概率论答案-李贤平版-第二章

合集下载

概率论基础(第2版)李贤平 全部习题解答

概率论基础(第2版)李贤平 全部习题解答

即得 Cn 2Cn 3Cn nCn n2
1 2 3 n
n 1
(2)在上式中令 x=-1 即得 Cn 2Cn 3Cn (1)
1 2 3 n 1 n nCn 0
(3)要原式有意义,必须 0 r a 。由于 Cab Cab , Cb Cb
m
~m
这个公式的证明思路是,把 n 个不同的元素编号为1,2, ,n,再把重复组合的每一组中 数从小到大排列,每个数依次加上 0,1,, m 1 ,则这一组数就变成了从 1,2,, n m 1 共
m
m

3 10 7 6 15 9 207 . 25 25 25 25 25 25 625
14.由盛有号码 1,2, ,N 的球的箱子中有放回地摸了 n 次球,依次记下其号码,试求这些 号码按严格上升次序排列的概率。 解:若取出的号码是按严格上升次序排列,则 n 个号码必然全不相同, n N 。N 个不同号 码可产生 n ! 种不同的排列,其中只有一个是按严格上升次序的排列,也就是说,一种组 合对应一种严格上升排列, 所以共有 C N 种按严格上升次序的排列。 总可能场合数为 N n , 故题中欲求的概率为 P
解: (1) ABC ={抽到的是男同学,又不爱唱歌,又不是运动员};
ABC ={抽到的是男同学,又爱唱歌,又是运动员}。
(2) ABC A BC A ,当男同学都不爱唱歌且是运动员时成立。 (3)当不是运动员的学生必是不爱唱歌的时, C B 成立。 (4)A=B 及 A C A B C ,当男学生的全体也就是不爱唱歌的学生全体,也就不是 运动员的学生全体时成立。也可表述为:当男学生不爱唱歌且不爱唱歌的一定是男学生,并 且男学生不是运动员且不是运动员的是男学生时成立。 5.用摸球模型造一例,指出样本空间及各种事件运算。 解: 设袋中有三个球,编号为 1,2,3,每次摸一个球。样本空间共有 3 个样本点(1) , ( 2) , 1,2, B 1,3, C 3, (3)设 A 则 A {3}, A B 1,2,3, A B 1 , A B {2},

概率论基础-李贤平-试题+答案-期末复习

概率论基础-李贤平-试题+答案-期末复习

第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C +C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB I =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P A B P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B =I B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -=U B .()A B B A -⊃UC .()A B B A -⊂UD .()A B B A -=U8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC U U 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=,P (B )=,P (C )=,则P A B C -=U ()( ).A .B .C .D .17掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。

概率论答案-李贤平版-第二章

概率论答案-李贤平版-第二章

第二章 条件概率与统计独立性1、字母M ,A ,X ,A ,M 分别写在一张卡片上,充分混合后重新排列,问正好得到顺序MAAM 的概率是多少?2、有三个孩子的家庭中,已知有一个是女孩,求至少有一个男孩的概率。

3、若M 件产品中包含m 件废品,今在其中任取两件,求:(1)已知取出的两件中有一件是废品的条件下,另一件也是废品的条件概率;(2)已知两件中有一件不是废品的条件下,另一件是废品的条件概率;(3)取出的两件中至少有一件是废品的概率。

4、袋中有a 只黑球,b 吸白球,甲乙丙三人依次从袋中取出一球(取后来放回),试分别求出三人各自取得白球的概率(3≥b )。

5、从{0,1,2,…,9}中随机地取出两个数字,求其和大于10的概率。

6、甲袋中有a 只白球,b 只黑球,乙袋中有α吸白球,β吸黑球,某人从甲袋中任出两球投入乙袋,然后在乙袋中任取两球,问最后取出的两球全为白球的概率是多少?7、设的N 个袋子,每个袋子中将有a 只黑球,b 只白球,从第一袋中取出一球放入第二袋中,然后从第二袋中取出一球放入第三袋中,如此下去,问从最后一个袋子中取出黑球的概率是多少?8、投硬币n 回,第一回出正面的概率为c ,第二回后每次出现与前一次相同表面的概率为p ,求第n 回时出正面的概率,并讨论当∞→n 时的情况。

9、甲乙两袋各将一只白球一只黑球,从两袋中各取出一球相交换放入另一袋中,这样进行了若干次。

以pn ,qn ,rn 分别记在第n 次交换后甲袋中将包含两只白球,一只白球一只黑球,两只黑球的概率。

试导出pn+1,qn+1,rn+1用pn ,qn ,rn 表出的关系式,利用它们求pn+1,qn+1,rn+1,并讨论当∞→n 时的情况。

10、设一个家庭中有n 个小孩的概率为 ⎪⎩⎪⎨⎧=--≥=,0,11,1,n pap n ap p n n 这里p p a p /)1(0,10-<<<<。

若认为生一个小孩为男孩可女孩是等可能的,求证一个家庭有)1(≥k k 个男孩的概率为1)2/(2+-k k p ap 。

概率论习题 李贤平版

概率论习题 李贤平版

第一章 事件与概率1、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A = ;(3)C AB ⊂;(4)BC A ⊂.2、试把n A A A 21表示成n 个两两互不相容事件的和.3、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。

4、证明下列等式:(1)1321232-=++++n nnn n n n nC C C C ;(2)0)1(321321=-+-+--nn n n n n nC C C C ;(3)∑-=-++=r a k r a b a k b r k a C C C.5、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。

6、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。

7、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。

8、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。

9、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。

现从两袋中各取一球,求两球颜色相同的概率。

10、由盛有号码 ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。

11、任意从数列 ,2,1,N 中不放回地取出n 个数并按大小排列成:n m x x x x <<<<< 21,试求M x m =的概率,这里N M ≤≤1。

李贤平-概率论基础答案

李贤平-概率论基础答案

<M
的数,哪
k2
次取到>M
的数,这共有
C k1 n
×k2 n−k1
种不同的固定方式,因此
k1
次取到<M

数,
k2 次取到>M
的数的可能取法有
C k1 n
×k2 n−k1
(M
− 1) k1
(N

M
)k2
种。
设 B 表示事件“把取出的 n 个数从小到大重新排列后第 m 个数等于 M“,则 B 出现就
是 k1 次取到<M 的数, k2 次取到>M 的数的数,0 ≤ k1 ≤ m −1,0 ≤ k2 ≤ n − m ,因此 B 包含
(6) E1 中还有这样的点 ω :12345,它仅属于 E1 ,而不再属于其它 Ei (i ≠ 1,0) 。诸 Ei 之间的
关系用文图表示(如图)。
8、解:(1)因为 (1+ x)n = 1 + Cn1 x + Cn2 x 2 +
+
nC
n n
x
n
,两边对
x
求导得
n(1 + x)n−1 = Cn1 + 2Cn2 x + + nCnn x n−1 ,在其中令 x=1 即得所欲证。
就不是运动员的学生全体时成立。也可表述为:当男学生不爱唱歌且不爱唱歌的一定是男学 生,并且男学生不是运动员且不是运动员的是男学生时成立。
5、解:设袋中有三个球,编号为 1,2,3,每次摸一个球。样本空间共有 3 个样本点(1),
(2),(3)。设 A = {1,2}, B = {1,3}, C = {3},则 A = {3}, A ∪ B = {1,2,3}, A ∩ B = {1}, A − B = {2},

概率论基础(第三版)-李贤平-试题+答案-期末复习

概率论基础(第三版)-李贤平-试题+答案-期末复习

第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C +C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB I =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P A B P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B =I B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -=U B .()A B B A -⊃UC .()A B B A -⊂UD .()A B B A -=U8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC U U 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则P A B C -=U ()( ).A .0.5B .0.1C .0.44D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。

李贤平《概率论基础》第三版课后答案

李贤平《概率论基础》第三版课后答案
(3)p=P{第一卷出现在旁边}+P{第五卷出现旁边}-P{第一卷及第五卷出现在旁
边}= 2 + 2 − 1 = 7 . 5 5 10 10 (4)这里事件是(3)中事件的对立事件,所以 P = 1− 7 /10 = 3/10 (5)第三卷居中,其余四卷在剩下四个位置上可任意排,所以 P = 1× 4 !/ 5 != 1/ 5
1
A + C = {1,2,3}。
6、解:(1){至少发生一个}= A ∪ B ∪ C ∪ D . (2){恰发生两个}= ABC D + ACBD + ADBC + BC AD + CD AB + BDAC .
(3){A,B 都发生而 C,D 都不发生}= ABC D . (4){都不发生}= ABC D = A ∪ B ∪ C ∪ D .
4、解:(1) ABC ={抽到的是男同学,又不爱唱歌,又不是运动员};
ABC ={抽到的是男同学,又爱唱歌,又是运动员}。 (2) ABC = A ⇒ BC ⊃ A ,当男同学都不爱唱歌且是运动员时成立。 (3)当不是运动员的学生必是不爱唱歌的时, C ⊂ B 成立。
(4)A=B 及 A = C ⇒ A = B = C ,当男学生的全体也就是不爱唱歌的学生全体,也
(2)在上式中令 x=-1 即得所欲证。
(3)要原式有意义,必须
0

r

a
。由于
C a−r a+b
=
C b+r a+b
,
Cbk
=
C b−k b
,此题即等于
a
∑ 要证
C C k +r b−k ab
=
C b+r a+b

概率论解答(李贤平)

概率论解答(李贤平)

第一章 事件与概率1、解:(1) P {只订购A 的}=P{A(B ∪C)}=P(A)-{P(AB)+P(AC)-P(ABC)}=0.45-0.1.-0.08+0.03=0.30. (2) P {只订购A 及B 的}=P{AB}-C }=P(AB)-P(ABC)=0.10-0.03=0.07 (3) P {只订购A 的}=0.30,P {只订购B 的}=P{B-(A ∪C)}=0.35-(0.10+0.05-0.03)=0.23. P {只订购C 的}=P{C-(A ∪B )}=0.30-(0.05+0.08-0.03)=0.20.∴P {只订购一种报纸的}=P{只订购A}+P{只订购B}+P{只订购C}=0.30+0.23+0.20=0.73. (4) P{正好订购两种报纸的}=P{(AB-C) ∪(AC-B) ∪(BC-A)}=P(AB-ABC)+P(AC-ABC)+P(BC-ABC) =(0.1-0.03)+(0.08-0.03)+.(0.05-0.03)=0.07+0.05+0.02=0.14.(5) P {至少订购一种报纸的}= P {只订一种的}+ P {恰订两种的}+ P {恰订三种的} =0.73+0.14+0.03=0.90. (6) P {不订任何报纸的}=1-0.90=0.10.2、解:(1)ABC A C A B A ABC A BC A ⊃⊃⇒⊂⊃⇒=且显然)(,若A 发生,则B 与C 必同时发生。

(2)A C ⊂⊂⇒⊂⇒=且A B A C B A C B A ,B 发生或C 发生,均导致A 发生。

(3)A C AB ⇒⊂与B 同时发生必导致C 发生。

(4)C B A BC A ⊂⇒⊂,A 发生,则B 与C 至少有一不发生。

3、解:n A A A 21)()(11121----++-+=n n A A A A A A (或)=121121-+++n n A A A A A A A .4、解:(1)C AB ={抽到的是男同学,又不爱唱歌,又不是运动员}; C B A ={抽到的是男同学,又爱唱歌,又是运动员}。

概率论基础第2版李贤平全部习题解答.pdf

概率论基础第2版李贤平全部习题解答.pdf
解:
A1 A2 An A1 ( A2 A1) ( An A1 An1)
(或)= A1 A2 A1 An A1 A2 An1 .
4.在某班学生中任选一个同学以事件 A 表示选到的是男同学,事件 B 表示选到的人不喜欢
唱歌,事件 C 表示选到的人是运动员。(1)表述 ABC 及 ABC ;(2)什么条件下成立
同时发生。
(2) A B C A B C A B A且C A ,B 发生或 C 发生,均导致 A 发生。
(3) AB C A与 B 同时发生必导致 C 发生。 (4) A BC A B C ,A 发生,则 B 与 C 至少有一不发生。
3.试把 A1 A2 An 表示成 n 个两两互不相容事件的和.
ABC A;(3) 何时成立 C B ;(4)何时同时成立 A=B 及 A C
解:
(1) ABC ={抽到的是男同学,又不爱唱歌,又不是运动员};
ABC ={抽到的是男同学,又爱唱歌,又是运动员}。 (2) ABC A BC A ,当男同学都不爱唱歌且是运动员时成立。 (3)当不是运动员的学生必是不爱唱歌的时, C B 成立。
0.73 0.14 0.03 0.90 . (6)P{不订任何报纸的} 1 0.90 0.10 .
2.若 A,B,C 是随机事件,说明下列关系式的概率意义:(1) ABC A ;(2) A B C A ;
(3) AB C ;(4) A BC .
解:
(1)ABC A BC A(ABC A显然) B A且C A ,若 A 发生,则 B 与 C 必
概率论基础(第 2 版)李贤平 全部习题解答
第一章 事件与概率
1.在某城市中,公发行三种报纸 A,B,C.在这个城市的居民中,订阅 A 的占 45%,订阅 B 的占 35%,订阅 C 的占 30%,同时订阅 A 及 B 的占 10%,同时订阅 A 及 C 的占 8%,同时订阅 B 及 C 的占 5%,同时订阅 A,B,C 的占 3%.试求下列百分率:(1)只订阅 A 的;(2) 只订阅 A 及 B 的;(3)只订阅一种报纸的;(4)正好订阅两种报纸的;(5)至少订阅一种报纸的;(6) 不订阅报纸的。 解:

概率论基础(复旦版)复旦李贤平

概率论基础(复旦版)复旦李贤平

则这n个事件总体相互独立,简称相互独立。 则这 个事件总体相互独立,简称相互独立。 个事件总体相互独立
推论: 推论
设n个事件 A, A2,L, An 是相互独 个事件 1
立的,则其中任意 个事件 立的,则其中任意m个事件 A i A i L A i 也 1 2 m 是相互独立的,其中 是相互独立的,其中1≤m≤n,i1, i2 …im是 , 1,2, …,n的一个选排列. …,n的一个选排列 的一个选排列. 注:1. 对于对立事件也成立 称无穷多个事件相互独立, 2. 称无穷多个事件相互独立,如果其中 任意有限多个事件都相互独立。 任意有限多个事件都相互独立。

从而A, 不相互独立。 从而 B, C不相互独立。 不相互独立
若一个均匀的正八面体,其第1,2,3,4面 例 若一个均匀的正八面体,其第 面 染成红色, 面染成白色, 染成红色,第1,2,3,5面染成白色,第1,6,7,8 面染成白色 面染成黑色,现在以A, 面染成黑色,现在以 B, C分别表示投一次 分别表示投一次 正八面体出现红、白、黑颜色朝下的事件, 正八面体出现红 黑颜色朝下的事件, 则 4 1 P ( A) = P ( B ) = P (C ) = = 8 2 1 P ( ABC ) = = P ( A) P ( B ) P (C ) 8 3 1 但 P ( AB ) = ≠ = P ( A) P ( B ) 8 4
事件的独立性有 只黑球, 只白 例1:袋中事件的独立性有a只黑球,b只白 :袋中事件的独立性 只黑球 每次从中取出一球,取后放回. 球.每次从中取出一球,取后放回. 令: A={ 第一次取出白球 }, , B={ 第二次取出白球 }. 在已知第一次摸得黑球的条件下, 求:1. 在已知第一次摸得黑球的条件下, 第二次摸出黑球的概率。 第二次摸出黑球的概率。 2. 第二次摸出黑球的概率。 第二次摸出黑球的概率。

(完整版)概率论第二章答案

(完整版)概率论第二章答案

习题2-21. 设A 为任一随机事件, 且P (A )=p (0<p <1). 定义随机变量1,,0,A X A =⎧⎨⎩发生不发生.写出随机变量X 的分布律.解 P {X =1}=p , P {X =0}=1-p .或者X 0 1 P 1-pp2. 已知随机变量X 只能取-1,0,1,2四个值,且取这四个值的相应概率依次为. 试确定常数c , 并计算条件概率.cc c c 167,85,43,21}0|1{≠<X X P 解 由离散型随机变量的分布律的性质知,13571,24816c c c c+++=所以.3716c=所求概率为P {X <1| X }=.0≠258167852121}0{}1{=++=≠-=cc c c X P X P 3. 设随机变量X 服从参数为2, p 的二项分布, 随机变量Y 服从参数为3, p 的二项分布, 若≥, 求≥.{P X 51}9={P Y 1}解 注意p{x=k}=,由题设≥kk n k n C p q -5{9P X =21}1{0}1,P X q =-==-故. 从而213qp =-=≥{P Y 32191}1{0}1(.327P Y =-==-=4. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为, 求每次试验成功的概率.1927解设每次试验成功的概率为p , 由题意知至少成功一次的概率是,那么一次都2719没有成功的概率是. 即, 故 =.278278)1(3=-p p 315. 若X 服从参数为的泊松分布, 且, 求参数.λ{1}{3}P X P X ===λ解 由泊松分布的分布律可知.6=λ6. 一袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表示取出的3只球中的最大号码, 写出随机变量X 的分布律.解 从1,2,3,4,5中随机取3个,以X 表示3个数中的最大值,X 的可能取值是3,4,5,在5个数中取3个共有种取法.1035=C {X =3}表示取出的3个数以3为最大值,P{X =3}==;2235C C 101{X =4}表示取出的3个数以4为最大值,P{X =4}=;1033523=C C {X =5}表示取出的3个数以5为最大值,P{X =5}=.533524=C C X 的分布律是X 345P11031035习题2-31. 设X 的分布律为X -11P0.150.200.65求分布函数F (x ), 并计算概率P {X <0}, P {X <2}, P {-2≤X <1}.解 (1)F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥ (2) P {X <0}=P {X =-1}=0.15;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1; (4) P {-2≤x <1}=P {X =-1}+P {X =0}=0.35.2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞<x <+∞.试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知(0112,.2()12A B A B A B πππ⎧+-=⎪⎪⇒==⎨⎪+=⎪⎩于是11()arctan ,.2F x x x π=+-∞<<+∞(2) {11}(1)(1)P X F F -<=--≤ 1111(arctan1)(arctan(1))22ππ=+-+- 11111().24242ππππ=+⋅---=3. 设随机变量X 的分布函数为F (x )=0, 0, 01,21,1,,x xx x <<⎧⎪⎪⎨⎪⎪⎩ ≤ ≥求P {X ≤-1}, P {0.3 <X <0.7}, P {0<X ≤2}.解 P {X ,1}(1)0F -=-=≤P {0.3<X <0.7}=F (0.7)-F {0.3}-P {X =0.7}=0.2,P {0<X ≤2}=F (2)-F (0)=1.5. 假设随机变量X 的绝对值不大于1;; 在事件11{1},{1}84P X P X =-===出现的条件下, X 在(-1,1)内任一子区间上取值的条件概率与该区间的长度成{11}X -<<正比. (1) 求的分布函数≤x }; (2) 求X 取负值的概率p .X (){F x P X =解 (1) 由条件可知,当时, ;1x <-()0F x =当时, ;1x=-1(1)8F -=当时, F (1)=P {X ≤1}=P (S )=1.1x =所以115{11}(1)(1){1}1.848P X F F P X -<<=---==--=易见, 在X 的值属于的条件下, 事件的条件概率为(1,1)-{1}X x -<<≤,{1P X -<|11}[(1)]x X k x -<<=--取x =1得到 1=k (1+1), 所以k =. 12因此≤.{1P X -<|11}12x X x -<<=+于是, 对于, 有11x -<<≤≤{1P X -<}{1x P X =-<,11}x X -<<{11}{1|11}≤P X P X x X =-<<-<-<< 5155.8216x x ++=⨯=对于≥1, 有 从而x () 1.F x =0,1,57(),11,161,1.x x F x x x <-+=-<<⎧⎪⎪⎨⎪⎪⎩≥(2) X 取负值的概率7{0}(0){0}(0)[(0)(0)](0).16p P X F P X F F F F =<=-==---=-=习题2-41. 选择题(1) 设 如果c =( ), 则是某一随机变量的概率密2, [0,],()0, [0,].x x c f x x c ∈=∉⎧⎨⎩()f x 度函数.(A). (B). (C) 1.(D).131232解 由概率密度函数的性质可得, 于是, 故本题()d 1f x x +∞-∞=⎰2d 1cx x =⎰1=c 应选(C ).(2) 设又常数c 满足, 则c 等于( ).~(0,1),XN {}{}P X c P X c =<≥(A) 1.(B) 0.(C). (D) -1.12解 因为, 所以,即{}{}P X c P X c =<≥1{}{}P X c P X c -<=<, 从而,即, 得c =0. 因此本题应选(B).2{}1P X c <={}0.5P X c <=()0.5c Φ=(3) 下列函数中可以作为某一随机变量的概率密度的是( ).(A)(B)cos ,[0,],()0,x x f x π∈=⎧⎨⎩其它.12,()20,x f x <=⎧⎪⎨⎪⎩其它.(C) (D)22()2,0,()0,0.≥x x f x x μσ--=<⎩e ,0,()0,0.≥x x f x x -=<⎧⎨⎩解 由概率密度函数的性质可知本题应选(D).()1f x dx +∞-∞=⎰(4) 设随机变量, , ≤},2~(,4)XN μ2~(,5)Y N μ1{X P P =4μ-≥}, 则( ).{2P P Y =5μ+(A) 对任意的实数. (B) 对任意的实数.12,P P μ=12,P P μ<(C) 只对实数的个别值, 有. (D) 对任意的实数.μ12P P =12,P P μ>解 由正态分布函数的性质可知对任意的实数, 有μ.12(1)1(1)P P ΦΦ=-=-=因此本题应选(A).(5) 设随机变量X 的概率密度为, 且, 又F (x )为分布函数, 则对()f x ()()f x f x =-任意实数, 有().a (A) . (B) .()1d ()∫aF a x f x -=-1()d 2()∫aF a x f x -=-(C) .(D) .()()F a F a -=()2()1F a F a -=-解 由分布函数的几何意义及概率密度的性质知答案为(B).(6)设随机变量服从正态分布,服从正态分布,且X211(,)N μσY 222(,)N μσ 则下式中成立的是().12{1}{1},P X P Y μμ-<>-<(A) σ1 < σ2. (B) σ1 > σ2. (C) μ1 <μ2.(D) μ1 >μ2.解 答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数,数满足)10(<<αααu , 若, 则等于().{}P X u αα>={}P X x α<=x (A) .(B) .(C) .(D) .2u α21α-u 1-2u αα-1u 解 答案是(C).2. 设连续型随机变量X 服从参数为的指数分布, 要使成立, λ1{2}4P kX k <<=应当怎样选择数k ?解 因为随机变量X 服从参数为的指数分布, 其分布函数为λ1e ,0,()0,0.≤x x F x x λ-->=⎧⎨⎩由题意可知.221{2}(2)()(1e )(1e )e e 4k k k k P k X k F k F k λλλλ----=<<=-=---=-于是.ln 2k λ=3. 设随机变量X 有概率密度34,01,()0,x x f x <<=⎧⎨⎩其它,要使(其中a >0)成立, 应当怎样选择数?{}{}≥P X a P X a =<a 解由条件变形,得到,可知, 于是1{}{}P X a P X a -<=<{}0.5P X a <=, 因此.304d 0.5a x x =⎰a =4. 设连续型随机变量X 的分布函数为20,0,()01,1,1,,≤≤x F x x x x <=>⎧⎪⎨⎪⎩求: (1) X 的概率密度; (2).{0.30.7}P X <<解 (1) 根据分布函数与概率密度的关系,()()F x f x '=可得2,01,()0,其它.x x f x <<⎧=⎨⎩(2).22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=5. 设随机变量X 的概率密度为f (x )=2,01,0,x x ⎧⎨⎩ ≤≤ 其它,求P {X ≤}与P {≤2}.1214X <解≤;{P X 12201112d 224}x x x ===⎰≤.1{4P X <12141152}2d 1164x x x ===⎰6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-<⎧⎪⎨⎪⎩≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得,12221121111d ()d []122x x A x x xAx x A =+-=+-=-⎰⎰于是;2A =(2) 由公式可得()()d x F x f x x -∞=⎰当x ≤0时, ;()0F x =当≤1时, ;0x <201()d 2x F x x x x ==⎰当≤2时, ;1x <2101()d (2)d 212xx F x x x x x x =+-=--⎰⎰当x >2时, .()1F x =所以220,0,1()221, 2.1,021,12x F x x x x x x x =->⎧⎪⎪<⎪⎨⎪-<⎪⎪⎩≤≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x ⎧⎪⎨⎪⎩+<<=其它,对X 独立观察3次, 求至少有2次的结果大于1的概率.解 根据概率密度与分布函数的关系式≤,{P a X <}()()()d bab F b F a f x x =-=⎰可得.2115{1}(1)d48P X x x>=+=⎰所以, 3次观察中至少有2次的结果大于1的概率为.223333535175()()(888256C C+=8. 设, 求关于x的方程有实根的概率.~(0,5)X U24420x Xx++=解随机变量X的概率密度为105,()50,,xf x<=⎧⎪⎨⎪⎩≤其它,若方程有实根, 则≥0, 于是≥2. 故方程有实根的概率为21632X-2XP{≥2}=2X21{2}P X-<1{P X=-<<1x=-.1=9. 设随机变量.)2,3(~2NX(1) 计算, , , ;{25}P X<≤{410}P X-<≤{||2}P X>}3{>XP(2) 确定c使得{}{};P X c P X c>=≤(3) 设d满足, 问d至多为多少?{}0.9P X d>≥解(1) 由P{a<x≤b}=P{公式,33333}()()22222a Xb b aΦΦ-----<=-≤得到P{2<X≤5}=,(1)(0.5)0.5328ΦΦ--=P{-4<X≤10}=,(3.5)( 3.5)0.9996ΦΦ--==+{||2}P X>{2}P X>{2}P X<-=1+=0.6977,23(2Φ--23()2Φ--=1=0.5 .}3{>XP33{3}1()1(0)2P XΦΦ-=-=-≤(2) 若,得1,所以{}{}≤P X c P X c>={}{}P X c P x c-=≤≤{}0.5P X c=≤由=0推得于是c =3.(0)Φ30,2c -=(3) 即1, 也就是{}0.9≥P Xd >3()0.92d Φ--≥,3()0.9(1.282)2d ΦΦ--=≥因分布函数是一个不减函数, 故(3)1.282,2d --≥解得.32( 1.282)0.436d +⨯-=≤10. 设随机变量, 若, 求.2~(2,)XN σ{04}0.3P X <<={0}P X <解 因为所以. 由条件可知()~2,X N σ2,~(0,1)XZ N μσ-={04}0.3P X <<=,02242220.3{04}{}((X P X P ΦΦσσσσσ---=<<=<<=--于是, 从而.22(10.3Φσ-=2(0.65Φσ=所以.{{}2020}P P X X σσ==--<<22()1(0.35ΦΦσσ-=-=习题2-51. 选择题(1) 设X 的分布函数为F (x ), 则的分布函数为( ).31Y X =+()G y (A) . (B) . 11(33F y -(31)F y +(C) .(D).3()1F y +1133()F y -解 由随机变量函数的分布可得, 本题应选(A).(2) 设令, 则( ).()~01,XN ,2Y X =--~Y (A). (B). (C). (D).(2,1)N --(0,1)N (2,1)N -(2,1)N 解 由正态分布函数的性质可知本题应选(C).2. 设, 求Z 所服从的分布及概率密度.~(1,2),23X N Z X =+解 若随机变量, 则X 的线性函数也服从正态分布, 即2~(,)XN μσY aX b =+ 这里所以Z .2~(,()).Y aX b N a b a μσ=++1,μσ==~(5,8)N 概率密度为.()f z =2(5)16,x x ---∞<<+∞3. 已知随机变量X 的分布律为X -10137P0.370.050.20.130.25(1) 求Y =2-X 的分布律; (2) 求Y =3+X 2分布律.解 (1)2-X -5-1123P0.250.130.20.050.37(2)3+X 2341252P0.050.570.130.254. 已知随机变量X 的概率密度为=()X f x 1142ln 20x x <<⎧⎪⎨⎪⎩ , 其它,且Y =2-X , 试求Y 的概率密度.解 先求Y 的分布函数:)(y F Y =≤≤≥)(y F Y {P Y }{2y P X =-}{y P X=2}y -=1-.1{2}P Xy =-<-2()d yX f x x --∞⎰于是可得Y 的概率密度为=()(2)(2)Y X f y f y y '=---12(2)ln 20,.,124,其它y y -⎧<-<⎪⎨⎪⎩即121,2(2)ln 20, ,()其它.Y y y f y -<<-⎧⎪=⎨⎪⎩5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量的概率密度.2Y X =解 由题意可知随机变量X 的概率密度为()0,.1,22,4其它X f x x =⎧-<<⎪⎨⎪⎩因为对于0<y <4,≤≤≤X .(){Y F y P Y =2}{y PX=}{yP =(X X F F =-于是随机变量的概率密度函数为2YX =()Y fy (X X f f =+0 4.y =<<即()04,0,.其它f y y =<<⎩总习题二1. 一批产品中有20%的次品, 现进行有放回抽样, 共抽取5件样品. 分别计算这5件样品中恰好有3件次品及至多有3件次品的概率.解 以X 表示抽取的5件样品中含有的次品数. 依题意知.~(5,0.2)X B (1) 恰好有3件次品的概率是P {X =3}=.23358.02.0C (2) 至多有3件次品的概率是.k k k kC-=∑5358.02.02. 一办公楼装有5个同类型的供水设备. 调查表明, 在任一时刻t 每个设备被使用的概率为0.1. 问在同一时刻(1) 恰有两个设备被使用的概率是多少?(2) 至少有1个设备被使用的概率是多少?(3) 至多有3个设备被使用的概率是多少?(4) 至少有3个设备被使用的概率是多少?解 以X 表示同一时刻被使用的设备的个数,则X ~B (5,0.1),P {X =k }=,k =0,1, (5)k kk C -559.01.0(1)所求的概率是P {X =2}=;0729.09.01.03225=C (2)所求的概率是P {X ≥1}=1;40951.0)1.01(5=--(3)所求的概率是 P {X ≤3}=1-P{X =4}-P {X =5}=0.99954;(4)所求的概率是P {X ≥3}=P {X =3}+P {X =4}+P {X =5}=0.00856.3. 设随机变量X 的概率密度为e ,0,()00,≥,x k x f x x θθ-=<⎧⎪⎨⎪⎩且已知, 求常数k , θ.1{1}2P X >=解 由概率密度的性质可知得到k =1.e d 1xkx θθ-+∞=⎰由已知条件, 得.111e d 2xx θθ-+∞=⎰1ln 2θ=4. 某产品的某一质量指标, 若要求≤X ≤≥0.8, 问允2~(160,)X N σ{120P 200}许最大是多少?σ解 由≤X ≤{120P }200120160160200160{}X P σσσ---=≤≤=≥0.8,404040((1(2(1ΦΦΦσσσ--=-得到≥0.9, 查表得≥1.29, 由此可得允许最大值为31.20.40()Φσ40σσ5. 设随机变量X 的概率密度为φ(x ) = A e -|x |, -∞<x <+∞.试求: (1) 常数A ; (2) P {0<X <1}; (3) X 的分布函数.解 (1) 由于即故2A = 1,得||()d e d 1,x x x A x ϕ+∞+∞--∞-∞==⎰⎰2e d 1x A x +∞-=⎰到A =.12所以φ(x ) =e -|x |.12(2) P {0<X <1} =111111e e d (e )0.316.222xxx ----=-=≈⎰(3) 因为 得到||1()e d ,2xx F x x --∞=⎰当x <0时, 11()e d e ,22x x xF x x -∞==⎰当x ≥0时, 00111()e d e d 1e ,222x x x xF x x x ---∞=+=-⎰⎰所以X 的分布函数为1,0,2()11,0.2xx x F x x -⎧<⎪⎪=⎨⎪-⎪⎩e e ≥。

概率论基础-李贤平-试题+答案-期末复习

概率论基础-李贤平-试题+答案-期末复习

C. A 与B 互不相容A+B 是必然事件第一章随机事件及其概率一、选择题:1设A 、B C 是三个事件,与事件 A 互斥的事件是: (A . AB AC BC. ABC D2•设B A 贝UA . P(AI B)=1-P (A )B . C. P(B|A) = P(B) D3.设 A B 是两个事件,P (A ) > 0 , P ( B ) > 0,当下面的条件 定独立 A . P(AI B) P(A)P(B) B . P (A|B ) =0 C. P (A|B):=P (B ) D.P (A|B ) =P(A)4.设 P (A ) =a , P ( B ) = b, P (A+B )= c,贝U P(AB)为 A. a-bB .c-bC. a(1-b) D.b-a 5.设事件A 与B 的概率大于零,且 A 与B 为对立事件,则不成立的是 A . A 与B 互不相容B . A 与B 相互独立 C. A 与B 互不独立 D . A 与B 互不相容6.设A 与B 为两个事件,P (A )M P( B ) > 0,且A B ,则一定成立的关系式是( )A . P (A|B ) =1 B. P(B|A)=1C. p(B|A) 1D . p(A| B) 17.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A . (AU B)B A B . (AU B) B A C. (AUB) B A D . (A B) U B A &设事件A 与B 互不相容,则有( )A . P (AB ) =p (A ) P (B ) B . P (AB =0.A(B C) .ABCP(B A) P(B) (A).P(A|B) P(A)成立时,A 与B9 .设事件A与B独立,则有( )A . P(AB) =p ( A) P ( B)B .P (A+B) =P (A) +P (B)C.P (AB) =0D.P (A+B) =1( )10.对任意两事件A与B, 一定成立的等式是A . P(AB) =p ( A) P ( B)B .P (A+B) =P (A) +P (B)C.P (A|B) =P (A)D.P (AB =P (A) P ( B|A)11.若A、B是两个任意事件,且P (AB) =0,贝U( )A . A与B互斥B.AB是不可能事件C.P (A) =0 或P ( B) =0D.AB未必是不可能事件12.若事件A、B满足A B,则( )A . A与B同时发生B.A发生时则B必发生C.B发生时则A必发生D.A不发生则B总不发生13.设A、B为任意两个事件,则P (A-B)等于( )A. P(B) P(AB) B . P(A) P(B) P(AB)C. P(A) P(AB) D . P(A) P(B) P(AB)14 .设A、B C为二事件,则AB U BC U AC表示( )A . A、B、C至少发生-个B . A、B、C至少发生两个C.A、B、C至多发生两个 D . A、B、C至多发生一个15.设0 < P (A) < 1.0 <P (B)< 1. P(A|B)+P(A B)=1 .则下列各式正确的是( )A .A与B互不相容B A与B相互独立C.A与B相互对立D A与B互不独立16 .设随机实际A B、C两两互斥,且P (A) =, P ( B) =, P( C)=,则P( AU B C)( ).A. B .C. D .17掷两枚均匀硬币,出现一正一反的概率为( )A. 1/2 B . 1/3C. 1/4 D . 3/418 .一种零件的加工由两道工序组成,第一道工序的废品率为p1,第二道工序的废品率为p2,则该零件加工的成品率为A. 1 p1p2 B . 1 p1 p2C. 1 5 P2 P1P2 D . 2 P1 P2p(0 p 1),则在3次重复试验中至少失败一次概率为19 .每次试验的成功率为A. (1 p)2B. 1 p 2C . 3(1 p)D •以上都不对20 .射击3次,事件A i 表示第i 次命中目标(i =).则表示至少命中一次的是 ( )S A 1A 2 A 3C. A , A 2 A 3 AA 2A 3 A i A 2A 3 D .、填空题:12.已知 P (A ) = P ( B ) =P (C ) =1/4,P (AB )= 0,P (AC ) =P (BC ) =1/6,贝 U A 、 BC 至少发生一个的概率为13.已知 P (A ) = P ( B ) =P (C ) =1/4,P (AB )=0, P (AC ) =P (BC )=1/6,贝 U A 、BC 全不发生的一个概率为14.设A 、B 为两事件,P (A )=, P (B ) =,P(B A) =,则 P (A+B )=15.设A 、B 为两事件,P (A )=, P (B ) =,P(B A)=,则 P (A+B )=11.若A 、B 为两个事件,且 P ( B ) B)=A . A , U A 2 U AAl A 2 A 31. 2. 若A 、若B 为两个相互独立的事件,且 B 为两个相互独立的事件,且3. 若A 、B 为两个相互独立的事件,且 4. 若A 、B 为两个相互独立的事件,且 5. 若A 、B 为两个相互独立的事件,且 (A): =,P ( B )= =,贝U P (AB )= .(A): =,P ( B )= =,贝U P (A+B )= . (A): =,P ( B )= =,则 P(AI B)= .(A): =,P ( B )= =,则 P(AB)=. (A): =,P ( B )= =,则 P(A B)= . 6. 若A 、 7. 若A 、 8. 若A 、 9. 若A 、 10.若A 、B 为两个互不相容事件,且P (A )= ,P ( B )= ,则 P(AI B)=. 且 P (A )= ,P ( B )= ,贝U P(AUB)= .且 P (A )= ,P ( B )= ,则 P(AB)= . 且P (A )= ,P ( B )= ,则 P(B A)= . 且P (A ) =,P (B )=,贝UP(BA)=.=,P(AB)=,贝y P(AP P P P P B 为两个互不相容事件, B 为两个互不相容事件, B 为两个互不相容事件, B 为两个互不相容事件,19.若A 与B 互斥,则P (AU B ) = 116. 设A 、B 为两事件, P (A ) =,P (B ) =,A B = =,贝U P (A+B ) 17. 设A 、 B 为两事件, P (A ) =,P (B ) =,A B = =,贝U P (AB )18.设A 、 B 为两事件,P (A ) =,P (B )=,A B ==,贝U P(AB)=19 设A 、 B 为两事件, P (A )= ,P (B )=,A B = ,则 P(AB) = 20. 设A 、B 为两事件,P (A ) =,P (B )=,AB=「则 P(A B)三、判断题:1. 2. 3, 4. 5. 6. 概率为零的事件是不可能事件。

概率论第二章练习答案

概率论第二章练习答案

概率论第二章练习答案 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】《概率论》第二章练习答案一、填空题:1.设随机变量X 的密度函数为f(x)=⎩⎨⎧02x 其它1〈⨯〈o 则用Y 表示对X 的3次独立重复的观察中事件(X≤21)出现的次数,则P (Y =2)= 。

2. 设连续型随机变量的概率密度函数为: ax+b 0<x<1f (x) =0 其他且EX =31,则a = _____-2___________, b = _____2___________。

3. 已知随机变量X 在[ 10,22 ] 上服从均匀分布,则EX= 16 , DX= 124. 设=+==)(,则,为随机变量,1041132ξξξξE E E 22104=+ξE 5. 已知X 的密度为=)(x ϕb ax + 且其他,10<<x P (31<x )=P(X>31) , 则a = , b =⎰⎰⎰+=+⇒==+∞∞-10133131311dx b ax dx b ax x P x P dx x )()()〉()〈()(ϕ联立解得:6.若f(x)为连续型随机变量X 的分布密度,则⎰+∞∞-=dx x f )(__1____。

7. 设连续型随机变量ξ的分布函数⎪⎩⎪⎨⎧≥<≤<=2,110,4/0,0)(2x x x x x F ,则P (ξ=)= 0 ;)62.0(<<ξP = 。

8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度)(x ϕ=()⎪⎩⎪⎨⎧≥)(01001002其他x x ,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不需要更换的概率为___8/27_____。

2100xx≥100 ∴ ϕ(x)= 0 其它P (ξ≥150)=1-F(150)=1-⎰⎰=-+=+=150100150100232132********x dx x [P(ξ≥150)]3=(32)3=2789. 设随机变量X 服从B (n, p )分布,已知EX =,DX =,则参数n =___________,P =_________________。

概率论第二章答案

概率论第二章答案

2.8 为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是0.01,假设一台设备的故障由一人进行修理,问至少应配备多 少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于0.99? 解:设应配备m名设备维修人员。又设发生故障的设备数为X,则 X ~ B (180,0.01) 。 依题意,设备发生故障能及时维修的概率应不小于0.99,即 P ( X m) 0.99 ,也即
由表格知X的可能取值为2,3,4,5,6,7,8,9,10,11,12。 并且, P ( X 2) P ( X 12)

1 2 ; P ( X 3) P ( X 11) ; 36 36 3 4 P ( X 4) P ( X 10) ; P ( X 5) P ( X 9) ; 36 36 5 6 P ( X 6) P ( X 8) ; P ( X 7) 。 36 36 6 | 7 k | P( X k ) (k=2,3,4,5,6,7,8,9,10,11,12) 36
2
所求概率为:
1 (2) 4 3 1 。 4 (2) 3
2.12 某型号的飞机雷达发射管的寿命X(单位:小时) 服从参数为0.005 的指数分布, 求下列 事件的概率: (1) 发射管寿命不超过100 小时; (2) 发射管的寿命超过300 小时; (3) 一只发射管的寿命不超过100 小时, 另一只发射管的寿命在100 至300 小时之间. 解:(1) 发射管寿命不超过100 小时的概率:
P ( A1 A2 B1 B2 ) P ( A1 A2 B2 B1 ) P ( A2 A1 B1 B2 ) P ( A1 A2 B2 B1 ) 4 0.7 0.3 0.4 0.6 0.2016

概率论基础复旦版李贤平第二章ppt

概率论基础复旦版李贤平第二章ppt
全概率公式
且定P(理Ai:) 设0A1i, A12,,2,, A, kk为,互则斥有事件完备群,B为任意事件, k P(B) P( Ai )P(B Ai )
该公式称为全概率公式。i1
证明 因为 A1, A2 ,, Ak为互斥事件完备群,必有 A1 A2 Ak Ai Aj i j i, j 1,2,, k
设 A1, A2 ,, An任意 n个事件,且P( A1A2 An1) 0,则
必成立:
P(A1A2 An ) P(A1)P(A2 A1)P(A3 A1A2 )P(An A1A2 An1)
n个事件的概率乘法公式并不只有上面这种形式。 事实上,对于n事件 A1, A2 ,, An,这样形式的公式一 定有n!个。请大家对n 3的情况写出这些公式,并注意观
例2.1 假定生男生女是等可能。若已知某一个家庭有
俩孩子,求这个家庭有一个男孩,一个女孩的概率;若
已知这个家庭至少一个女孩,求这家有一个男孩,一个 女孩的概率。
解:设 A表示“这个家庭有一个男孩,一个女孩”; B表示“这个家庭至少一个女孩”。
于是,所求概率分别 P(A), P(A B)
由题意知样本空间和事件分别可表示为
由于有 AB B,由条件概率的定义有
P(B A) P( AB) P(B) 0.8 P( A) P( A)
即年龄为20岁的这种动物,能继续活到25岁的概率为0.8。 注意:该题是一个典型的利用条件概率定义式将条件概
率计算问题转化为无条件概率的解题方法。 应用这种方法
计算条件概率时,一定要注意概率P( AB)与概率 P(A B)的
察其规律。
例2.6 在一批产品中,甲厂生产的产品占60%,根据以 往的经验,甲厂产品的次品率为10%,现从这批产品中随 意的抽取一件,求该产品是甲厂生产的次品的概率。

《概率论基础》(李贤平)第三版-课后答案

《概率论基础》(李贤平)第三版-课后答案

第一章事件与概率1、解:(1) P{只订购A 的}=P{A(B∪C)}=P(A)-{P(AB)+P(AC)-P(ABC)}=0.45-0.1.-0.08+0.03=0.30.(2) P{只订购A 及B 的}=P{AB}-C}=P(AB)-P(ABC)=0.10-0.03=0.07(3) P{只订购A 的}=0.30,P{只订购B 的}=P{B-(A∪C)}=0.35-(0.10+0.05-0.03)=0.23.P{只订购C 的}=P{C-(A∪B)}=0.30-(0.05+0.08-0.03)=0.20.∴P{只订购一种报纸的}=P{只订购A}+P{只订购B}+P{只订购C}=0.30+0.23+0.20=0.73.(4)P{正好订购两种报纸的}=P{(AB-C) ∪(AC-B) ∪(BC-A)}=P(AB-ABC)+P(AC-ABC)+P(BC-ABC)=(0.1-0.03)+(0.08-0.03)+.(0.05-0.03)=0.07+0.05+0.02=0.14.(5)P{至少订购一种报纸的}= P{只订一种的}+ P{恰订两种的}+ P{恰订三种的}=0.73+0.14+0.03=0.90.(6) P{不订任何报纸的}=1-0.90=0.10.2、解:(1)ABC =A ⇒BC ⊃A( A BC ⊂A显然) ⇒B ⊃A且C ⊃A ,若A发生,则B 与C 必同时发生。

(2)A ∪ B ∪ C =A ⇒B ∪ C ⊂A ⇒B ⊂A且C ⊂ A ,B 发生或C 发生,均导致A 发生。

(3)AB ⊂C ⇒A与B 同时发生必导致C 发生。

(4)A ⊂BC ⇒A ⊂B ∪ C ,A 发生,则B 与C 至少有一不发生。

3、解: A1 ∪ A2 ∪…∪ A n =A1 + ( A2 -A1 ) +… + ( A n -A1 -… -A n-1 )(或)=A1 +A2 A1 +…+A n A1 A2 … A n-1 .4、解:(1)ABC ={抽到的是男同学,又不爱唱歌,又不是运动员};ABC ={抽到的是男同学,又爱唱歌,又是运动员}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 条件概率与统计独立性1、字母M ,A ,X ,A ,M 分别写在一张卡片上,充分混合后重新排列,问正好得到顺序MAAM 的概率是多少?2、有三个孩子的家庭中,已知有一个是女孩,求至少有一个男孩的概率。

3、若M 件产品中包含m 件废品,今在其中任取两件,求:(1)已知取出的两件中有一件是废品的条件下,另一件也是废品的条件概率;(2)已知两件中有一件不是废品的条件下,另一件是废品的条件概率;(3)取出的两件中至少有一件是废品的概率。

4、袋中有a 只黑球,b 吸白球,甲乙丙三人依次从袋中取出一球(取后来放回),试分别求出三人各自取得白球的概率(3≥b )。

5、从{0,1,2,…,9}中随机地取出两个数字,求其和大于10的概率。

6、甲袋中有a 只白球,b 只黑球,乙袋中有α吸白球,β吸黑球,某人从甲袋中任出两球投入乙袋,然后在乙袋中任取两球,问最后取出的两球全为白球的概率是多少?7、设的N 个袋子,每个袋子中将有a 只黑球,b 只白球,从第一袋中取出一球放入第二袋中,然后从第二袋中取出一球放入第三袋中,如此下去,问从最后一个袋子中取出黑球的概率是多少?8、投硬币n 回,第一回出正面的概率为c ,第二回后每次出现与前一次相同表面的概率为p ,求第n 回时出正面的概率,并讨论当∞→n 时的情况。

9、甲乙两袋各将一只白球一只黑球,从两袋中各取出一球相交换放入另一袋中,这样进行了若干次。

以pn ,qn ,rn 分别记在第n 次交换后甲袋中将包含两只白球,一只白球一只黑球,两只黑球的概率。

试导出pn+1,qn+1,rn+1用pn ,qn ,rn 表出的关系式,利用它们求pn+1,qn+1,rn+1,并讨论当∞→n 时的情况。

10、设一个家庭中有n 个小孩的概率为⎪⎩⎪⎨⎧=--≥=,0,11,1,n pap n ap p n n 这里p p a p /)1(0,10-<<<<。

若认为生一个小孩为男孩可女孩是等可能的,求证一个家庭有)1(≥k k 个男孩的概率为1)2/(2+-k k p ap 。

11、在上题假设下:(1)已知家庭中至少有一个男孩,求此家庭至少有两个男孩的概率;(2)已知家庭中没有女孩,求正好有一个男孩的概率。

12、已知产品中96%是合格品,现有一种简化的检查方法,它把真正的合格品确认为合格品的概率为0.98,而误认废品为合格品的概率为0.05,求在简化方法检查下,合格品的一个产品确实是合格品的概率。

13、设A ,B ,C 三事件相互独立,求证B A AB B A -,,Y 皆与C 独立。

4714、若A ,B ,C 相互独立,则C B A ,,亦相互独立。

15、证明:事件n A A A ,,,21Λ相互独立的充要条件是下列2n 个等式成立:)ˆ()ˆ()ˆ()ˆˆˆ(2121nn A P A P A P A A A P ΛΛ=, 其中iA ˆ取i A 或i A 。

16、若A 与B 独立,证明},,,{ΩA A φ中任何一个事件与},,,{ΩB B φ中任何一个事件是相互独立的。

17、对同一目标进行三次独立射击,第一,二,三次射击的命中概率分别为0.4,0.5,0.7,试求(1)在这三次射击中,恰好有一次击中目标的概率;(2)至少有一次命中目标的概率。

18、设n A A A ,,,21Λ相互独立,而k k p A P =)(,试求:(1)所有事件全不发生的概率;(2)诸事件中至少发生其一的概率;(3)恰好发生其一的概率。

19、当元件k 或元件1k 或2k 都发生故障时电路断开,元件k 发生故障的概率等于0.3,而元件k1,k2发生故障的概率各为.2,求电路断开的概率。

20、说明“重复独立试验中,小概率事件必然发生”的确切意思。

21、在第一台车床上制造一级品零件的概率等于0.7,而在第二台车床上制造此种零件的概率等于0.8,第一台车床制造了两个零件,第二台制造了三个零件,求所有零件均为一级品的概率。

22、掷硬币出现正面的概率为p ,掷了n 次,求下列概率:(1)至少出现一次正面;(2)至少出现两次正面。

23、甲,乙,丙三人进行某项比赛,设三个胜每局的概率相等,比赛规定先胜三局者为整场比赛的优胜者,若甲胜了第一,三局,乙胜了第二局,问丙成为整场比赛优胜者的概率是多少?24、甲,乙均有n 个硬币,全部掷完后分别计算掷出的正面数相等的概率。

25、在贝努里试验中,事件A 出现的概率为p ,求在n 次独立试验中事件A 出现奇数次的概率。

26、在贝努里试验中,若A 出现的概率为p ,求在出现m 次A 之前出现k 次A 的概率。

27、甲袋中有1-N 只白球和一只黑球,乙袋中有N 只白球,每次从甲,乙两袋中分别取出一只球并交换放入另一袋中去,这样经过了n 次,问黑球出现在甲袋中的概率是多少?并讨论∞→n 时的情况。

28、某交往式计算机有20个终端,这些终端被各单位独立操作,使用率各为0.7,求有10个或更多个终端同时操作的概率。

29、设每次射击打中目标的概率等于0.001,如果射击5000次,试求打中两弹或两弹以上的概率。

30、假定人在一年365日中的任一日出生的概率是一样的,在50个人的单位中有两面三刀个以上的人生于元旦的概率是多少?31、一本500页的书,共有500个错字,每个字等可能地出现在每一页上,试求在给定的一页上至少有三个错字的概率。

32、某疫苗中所含细菌数服从普阿松分布,每1毫升中平均含有一个细菌,把这种疫苗放入5只试管中,每试管放2毫升,试求:(1)5只试管中都有细菌的概率;(2)至少有3只试管中有细菌的概率。

33、通过某交叉路口的汽车可看作普阿松过程,若在一分钟内没有车的概率为0.2,求在2分钟内有多于一车的概率。

34、若每蚕产n个卵的概率服从普阿松分布,参数为λ,而每个卵变为成虫的概率为p,且各卵是否变为成虫彼此间没有关系,求每蚕养出k只小蚕的概率。

35、某车间宣称自己产品的合格率超过99%,检验售货员从该车间的10000件产品中抽查了100件,发现有两件次品,能否据此断定该车间谎报合格率?36、在人群中男人患色盲的占5%,女人患色盲的占0.25%,今任取一人后检查发现是一个色盲患者,问它是男人的概率有多大?37、四种种子混在一起,所占的比例是甲:乙:丙:丁=15:20:30:35,各种种子不同的发芽率是:2%,3%,4%,5%,已从这批种子中任送一粒观察,结果未发芽,问它是甲类种子的概率是多少?38、对同一目标由3名射手独立射击的命中率是0.4、0.5,和0.7,求三人同时各射一以子弹而没有一发中靶的概率?39、有两个袋子,每个袋子装有a只黑球,b只白球,从第一个中任取一球放入第二个袋中,然后从第二个袋中取出一黑球的概率是多少?40、已知产品中96%是合格的,现有一种简单的检查方法,它把真正的合格品确认为合格品的概率为0.98,而误认废品为合格品的概率为0.05,求此简化法检查下为合格品的一个产品确实是合格品的概率。

A B C三支枪各向靶射一发子弹,假设三支枪中靶的概率分别为0.4,0.3,0.5,结果恰有41、某射手用,,两弹中靶,问A枪射中的概率为多少?42、已知产品中96%是合格的,现有一种简化的检查方法,它把真正的合格品确认为合格品的概率为0.98,而误认废品为合格品的概率为0.05,求此简化法检查下为合格品的一个产品确实是合格品的概率。

43、设第一个盒子中有两个白球和一个黑球,第二个盒中有三个白球和一个黑球,第三个盒子中有两个白球和两个黑球。

此三个盒子外形相同,某人任取一个盒子,再从中任取一个球,求他取得白球的概率。

44、用血清蛋白的方法诊断肝癌,令C=“被检查者患有肝癌”,A=“判断被检查者患有肝癌”。

设===现有一个人诊断患有肝癌,求他确有肝癌的概率。

P C P A C P A C()0.0004,(/)0.95,(/)0.90,45、一批零件共100个,次品有10个。

每次从其中任取1个零件,菜取3次,取出后不放回。

示第3次才取得合格品的概率。

46、10个零件中有3个次品,7个合格品,每次从其中任取1个零件,共取3次,取后不放回。

求:(1)这3次都抽不到合格品的概率;(2)这3次至少有1次抽到合格品的概率。

47、一批产品中有15%的次品。

进行独立重复抽样检查,问取出的20个样品中最大可能的次品数是多少?并求其概率。

48、一电话交换台每分钟的呼唤次数服从参数为4的泊松分布。

求(1)每分钟恰有6次呼唤的概率;(2)每分钟呼唤次数不超过10的概率。

4949、有一汽车站有大量汽车通过,设每辆汽车在一天某段时间出事故的概率为0.0001。

在某天该段时间内有1000辆汽车通过,求事故次数不少于的概率。

50、某商店出售某种贵重物品,根据以往的经验,每月销售量X 服从参数4λ=的泊松分布。

问在月初进货时,要库存多少件才能以99。

2%的概率充分满足顾客的需要?51、从某厂产品中任取200件,检查结果发现其中有4件废品。

我们能否认为该产品的废品率不超过0.005?52、若,,A B C 是三个独立的事件,则A B C ..亦是独立的。

53、设P(A)>0,若A 与B 相互独立,则P(B|A )=P(B)。

54、若,,A B C 相互独立,则A B ⋃和C 及-A B 与C 亦独立。

55、设P(A)>0, P(B)>0,证明A 和B 相互独立与A 和B 互不相容不能同时成立。

56、求证:如果(|)()P A B P A >,则(|)()P B A P B >。

57、证明:若事件A 与事件B 相互独立,则事件A 与事件B 相互独立。

58、设A ,B ,C 三事件相互独立,求证B A AB B A -,,Y 皆与C 独立。

59、若A ,B ,C 相互独立,则C B A ,,亦相互独立。

60、若A 与B 独立,证明},,,{ΩA A φ中任何一个事件与},,,{ΩB B φ中任何一个事件是相互独立的。

第二章解答1、解:自左往右数,排第i 个字母的事件为A i ,则42)(,52)(121==A A P A P ,21)(,31)(1234123==A A A A P A A A P 1)(12345=A A A A A P 。

所以题中欲求的概率为()()()()12345123412312154321)()(A A A A A P A A A A P A A A P A A P A P A A A A A P =301121314252=⋅⋅⋅⋅=2、解:总场合数为23=8。

设A={三个孩子中有一女},B={三个孩子中至少有一男},A 的有利场合数为7,AB 的有利场合为6,所以题中欲求的概率P (B|A )为()768/78/6)()(===A P AB P A B P .3、解:(1)M 件产品中有m 件废品,m M -件正品。

相关文档
最新文档