质 滤液 冷却
产品
固体+液体 过滤
固体 (纯的样品)
液体 (含杂质)
注意:①杂质溶解度越大;②被提纯物在加热和常温下溶 解度差别越大。则重结晶的回收率越高。
4.2.2 溶剂的选择 (重结晶的关键)
(1)理想的溶剂应符合下列条件: ① 不与被提纯物质起反应。 ② 样品中被提纯的组分在该溶剂中加热时溶解度大而常温
4.1.3 盐析法
(1)原理:在有机物的水溶液中加入大量的无机盐,会使有机物 溶解度减小而沉淀出来。
(2)特点:不会破坏蛋白质、肽、酶等生物活性,处理量大,操 作方便。
(3)盐的种类: ①盐析性盐:能使蛋白质水溶性减小的盐。常用:Na2SO4、
KH2PO4、Na2HPO4、(NH4)2SO4、KOAc、NaOAc、NaCl ②盐溶性盐:使蛋白质的溶解度反而增大。常用:盐酸胍、脲、

生物分离工程第四章沉淀分离法

生物分离工程第四章沉淀分离法
3. 分类 – 与羧基、胺及杂环等含氮化合物结合;如Mn2+、Fe2 + 、Zn2 + 、 Cu2 +等 – 与羧基结合,不与胺及杂环等含氮化合物结合;如Ca2 + 、Ba2 + 、 Mg2 + 、Pb2 +等 – 与巯基结合;如Hg + 、Ag + 、Pb2 +等
3、特点
• 沉淀效果很好; • 选择性好 • 容易使生物分子变性 • 复合物难分解
• 丙酮(浓度40-50%) :沉析作用更强,用量省,但毒 性大,应用范围不广;
• 特点:
– 介电常数小, 60%乙醇的介电常数是48
– 容易获取
40-50%丙酮的介电常数是22
4.有机溶剂沉淀的特点
• 分辨率高; • 溶剂容易分离,并可回收使用; • 产品洁净(有机溶剂易祛除); • 容易使蛋白质等生物大分子变性失活; • 应注意在低温下操作; • 成本高
沉淀法分离蛋白质的特点有:
1 在生产的前期就可使原料液体积很快地减小10~50 倍,,从而简化生产工艺、降低生产费用;
2 使中间产物保持在一个中性温和的环境;
3 可及早地将目标蛋白从其与蛋白水解酶混合的溶液中 分离出来、避免蛋白质的降解,提高产物稳定性;
4 用蛋白质沉淀法作为色谱分离的前处理技术,可使色 谱分离使用的限制因素降到最低。
(七)选择性变性沉淀法
• 选择一定的条件使溶液中存在的某些杂质蛋白 变性沉淀下来,而与目的物分开,这种分离方 法就称为选择性变性沉淀法
• 在操作之前要对欲分离的物质中的杂蛋白等杂 质的种类、含量及其物理化学性质等有比较全 面的了解。
使用时需慎重!!!!
选择性变性的方法
• 选择性热变性:对于α-淀粉酶等热稳定性好 的酶,可以通过加热进行热处理,使大多数杂 蛋白受热变性沉淀而被除去。

简明无机化学第四章沉淀溶度积解析

简明无机化学第四章沉淀溶度积解析

AnBm(s)
n Am+(aq) + m Bn-(aq)
其平衡常数(溶度积)表达式为:
Ksp cn (Am ) • cm (Bn )
K
sp
值的大小反映了难溶解质的溶解程度,其值与
温度有关,与浓度无关。
3
溶度积和溶解度的关系
溶度积反映难溶电解质的溶解能力,但溶度积只 有难溶电解质有,溶解度反映所有物质(包括难溶电 解质)的溶解能力。
Precipitation –Dissolution Equilibrium of Slightly Soluble Electrolyte
在第三章中,我们讨论的是弱电解质在溶液中的电 离平衡,这是一种单相体系的电离平衡。现在我们将讨 论在难溶电解质饱和溶液中存在的固体和水合离子之间 的沉淀——溶解平衡,这是一种多相离子平衡 (polyphase ionic equilibrium)。
1
溶解度小于 0. 01 g·dm–3 的电解质称为难溶电解质。 一、 溶度积
难溶电解质在水中会发生一定程度的溶解,当达到饱和 溶液时,未溶解的电解质固体与溶液中的离子建立起动态平 衡,这种状态称之为难溶电解质的溶解——沉淀平衡,
2
难溶电解质 AnBm(s)沉淀溶解平衡是一种动态 平衡, 也是一种多相离子平衡:
在温度相同时,对同类型的难溶电解质,溶度积 Ksθ 越小,其溶解度 s 值也越小;对不同类型的难溶 电解质须通过计算才能比较。
例如: Kspθ (AgCl) = 1. 77×10–10 > Kspθ (Ag2CrO4) = 1. 12×10–12 而它们的溶解度 s(以 mol·dm–3表示)大小却刚好相反。
1.591018 (mol.L-1)

山东大学期末考试复习 水分析化学[第四章沉淀滴定法]山东大学期末考试知识点复习

山东大学期末考试复习 水分析化学[第四章沉淀滴定法]山东大学期末考试知识点复习

第四章沉淀滴定法一、沉淀滴定法是以沉淀反应为基础的滴定分析法通常应用最多的是银量法,银量法主要用于测定水中C1一、Br一、I一、Ag+及SCN一等。

因所用指示剂不同可分为莫尔法(Mohr)、佛尔哈德法(Volhard)、法扬司法(Fajans)三种。

莫尔法:以铬酸钾作为指示剂的银量法称为莫尔法。

本法适用于测定Cl一、Br一和Ag+。

一般控制溶液为中性或弱碱性。

佛尔哈德法:是用铁铵钒即硫酸高铁铵作为指示剂的银量法。

有直接滴定法和返滴定法。

以NH4SCN或KSCN为滴定剂。

佛尔哈德法可用于测定C1一、Br、I 一、Ag+及SCN一。

佛尔哈德法最大的优点是可在酸性溶液中进行滴定,且方法选择性高。

但测定卤素离子时需使用AgNO3和NH4SCN两种标准溶液。

在测定Cl一时,需加入有机溶剂以防止沉淀发生转化反应。

法扬司法:是用吸附指示剂指示滴定终点的银量法。

吸附指示剂是一类有机染料(如荧光黄),在溶液中可离解为具有一定颜色的阴离子,此阴离子容易被带正电荷的胶体沉淀所吸附,从而引起颜色的改变,指示终点到达。

法扬司法可测定Cl、Br一、I一、Ag+及SCN一,一般控制溶液为弱酸性或弱碱性。

法扬司法方法简便,终点明显,但反应条件要求比较严格,应注意溶液的酸度、浓度及胶体的保护等。

二、重量分析法概述1.重量分析法,一般将被测组分与试样中的其他组分分离,转化为一定的称量形式,称量后,计算得出被测组分的含量。

根据被测组分与其他试样分离方法的不同,重量法可分为:沉淀法、气化法、电解法和萃取法。

本章主要介绍沉淀法。

沉淀法是利用沉淀反应使被测组分以沉淀形式析出,通过过滤、洗涤、烘干或灼烧后,称量并计算被测组分的含量。

2.重量分析对沉淀形式和称量形式的要求。

利用沉淀反应,使被测组分以适当的“沉淀形式”析出,过滤、洗涤后再将沉淀烘干或灼烧成为“称量形式”称量。

沉淀形式和称量形式可能相同,也可能不相同。

重量分析对沉淀形式的要求:①沉淀的溶解度要足够小;②沉淀的纯度高;③沉淀易于洗涤和过滤;④沉淀易于转化为具有固定组成的称量形式。

第四章 沉淀

第四章 沉淀

第四章沉淀4-1 水和废水处理的主要单元方法沉淀是水中固体颗粒通过颗粒与水的密度差,在重力作用下与水分离的过程,是水和污水处理中一种常见的工艺。

沉淀所能去除的颗粒尺度在20~100μm以上,水中的胶体物质需先经混凝处理后才能经固液分离操作去除。

4.1.1 沉淀的功能及基本类型1、沉淀和澄清在水处理中的功能(1)给水处理沉淀分离经混凝过程产生的絮体,常采用澄清池以得到澄清的出水,是饮用水处理的一个重要环节,要求浊度<20°(2)城市污水处理一级处理的主要工艺(沉砂、初沉池),控制处理效果。

二级处理中:①作为预处理单元,减轻生物负荷。

②作为二沉池,分离生物处理过程产生的污泥,得到澄清出水③作为浓缩池,降低污泥的含水率,减小其体积,以便于进一步处理处置。

(3)工业废水中作用多样,预处理,中间处理及最终处理均可采用。

一般与混凝工艺联用。

(4)在污水灌溉和氧化塘处理之前——去除粗大悬浮颗粒,稳定水质。

——去除寄生虫卵和堵塞土壤孔隙的物质。

2、沉淀的类型根据沉淀物质的性质、絮凝性、浓度分为四类。

(1)自由沉淀(discrete settling)颗粒在沉淀过程中呈离散状态,其尺寸、质量、形状均不改变,下沉不受干扰。

非絮凝性颗粒、浓度低、颗粒间无絮凝。

颗粒独立完成沉淀过程,其物理性质(形状、大小、比重)不发生变化→颗粒沉速不变。

发生在沉砂池及沉淀池的前期沉淀过程(2)絮凝沉淀(flocculation settling)沉淀过程中,颗粒的尺寸、质量随深度增加而增大,沉速相应提高。

絮凝性颗粒、浓度较低、颗粒间发生絮凝;沉淀过程中其物理性质发生变化→颗粒沉速度加快;发生在水处理沉淀池、污水处理初沉池后期及二沉池的前期沉淀过程。

(3)成层沉淀(zone settling )又叫拥挤沉淀。

颗粒在水中的浓度较大,下沉过程中彼此干扰,形成清水与浑水的明显界面并逐渐下移。

絮凝性颗粒、浓度较高(矾花浓度≥ 2~3g/L 、活性污泥浓度≥1g/L )、颗粒间发生絮凝;沉淀过程中颗粒间相互干扰并形成网格状绒体共同下沉→形成清水浑水界面(界面的沉降);发生在沉淀池后期沉淀过程。

沉淀分离法

沉淀分离法

4.1.3形成晶核沉淀共沉淀分离法
有些痕量组分由于含量是在太少,但可把它 作为晶核使另一种物质聚集在其上,使晶核长大成沉 淀而一起沉淀下来。例如在含有痕量Ag、Au、Hg、 pd、pt的离子溶液中,应加入少量的亚碲酸钠Sncl2。 无机沉淀剂有强烈的吸附性但选择性差,而且极少数 可以经灼烧挥发出去,在大数情况下还需要将加入的 载体元素与衡量组分进一步分离。下表列出了一些 共沉淀的离子、化合物和其沉淀需要的载体。
2)NH3NH4Cl溶液 这一溶液体系实际上是一个缓冲体系,可 控制溶液的PH在8~10,金属离子极易与NH3配位, 碱金属和碱土金属留在溶液中,利用大量的铵根离 子作平衡离子,减少沉淀对其他离子的吸附。 NH4Cl电解质可以中和带负电的氢氧化物交替离子, 促使胶体沉淀凝聚 ,易于过滤。 3)ZnO悬浊液 当锌离子浓度改变时,PH值改变极其缓慢, pH值应控制在5.5~6.5,以便沉淀金属离子。除ZnO 以外,BaCO3 、MgO、CaCO3等的原理也一样, 但控制的范围不同。
化学分离法 chemical separation
组员:
xxx
第三章
沉淀分离法
本章内容: • 无机沉淀剂分离法 • 有机沉淀剂沉淀分离法 • 均相沉淀分离法 • 共沉淀分离法 • 新型沉淀分离法及其应用
沉淀分离法
沉淀分离法是以沉淀反应为基础、选 用合适的沉淀剂有选择性地沉淀某些离子, 使欲分离的组分与其它组分分离。 沉淀分离法包括常规沉淀分离法、均 相沉淀分离法和共沉淀分离法,他们之间也 有区别,前面两个主要应用在常量和微量组 分的分离,后者则主要应用在痕量组分的分 离富集。
4.2.1分子胶体共沉淀法
当胶体溶液难以聚集时加入有机共沉淀 剂促使其凝聚析出的方法称为胶体凝聚法。 4.2.2形成离子缔合物共沉淀分离 有机沉淀剂和某种配体形成沉淀作为载 体,被富集痕量元素离子与载体中的配体络合 而与带相反电荷的有机沉淀缔合成难溶盐,这 两者具有相似故两者生成共溶体而一起沉淀 下来. 形成缔合物的沉淀剂

沉淀分离法

沉淀分离法

沉淀分离法
沉淀分离法是根据溶度积原理、利用沉淀反应进行分离的方法。

在待分离试液中,加入适当的沉淀剂,在一定条件下,使预测组分沉淀出来,或者将干扰组分析出沉淀,以达到除去干扰的目的。

沉淀分离法包括沉淀、共沉淀两种方法。

基本简介:
沉淀法分离是最古老、经典的化学分离方法。

在分析化学中常常通过沉淀反应把欲测组分分离出来;或者把共存的组分沉淀下来,以消除它们对欲测组分的干扰。

虽然,沉淀分离需经过过滤、洗涤等手续,操作较繁琐费时;
沉淀法也称溶解度法。

其纯化生命大分子物质的基本原理是根据各种物质的结构差异性来改变溶液的某些性质,进而导致有效成分的溶解度发生变化。

1、盐析法
盐析法的根据是蛋白质在稀盐溶液中,溶解度会随盐浓度的增高而上升,但当盐浓度增高到一定数值时,使水活度降低,进而导致蛋白质分子表面电荷逐渐被中和,水化膜逐渐被破坏,最终引起蛋白质分子间互相凝聚并从溶液中析出。

2、有机溶剂沉淀法
有机溶剂能降低蛋白质溶解度的原因有二:其一、破坏溶质周围形成的水化层,从而降低溶质溶解度;其二、有机溶剂的介电常数比水小,导致溶剂的极性减小。

3、蛋白质沉淀剂
蛋白质沉淀剂则仅对一类或一种蛋白质沉淀起作用,常见的有碱性蛋白质、凝集素和重金属等。

原理:使蛋白质产生变性沉淀。

4、聚乙二醇沉淀作用
聚乙二醇和右旋糖酐硫酸钠等水溶性非离子型聚合物可使蛋白质发生沉淀作用。

5、选择性沉淀法
根据各种蛋白质在不同物理化学因子作用下稳定性不同的特点沉淀法分离是最古老,用适当的选择性沉淀法,即可使杂蛋白变性沉淀,而欲分离的有效成分则存在于溶液中,从而达到纯化有效成分的目的。

生化分离技术 第四章 沉淀技术

生化分离技术 第四章 沉淀技术

第二节 蛋白质沉淀的基本方法 及沉淀技术的应用
2.有机溶剂沉淀法
(1)基本原理 有机溶剂对于许多蛋白质(酶),核酸,多糖和小 分子生化物质都能发生沉淀作用,是较早使用的沉淀方法之一.其沉淀 作用的原理主要是降低水溶液的介电常数,溶剂的极性与其介电常数密 切相关,极性越大,介电常数越大,如20℃时水的介电常数为80,而乙 醇和丙酮的介电常数分别是24和21.4,因而向溶液中加入有机溶剂能降 低溶液的介电常数,减小溶剂的极性,从而削弱了溶剂分子与蛋白质分 子间的相互作用力,增加了蛋白质分子间的相互作用,导致蛋白质溶解 度降低而沉淀.溶液介电常数的减少就意味着溶质分子异性电荷库仑引 力的增加,使带电溶质分子更易互相吸引而凝集,从而发生沉淀.另一 方面,由于使用的有机溶剂与水互溶,它们在溶解于水的同时从蛋白质 分子周围的水化层中夺走了水分子,破坏了蛋白质分子的水膜,因而发 生沉淀作用.
第一节 蛋白质沉淀的基本原理
沉淀剂的性质和浓度,加入蛋白质溶液的方式,反应器 的几何形状和水力学特性都会影响沉淀过程的动力学和聚集 体的数量与大小.沉淀剂的加入可快可慢,可以溶液形式也 可以固体形式加入(如硫酸铵).在搅拌式反应器或管式反 应器或活塞式流动反应器中,它们的混合情况各不相同,因 此沉淀剂和蛋白质溶液之间的接触状况在这些反应器中很不 相同,得到的絮体或聚集体的性质也不相同. 搅拌强度在成核阶段是一个非常重要的因素,可以通过 混合速率来控制初始微粒的数量和大小.可以假定:初始微 粒是在非常小的液体穴内形成的(湍动的涡流),在此穴中 沉淀剂扩散很快.如果脱稳作用快于涡流存在的时间,则沉 淀物中所含的蛋白质多少和微粒的大小可以用涡流的大小和 蛋白质的含量(蛋白质浓度)来计算.
第二节 蛋白质沉淀的基本方法 及沉淀技术的应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体:有规则 无定形沉淀:无规则
条件缓慢变化时,溶质分子有足够时间排列, 有利于结晶形成;
条件变化剧烈,强迫快速析出,溶质分子来不 及排列就析出,形成无定形沉淀。
分 结晶法:高度的选择性(原因:只有同类分子

或离子才能排列成晶体)。
效 沉淀法:浓缩与分离,但所得的沉淀物聚集多

种物质,或含有盐类,或包裹着溶剂。
第四章沉淀分离法
(二)无机盐的选择
在蛋白质盐析中,常用的盐析剂有(NH4)2SO4,
Na2SO4, MgSO4,NaH2PO4,NaCl, Na3PO4,
K3PO4。 廉价
(NH4)2SO4 原因
在水中溶解度大,且溶解度随温度变 化小,低温下仍具有较大的溶解度
对大多数蛋白质的活力无损害
第四章沉淀分离法
常用盐析剂在水中的溶解度(g/100ml水)
中性盐
温度(oC) 0 20 40 60 80 100
(NH4)2SO4 70.6 75.4 81.0 88.0 95.3 103
Na2SO4 4.9 18.9 48.3 45.3 43.3 42.2
MgSO4
-- 34.5 44.4 54.6 63.6 70.8
第四章沉淀分离法
第四章 沉淀分离法
第四章沉淀分离法
沉淀法: 利用某种沉淀剂或改变条件,使所需提取的 物质或杂质在溶液中的溶解度降低而形成无定 形固体沉淀的过程。 具有浓缩和分离的双重作用。 在蛋白质、酶、多肽、核酸和其他细胞组分 的回收和分离中应用的很多。
第四章沉淀分离法
盐析沉淀法 有机溶剂沉淀 等电点沉淀法 成盐沉淀法 高分子聚合物沉淀 选择性变性沉淀法
蛋白质周围的水分子有序排列,在表面 形成水化膜,这一层能保护蛋白质粒子 避免因碰撞而聚沉。
第四章沉淀分离法
当向蛋白质溶液中加入中性盐时: 低盐--盐溶(低盐情况下,随着中性盐离子强度的 增加,蛋白质溶解度增大)
高盐--盐析(高盐浓度时,蛋白质溶解度随之减小)
盐离子部分中和蛋白 质的电性,使分子间 排斥作用减弱
第四章沉淀分离法
无机盐可按两种方式加入溶液中: 直接加入固体(NH4)2SO4粉末—工业生产
(分批加入,充分搅拌)
加入(NH4)2SO4饱和溶液—实验室和小规模生产
(防止溶液局部过浓,但加量较多时溶液会被稀释)
第四章沉淀分离法
(三)影响盐析的各种因素
无机盐的加入量 蛋白质的浓度 温度 pH 操作方式
第四章沉淀分离法
一、盐析沉淀法
盐析法:
在高浓度中性盐存在下,欲分离物质在中性 盐水溶液中的溶解度降低而产生沉淀。
早在19世纪盐析法就被用于从血液中分离蛋 白质,目前该方法仍广泛用来回收或分离蛋白 质(酶)等生物大分子物质。
第四章沉淀分离法
(一)基本原理
蛋白质的溶解特性取决于其组成、构象、周 围环境的物理化学性质以及溶剂的可利用度。
这些性质就本质而言是水分子间的氢键和蛋白 质表面所暴露出的N、O原子的相互作用,所以 易受溶液温度、pH值、介电常数和离子强度等 参数的影响。
第四章沉淀分离法
蛋白质在自然环境中通常是可溶的, 表面:大部分是亲水基团 内部:大部分是疏水基团
蛋白质呈稳定 的分散状态
两性物质,一定pH下表面带有一定的 电荷,静电斥力作用使分子间相互排斥
第四章沉淀分离法
1.无机盐加入量的影响
2.5 蛋白质溶解度 2.0
1.5 lgS 1.0
0.5 0
-0.5
-1.0 -1.5
β S0
盐析
1 234 56 μ(离子强度)
第四章沉淀分离法
蛋白质种类不同,盐析所用的无机盐量也不同
0.50
蛋白质溶解度
0 lgS
-0.50 -1.00
0 2 4 6 8 10 μ(离子强度)
NaH2PO4 1.6 7.8 54.1 82.6 93.8 101
第四章沉淀分离法
盐析效果:阴离子 > 阳离子 尤其以高价阴离子更为明显。 常见阴离子的盐析作用顺序:
PO43- > SO42- > CH3COO > Cl > NO3 > ClO4 > I > SCN
阳离子对盐析效果的影响:
Al3+ > H+ > Ba2+ > Sr2+ > Ca2+ > Cs+ > Rb+ > NH4+ > K+ > Na+ > Li+
中性盐的亲水性比蛋白质大, 盐离子在水中发生水化作用 从而使蛋白质脱去水化膜, 暴露出疏水区域
第四章沉淀分离法
+ +
+ + ++
++ + ++
H+ OH-
_+
+_ +
+ _
__ +
__ _
__
_
_
_ _
pH<pI,带正电, 有水膜,是稳定 的亲水胶体
中性盐 破坏水膜
pH=pI时, 有水膜, 是不稳定的亲水 胶体
不同蛋白质溶解度与离子强度的关系
第四章沉淀分离法
对于特定的蛋白质,一定操作条件下产生沉 淀时的无机盐浓度范围都是一定的,即具有一定 的蛋白质盐析分布曲线。
40
蛋白质溶解度
30
lgS 20
C0
10
0 20 30 40 50 60 70 P—第不四章同沉淀分(离N法H4)2SO4 饱和度
蛋白质沉淀的速度可用 - —dS 对盐饱和度(P)
中性盐 破坏水膜
pH>pI,带负电, 有水膜,是稳定 的亲水胶体
中性盐 破坏水膜
+ +
+
+
中性盐
+ + 中和电荷
+ + + ++ SO42-
_+
+_ +
+ __ _+
中性盐 中和电荷
_ _
_
__
NH4+ _
或Na+
_
_ _
蛋白质沉淀
蛋白质的第盐四章析沉淀机分离法制示意图
蛋白质在水中的溶解度不仅与中性盐离子的浓度 有关,还与离子所带电荷数有关,高价离子影响更 显著。
作图来表示:
dP
8 – d—S 6
固相析出分离技术
1.概念: 通过加入某种试剂或改变溶液条件,使生化产物以 固体形式从溶液中沉淀析出的分离纯化技术。
2.种类
结晶法:析出物为晶体 沉淀法:析出物为无定形固体
3.沉淀和结晶(晶体)的异同点 :在本质ቤተ መጻሕፍቲ ባይዱ同属一种过程(固相析出)
第四章沉淀分离法
区别:
构成单位(原子、离子或 分子)的排列方式不同
通常用离子强度表示对盐析的影响。
第四章沉淀分离法
蛋白质溶解度
2.5 2.0
1.5 lgS 1.0
0.5
起始蛋白
0
浓度
-0.5
-1.0
-1.5
β
碳氧血红蛋白的lgS
与(NH4)2SO4离子强
盐溶 度μ的关系
S0
盐析
1 234 56 μ(离子强度)
盐析区: lgS = β - Ks μ
蛋白质溶解度 常数 盐析常数 盐离子强度
相关文档
最新文档