考研数学重点笔记
考研数学必备知识点总结
考研数学必备知识点总结一、数学分析1. 极限与连续2. 导数与微分3. 微分方程4. 积分5. 级数极限与连续是数学分析中最基础的概念之一。
在数学中,极限是指当自变量趋于某一数值时,函数的值趋于某一确定的值的过程。
而连续则是指在一定的区间内,函数在任意一点都有定义,并且在该点的极限等于该点的函数值。
导数与微分则是描述函数变化率的概念。
导数是函数在某一点的变化率,而微分则是用微分形式来表示函数的变化。
微分方程则是描述函数及其导数之间关系的方程,是数学分析的一个重要分支。
积分是对函数在一定区间内的求和过程。
而级数则是无穷多项的和,是一种特殊的积分形式。
二、线性代数1. 矩阵与行列式2. 线性方程组3. 线性空间与线性变换4. 特征值与特征向量5. 正交性与对称性线性代数是研究向量空间和线性映射的代数结构的一个分支。
矩阵与行列式是线性代数中最重要的概念之一,矩阵是一种数学工具,可以用来表示线性映射。
而行列式则是对矩阵的一种特殊运算,可以用来描述线性映射对向量空间的扭曲程度。
线性方程组是研究线性代数中的一类重要问题,是矩阵和向量的组合。
线性空间与线性变换是描述向量空间和线性映射的概念,是线性代数的核心概念。
特征值与特征向量是描述线性映射变换性质的重要概念。
正交性与对称性则是描述向量空间内向量之间的关系的重要概念。
三、概率论与数理统计1. 随机事件与概率2. 随机变量与概率分布3. 大数定律与中心极限定理4. 参数估计与假设检验5. 相关与回归分析概率论与数理统计是数学中重要的应用分支,研究随机现象的规律和性质。
随机事件与概率是描述随机现象与其概率发生的概念,是概率论的基础。
随机变量与概率分布则是描述随机现象的数学模型,是概率论与数理统计的核心概念。
大数定律与中心极限定理是描述随机现象大量重复实验的规律。
参数估计与假设检验是描述推断统计中统计量的性质和推断的方法。
相关与回归分析是描述随机变量之间关系的重要概念。
考研数学知识点汇总
考研数学知识点汇总1. 高等数学部分- 函数、极限与连续- 函数的概念与性质- 极限的定义与性质- 连续函数的性质与应用- 导数与微分- 导数的定义与计算- 微分的概念与应用- 高阶导数- 一元函数积分学- 不定积分与定积分- 积分技巧(换元法、分部积分法等)- 积分在几何与物理中的应用- 空间解析几何- 平面与直线的方程- 空间曲面的方程- 空间向量及其运算- 多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 梯度、方向导数与切平面- 多元函数积分学- 二重积分与三重积分- 重积分的计算方法- 曲线积分与曲面积分- 无穷级数- 级数的基本概念与性质- 正项级数与收敛性- 幂级数与泰勒级数- 常微分方程- 一阶微分方程- 二阶微分方程- 线性微分方程的解法2. 线性代数部分- 行列式- 行列式的定义与性质- 行列式的计算方法- 行列式的应用- 矩阵- 矩阵的概念与运算- 矩阵的逆- 矩阵的秩- 向量空间- 向量空间的定义与性质 - 基与维数- 向量的内积与正交性- 线性方程组- 线性方程组的解的结构 - 高斯消元法- 线性方程组的应用- 特征值与特征向量- 特征值与特征向量的定义 - 矩阵的对角化- 实对称矩阵的性质- 二次型- 二次型的定义与性质- 二次型的标准化- 二次型的分类与应用3. 概率论与数理统计部分- 随机事件与概率- 随机事件的概念与运算- 概率的定义与性质- 条件概率与独立性- 随机变量及其分布- 随机变量的定义- 离散型与连续型分布- 常见分布的性质与应用- 多维随机变量及其分布- 联合分布与边缘分布- 条件分布与独立性- 随机向量的期望与方差- 随机变量的数字特征- 数字特征的定义与性质- 数字特征的计算- 大数定律与中心极限定理- 大数定律的概念与应用- 中心极限定理的条件与结论 - 数理统计的基本概念- 总体与样本- 统计量与抽样分布- 参数估计- 点估计与估计量的性质- 区间估计的原理与方法- 假设检验- 假设检验的基本步骤- 显著性水平与P值- 常见检验方法的应用请注意,这个列表是基于一般性的考研数学考试大纲制作的,具体的考试内容可能会根据不同的学校和专业有所差异。
考研数学复习中的重点知识汇总
考研数学复习中的重点知识汇总考研数学是众多考生在考研路上的一座大山,要想成功翻越,必须对重点知识有清晰的把握和深入的理解。
以下是为大家梳理的考研数学复习中的重点知识。
一、高等数学1、函数、极限与连续函数的概念、性质(奇偶性、单调性、周期性、有界性等)是基础。
极限的计算方法(四则运算、等价无穷小替换、洛必达法则、泰勒公式等)是重点,需要熟练掌握。
连续的概念、间断点的类型及判断方法也要清楚。
2、一元函数微分学导数的定义、几何意义、基本公式及求导法则要牢记。
利用导数研究函数的单调性、极值与最值是常考题型。
中值定理(罗尔定理、拉格朗日中值定理、柯西中值定理)的应用是难点,需要多做练习。
3、一元函数积分学不定积分与定积分的计算方法(换元法、分部积分法等)要熟练。
定积分的应用(求平面图形的面积、旋转体的体积、弧长等)也是重点。
反常积分的概念和计算需要了解。
4、多元函数微分学多元函数的偏导数、全微分的概念及计算方法是基础。
多元函数的极值与条件极值的求法是重点,要掌握拉格朗日乘数法。
5、多元函数积分学二重积分的计算(直角坐标、极坐标)是常考内容。
三重积分、曲线积分、曲面积分的概念和计算方法也要掌握,重点是利用高斯公式和斯托克斯公式进行计算。
6、无穷级数数项级数的敛散性判别方法(正项级数的比较判别法、比值判别法、根值判别法,交错级数的莱布尼茨判别法)要熟练。
幂级数的收敛半径、收敛区间、和函数的求法是重点,要掌握函数展开成幂级数的方法。
7、常微分方程一阶微分方程(可分离变量方程、齐次方程、一阶线性方程等)的解法要掌握。
二阶常系数线性微分方程的解法是重点,要记住特征方程和通解的形式。
二、线性代数1、行列式行列式的性质和计算方法是基础,重点是利用行列式的性质化简行列式并计算其值。
2、矩阵矩阵的运算(加法、乘法、数乘、转置等)要熟练。
矩阵的秩的概念和求法是重点。
逆矩阵的概念、性质和求法也是常考内容。
3、向量向量组的线性相关性的判断方法是重点,要掌握线性表出、极大线性无关组的概念和求法。
考研数二笔记分享
考研数二笔记分享以下是一份考研数学二笔记分享,供您参考:
一、基本概念
1. 极限:描述函数在某点附近的变化趋势。
2. 导数:描述函数在某点的切线斜率。
3. 微积分基本定理:将不定积分与定积分联系起来。
4. 向量代数:描述向量之间的关系。
5. 线性代数:研究线性方程组、矩阵等。
6. 空间解析几何:描述空间中点、线、面的关系。
二、重点公式
1. 导数基本公式
2. 定积分基本公式
3. 二重积分基本公式
4. 向量运算公式
5. 矩阵运算公式
6. 特征值与特征向量公式
7. 空间解析几何公式
三、难点解析
1. 如何求极限?
利用等价无穷小替换;利用洛必达法则;
利用极限的运算性质。
2. 如何求导数?
利用链式法则;
利用乘积法则;
利用高阶导数公式。
3. 如何求解微分方程?利用分离变量法;
利用变量替换法;
利用参数方程法。
4. 如何计算定积分?
利用定积分的基本性质;利用定积分的几何意义;利用定积分的运算性质。
5. 如何求解二重积分?
利用直角坐标系下的二重积分;利用极坐标系下的二重积分;利用二重积分的几何意义。
考研数学手写知识点总结
考研数学手写知识点总结一、数列和数项1. 定义数列是按一定顺序排列的一串数,每个数称为数列的项,用an表示,n称为项标。
2. 数列的表示一般用通项公式或者递推公式表示数列,通常表示成{an}或者{an}∞n=1。
3. 常见数列常见的数列有等差数列、等比数列、递推数列等,它们分别有自己的通项公式和性质。
4. 数列的求和常用的求和方法有等差数列的求和公式、等比数列的求和公式、Telescoping sum等。
二、集合与函数1. 集合的定义集合是由一个或多个共同特征的元素构成的整体,用大括号{}表示,元素之间用逗号隔开。
2. 集合的运算集合的运算包括并集、交集、差集、补集等,它们有自己的运算法则和性质。
3. 函数的定义函数是集合之间的一个对应关系,通常用f(x)表示,其中x是自变量,f(x)是因变量。
4. 函数的性质函数有奇偶性、周期性、单调性等性质,这些性质对函数的图像有一定的影响。
5. 函数的运算函数的运算包括加减乘除、复合函数、反函数等,它们有自己的运算法则和性质。
三、极限1. 极限的定义当自变量趋于某个值时,函数的值不断地接近于一个确定的数,这个确定的数称为极限。
2. 极限的计算常用的求极限的方法有代入法、夹逼法、单调有界法、洛必达法则等。
3. 极限的性质极限有唯一性、保号性、保序性、保界性等性质,这些性质有一定的应用价值。
4. 无穷小量与无穷大量当自变量趋于某个值时,函数的取值趋于零或者趋于无穷大,这种情况称为无穷小量与无穷大量。
四、导数与微分1. 导数的定义函数在某一点的导数是函数在这一点的切线斜率,常用f'(x)或者dy/dx表示。
2. 导数的计算常用的求导法则有常数法则、幂函数法则、指数函数法则、对数函数法则等。
3. 导数的性质导数有和性、差性、积性、商性、复合函数导数等性质。
4. 微分微分是导数的一个应用,微分形式为dy=f'(x)dx,微分近似计算的应用十分广泛。
五、积分1. 不定积分不定积分是导数的逆运算,常用∫f(x)dx表示,它相当于求函数在某一区间上的面积。
考研数学重点笔记
第一部分第一章集合与映射§1.集合§2.映射与函数本章教学要求:理解集合的概念与映射的概念,掌握实数集合的表示法,函数的表示法与函数的一些基本性质。
第二章数列极限§1.实数系的连续性§2.数列极限§3.无穷大量§4.收敛准则本章教学要求:掌握数列极限的概念与定义,掌握并会应用数列的收敛准则,理解实数系具有连续性的分析意义,并掌握实数系的一系列基本定理。
第三章函数极限与连续函数§1.函数极限§2.连续函数§3.无穷小量与无穷大量的阶§4.闭区间上的连续函数本章教学要求:掌握函数极限的概念,函数极限与数列极限的关系,无穷小量与无穷大量阶的估计,闭区间上连续函数的基本性质。
第四章微分§1.微分和导数§2.导数的意义和性质§3.导数四则运算和反函数求导法则§4.复合函数求导法则及其应用§5.高阶导数和高阶微分本章教学要求:理解微分,导数,高阶微分与高阶导数的概念,性质及相互关系,熟练掌握求导与求微分的方法。
第五章微分中值定理及其应用§1.微分中值定理§2.L'Hospital法则§3.插值多项式和Taylor公式§4.函数的Taylor公式及其应用§5.应用举例§6.函数方程的近似求解本章教学要求:掌握微分中值定理与函数的Taylor公式,并应用于函数性质的研究,熟练运用L'Hospital法则计算极限,熟练应用微分于求解函数的极值问题与函数作图问题。
第六章不定积分§1.不定积分的概念和运算法则§2.换元积分法和分部积分法§3.有理函数的不定积分及其应用本章教学要求:掌握不定积分的概念与运算法则,熟练应用换元法和分部积分法求解不定积分,掌握求有理函数与部分无理函数不定积分的方法。
考研数学需要重点记忆的知识点
考研数学需要重点记忆的知识点考研数学需要重点记忆的知识点准备考研数学的朋友们,需要重点关注记忆的知识点有哪些。
店铺为大家精心准备了考研数学重点记忆的知识点,欢迎大家前来阅读。
考研数学重点记忆的知识点1、两个重要极限,未定式的极限、等价无穷小代换这些小的知识点在历年的考察中都比较高。
而透过我们分析,假如考极限的话,主要考的是洛必达法则加等价无穷小代换,特别针对数三的同学,这儿可能出大题。
2、处理连续性,可导性和可微性的关系要求掌握各种函数的求导方法。
比如隐函数求导,参数方程求导等等这一类的,还有注意一元函数的应用问题,这也是历年考试的一个重点。
数三的同学这儿结合经济类的一些试题进行考察。
3、参数估计这一点是咱们经常出大题的地方,这一块对咱们数一,数二,数三的考生来讲,包含两块知识点,一个是矩估计,一个是最大似然估计,这两个集中出大题。
4、级数问题,主要针对数一和数三这部分的重点是:一、常数项级数的性质,包括敛散性;二、牵扯到幂级数,大家要熟练掌握幂级数的收敛区间的计算,收敛半径与和函数,幂级数展开的问题,要掌握一个熟练的方法来进行计算。
对于幂级数求和函数它可能直接给咱们一个幂级数求它的和函数或者给出一个常数项级数让咱们求它的和,要转化成适当的幂级数来进行求和。
5、微分方程:一是一元线性微分方程,第二是二阶常系数齐次/非齐次线性微分方程对第一部分,考生需要掌握九种小类型,针对每一种小类型有不同的解题方式,针对每个不同的方程,套用不同的公式就行了。
对于二阶常系数线性微分方程大家一定要理解解的结构。
另一块对于非齐次的方程来说,考生要注意它和特征方程的联系,有齐次为方程可以求它的通解,当然给出的通解大家也要写出它的特征方程,这个变化是咱们这几年的一个趋势。
这一类问题就是逆问题。
对于二阶常系数非齐次的线性方程大家要分类掌握。
当然,这一块对于数三的同学来说,还有一个差分方程的问题,差分方程不作为咱们的一个重点,而且提醒大家一下,学习的时候要注意,差分方程的解题方式和微方程是相似的,学习的时候要注意这一点。
考研数学知识点总结归纳
考研数学知识点总结归纳考研数学知识点第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定考研数学必备知识点总结高等数学部分第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的`计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)线性代数部分第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定概率论与数理统计部分第一章随机事件和概率1、随机事件的关系与运算2、随机事件的运算律3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)4、概率的基本性质5、随机事件的条件概率与独立性6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)7、全概率公式的思想8、概型的计算(古典概型和几何概型)第二章随机变量及其分布1、分布函数的定义2、分布函数的充要条件3、分布函数的性质4、离散型随机变量的分布律及分布函数5、概率密度的充要条件6、连续型随机变量的性质7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)8、随机变量函数的分布(离散型、连续型)第三章多维随机变量及其分布1、二维离散型随机变量的三大分布(联合、边缘、条件)2、二维连续型随机变量的三大分布(联合、边缘和条件)3、随机变量的独立性(判断和性质)4、二维常见分布的性质(二维均匀分布、二维正态分布)5、随机变量函数的分布(离散型、连续型)第四章随机变量的数字特征1、期望公式(一个随机变量的期望及随机变量函数的期望)2、方差、协方差、相关系数的计算公式3、运算性质(期望、方差、协方差、相关系数)4、常见分布的期望和方差公式第五章大数定律和中心极限定理1、切比雪夫不等式2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)3、中心极限定理(列维—林德伯格定理、棣莫弗—拉普拉斯定理)第六章数理统计的基本概念1、常见统计量(定义、数字特征公式)2、统计分布3、一维正态总体下的统计量具有的性质4、估计量的评选标准(数学一)5、上侧分位数(数学一)第七章参数估计1、矩估计法2、最大似然估计法3、区间估计(数学一)第八章假设检验(数学一)1、显著性检验2、假设检验的两类错误3、单个及两个正态总体的均值和方差的假设检验考研数学复习之拿高分方法一、理性分析三个组成部分,各个击破我们知道数学整个试卷的组成部分是:高数82分+线代34分+概率论34分;很明显微积分占了绝大部分;另外概率论里面很多题目要用到微积分的工具,实际上微积分的分数比82分要高,应该是能到100分左右。
数学考研常用知识点归纳
数学考研常用知识点归纳数学是考研中非常重要的科目之一,涵盖了高等数学、线性代数、概率论与数理统计等多个领域。
以下是一些数学考研中常用的知识点归纳:1. 高等数学:- 极限:数列极限、函数极限、无穷小量阶的比较。
- 导数与微分:基本导数公式、高阶导数、隐函数与参数方程的导数。
- 微分中值定理:罗尔定理、拉格朗日中值定理、柯西中值定理。
- 积分:不定积分、定积分、换元积分法、分部积分法、反常积分。
- 级数:正项级数的收敛性、幂级数、泰勒级数展开。
- 多元函数微分:偏导数、全微分、多元函数的极值问题。
- 重积分与曲线积分、曲面积分:二重积分、三重积分、第一类曲线积分、第二类曲线积分、第一类曲面积分、第二类曲面积分。
2. 线性代数:- 矩阵:矩阵的运算、矩阵的秩、矩阵的特征值与特征向量。
- 线性空间:向量空间的概念、基与维数、线性相关与线性无关。
- 线性变换:线性变换的定义、矩阵表示、核与像。
- 特征值问题:特征多项式、特征值与特征向量的求解。
- 正交性:正交矩阵、正交变换、正交投影。
- 二次型:二次型的矩阵表示、标准形、惯性指数。
3. 概率论与数理统计:- 随机事件与概率:事件的概率、条件概率、全概率公式、贝叶斯公式。
- 随机变量及其分布:离散型随机变量、连续型随机变量、分布函数、概率密度函数。
- 多维随机变量:联合分布、边缘分布、条件分布、独立性。
- 数理统计:样本与总体、样本均值、样本方差、大数定律、中心极限定理。
- 参数估计:点估计、区间估计、最小二乘估计。
- 假设检验:假设检验的基本原理、常见检验方法、p值。
4. 常考题型与解题技巧:- 选择题:注意选项之间的逻辑关系,利用排除法。
- 填空题:注意题目要求的格式,合理猜测可能的数值。
- 计算题:注意计算过程的准确性,避免粗心大意。
- 证明题:理解定理的证明过程,掌握证明题的常见思路。
结束语:数学考研的知识点繁多,但只要系统地复习,掌握基本概念、基本原理和基本方法,通过大量的练习来提高解题能力,就能够在考试中取得好成绩。
2024考研数学满分笔记pdf
2024考研数学满分笔记pdf一、数学分析1.极限与连续性极限的定义:对于数列的极限,若对于任意的ε>0,存在正整数N,当n>N时,|an - a| < ε,则称数列{an}收敛于a,记作lim(an) = a。
连续性的定义:若函数f在点x0处连续,则对于任意ε>0,存在δ>0,使得当|x - x0| < δ时,有|f(x) - f(x0)| < ε成立。
2.微分与积分微分的定义:函数f在点x0处可导,则存在常数A,使得当x→x0时,有Δf = f(x) - f(x0) ≈ A(x - x0)成立。
积分的定义:对于定积分∫[a,b]f(x)dx,若存在分点ξk∈[xk-1,xk],使得S = ∑(i=1)^n f(ξi)Δxi = limn→∞ Σ(i=1)^nf(ξi)Δxi成立,则称f在[a,b]上可积。
二、线性代数1.向量空间向量空间的定义:对于域F上的n维数组空间Vn(F),若满足以下条件,则称Vn(F)为F上的n维向量空间:(1)对于任意u、v∈Vn(F),有u+v∈Vn(F);(2)对于任意k∈F、u∈Vn(F),有ku∈Vn(F);(3)存在零向量0∈Vn(F)使得对于任意u∈Vn(F),有u+0=u;(4)对于任意u∈Vn(F),存在-u∈Vn(F),使得u+(-u)=0。
2.矩阵与行列式矩阵的定义:对于m×n矩阵A=(aij),其中aij∈F,则称A为m×n矩阵。
对于n×n矩阵A,若存在n阶单位矩阵En,使得EA=AE=A 成立,则称A为可逆矩阵。
行列式的定义:对于n阶行列式Det(A),其定义为Det(A)=Σα(i1i2...in)Ai1i1Ai2i2...Ainin,其中α(i1i2...in)为排列的符号,Ai1i1Ai2i2...Ainin为n个元素所组成的乘积。
三、概率论与数理统计1.随机变量与概率分布随机变量的定义:对于样本空间Ω上的实函数X(ω),若X(ω)是Ω上的一个实数值函数,则称X(ω)为随机变量。
考研数学每章总结知识点
考研数学每章总结知识点一、集合与函数1. 集合的基本概念1)集合的含义:集合是由一定的确定的对象组成的总体。
2)元素:属于集合的对象。
3)集合的表示法:列举法、描述法。
4)集合间的关系:包含关系、相等关系、互斥关系。
2. 集合的运算1)并集、交集、差集、补集的概念及运算法则。
2)集合运算律:分配律、结合律、交换律、对偶律。
3. 函数的概念1)函数的含义:每个自变量对应唯一的因变量。
2)定义域、值域、映射关系。
3)函数的表示法:解析式表示、图形表示、映射图表示。
4. 函数的性质1)奇偶性、周期性、单调性、有界性、分段性。
2)反函数的存在与性质。
3)初等函数:幂函数、指数函数、对数函数、三角函数。
二、极限1. 数列极限1)定义:当数列中的项”无限走”时,就引出了极限的概念。
2)数列收敛与发散的判定。
3)数列极限的性质:保号性、夹逼定理、介值性。
2. 函数极限1)定义:当自变量趋于某一点时,函数值的”极限”。
2)函数极限存在与无穷极限。
3)无穷小量与无穷大量。
3. 极限运算法则1)函数极限的四则运算法则。
2)复合函数、柯西收敛准则。
4. 极限存在的条件1)夹逼准则:当函数夹在两个趋于同一个极限的函数中间时,可以得到极限。
2)子数列性质。
3)介值性:利用介值性证明函数的极限。
三、连续1. 连续的概念1)点连续:在函数定义域内任一点处的连续性。
2)间断点:函数在某点处不连续。
3)连续函数的性质:介值定理、零点定理。
2. 连续函数的运算1)和、差、积、商的连续性。
2)复合函数的连续性。
3. 函数的限制1)边界点、左极限、右极限的概念。
2)函数的间断点的分类。
4. 连续函数的应用1)罗尔中值定理、拉格朗日中值定理。
2)柯西中值定理、费马引理。
四、导数1. 导数的概念1)导数的定义:函数在某点处的”无穷小增量与自变量增量”的比值。
2)导数的几何意义。
2. 导数的计算1)基本导数公式。
2)常用的一些导数运算法则。
考研数学一详细知识点总结
考研数学一详细知识点总结一、线性代数1. 行列式行列式是线性代数中的一个重要概念,它是一个具有特定数学性质的标量函数,它可以对矩阵进行某种代数计算,得到一个数。
通过行列式的性质和运算法则,我们可以求解线性方程组的解,判断矩阵的逆矩阵是否存在等。
行列式的基本定义、性质和运算法则是线性代数中的重要基础知识点。
2. 矩阵与向量空间矩阵是线性代数中的另一个重要概念,它是一个矩形数组,它是向量空间的一种表达形式。
矩阵的定义、运算法则、转置矩阵、伴随矩阵、特征值和特征向量等都是线性代数中的重要知识点。
3. 线性变换与矩阵的相似变换线性变换是线性代数中的一个重要概念,它是定义在向量空间上的一个运算,将一个向量空间中的一个向量映射到另一个向量空间中的一个向量。
线性变换与矩阵的相似变换在数学和工程中有着广泛的应用,对于理解线性代数的基本概念和运用都具有重要意义。
4. 线性方程组线性方程组是线性代数中的一个重要概念,它是由一系列线性方程构成的方程组。
通过行列式和矩阵的知识可以求解线性方程组的解,判断矩阵的逆矩阵是否存在等。
5. 向量的线性相关性向量的线性相关性是线性代数中的另一个重要概念,它是判断向量空间中向量之间的线性组合是否有零解的一个关键概念。
向量的线性相关性的性质、判断方法和应用是线性代数中的重要知识点之一。
6. 最小二乘法最小二乘法是线性代数中的另一个重要概念,它是一种用于数据拟合和参数估计的数学方法。
通过最小二乘法可以得到一个最优的拟合曲线或者参数估计,它在数学、统计学和工程领域中都有着广泛的应用。
二、概率统计1. 随机事件与概率随机事件是概率统计中的一个重要概念,它是指在一定条件下,结果是不确定的事件。
概率是描述随机事件发生可能性的一种数学方法,它是随机事件发生可能性的度量标准。
随机事件的基本性质和概率的基本性质是概率统计中的基础知识点。
2. 条件概率与独立性条件概率是指在已知一件事情发生的情况下,另一件事情发生的可能性。
(整理)数学考研笔记
数学笔记三角函数1.sin()sin cos cos sin αβαβαβ±=±,cos()cos cos sin sin αβαβαβ±=,tan tan tan()1tan tan αβαβαβ±±=2.积化和差:1sin sin [cos()cos()]2αβαβαβ=-+--,1cos cos [cos()cos()]2αβαβαβ=++-1sin cos [sin()sin()]2αβαβαβ=++-,1cos sin [sin()sin()]2αβαβαβ=+--3.和差化积:sin sin 2sin cos 22αβαβαβ+-+=,sin sin 2cos sin22αβαβαβ+--= cos cos 2cos cos 22αβαβαβ+-+=,cos cos 2sin sin22αβαβαβ+--=- 4.倍角公式:sin22sin cos ααα=,2222cos2cos sin 2cos 112sin ααααα=-=-=-,22tan tan 21tan ααα=- 3sin 33sin 4sin ααα=-,3cos34cos 3cos ααα=-,323tan tan tan 313tan αααα-=-5.半角公式:sin2α=cos 2α=1cos sin tan 2sin 1cos ααααα-===- 6.万能公式:设tan 2t α=,则 22sin 1t t α=+,221cos 1t t α-=+,22tan 1t t α=- 7.将次公式:21cos 2sin 2αα-=,21cos 2cos 2αα+= 8.其他:1tan tan()1tan 4απαα±=±,ctan tan 2ctan 2ααα-=函数极限的性质(1)极限唯一;(反证)(2)有界性:若0lim ()x x f x L →=,则在某个0ˆ()N x内()f x 有界; (3)局部保号性;推论1:若0lim (),lim ()x x x x f x A g x B →→==,且A>B ,则在某个0ˆ()N x内()()f x g x >; 推论2:若0lim (),lim ()x x x x f x A g x B →→==,且在某个0ˆ()N x内()()()f x or g x >≥,则A ≥B 。
考研 高等数学必看知识点
考研高等数学必看知识点高等数学在考研中占据着重要的地位,是许多考生需要重点攻克的科目之一。
以下为大家梳理一些考研高等数学中必看的知识点。
一、函数与极限函数是高等数学的基础概念,理解函数的定义、性质(如奇偶性、周期性、单调性等)至关重要。
而极限则是研究函数变化趋势的重要工具。
极限的计算方法多样,包括利用极限的四则运算法则、两个重要极限、等价无穷小替换、洛必达法则等。
例如,sin x / x 在 x 趋向于 0 时的极限为 1 ,这是一个重要极限。
等价无穷小在求极限时能大大简化计算,常见的等价无穷小有当 x 趋向于 0 时,sin x 等价于 x ,tan x 等价于 x ,ln(1 + x) 等价于 x 等。
洛必达法则用于解决“0/0”或“∞/∞”型的未定式极限,但其使用需要满足一定条件。
二、导数与微分导数是函数变化率的度量,其定义式为函数的增量与自变量增量之比的极限。
导数的几何意义是曲线在某点处的切线斜率。
常见函数的导数公式需要牢记,如(x^n)’ = nx^(n 1) ,(sin x)’ = cos x ,(co s x)’ = sin x 等。
复合函数的求导法则是重点也是难点,遵循“由外到内,逐层求导”的原则。
微分是函数增量的线性主部,dy = f'(x)dx 。
导数与微分的关系紧密,可相互转化。
三、中值定理与导数的应用中值定理包括罗尔定理、拉格朗日中值定理和柯西中值定理。
它们是研究函数性质的有力工具。
利用导数可以研究函数的单调性、极值与最值。
当导数大于 0 ,函数单调递增;导数小于 0 ,函数单调递减。
导数为 0 的点可能是极值点,但还需进一步判断是极大值还是极小值。
函数的凹凸性和拐点也可通过导数的二阶导数来判断。
二阶导数大于 0 ,函数为凹函数;二阶导数小于 0 ,函数为凸函数。
四、不定积分不定积分是求导的逆运算,要熟练掌握基本积分公式,如∫x^n dx =(1 /(n + 1)) x^(n + 1) + C (n ≠ -1),∫sin x dx = cos x + C 等。
考研数学考点总结
考研数学考点总结一、高等数学1. 极限与连续•极限的定义及基本性质•无穷大与无穷小•极限存在准则•连续函数的概念与性质•介值定理与零点存在定理2. 一元函数微分学•微分的定义与性质•高阶导数•隐函数与参数方程的导数•微分中值定理•泰勒展开•凸函数与凹函数3. 一元函数积分学•定积分的定义与性质•牛顿-莱布尼兹公式•微积分基本定理•常用函数的不定积分•反常积分的收敛性二、线性代数1. 矩阵与行列式•矩阵的基本运算•矩阵的转置、迹、秩•矩阵的逆与伴随矩阵•行列式的定义与性质•克拉默法则2. 向量空间与线性变换•向量空间的定义与性质•线性相关与线性无关•向量组的秩•线性变换的定义与性质•线性变换的矩阵表示3. 特征值与特征向量•特征值与特征向量的定义•特征值与特征向量的性质•对角化与相似矩阵•幂零矩阵与可对角化矩阵三、概率论与数理统计1. 随机事件与随机变量•随机事件的概念与性质•随机变量的概念与分类•离散型随机变量与连续型随机变量•期望、方差与协方差2. 概率分布•二项分布、泊松分布和正态分布的性质与应用•超几何分布与负二项分布的性质•指数分布与伽玛分布的性质•一致分布、独立同分布与中心极限定理3. 统计推断•参数估计与假设检验的基本概念•点估计与区间估计的方法•假设检验的原理与步骤•单样本均值检验与相关系数检验•双样本均值检验与方差比检验四、离散数学1. 集合与命题•集合的基本运算•命题与命题逻辑的基本概念•命题逻辑的推理法则与运算规则2. 关系与函数•关系的定义与性质•等价关系与偏序关系•函数的定义与性质•映射与逆映射3. 图论•图的基本概念与性质•图的遍历与连通性•最短路径问题与最小生成树•欧拉回路与哈密顿回路以上是考研数学的一些核心考点总结,希望能对广大考生在备考中有所帮助。
当然,这只是一个概述,具体的知识点还需要在学习过程中深入理解和掌握。
努力学习,相信你一定能够顺利应对考试,取得优异的成绩!。
考研数学常考知识点整理
考研数学常考知识点整理一、代数部分1.1 数学基础知识1.1.1 函数与方程1.1.1.1 基本函数与其性质1.1.1.2 方程与不等式1.1.2 数列与数列极限1.1.2.1 等差数列与等比数列1.1.2.2 数列极限的定义与性质1.1.3 概率与统计1.1.3.1 随机事件与概率计算1.1.3.2 排列组合与基本统计知识二、微积分部分2.1 极限与连续2.1.1 极限的定义与性质2.1.2 连续的概念与判定2.2 导数与微分2.2.1 导数的定义与性质2.2.2 微分的概念与计算2.3 积分2.3.1 不定积分与定积分的概念2.3.2 基本积分公式与常见积分方法2.3.3 几何应用与物理应用三、线性代数部分3.1 矩阵与行列式3.1.1 矩阵的基本运算与性质3.1.2 行列式的定义与计算3.2 向量空间与线性变换3.2.1 向量空间与子空间的概念3.2.2 线性变换的定义与性质四、概率论与数理统计部分4.1 随机变量与概率分布4.1.1 随机变量的定义与常见概率分布 4.1.2 期望与方差的计算4.2 参数估计与假设检验4.2.1 参数估计的方法与性质4.2.2 假设检验的基本原理与步骤五、常微分方程部分5.1 一阶常微分方程5.1.1 可分离变量与线性方程5.1.2 齐次方程与一阶线性方程 5.2 高阶常微分方程5.2.1 二阶常系数线性齐次方程5.2.2 二阶非齐次线性方程六、离散数学部分6.1 图论与树6.1.1 图的基本概念与性质6.1.2 树的定义与常见性质6.2 排列组合与离散概率6.2.1 排列与组合的基本计算6.2.2 离散概率的计算与应用以上是考研数学常考知识点的整理,希望对你的学习有所帮助。
记得多做练习题,夯实基础,理解概念及性质,注重对解题方法的掌握与应用。
加油!。
考研数学二必背公式及知识点
考研数学二必背公式及知识点考研数学二对于很多考生来说是具有一定挑战性的科目,其中掌握必背的公式和知识点是取得好成绩的关键。
下面就为大家详细梳理一下考研数学二中那些必须牢记的公式和重要知识点。
一、函数、极限、连续1、函数的性质奇偶性:若 f(x) = f(x),则函数 f(x) 为偶函数;若 f(x) = f(x),则函数 f(x) 为奇函数。
周期性:若存在非零常数 T,使得对于任意 x,都有 f(x + T) =f(x),则函数 f(x) 为周期函数,T 为其周期。
2、极限的计算四则运算法则:若 lim f(x) = A,lim g(x) = B,则 lim f(x) ± g(x)= A ± B;lim f(x) × g(x) = A × B;lim f(x) / g(x) = A / B (B ≠ 0)。
两个重要极限:lim (1 + 1/x)^x = e (x → ∞);lim sin x / x= 1 (x → 0)。
3、连续的定义函数 f(x) 在点 x₀处连续,当且仅当 lim f(x) = f(x₀) (x → x₀)。
二、一元函数微分学1、导数的定义函数 y = f(x) 在点 x₀处的导数 f'(x₀) = lim f(x₀+Δx) f(x₀) /Δx (Δx → 0)。
2、基本导数公式(x^n)'= nx^(n 1)(sin x)'= cos x(cos x)'= sin x(e^x)'= e^x(ln x)'= 1 / x3、导数的四则运算f(x) ± g(x)'= f'(x) ± g'(x)f(x) × g(x)'= f'(x)g(x) + f(x)g'(x)f(x) / g(x)'= f'(x)g(x) f(x)g'(x) / g(x)²(g(x) ≠ 0)4、复合函数求导法则若 y = f(u),u = g(x),则 dy/dx = dy/du × du/dx5、微分的定义dy = f'(x)dx6、罗尔定理、拉格朗日中值定理、柯西中值定理罗尔定理:若函数 f(x) 满足在闭区间 a, b 上连续,在开区间(a, b) 内可导,且 f(a) = f(b),则在(a, b) 内至少存在一点ξ,使得 f'(ξ) =0。
考研数一知识点总结大全
考研数一知识点总结大全一、极限与连续1. 函数极限:定义、性质、极限存在准则、无穷小与无穷大、夹逼定理、洛必达法则等。
2. 数列极限:定义、性质、单调有界数列的极限、无穷小与无穷大、柯西收敛准则等。
3. 连续性:函数连续的概念、常用函数的连续性、间断点的分类与性质、闭区间连续函数的性质等。
二、微分学1. 导数的定义:函数在一点处的导数、导数的几何意义、导数的物理意义等。
2. 导数的运算:常见函数的导数、高阶导数、导数的四则运算、高阶导数的Leibniz 公式等。
3. 微分中值定理:拉格朗日中值定理、柯西中值定理、洛必达法则等。
4. 隐函数与参数方程的求导:隐函数的导数、参数方程的求导、高阶导数的计算等。
三、积分学1. 不定积分:基本初等函数的不定积分、换元积分法、分部积分法等。
2. 定积分:定积分的定义、性质、牛顿-莱布尼茨公式、定积分中值定理等。
3. 积分中值定理:第一中值定理、第二中值定理等。
4. 微积分基本定理:微积分基本定理的两种形式、牛顿公式、柯西公式、Leibniz公式等。
四、级数1. 数项级数的收敛性:数项级数的概念、正项级数的收敛性判别法、一般项级数的审敛法、绝对收敛与条件收敛等。
2. 收敛级数的性质:收敛级数的四则运算、级数收敛性的不等式判别法、级数收敛的Cauchy准则等。
3. 函数项级数:函数项级数的概念、一致收敛性、函数项级数的积分法、逐项积分与微分等。
五、常微分方程1. 常微分方程的基本概念:常微分方程的定义、解的概念、初值问题、解的存在唯一性等。
2. 一阶常微分方程:可分离变量方程、一阶线性微分方程、齐次方程及一阶可降阶线性微分方程等。
3. 高阶常微分方程:高阶线性常微分方程、常系数齐次线性方程、常系数非齐次线性方程、欧拉方程等。
4. 线性常微分方程组:齐次线性常微分方程组、非齐次线性常微分方程组、解的结构等。
六、偏微分方程1. 偏微分方程的基本概念:偏微分方程的定义、分类、特征曲线、解的概念等。
考研数学十二章知识点归纳
考研数学十二章知识点归纳考研数学是许多学生在准备研究生入学考试时的重点科目。
以下是对考研数学十二章知识点的归纳总结:第一章:极限与连续- 极限的定义和性质- 无穷小量的阶- 连续性的定义和性质- 闭区间上连续函数的性质第二章:导数与微分- 导数的定义和几何意义- 基本导数公式- 高阶导数- 隐函数和参数方程求导- 微分的定义和应用第三章:中值定理与导数的应用- 罗尔定理、拉格朗日中值定理和柯西中值定理- 泰勒公式- 导数在几何上的应用:曲线的切线、法线和弧长- 导数在物理上的应用:速度、加速度等第四章:不定积分- 不定积分的定义和性质- 基本积分公式- 换元积分法和分部积分法- 有理函数的积分第五章:定积分- 定积分的定义和性质- 牛顿-莱布尼茨公式- 定积分的计算方法- 定积分在几何和物理上的应用第六章:多元函数微分法- 偏导数和全微分- 多元函数的极值问题- 条件极值和拉格朗日乘数法第七章:重积分- 二重积分和三重积分的定义- 积分区域和积分顺序- 重积分的计算方法:直角坐标系、极坐标系和球坐标系第八章:曲线积分与曲面积分- 第一类和第二类曲线积分- 格林公式和斯托克斯定理- 高斯公式和奥斯特罗格拉德斯基定理第九章:无穷级数- 常数项级数的收敛性- 幂级数和泰勒级数- 函数的幂级数展开- 傅里叶级数和傅里叶变换第十章:常微分方程- 一阶微分方程的解法:分离变量法、变量替换法、常数变易法- 高阶微分方程的降阶- 线性微分方程的解法:特征方程法、常系数线性微分方程第十一章:偏微分方程- 偏微分方程的基本概念- 一阶偏微分方程的解法- 热传导方程、波动方程和拉普拉斯方程第十二章:线性代数- 向量空间和线性变换- 矩阵的运算和性质- 行列式和逆矩阵- 特征值和特征向量- 二次型和正定矩阵结束语:考研数学的知识点广泛,需要同学们系统地学习和大量的练习。
希望以上的归纳能够帮助大家更好地复习和掌握考研数学的主要内容。
考研数学必考知识点总结
考研数学必考知识点总结1. 高等代数高等代数是数学中的一个重要分支,涉及到的知识点非常广泛。
在考研中,高等代数的重点知识点包括线性代数、矩阵论和群论等内容。
(1)线性代数线性代数是高等数学的重要分支之一,也是考研数学中的必考知识点。
线性代数主要包括向量空间、线性方程组、矩阵、特征值和特征向量等内容。
考生需要掌握向量的基本性质和运算规则,以及对向量空间、线性方程组的理解和运用。
在矩阵方面,考生需要了解矩阵的基本概念和性质,以及矩阵的运算和逆矩阵的求法。
此外,特征值和特征向量也是考试中的常见题型,考生需要熟练掌握其求法和应用。
(2)矩阵论矩阵论是线性代数的一个重要内容,也是考研数学中的必考知识点。
在矩阵论中,主要包括矩阵的秩、矩阵的特征值和特征向量、相似矩阵、二次型等内容。
考生需要了解矩阵的秩和它的性质,以及对矩阵的相似变换和相似矩阵的性质的理解和应用。
(3)群论群论是高等数学的一个分支,也是考研数学中的必考知识点。
群论主要研究的是代数结构,并包括群、子群、循环群、同态映射等内容。
在考试中,考生需要了解群的基本概念和性质,以及对群的循环性和同态映射的理解和应用。
2. 数学分析数学分析是数学的一个重要分支,也是考研数学中的必考知识点。
数学分析包括实数、极限、微分、积分、级数等内容。
(1)实数和函数实数是数学中的基本概念之一,也是考研数学中的必考知识点。
在实数的学习中,考生需要了解实数的完备性和稠密性,以及对实数集的性质和运算规则的掌握。
在函数方面,考生需要了解函数的基本概念和性质,以及对函数的极限、连续性和一致收敛性的理解和应用。
(2)微分和积分微分和积分是数学中的重要内容,也是考研数学中的必考知识点。
在微分方面,考生需要了解函数的导数和微分的定义和基本性质,以及对函数的极值和函数的微分中值定理的理解和应用。
在积分方面,考生需要掌握定积分和不定积分的定义和性质,以及对定积分的应用和计算方法的掌握。
(3)级数级数是数学中的一个重要内容,也是考研数学中的必考知识点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线。
§6 平面曲线的一些整体性质
6.1
关于闭曲线的一些概念
6.2
切线
的旋转指标定理
6.3
凸曲线*
6.4
等周不等式*
6.5
四顶点定理*
更多资料请到易研官网 下载
6.6
Cauchy-Crofton 公式*
教学要求:理解平面曲线的一些基本概念:闭曲线、简单曲线、切线像、相
质。
第十二章 多元函数的微分学(§1—§5)
§1.偏导数与全微分
§2. 多元复合函数的求导法则
§3.Taylor 公式
§4.隐函数
§5.偏导数在几何中的应用
第十二章 多元函数的微分学(§6—§7)
§6.无条件极值
§7.条件极值问题与 Lagrange 乘数法
本章教学要求:掌握多元函数的偏导数与微分的概念,区分它们与一元函数对
§2.定积分的基本性质
§3.微积分基本定理
第七章
定积分(§4 —§6)
§4.定积分在几何中的应用
§5.微积分实际应用举例
§6.定积分的数值计算
本章教学要求:理解定积分的概念,牢固掌握微积分基本定理:牛顿—莱布尼
兹公式,熟练定积分的计算,熟练运用微元法解决几何,物理与实际应用中的
问题,初步掌握定积分的数值计算。
§2.导数的意义和性质
§3.导数四则运算和反函数求导法则
§4.复合函数求导法则及其应用
§5.高阶导数和高阶微分
本章教学要求:理解微分,导数,高阶微分与高阶导数的概念,性质及相互关
系,熟练掌握求导与求微分的方法。
第五章
微分中值定理及其应用
§1.微分中值定理
更多资料请到易研官网 下载
理论联系实际和分析问题解决问题的能力。
二、讲授纲要
第一章 三维欧氏空间的曲线论
§1 曲线 曲线的切向
量 弧长
教学要求:理解曲线的基本概念、会求曲线的切向量与弧长、会扰率
教学要求:理解曲率与挠率、主法向量与从法向量、密切平面与从切平面等基
本概 念,会计算曲率与挠率。
§2.L'Hospital 法则
§3.插值多项式和 Taylor 公式
§4.函数的 Taylor 公式及其应用
§5.应用举例
§6.函数方程的近似求解
本章教学要求:掌握微分中值定理与函数的 Taylor 公式,并应用于函数性质的
研究,熟练运用 L'Hospital 法则计算极限,熟练应用微分于求解函数的极值
(2)基本内容:三维空间中经典的曲线和曲面的理论。
主要内容有: 曲线论,内容包括:曲线的切向量与弧长;主法向量与从
法向量;曲率与扰率;Frenet 标架与 Frenet 公式;曲线的局部结构;曲线论
的基本定理;平面曲线的一些整体性质,如切线的旋转指标定理,凸曲线的几
何性质,等周不等式,四顶点定理与 Cauchy-Crofton 公式;空间曲线的一些整
在上-可积,并且。 3. 设到中的算子由给出,在任一元素处是否-可导?
若答案肯定,求导算子。 4. 设是到中的一个映射。证明:在处沿方向的
-微分等于 grad f (x0) hT, 这里 grad f =(), 在 和
的情况下计算,又问:在处的-导数是什么?当时求。
判别法与一致收敛级数的性质,掌握幂级数的性质,会熟练展开函数为幂级数,
了解函数的幂级数展开的重要应用。
第十一章 Euclid 空间上的极限和连续
§1.Euclid 空间上的基本定理
§2.多元连续函数
§3.连续函数的性质
本章教学要求:了解 Euclid 空间的拓扑性质,掌握多元函数的极限与连续性的
概念,区分它们与一元函数对应概念之间的区别,掌握紧集上连续函数的性
理解实数系具有连续性的分析意义,并掌握实数系的一系列基本定理。
第三章
函数极限与连续函数
§1.函数极限
§2.连续函数
§3.无穷小量与无穷大量的阶
§4.闭区间上的连续函数
本章教学要求:掌握函数极限的概念,函数极限与数列极限的关系,无穷小量
与无穷大量阶的估计,闭区间上连续函数的基本性质。
第四章
微分
§1.微分和导数
对全曲
率、旋转指标、凸曲线。掌握
平面曲线的一些整体性质:简单闭曲线切 线的旋转指标定理,凸曲线的几何
性质,等周不等式,四顶点定理与 Cauchy-Crofton 公式。
§7 空间曲线的整体性质
7.1
球面的 Crofton 公式
*
7.2
Fenchel 定理*
7.3
Fary-Milnor
定理*
教学要求:理解全曲率的概念。掌握空间曲线的一些整体性质:球面的
式。
§3 曲面上的活动标架 曲面的基本公
式
3.1
省略和式记号的约定
3.2
曲面上的活动标架 曲面的基本公
式
3.3
Weingarten 变换 W
3.4
曲面的共轭方向 渐近方向 渐近
线
教学要求:掌握曲面上的活动标架与曲面的基本公式,
能求正交参数曲线网的联络
系数;理解 Weingarten 变换与共轭方向、渐近方向,会求一些简单曲线的
体性质,如球面的 Crofton 公式,Fenchel 定理与 Fary-Milnor 定理。
曲面的局部理论,内容包括:曲面的表示、切向量、法向量;旋转曲面、直纹
面与可展曲面;曲面的第一基本形式与内蕴量;曲面的第二基本形式;曲面上
的活动标架与基本公式;Weingarten 变换与曲面的渐近线、共扼线;法曲率;
教学要求:理解与掌握测地曲率和测地线、测地扰率、法
坐标系、测地极坐标系与测地坐标系的定义及其几何意义;能用 Liouville 公
式计算测地曲率与测地线;能用测地极坐标系对总曲率为常数的曲面进行研究;
理解(局部)Gauss-Bonnet 公式。
§7 曲面上的向量的平行移
动
7.1
向量沿曲面上一条曲线的平行移动 绝对微
4.9
总曲率、平均曲率满足某些性质的曲面
教学要求:理解法曲率、主方向与主曲率、曲率线、总曲率和平均曲率概念
与几何意义,并会对它们进行计算;掌握 Gauss 映照及第三基本形式;能对全
脐曲面与总曲率为零的曲面进行分类;掌握极小曲面的几何意义并会求一些简
单的极小曲面。
§5 曲面的基本方程及曲面论的基本定
考研数学重点笔记
第一部分
第一章
集合与映射
§1.集合
§2.映射与函数
本章教学要求:理解集合的概念与映射的概念,掌握实数集合的表示法,函数
的表示法与函数的一些基本性质。
第二章
数列极限
§1.实数系的连续性
§2.数列极限
§3.无穷大量
§4.收敛准则
本章教学要求:掌握数列极限的概念与定义,掌握并会应用数列的收敛准则,
熟练应用变量代换法计算重积分,了解微分形式的引入在重积分变量代换的表
示公式上的应用。
第十四章
曲线积分与曲面积分
§1.第一类曲线积分与第一类曲面积分
§2.第二类曲线积分与第二类曲面积分
§3.Green 公式,Gauss 公式和 Stokes 公式
§4.微分形式的外微分
§5.场论初步
本章教学要求:掌握二类曲线积分与二类曲面积分的概念与计算方法,掌握
第八章
反常积分
§1.反常积分的概念和计算
§2.反常积分的收敛判别法
本章教学要求:掌握反常积分的概念,熟练掌握反常积分的收敛判别法与反常
积分的计算。
第九章
数项级数
§1.数项级数的收敛性
§2.上级限与下极限
更多资料请到易研官网 下载
§3.正项级数
§4.任意项级数
§5.无穷乘积
§3 Frenet 标架 Frenet 公式
教学要求:掌握 Frenet 公式,能运用 Frenet 公式去解决实际问
题。
§4 曲线在一点邻近的性质
教学要求:能表达曲线在一点领域内的局部规范形式,理解扰率符号的集合
意义。
§5 曲线论基本定理
教学要求:掌握曲线论的基本定理,能求已知曲率与扰率的一些简单的曲
应概念之间的区别,熟练掌握多元函数与隐函数的求导方法,掌握偏导数在几
何上的应用,掌握求多元函数无条件极值与条件极值的方法。
第十三章
重积分
更多资料请到易研官网 下载
§1.有界闭区域上的重积分
§2.重积分的性质与计算
§3.重积分的变量代换
§4.反常重积分
§5.微分形式
本章教学要求:理解重积分的概念,掌握重积分与反常重积分的计算方法,会
渐近曲线。
§4 曲面上的曲率
更多资料请到易研官网 下载
4.1
曲面上曲线的法曲率 4.2
主方
向 主曲率 4.3
Dupin 标线 4.4
曲率线
4.5
主曲率及曲率线的计算 总曲率 平均曲率 4.6
曲
率线网
4.7
曲面在一点的邻近处的形状 4.8
Gauss 映照及第三
基本形式
本章教学要求:掌握数项级数敛散性的概念,理解数列上级限与下极限的概念,
熟练运用各种判别法判别正项级数,任意项级数与无穷乘积的敛散性。
第十章
函数项级数
§1.函数项级数的一致收敛性
§2.一致收敛级数的判别与性质
§3.幂级数
§4.函数的幂级数展开
§5.用多项式逼近连续函数
本章教学要求:掌握函数项级数(函数序列)一致收敛性概念,一致收敛性的
分
7.2
绝对微分的性质
7.3
自平行曲
线
7.4
向量绕闭曲线一周的平行移动 总曲率的又一种表