二次函数根的分布(一).ppt

合集下载

高中高考数学:二次函数根的分布

高中高考数学:二次函数根的分布

2
分析:①由 f (−3) ⋅ f (0) < 0 ,即 (14m + 15)( m + 3) < 0 ,得出 −3 < m < − 15 ;
14
②由 ∆ = 0 即16m
2
− 4 ( 2m + 6 ) = 0 得出 m = −1 或 m =
3 , 2
当 m = −1 时,根 x = −2 ∈ ( −3, 0 ) ,即 m = −1 满足题意; 当 m = 3 时,根 x = 3 ∉ ( −3, 0 ) ,故 m = 3 不满足题意;
2
所以 mx − ( m + 2 ) x + 2 = ( x − 1)( mx − 2 ) ,另一根为 2 ,由1 < 2 < 3 得 2 < m < 2 即为所求; m m 3
2
方程有且只有一根,且这个根在区间 (m, n ) 内,即 ∆ = 0 ,此时由 ∆ = 0 可以求出参数的值,然后再将参数的 值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数. 如:已知方程 x − 4mx + 2m + 6 = 0 有且一根在区间 ( −3, 0 ) 内,求 m 的取值范围.
两根都在 (m, n ) 内
两根有且仅有一根在 (m, n ) 一根在 (m, n ) 内,另一根在 内,另一根在 [m, n] 之外
m n x
( p, q ) 内, m < n < p < q
n
p q
m
x
m
n
x
得出的结论
∆>0 f (m) > 0 f (n) > 0 b m < − <n 2a

二次函数根的分布

二次函数根的分布

二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表〔每种情况对应的均是充要条件〕表一:〔两根与0的大小比较即根的正负情况〕分布情况两个负根即两根都小于0()120,0x x << 两个正根即两根都大于0()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象〔>a 〕得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()00<f大致图象〔<a 〕得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()00>f综合结论〔不讨论a〕()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()00<⋅f a分布情况两根都小于k 即 k x k x <<21,两根都大于k 即 k x k x >>21,一个根小于k ,一个大于k 即21x k x <<大致图象〔>a 〕得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()0<k f大致图象〔<a 〕得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()0>k f综合结论〔不讨论a〕()020b k a a f k ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()020b k a a f k ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()0<⋅k f akkk分布情况两根都在()nm,内两根有且仅有一根在()nm,内〔图象有两种情况,只画了一种〕一根在()nm,内,另一根在()qp,内,qpnm<<<大致图象〔0 > a〕得出的结论()()2f mf nbm na∆>⎧⎪>⎪⎪>⎨⎪⎪<-<⎪⎩()()0<⋅nfmf()()()()f mf nf pf q⎧>⎪<⎪⎨<⎪⎪>⎩或()()()()f m f nf p f q<⎧⎪⎨<⎪⎩大致图象〔0 < a〕得出的结论()()2f mf nbm na∆>⎧⎪<⎪⎪<⎨⎪⎪<-<⎪⎩()()0<⋅nfmf()()()()f mf nf pf q⎧<⎪>⎪⎨>⎪⎪<⎩或()()()()f m f nf p f q<⎧⎪⎨<⎪⎩综合结论〔不讨论a 〕——————()()0<⋅nfmf()()()()⎪⎩⎪⎨⎧<<qfpfnfmf根在区间上的分布还有一种情况:两根分别在区间()外,即在区间两侧12,〔图形分别如下〕需满足的条件是〔1〕0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; 〔2〕0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明:〔1〕两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 假设()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。

人教版高中数学课件-二次函数根的分布共25页PPT

人教版高中数学课件-二次函数根的分布共25页PPT
45、自己的饭量自己知道。——苏联
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
人教版高中数学课件-二次 函数根的分布
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。

一元二次方程的根的分布PPT教学课件

一元二次方程的根的分布PPT教学课件

y
y
y
a
0
cb
x 0 ac
b
x 0a
bx
2020/12/09
3
例(1)方程x2+(m-3)x+m=0有 两个正根,求m的取值范围;
(2)方程x2+(m-3)x+m=0有 两个负根,求m的取值范围;
(3)方程x2+(m-3)x+m=0有 一正一负根,求m的取值范围;
(4)方程x2+(m-3)x+m=0有两个
一元二次方程的根的分布Leabharlann 2020/12/091
对于函数y=f(x),我们把使f(x)=0的实
数x叫做函数y=f(x)的零点。在坐标系中
y=f(x)的图像与x轴的公共点是(x, 0)点.
方程f(x)=0有实数根
函数y=f(x)有零点
函数y=f(x)的图象与x轴有交点
2020/12/09
2
如果函数y=f(x)在区间[a,b]上的图 象是连续不断的一条曲线,并且有 f(a)·f(b)<0,那么,函数y=f(x)在区间 (a,b) 内有零点。
(7)方程x2+(m-3)x+m=0的一根
大于-2小于0,另一根大于0小于4,
求m的取值范围;
2020/12/09
6
(8)方程x2+(m-3)x+m=0的两根 都在(0,2)内,求m的取值范围;
(9)方程x2+(m-3)x+m=0有两根 且仅有一根在(0,2)内,求m的取 值范围;
2020/12/09
根都小于1,求m的取值范围;
2020/12/09
4
1. 抛物线开口方向

二次函数图像解题——根的分布

二次函数图像解题——根的分布
2
其交点横坐标便是方程的解,由图知: k 4时, 无解; k = 4或k 3时,有两解; 4 k 3时有四个解; k 3时有三个解.
3
4
y
x
结论: 一元二次方程 ax2 bx c 0(a 0) 在区间上的
实根分布问题.
() 1 一元二次方程有且仅有一个实根属于(m, n)的 充要条件是: f (m) f (n) 0. b 2 4ac 0 a f ( m) 0 a f ( n) 0 m b n 2a
(6) x1,x2有且只有一个根在(k1 , k2)内
k1
k2
f (k1 ) f (k2 ) 0
k1
k2
0 或 b k1 k2 2a
k1
k2
f ( k1 ) 0 或 b k1 k2 k1 2a 2
k1
f ( k2 ) 0 或 k1 k2 b 2 2a k2 k2
(2) 一元二次方程两个实根都属于(m, n)的充要条件是:
(3) 一元二次方程两个实根分别在(m, n)两侧的
a f ( m) 0 充要条件是: a f ( n) 0 (4)一元二次方程两个实根分别在(m, n)同一侧的 充要条件是: 分两类: b 2 4ac 0 () 在(m, n)右侧 a f (n) 0 b n 注:前提 m,n 2a 不是方程(1) b 2 4ac 0 () 在(m, n)左侧 a f (m) 0 b m 2a
不等式组
2 x 变式题:m为何实数值时,关于x的方程 mx (3 m) 0
有两个大于1的根.

二次函数根的分布和最值

二次函数根的分布和最值

二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程ax2bx 0根的分布情况设方程ax2 bx 0 a = 0的不等两根为X i, X2且x i :::X2,相应的二次函数为f x =ax2■ bx ■ c = 0,方程的根即为二次函数图象与x轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)根在区间上的分布还有一种情况:两根分别在区间m,n夕卜,即在区间两侧为:::m,x2• n ,(图形分别如下)需满足的条件是对以上的根的分布表中一些特殊情况作说明: (1) 两根有且仅有一根在 m,n 内有以下特殊情况:1 若f m =0或f n =0,贝眦时f m|_f n :: 0不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间 m,n 内,从而可以求出参数的值。

如方 程 mx 2-m ・2x ・2=0在区间 1 , 3E 有一根,因为 f1=0 , 所以222mx 2 - m2x ^ x-1 mx-2,另一根为一,由13得 m ::: 2即为所求; mm 32 方程有且只有一根, 且这个根在区间 m,n 内,即丄=0,此时由厶=0可以求出参数的值, 然后 再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。

如方程x 2 -4 m x 2 m 6 = 0有且一根在区间-3,0内,求m 的取值范围。

分析:①由15f -3Lf 0 :: (即卩 14m 15 m 3 :: 0得出 -3 :: m ;②由• ; -0即 16m 2-4 2m 6;=0得 143 3出m~-1或m ,当m = -1时,根x=-2三i 3。

,即m=-1满足题意;当m 时,根2 23 15-3, 0,故m 不满足题意;综上分析,得出 -3:::m 或m=-1』 2 14根的分布练习题例1、已知二次方程 2m 1 x 2 -2mx ■ m -1 =0有一正根和一负根,求实数 m 的取值范围。

人教版高中数学课件:二次函数根的分布

人教版高中数学课件:二次函数根的分布

(x1-m)+(x2-m)>0.
(3)若x1<m<x2,则应有 f(m)<0,或 (x1-m)(x2-m)<0.
y
x1 O
m x 2 x
(4)若m<x1<x2<n,则应有 Δ=b2-4ac>0,
y
f(m)>0,
f(n)>0, m<-
b 2a
<n.
x1 m O
x2
n
x
(5)若x1<m<n<x2,则应有 f(m)<0,
ab 2
f(x)为二次函数,f(c+x)=f(c - x)
-1 a O
1
2b 3
ab
x
∴ f(2x)< f(3x)
若x=0, 则1<2x<3x x 2 ∴ f(2x)< f(3x) 若x=0,则1<2x<3x, 综上所得,f(2x)≤ f(3x)。
例3 已知二次函数f(x)=x2+bx+c,当x∈[-1,1]时,试 证: (1)当b<-2时,f(x)是递减函数; (2)当b<-2时,f(x)在定义域内至少存在一个x,使|f(x)|≥成 2 立。 b b
Δ=m2+4(m-1)≥0, m≥-2+ x1 x2 =
1 m 1
2 或m≤-2- 2
, 2 2
>0,
m m 1
m<1,
x1+x2=-
∴2
>0,
0<m<1.
2 2 -2.
2 -2≤m<1
由此得,实数m的范围是m≥ .
根的分布
x2>x1>m
x1<x2<m
x1<m<x2
m<x1<x2<n
函数图像 m x1 x2 x1 x2 m x1
有两相等实根x1 =x2=所有不等于- 的实数 空集

二次函数中根的分布问题

二次函数中根的分布问题

一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)k k k根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩; (2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。

如方程()2220mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m ,由213m<<得223m <<即为所求; 2︒ 方程有且只有一根,且这个根在区间()n m ,内,即0∆=,此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。

如方程24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。

分析:①由()()300f f -<即()()141530m m ++<得出15314m -<<-;②由0∆=即()2164260m m -+=得出1m =-或32m =,当1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m =时,根()33,0x =∉-,故32m =不满足题意;综上分析,得出15314m -<<-或1m =-例1、已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。

人教版必修一:3.1一元二次方程根的分布(共15张PPT)

人教版必修一:3.1一元二次方程根的分布(共15张PPT)

例:x2+(m-3)x+m=0 求m的范围
(6) 两个根都在(0 , 2)内
(m 3) 4m 0 3 m 2 0 2 f (0) m 0 f (2) 3m 2 0
2
2 m m 1 3
2019/1/10
例:x2+(m-3)x+m=0 求m的范围
(2)有两个负根
(m 3) 4m 0 3 m 0 m 0
2
m m 9
2019/1/10
一元二次方程ax2+bx+c=0 (a>0)的 根的分布
例:x2+(m-3)x+m=0 求m的范围
(3) 两个根都小于1
一元二次方程ax2+bx+c=0 (a>0)的 根的分布
一般情况
两个根都在(k1 .k2)内
y
两个根有且仅有 一个在(k1 .k 2 )内
x 1∈(m,n) x ∈ (p,q) 2k1k2x Nhomakorabeak1
k2
m
n p
q
小 结
0 b k2 k1 2a f (k1 ) 0 f (k 2 ) 0
例:x2+(m-3)x+m=0 求m的范围
(8) 一个根在(-2 ,0)内,另一个根在(1 ,3)内
f (2) m 10 0 f (0) m 0 f ( 1 ) 2 m 2 0 f (3) 4m 0
Ø
2019/1/10
一元二次方程ax2+bx+c=0 (a>0)的 根的分布
y

二次函数根的分布

二次函数根的分布

二次函数根的分布本文介绍了一元二次方程根的分布情况以及与二次函数在闭区间上的最值归纳。

设方程 $ax^2+bx+c$ 的不等两根为$x_1,x_2$,且 $x_1<x_2$,相应的二次函数为$f(x)=ax^2+bx+c$,方程的根即为二次函数图象与 $x$ 轴的交点。

根的分布情况可归纳为三种情况,每种情况对应的均是充要条件。

第一种情况是两个负根即两根都小于 $0$,或两个正根即两根都大于 $0$,或一个正根一负根即一个根小于 $0$,一个大于 $0$。

此时,当 $a>0$ 时,$f(x)$ 最小值为$\frac{\Delta}{4a}$,当 $a<0$ 时,$f(x)$ 最大值为$\frac{\Delta}{4a}$。

第二种情况是两根与 $k$ 的大小比较,即两根都小于 $k$,或两根都大于$k$,或一个根小于$k$,一个大于$k$。

此时,当 $a>0$ 时,$f(k)$ 最小值为 $a(k-x_1)(k-x_2)$,当 $a<0$ 时,$f(k)$ 最大值为 $a(k-x_1)(k-x_2)$。

第三种情况是根在区间上的分布,包括两根都在$(m,n)$ 内,一根在 $(m,n)$ 内,另一根在 $(p,q)$,或两根有且仅有一根在 $(m,n)$ 内。

此时,当 $a>0$ 时,$f(x)$ 最小值为 $f\left(\frac{x_1+x_2}{2}\right)$,当 $a<0$ 时,$f(x)$ 最大值为 $f\left(\frac{x_1+x_2}{2}\right)$。

经过观察得出,文章中存在大量格式错误和重复内容,需要进行整理和删减。

同时,需要对每段话进行简单的改写,以提高可读性。

根据图像,可以得出以下结论:1.当mf(n)且f(n)>b,则有f(m)*f(n)<2a;若有f(m)<f(n)且f(n)<b,则有f(m)*f(n)<2a;若有f(m)<f(n)<b,则有f(m)*f(n)<f(p)*f(q)。

二次函数根的分布

二次函数根的分布

二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程02=++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)分布情况两个负根即两根都小于0()120,0x x << 两个正根即两根都大于0()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象(>a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()00<f大致图象(<a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()00>f综合结论(不讨论a)()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()00<⋅f a分布情况两根都小于k 即k x k x <<21,两根都大于k 即 k x k x >>21,一个根小于k ,一个大于k 即21x k x <<大致图象(>a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩ ()0<k f大致图象(<a )得出的结论()020b k a f k ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()0>k f综合结论(不讨论a)()020b k a a f k ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()020b k a a f k ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩ ()0<⋅k f a分布情况两根都在()n m ,内两根有且仅有一根在()n m ,内(图象有两种情况,只画了一种) 一根在()n m ,内,另一根在()q p ,内,q p n m <<<大致图象(>a )kkk得出的结论()()0002f m f n b m na ∆>⎧⎪>⎪⎪>⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000f m f n f p f q ⎧>⎪<⎪⎨<⎪⎪>⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩ 大致图象(<a )得出的结论()()0002f m f n b m na ∆>⎧⎪<⎪⎪<⎨⎪⎪<-<⎪⎩()()0<⋅n f m f()()()()0000fm f n f p f q ⎧<⎪>⎪⎨>⎪⎪<⎩或()()()()00f m f n f p f q <⎧⎪⎨<⎪⎩综合结论(不讨论a)——————()()0<⋅n f m f()()()()⎪⎩⎪⎨⎧<<00q f p f n f m f 根在区间上的分布还有一种情况:两根分别在区间()外,即在区间两侧12,(图形分别如下)需满足的条件是(1)0a >时,()()00f m f n <⎧⎪⎨<⎪⎩;(2)0a <时,()()0f m f n >⎧⎪⎨>⎪⎩对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况:1︒ 若()0f m =或()0f n =,则此时()()0f m f n <不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f ( 1) m 3 0 2 ( m 1) 4 0 ( m 1) 1 2
2.已知方程x +2mx+2m+1=0 两根均在(0,1) 求m的取值范围 解:令 f x x m 2x 2m 1 ,只需
2
2
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线, 并且有f(a) · f(b)<0,那么,函数y=f(x)在区间(a,b) 内有零点. 即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
y a O c b
y c O a b x
x
实根分布探究
【探究一】方程 ax bx c 0(a 0)两根均在(0, )
(第一课时)
学习目标
根据一元二次方程根的分布情况,确定部分类 型中参数的取值范围。
复习
函数零点的定义:
对于函数y=f(x),我们把使f(x)=0的实数x叫做函数 y=f(x)的零点。 等价关系
方程f(x)=0有实数根 函数y=f(x)的图象与x轴有交点 函数y=f(x)有零点
复习
零点存在判定定理
思考:三个条件能不能缺少任何一个呢?
实根分布探究
推广1:一元二次方程ax2+bx+c=0(a>0)两根均为大于k, 或两根均在 (k , ) 内.
【分析】令f ( x) ax bx c
2
y
f k) 0 ( f ( b ) 0 2a b 2a k
2
y

( ( f k2) 0 f k2) 0 b 0 f ( ) 0 2a b k1 b k2 k1 k2
2a 2a
( f k1) 0
( f k1) 0
k1
k2
x
b x 2a
实根分布探究
2 ax bx c 0的实根分布问题, 一 涉及方程
2
内,系数应满足什么条件。
【分析】令f ( x) ax bx c
2
y
f 0) 0 ( ( f 0) 0 b 2 f ( ) 0 b 4ac 0 2a b b 0 0 2a a
k
y x
k
y x
k1 k2
x
条件中 换为 f
0均可
充 要 条 件
0 b k 2a f (k ) 0
0 b k 2a f (k ) 0
0 b k1 k2 2a f (k1 ) 0, f (k2 ) 0
2
【分析】令f ( x) ax bx c
2
y
f k) 0 ( f k) 0 ( f ( b ) 0 b2 4ac 0 2a b b k k 2a 2a
x1
x2 k
x
x
b 2a
实根分布探究
探究二方程ax2+bx+c=0(a>0)两根均根均在(k1,k2)内. 【分析】令f ( x) ax bx c
b 0 2a
课后思考
1.方程 ax bx c 0(a 0)一根为正,一根为负,系 数应满足什么条件。
2
2.方程 ax2 bx c 0(a 0)一根大于k,另一根小于k, 系数应满足什么条件。
3.方程 ax bx c 0(a 0)仅有一根在区间(k1,k2) 内,系数应满足什么条件。
( f k) 0 b 2 4ac 0 b k 2a
k
x1
x2
x
b x 2a
思考:方程ax2+bx+c=0(a>0)两根均为小于k。
实根分布探究
推广2:一元二次方程ax2+bx+c=0(a>0)两根均为小于k, 或两根均在 , k 内
f ( 0) 0 f (1) 0 0 0 m 1
归纳小结
一元二次方程 ax 2 bx c 0(a 0) 根的分布情况(一)
根 的 分 布
x1 x2 k
k x1 x2
x1 , x2 (k1 , k2 )


y
图 像
般情况下要从四个方面考虑:
f(x) 图象的开口方向;
方程 f(x)=0的判别式
y
;
x1 x2
f(x) 图象的对称轴的位置;
x
区间端点处函数值的符号.
课堂练习
1.如果二次方程x2-(m+1)x+1=0的两根均大于-1, 求m 的取值范围。
解:令f ( x) x 2 (m 1) x 1, 只需
相关文档
最新文档