一次函数的图像(2)PPT课件
合集下载
一次函数图像课件(共14张PPT)
(增的大图2)而象当从_减_k左_<小_到_0,时右这下,__时y_降随_函_x数.的
做一做
画出函数y=-2x+2的图象,结合图象回答 下列问题:
(2)当x取何值时,y=0? 解:((2)因3)为当yx=取0 何所值以时-,2yx>+20=?0 ,x=1
(3)因为 y>0 所以 -2x+2 > 0 ,x < 1
(1)当k>0时,y随x的增大而增大, 这时函数的图象从左到右上升;
y x 2
y x 2
(增的大图2)而象当从_减_k左_小<_到_0,时右下这,__时y降_随_函_x数.的
y减少
x增大
概括
一次函数y=kx+b有下列性质: (1) 当k>0时,y随x的增大而增大,这时函 数的图象从左到右上升;
一次函数的性质(1)
说一说:
1、一次函数的一般式。 y=kx+b(k,b为常数,k≠0)
2、一次函数的图象是什么?
一条直线。
1.掌握一次函数y=kx+b(k≠0)的性质。 2.能根据k与b的值说出函数的有关性质。
y 2 x 1 3
x 0 3 2
y10
y 3x 2 y 2 x 1 3
y增大 x增大
解:方法一 把两点的坐标代入函数关系式
当 x=2 时, m= 4
3
1
当 x= -3 时, n= 2
所以 m > n。
方法二因为
1
K= 6
>0,所以函数y随x增大而增大。
从而直接得到 m > n。
小结
经过本节课的学习,你有哪些收获?
(2) 当k<0时,Байду номын сангаас随x的增大而减___小__,这时函 数的图象从左到右下__降___.
苏科版八年级数学上册一次函数的图像课件
随着X的值增大
1、经过几个象限,哪几个象限? 2、随着自变量的增大,图 kx (k≠0)图像的性质
(1)当 k>0时,y=kx经过一、三象限, 图像从左向右呈上升趋势, y随着x的增 大而增大; (2)当 k<0时,y=kx经过二、四象限, 图像从左向右呈降落趋势, y随着x的增大 而减小.
根据图像,思考:
1、当不同的一次函数的k相等, b 不相等时,它们的图像有何关系?
2、函数y=kx+b的图像能由y=kx的 图像得到吗?
3、一次函数y=kx+b中k的作用是否 沿袭了正比例函数y=kx中k的作用? 那么b的正负对于图像又有什么影 响呢?
y y=2x+2
6
5
y=2x
4
· 3
2
1
x
o -4 -3 -2 -1
y
b的正负决定了
什么?
y kx b b0
(0,b)
(K>0)
o
x
(0,b) y kx b b0
当b>o时,直线交y轴正半轴于点(0,b) 当b<o时,直线交y轴负半轴于点(0,b) 当b=o时,直线交y轴点(0,0)
课堂练习:
有下列函数:① y=6x-5 , ②y=2x,
③ y=x+4, ④ y=-4x+3 .
人生就如y=kx+b图像一样,虽然一 开始每个人的起点(0,b)不同,但 是我们都在为了理想努力奋斗,希望 我们人生中的k能时刻大于0,学习生 活蒸蒸日上!
1 23 4 5
-1
-2
-3
y=2x-3
-4
-5
-6
y=kx+b可由y=kx向上或 者向下平移得到.
1、经过几个象限,哪几个象限? 2、随着自变量的增大,图 kx (k≠0)图像的性质
(1)当 k>0时,y=kx经过一、三象限, 图像从左向右呈上升趋势, y随着x的增 大而增大; (2)当 k<0时,y=kx经过二、四象限, 图像从左向右呈降落趋势, y随着x的增大 而减小.
根据图像,思考:
1、当不同的一次函数的k相等, b 不相等时,它们的图像有何关系?
2、函数y=kx+b的图像能由y=kx的 图像得到吗?
3、一次函数y=kx+b中k的作用是否 沿袭了正比例函数y=kx中k的作用? 那么b的正负对于图像又有什么影 响呢?
y y=2x+2
6
5
y=2x
4
· 3
2
1
x
o -4 -3 -2 -1
y
b的正负决定了
什么?
y kx b b0
(0,b)
(K>0)
o
x
(0,b) y kx b b0
当b>o时,直线交y轴正半轴于点(0,b) 当b<o时,直线交y轴负半轴于点(0,b) 当b=o时,直线交y轴点(0,0)
课堂练习:
有下列函数:① y=6x-5 , ②y=2x,
③ y=x+4, ④ y=-4x+3 .
人生就如y=kx+b图像一样,虽然一 开始每个人的起点(0,b)不同,但 是我们都在为了理想努力奋斗,希望 我们人生中的k能时刻大于0,学习生 活蒸蒸日上!
1 23 4 5
-1
-2
-3
y=2x-3
-4
-5
-6
y=kx+b可由y=kx向上或 者向下平移得到.
八年级数学上册教学课件《一次函数的图象(第2课时)》
-2 -1O 1 2 3 x
移 5 个单位长度得到.
探究新知 探究二
4.3 一次函数的图象
画一次函数y=2x与 y =2x-3 的图象.
y
解: 列表 描点 连线
4
y =2x y =2x-3
x y=2x y=2x-3
… -2 1 … … -4 2 … … -7 -1 …
2
-2 O -2 -4
2x
-6
y
1
-1 -O1 1
y=2x+1 y=x+1
x
y=-x+1
y=-2x+1
一次函数y=kx+b(k、b 是常数,k≠0)中,k的正、 负对函数图象有什么影响?
当k>0时,y随x的增 大而增大;当k<0时,y 随x的增大而减小.
探究新知
4.3 一次函数的图象
素养考点 1 利用一次函数的性质比较大小
例 P1(x1,y1),P2(x2,y2)是一次函数y=-0.5x+3图象上
4.3 一次函数的图象
观察与比较:
比较上面两个函数图象的相同点与不同点.填出你的观
察结果并与同伴交流.
这两个函数的图象形状都 是一条直线,并且倾斜程度相同 .函 数y=-6x的图象经过原点,函数 y=-6x+5的图象与y轴交于点(0,5), 即它可以看作由直线y=-6x向 上 平
y
12 10 8 6 4 2
x
01 23 4 5 01 23 4 5
-2
-3
y=-2x+1
探究新知
4.3 一次函数的图象
归纳小结
一次函数y=kx+b的图象也称为直线y=kx+b.
与x轴的交点 坐标
y=kx+b
移 5 个单位长度得到.
探究新知 探究二
4.3 一次函数的图象
画一次函数y=2x与 y =2x-3 的图象.
y
解: 列表 描点 连线
4
y =2x y =2x-3
x y=2x y=2x-3
… -2 1 … … -4 2 … … -7 -1 …
2
-2 O -2 -4
2x
-6
y
1
-1 -O1 1
y=2x+1 y=x+1
x
y=-x+1
y=-2x+1
一次函数y=kx+b(k、b 是常数,k≠0)中,k的正、 负对函数图象有什么影响?
当k>0时,y随x的增 大而增大;当k<0时,y 随x的增大而减小.
探究新知
4.3 一次函数的图象
素养考点 1 利用一次函数的性质比较大小
例 P1(x1,y1),P2(x2,y2)是一次函数y=-0.5x+3图象上
4.3 一次函数的图象
观察与比较:
比较上面两个函数图象的相同点与不同点.填出你的观
察结果并与同伴交流.
这两个函数的图象形状都 是一条直线,并且倾斜程度相同 .函 数y=-6x的图象经过原点,函数 y=-6x+5的图象与y轴交于点(0,5), 即它可以看作由直线y=-6x向 上 平
y
12 10 8 6 4 2
x
01 23 4 5 01 23 4 5
-2
-3
y=-2x+1
探究新知
4.3 一次函数的图象
归纳小结
一次函数y=kx+b的图象也称为直线y=kx+b.
与x轴的交点 坐标
y=kx+b
5.4一次函数的图象和性质(2) 课件
答: 6年后该地区的造林面积达到15.66~15.72万公顷
1. 已知A(-1, y1), B(3, y2), C(-5, y3)是一次函数
y=-2x+b图象上的三点,用“<”连接y1, y2, y3
y2 <y1< y3 为_________ . 2. 已知A(x1, y1), B(x2, y2), C(x3, y3)是一次函数 y=-2x+b图象上的三点,当x1<x2<x3时,用“<”
y = 2x -3
y=2x+3
y=2x+3
. . . . . . . . . . . . . . .
3
2
·
y
y=2x
·
y=2x-3
y=2x
1
. . . . . . . . . . . . . . . - 2 -1 0 2 1
· · ·
-1
-2
-3
x
y=2x-3
平行的直线 从左向右“上升”的直 线
·
S=6P+12000 (6100≤ P≤6200) 本例所求的y值是一个确定的值还是一个范围?
当P≥6100时,S如何变化? 当P≤6200时,S如何变化?
例2 我国某地区现有人工造林面积12万公顷,规划 今后10年平均每年新增造林6100~6200公顷,请 估算6年后该地区的造林总面积达到多少万公顷?
-3 -2 -1
y
7 6 5 4 3 2 1
y=x+3
o
-1 -2 -3
1
2
3
4
5
6
x
y=-x+3
例2 我国某地区现有人工造林面积12万公顷,规划 今后10年平均每年新增造林6100~6200公顷,请 估算6年后该地区的造林总面积达到多少万公顷? 分析: 问题中的变量是什么?
八年级数学上册 第四章 一次函数 4.3 一次函数的图象(2)课件
m 1 2
(2) m -1 < 0
且1-2m≠0
m 1且m 1 2
第十六页,共十八页。
结束语
人生(rénshēng)的价值,并不是用时间, 而是用深度去衡量的。
——列夫·托尔斯泰
第十七页,共十八页。
内容(nèiróng)总结
第四章 一次函数。当k>0时,y随x的增大而增大。当k>0 ,k越大时,图像与x轴正半轴的 夹角越大。当k>0 ,k越大时,图像与x轴正半轴的夹角越大。当k<0时,k越大时,图像与x轴正 半轴的夹角越大。一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个 点,再过这两点画直线就可以了。一次函数y=kx+b的图象也称为(chēnɡ wéi)直线y=kx+b。(1 )上述四个函数中,随着x值的增大,y的值分别如何变化
x -4 -3 -2 -1 O1 2 3 4
-1 -2 -3
y 1 x(4))倾倾斜斜度度
y x 3 当kk>>000,,kk越越大大时时,,图图图像像像与与xx轴轴正正半半半轴轴轴的
-4
y 3x
夹的角夹越越角大大越大
当 当kk<<00时时,,kk越越大大时时时,,,图图图像像像与与与xx轴x轴轴正正正半半半轴轴
7
6
y=-x
5
4
3
2
y=-x+6
1
-3 -2 -1 0 1 2 3 4 5 6 x
-1
-2
第十一页,共十八页。
反馈 练习巩固新知 (fǎnkuì)
y
(相交 ) (xiāngjiāo)
(2)直线y=2x+6与y=-x+6的位置(wèi zhi)关系如何?
一次函数图象课件
物理问题
利用一次函数图象描述物 理现象,如速度与时间的 关系、力与位移的关系等 。
经济问题
通过一次函数图象分析成 本、收益、利润等经济指 标的变化趋势。
一次函数图象在数学建模中的应用
建立数学模型
利用一次函数图象描述实 际问题的变化趋势,建立 数学模型进行预测和决策 。
参数估计
通过一次函数图象的拟合 ,估计模型参数,提高预 测精度。
一次函数图象ppt课 件
目录
• 一次函数图象的基本概念 • 一次函数图象的性质 • 一次函数图象的应用 • 一次函数图象的变换 • 一次函数图象的解题技巧
01
一次函数图象的基本概念
一次函数图象的定义
01 一次函数图象
一次函数y=kx+b(k≠0)的图象是一条直线。
02 斜率
一次函数图象的斜率为k,反映了函数值y随自变 量x的变化率。
THANKS
感谢观看
利用待定系数法解题
总结立关于待定系数的方程或方程组,通过解方程或方 程组得到待定系数的值,从而确定一次函数的解析式。这种方法能够避免对函数 性质和图像的复杂分析,提高解题效率。
利用方程组法解题
总结词:逻辑严谨
详细描述:根据题目条件建立关于未知数的方程组,通过解方程组得出未知数的值,进一步确定一次函数的解析式。这种方 法需要严谨的逻辑思维和计算能力,能够确保解题的准确性和完整性。
一次函数图象的对称性
总结词
关于y轴对称
详细描述
一次函数图象是关于y轴对称的。这是因为一次函 数的表达式为y=kx+b,其中k是斜率,b是截距 。无论k和b取何值,图象总是关于y轴对称。
03
一次函数图象的应用
利用一次函数图象解决实际问题
一次函数的图像课件
02
图像是一条直线,其上每一个点 的坐标 $(x, y)$ 都满足该函数的 解析式。
解析式中参数对图像的影响
$k$ 的影响
当 $k > 0$ 时,图像为上升直线;当 $k < 0$ 时,图像为下降直线。
$b$ 的影响
当 $b > 0$ 时,图像与 $y$ 轴交于 正半轴;当 $b < 0$ 时,图像与 $y$ 轴交于负半轴。
如果将一次函数的x替换 为x+h(h>0),则图 像向左移动h个单位。
如果将一次函数的x替换 为x-h(h>0),则图像
向右移动h个单位。
03 一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济活动中的关系,例如成本与产量的关 系、价格与需求的关系等。
一次函数在物理学中的应用
截距
一次函数的截距为b,表示函数图像 与y轴的交点。当b>0时,交点在y轴 的正半轴上;当b<0时,交点在y轴的 负半轴上。
一次函数图像的平移
上平移
下平移
左平移
右平移
如果一次函数的b值增加 (即向上平移),则图 像向上移动相应的距离。
如果一次函数的b值减小 (即向下平移),则图 像向下移动相应的距离。
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在统计学中的应用
在统计学中,一次函数可以用来拟合数据,例如线性回归分析等。
一次函数在数学题目中的应用
一次函数在代数题中的应用
在代数题目中,一次函数可以用来解决方程和不等式问题,例如求解一元一次方 程、一元一次不等式等。
描点,最后将这些点连接成一条直线。
图像是一条直线,其上每一个点 的坐标 $(x, y)$ 都满足该函数的 解析式。
解析式中参数对图像的影响
$k$ 的影响
当 $k > 0$ 时,图像为上升直线;当 $k < 0$ 时,图像为下降直线。
$b$ 的影响
当 $b > 0$ 时,图像与 $y$ 轴交于 正半轴;当 $b < 0$ 时,图像与 $y$ 轴交于负半轴。
如果将一次函数的x替换 为x+h(h>0),则图 像向左移动h个单位。
如果将一次函数的x替换 为x-h(h>0),则图像
向右移动h个单位。
03 一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济活动中的关系,例如成本与产量的关 系、价格与需求的关系等。
一次函数在物理学中的应用
截距
一次函数的截距为b,表示函数图像 与y轴的交点。当b>0时,交点在y轴 的正半轴上;当b<0时,交点在y轴的 负半轴上。
一次函数图像的平移
上平移
下平移
左平移
右平移
如果一次函数的b值增加 (即向上平移),则图 像向上移动相应的距离。
如果一次函数的b值减小 (即向下平移),则图 像向下移动相应的距离。
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在统计学中的应用
在统计学中,一次函数可以用来拟合数据,例如线性回归分析等。
一次函数在数学题目中的应用
一次函数在代数题中的应用
在代数题目中,一次函数可以用来解决方程和不等式问题,例如求解一元一次方 程、一元一次不等式等。
描点,最后将这些点连接成一条直线。
一次函数的图像(2) 课件
(C)
( D)
2.对于一次函数y = mx-(m-2),若y 随x 的增大而 增小,则其图象不过第
三
象限。
3.点P(a,b)点Q(c,d)是一次函数y=-4x+3图像
b>d 上的两个点,且a<c,则b与d的大小关系是____
4.如图所示的计算程序中,y
与x之间的函数关系所对应的图
象应为( D )
y
y=-2x+1 • 一条直线
3
5
4
•
2
•
-2 -1
1 -1 • -2 -3
01
2
3
x 一次函数的图像
有什么特点?
总结 一次函数 正比例函数
正比例函数y=kx的图象是一条经过原点的直线。
同样地,一次函数y=kx+b的图像是一条直线
,画一次函数图像时只需确定两个点,再过
这两点画直线就可以了,一次函数y=kx+b也
当b<0,向下平移b个单位。
练习3 根据函数图象确定k,b的取值范围
y
y x
y
o
o
x
o
x
K>o, b=o
y
K<0, b<0
y
K>o, b>0
y
o
x
0
x
o
x
K<0, b=0
K>0, b<o
K<0, b>0
达标测试
1.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在
直角坐标系内它的大致图象是( )A (A) (B)
y y 4 -2 O -4
A B
一次函数图像(共14张PPT)
-2
向上平移b个单位而来。
-3
-4
会用两点作一次函数图象; 会求一次函数与坐标轴的交点坐标; 会判断点是否在函数图象上及图象所经过的象限; 会求两函数的交点坐标,理解其实际意义。
思考
在同一坐标系中画出下列直线
y =—2x-1 ; y = —2x+3.
y 1 x2 2
y 1x2 2
观察图像,你发现了什么?
智力冲 浪
一个长方形的周长是12厘米,一边长是X厘米,
另一边长为y厘米,下列表示y关于x的函数关
系的图像中,正确的是( )B
4
A C
B D
(1)一次函数y=kx+b的图像是一条直线; 正比例函数y=kx的图像是一条过原点的直线。
y
7
6
y=2x+1
5
4
y=2x
3
2
1
-7 -6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6 7 x
-1
-2
-3
-4
-5
-6
-7
练一练
1.下列各点中,在直线y=2x-3上的是( C )
(A)(0,3)
(B)(1,1)
(C)(2,1) (D)( -1,5)
2.若点(a,3)在直线y=2x-5上,则a=__4____
3 2 1 -7 -6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6 7 x -1
-2
描点法
-3
-4
-5
-6
-7
画函数y=2x+1的图象。
1.列表 x y=2x+1 点( x, y)
2.描点
3.连线
…
-2
北师大版八年级数学上册《一次函数的图象》一次函数PPT课件(第2课时)
4.画出函数y=x+1的图象,并根据图象回答: (1)x为何值时,y的值为0? (2)y为何值时,x的值为0? (3)x为何值时,y随x的增大而增大?
解:过点(0,1),(-1,0)画出函数图象如图所示.
(1)当x=-1时,y=0. (2)当y=1时,x=0. (3)x取任意实数,y都随x的增大而增大.
y
y=x+1
1
-1 O -1
1
x
课堂小结
一次函数的图象
一次函数y=kx+b的图象是_一__条__直__线___,只要确定两个点,就可画 出一次函数图象. 一次函数y=kx+b的图象也称为__直__线__y_=_k_x_+_b___.
课堂小结
一次函数的性质
一次函数y=kx+b的图象经过__点__(_0_,b_)_. 当_k_>__0__时,y的值随着x值的增大而增大; 当__k_<__0_时,y的值随着x值的增大而减小.
-2
-3
-4 -5
y=-2x+1
2.在同一坐标系中画出函数y=-2x的图象. 比较两个函数图象.
这两个函数的图象形状都是__一__条__直__线_, 并且倾斜程度_相__同___. 函数y=-2x的图象经过原点,函数y=-2x+1 的图象与y轴交于点__(__0_,__1_),它可以看作 由直线y=-2x向___上___平移___1___个单位长 度得到.
k的符号决定直线从左到右呈上升趋势还是下降趋势,
k>0时,呈上升趋势;k<0时,呈下降趋势. b的符号决定直线与y轴交点的位置, b>0时,直线与y轴的交点在x轴的上方; b<0时,直线与y轴的交点在x轴的下方; b=0时,直线经过原点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习:已知函数y 1 x 2 的图象交x轴于A点,交y轴于B
点.
3
(1)求点A、点B的坐标。
(2)画出函数的图象。
(3)求△AOB的面积(O为坐标原点)。
思考:一次函数y=kx+b 的图象如图所示,你能 求出直线y=kx+b的解析 式吗? (2.5,0)
(0,-5)
7.4一次函数的图象(2)
y
3 2 1
-2 -1 0 1 2 3 x
-1 -2
例1:在同一直角坐标系中画出下列直线:
y 3x 2 y 2x
y 3x 2
思考:你能求出这两 条直线的交点坐标吗?
y 2x
例2:在如图,在Rt△ABC中,∠C=90°,AC=6, BC=8,P为BC边上一点(不与B、C重合),设CP=x, △APB的面积为s。
(1)求s关于x的函数解析式及自变量x的取值范围。
(2)画出函数的图象。
A
C
P
B
例3:在同一条道路上,甲每时走3km,出发0.15时后, 乙以每时4.5km的速度追甲。设乙行走的时间为t(时)。
(1)写出甲、乙两同学每人所走的路程s与t时的关系; (2)在同一直角坐标系中画出它们的图象; (3)求出两条直线的交点坐标,并说明它们的实际意义;