弹性力学简明教程_第四版_徐芝纶第六章

合集下载

弹性力学简明教程课后习题解答(精校版)

弹性力学简明教程课后习题解答(精校版)

弹性力学简明教程(第四版)课后习题解答第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。

【解答】均匀的各项异形体如:竹材,木材。

非均匀的各向同性体如:混凝土。

【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。

【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。

【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。

因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。

这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。

均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。

各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。

小变形假定:假定位移和变形是微小的。

亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。

弹性力学简明教程_课后习题解答

弹性力学简明教程_课后习题解答

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。

【解答】均匀的各项异形体如:竹材,木材。

非均匀的各向同性体如:混凝土。

【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。

【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。

【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。

因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。

这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。

均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。

各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。

小变形假定:假定位移和变形是微小的。

亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。

弹性力学徐芝纶6-3位移模式与解答的收敛性

弹性力学徐芝纶6-3位移模式与解答的收敛性
在 i 点(x=xi , y=yi):
求出α1, α2, …, α6 , 可得位移分量:
1 2 xi 3 yi ui 4 5 xi 6 yi vi

u N i ui N j u j N m um v N i vi N j v j N m vm
1 x y 1 x i yi 1 xj yj 1 x m ym 1 x i yi 1 xj yj
Nm
形函数Nm 的性质 在 i 点(x=xi , y=yi),得: 在 j 点(x=xj , y=yj),得: 在 m 点(x=xm , y=ym),得:
1
(Nm )i=0 (Nm )j=0 (Nm )m=1 在 im 和 jm 两边的中点: N m 1 2 在三角形 ijm 的形心: N m 1 由中值定理,同样得: 3 A N ds 1 im u N i ui N j u j N m um N dxdy m m 2 3 v N i vi N j v j N m vm im A
1 x y 1 xj yj 1 x m ym 1 x i yi 1 xj yj 1 x m ym
在 j 点(x=xj , y=yj):
1 2 x j 3 y j u j 4 5 x j 6 y j v j
在 m 点(x=xm , y=ym):
Ni
u 1 2 x 3 y v 4 5 x 6 y
与式(2-9)相比:
2 2 5 3 5 3 v 4 6 y x x 2 2
u 1 2 x
5 3
y
5 3
y
u u0 y 3 u0 1 v0 4 5 v v0 x 2

徐芝纶编《弹性力学简明教程》第四版__全部章节课后答案详解

徐芝纶编《弹性力学简明教程》第四版__全部章节课后答案详解

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。

【解答】均匀的各项异形体如:竹材,木材。

非均匀的各向同性体如:混凝土。

【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。

【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。

【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。

因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。

这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。

均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。

各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。

小变形假定:假定位移和变形是微小的。

亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。

弹性力学简明教程(第四版)_课后习题解答汇总

弹性力学简明教程(第四版)_课后习题解答汇总

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。

【解答】均匀的各项异形体如:竹材,木材。

非均匀的各向同性体如:混凝土。

【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。

【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。

【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。

因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。

这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。

均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。

各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。

小变形假定:假定位移和变形是微小的。

亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。

弹性力学简明教程(第四版)_课后习题解答

弹性力学简明教程(第四版)_课后习题解答

弹性力学简明教程(第四版)课后习题解答之巴公井开创作徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定.【解答】均匀的各项异形体如:竹材,木材.非均匀的各向同性体如:混凝土.【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定.【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不成以作为理想弹性体.【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙.引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的.因此,建立弹性力学的基本方程时就可以用坐标的连续函数来暗示他们的变动规律.完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变.这一假定,还包括形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的年夜小而变.均匀性假定:假定物体是均匀的,即整个物体是由同一资料组成的,引用这一假定后整个物体的所有各部份才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变动.各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变.小变形假定:假定位移和变形是微小的.亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1.这样在建立物体变形以后的平衡方程时,就可以方便的用变形以前的尺寸来取代变形以后的尺寸.在考察物体的位移与形变的关系时,它们的二次幂或乘积相对其自己都可以略去不计,使得弹性力学中的微分方程都简化为线性的微分方程.【1-4】应力和面力的符号规定有什么区别?试画出正坐标面和负坐标面上的正的应力和正的面力的方向.【解答】应力的符号规定是:看成用面的外法线方向指向坐标轴方向时(即正面时),这个面上的应力(不论是正应力还是切应力)以沿坐标轴的正方向为正,沿坐标轴的负方向为负.看成用面的外法线指向坐标轴的负方向时(即负面时),该面上的应力以沿坐标轴的负方向为正,沿坐标轴的正方向为负.面力的符号规定是:当面力的指向沿坐标轴的正方向时为正,沿坐标轴的负方向为负.由下图可以看出,正面上应力分量与面力分量同号,负面上应力分量与面力分量符号相反.正的应力正的面力【1-5】试比力弹性力学和资料力学中关于切应力的符号规定.【解答】资料力学中规定切应力符号以使研究对象顺时针转动的切应力为正,反之为负.弹性力学中规定,作用于正坐标面上的切应力以沿坐标轴的正方向为正,作用于负坐标面上的切应力以沿坐标轴负方向为正,反之为负.【1-6】试举例说明正的应力对应于正的形变.【解答】正的应力包括正的正应力与正的切应力,正的形变包括正的正应变与正的切应变,本题应从两方面解答.正的正应力对应于正的正应变:轴向拉伸情况下,发生轴向拉应力为正的应力,引起轴向伸长变形,为正的应变.正的切应力对应于正的切应变:在如图所示应力状态情况下,切应力均为正的切应力,引起直角减小,故为正的切应变.【1-7】试画出图1-4中矩形薄板的正的体力、面力和应力的方向.【解答】正的体力、面力 正的体力、应力【1-8】试画出图1-5中三角形薄板的正的面力和体力的方向. 【解答】【1-9】在图1-3的六面体上,y 面上切应力yz τ的合力与z 面上切应力zy τ的合力是否相等?【解答】切应力为单位面上的力,量纲为12L MT --,单位为2/N m .因此,应力的合力应乘以相应的面积,设六面体微元尺寸如dx×dy×dz,则y 面上切应力yz τ的合力为:yz dx dz τ⋅⋅ (a)z 面上切应力zy τ的合力为:zy dx dy τ⋅⋅ (b)由式(a )(b)可见,两个切应力的合力其实不相等.【分析】作用在两个相互垂直面上并垂直于该两面交线的切应力的合力不相等,但对某点的合力矩相等,才导出切应力互等性.第二章平面问题的基本理论【2-1】试分析说明,在不受任何面力作用的空间体概况附近的薄层中(图2-14)其应力状态接近于平面应力的情况.【解答】在不受任何面力作用的空间概况附近的薄层中,可以认为在该薄层的上下概况都无面力,且在薄层内所有各点都有0===z xz yz σττ,只存在平面应力分量,,x y xy σστ,且它们不沿z 方向变动,仅为x,y 的函数.可以认为此问题是平面应力问题.【2-2】试分析说明,在板面上处处受法向约束且不受切向面力作用的等厚度薄片中(2-15),当板边上只受x,y 向的面力或约束,且不沿厚度变动时,其应变状态接近于平面应变的情况.【解答】板上处处受法向约束时0z ε=,且不受切向面力作用,则0xz yz γγ==(相应0zx zy ττ==)板边上只受x,y 向的面力或约束,所以仅存在,,x y xy εεγ,且不沿厚度变动,仅为x,y 的函数,故其应变状态接近于平面应变的情况.【2-3】在图2-3的微分体中,若将对形心的力矩平很条件C M 0=∑改为对角点的力矩平衡条件,试问将导出什么形式的方程?【解答】将对形心的力矩平衡条件C M 0=∑,改为分别对四个角点A 、B 、D 、E 的平衡条件,为计算方便,在z 方向的尺寸取为单位1.0AM=∑1()1()11222()1()1110222xy x y x xy y y yx y yx x x dx dy dydx dx dy dx dy dx dy x x dx dy dx dy dx dy dx dy f dxdy f dxdy y y τσσστσστστ∂∂⋅⋅++⋅⋅-+⋅⋅-⋅⋅∂∂∂∂-+⋅⋅++⋅⋅+⋅⋅-⋅⋅=∂∂(a)0BM=∑Ozy()1()1()1221111102222yx y x x yx y xy x y x y dy dxdx dy dy dx dy dy dx x y y dy dx dy dxdy dx dy dx f dxdy f dxdy τσσστστσσ∂∂∂+⋅⋅++⋅⋅++⋅⋅∂∂∂-⋅⋅-⋅⋅-⋅⋅+⋅⋅+⋅⋅= (b)0DM=∑()1111221()11102222yy xy x yx x x x x y dx dydy dx dy dx dy dx dyy dx dy dy dxdx dx dy f dxdy f dxdy x σστστσσσ∂+⋅⋅-⋅⋅+⋅⋅+⋅⋅∂∂-⋅⋅-+⋅⋅-⋅⋅+⋅⋅=∂(c)0EM=∑()1111222()1()1110222yy x yx y xy x x xy x y dx dy dxdy dx dy dx dy dx y dy dy dxdx dy dx dy dx f dxdy f dxdy x x σσστστσστ∂-+⋅⋅+⋅⋅+⋅⋅+⋅⋅-∂∂∂+⋅⋅-+⋅⋅-⋅⋅+⋅⋅=∂∂ (d)略去(a)、(b)、(c)、(d)中的三阶小量(亦即令22,d xdy dxd y 都趋于0),并将各式都除以dxdy 后合并同类项,分别获得xy yx ττ=.【分析】由本题可得出结论:微分体对任一点取力矩平衡获得的结果都是验证了切应力互等定理.【2-4】在图2-3和微分体中,若考虑每一面上的应力分量不是均匀分布的,验证将导出什么形式的平衡微分方程?【解答】微分单位体ABCD 的边长,dx dy 都是微量,因此可以假设在各面上所受的应力如图a 所示,忽略了二阶以上的高阶微量,而看作是线性分布的,如图(b )所示.为计算方便,单位体在z 方向的尺寸取为一个单位.y)Cy)C(a) (b)各点正应力:()=x A x σσ;()=y A y σσ ()xx B x dy yσσσ∂=+∂;()y y B y dy y σσσ∂=+∂()∂=+∂x x D x dx x σσσ;()∂=+∂xy D y dx xσσσ ()∂∂=++∂∂∂x x x C x dx y x yσσσσ; ()∂∂=++∂∂∂y y y C y dx y xyσσσσ各点切应力:()xy A xy ττ=; ()yx A yx ττ= ()∂=+∂xy xy B xy dy yτττ;()∂=+∂yx yx A yx dy y τττ()xy xy D xy dx xτττ∂=+∂;()∂=+∂yx yx D yx dx xτττ()xy xy xy C xy dx dy xyττττ∂∂=++∂∂;()∂∂=++∂∂yx yx yx C yx dx dy xyττττ由微分单位体的平衡条件 0,∑=x F 0,∑=y F 得112211+22x x x x x x x x yx yx yx yx yx yx yx yx dy dy dx dx dy dy y x x y y dx dx dy dx dy x y x y σσσσσσσστττττττ⎧⎧⎫⎫⎡⎤⎡⎤⎛⎫⎛⎫∂∂∂∂⎪⎪⎪⎪⎛⎫-+++++++-⎨⎬⎨⎬⎢⎥⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎪⎪⎣⎦⎣⎦⎪⎪⎭⎭⎩⎩⎧⎫⎡∂⎤⎡∂∂∂⎤⎛⎫⎛⎫⎛⎫⎪⎪++++++⎨⎬⎢⎥⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎪⎣⎦⎣⎦⎪⎭⎩0x dx f dxdy ⎧⎫⎪⎪+=⎨⎬⎪⎪⎭⎩112211+++22y y y y y y y y xy xy xy xy xy xy xy xydx dx dy dx dy dx x y x y dy dy dx dy dx y x y x σσσσσσσσττττττττ⎧⎧⎫⎫⎡∂⎤⎡∂∂∂⎤⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪-+++++++-⎨⎬⎨⎬⎢⎥⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎪⎪⎣⎦⎣⎦⎪⎪⎭⎭⎩⎩⎧⎫⎡∂⎤⎡∂∂∂⎤⎛⎫⎛⎫⎛⎫⎪⎪++++⎨⎬⎢⎥⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎪⎣⎦⎣⎦⎪⎭⎩0y dy f dxdy ⎧⎫⎪⎪+=⎨⎬⎪⎪⎭⎩以上二式分别展开并约简,再分别除以dxdy ,就获得平面问题中的平衡微分方程:0;0yxy xy x x y f f x y y x τστσ∂∂∂∂++=++=∂∂∂∂【分析】由本题可以得出结论:弹性力学中的平衡微分方程适用于任意的应力分布形式.【2-5】在导出平面问题的三套基本方程时,分别应用了哪些基本假定?这些方程的适用条件是什么?【解答】(1)在导出平面问题的平衡微分方程和几何方程时应用的基本假设是:物体的连续性和小变形假定,这两个条件同时也是这两套方程的适用条件.(2)在导出平面问题的物理方程时应用的基本假定是:连续性,完全弹性,均匀性和各向同性假定,即理想弹性体假定.同样,理想弹性体的四个假定也是物理方程的使用条件.【思考题】平面问题的三套基本方程推导过程中都用到了哪个假定? 【2-6】在工地上技术人员发现,当直径和厚度相同的情况下,在自重作用下的钢圆环(接近平面应力问题)总比钢圆筒(接近平面应变问题)的变形年夜.试根据相应的物理方程来解释这种现象.【解答】体力相同情况下,两类平面问题的平衡微分方程完全相同,故所求的应力分量相同.由物理方程可以看出,两类平面问题的物理方程主要的区别在于方程中含弹性常数的系数.由于E 为GPa 级另外量,而泊松比μ取值一般在(0,0.5),故主要控制参数为含有弹性模量的系数项,比力两类平面问题的系数项,不难看出平面应力问题的系数1/E 要年夜于平面应变问题的系数()21/-E μ.因此,平面应力问题情况下应变要年夜,故钢圆环变形年夜.【2-7】在常体力,全部为应力鸿沟条件和单连体的条件下,对分歧资料的问题和两类平面问题的应力分量x σ,y σ和xy τ均相同.试问其余的应力,应变和位移是否相同?【解答】(1)应力分量:两类平面问题的应力分量x σ,y σ和xy τ均相同,但平面应力问题0z yz xz σττ===,而平面应变问题的()0,xz yz z x y ττσμσσ===+.(2)应变分量:已知应力分量求应变分量需要应用物理方程,而两类平面问题的物理方程不相同,故应变分量0,xz yz xy γγγ==相同,而,,x y z εεε不相同.(3)位移分量:由于位移分量要靠应变分量积分来求解,故位移分量对两类平面问题也分歧.【2-8】在图2-16中,试导出无面力作用时AB 鸿沟上的xy ,,x y σστ之间的关系式【解答】由题可得:()()()cos ,cos 90sin 0,0x y l m f AB f AB ααα==-===将以上条件代入公式(2-15),得:()()()()()2cos sin 0, sin ()cos 0()tan tan x yx y xy AB AB AB AB x AB yx y ABABσατασαταστασα+=+=⇒=-=【2-9】试列出图2-17,图2-18所示问题的全部鸿沟条件.在其端部小鸿沟上,应用圣维南原理列出三个积分的应力鸿沟条件.xM图2-17图2-18【分析】有约束的鸿沟上可考虑采纳位移鸿沟条件,若为小鸿沟也可写成圣维南原理的三个积分形式,年夜鸿沟上应精确满足公式(2-15).【解答】图2-17:上(y=0)左(x=0) 右(x=b )l0 -1 1 m-1()x f s()1g y h ρ+()1g y h ρ-+() y f s1gh ρ代入公式(2-15)得①在主要鸿沟上x=0,x=b 上精确满足应力鸿沟条件:()()100(),0;===-+=x xy x x g y h σρτ ()()1b b (),0;===-+=x xy x x g y h σρτ②在小鸿沟0y =上,能精确满足下列应力鸿沟条件:()(),0yxy y y gh σρτ===-=③在小鸿沟2y h =上,能精确满足下列位移鸿沟条件:()()220,0====y hy h u v这两个位移鸿沟条件可以应用圣维南原理,改用三个积分的应力鸿沟条件来取代,当板厚=1δ时,可求得固定端约束反力分别为:10,,0s N F F ghb M ρ==-=由于2y h =为正面,故应力分量与面力分量同号,则有:()()()222100000b y y h by y h bxy y h dx gh b xdx dx σρστ===⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩⎰⎰⎰ ⑵图2-18①上下主要鸿沟y=-h/2,y=h/2上,应精确满足公式(2-15)lmx f (s)y f (s)2h y =-0 -1 0 q2h y =1-1q-/2()y y h q σ==-,-/2()0yx y h τ==,/2()0y y h σ==,/21()yx y h q τ==-②在x =0的小鸿沟上,应用圣维南原理,列出三个积分的应力鸿沟条件:负面上应力与面力符号相反,有/20/2/20/2/20/2()()()h xy x Sh h x x N h h x x h dx Fdx F ydx M τσσ=-=-=-⎧=-⎪⎪=-⎨⎪⎪=-⎩⎰⎰⎰ ③在x=l 的小鸿沟上,可应用位移鸿沟条件0,0====l x l x v u 这两个位移鸿沟条件也可改用三个积分的应力鸿沟条件来取代.首先,求固定端约束反力,按面力正方向假设画反力,如图所示,列平衡方程求反力:M'110,xN NN N F F F q l F q l F ''=+=⇒=-∑ 0,0yS S S S FF F ql F ql F ''=++=⇒=--∑2211110,'02222A S S q lh ql M M M F l ql q lh M M F l =+++-=⇒=---∑由于x=l 为正面,应力分量与面力分量同号,故/21/22/21/2/2/2()()22()h x x l N Nh h x x l S h h xy x l S Sh dy F q l Fq lh ql ydy M M F l dy F ql Fσστ=-=-=-⎧'==-⎪⎪⎪'==---⎨⎪⎪'==--⎪⎩⎰⎰⎰【2-10】试应用圣维南原理,列出图2-19所示的两个问题中OA 边上的三个积分的应力鸿沟条件,并比力两者的面力是否是是静力等效?【解答】由于hl ,OA 为小鸿沟,故其上可用圣维南原理,写出三个积分的应力鸿沟条件:(a)上端面OA 面上面力q bxf f y x ==,0由于OA 面为负面,故应力主矢、主矩与面力主矢、主矩符号相反,有()()()0000200000022120bb b y y y b b b y y y byx y x qb dx f dx qdx b x b qb xdx f xdx q x dx b dx σστ===⎧=-=-=-⎪⎪⎪⎛⎫=-=-=⎨ ⎪⎝⎭⎪⎪=⎪⎩⎰⎰⎰⎰⎰⎰⎰(对OA 中点取矩) (b)应用圣维南原理,负面上的应力主矢和主矩与面力主矢和主矩符号相反,面力主矢y 向为正,主矩为负,则()()()00200002120by N y by y b xy y qb dx F qb xdx M dx σστ===⎧=-=-⎪⎪⎪=-=⎨⎪⎪=⎪⎩⎰⎰⎰2qb212qb 图2-19综上所述,在小鸿沟OA 上,两个问题的三个积分的应力鸿沟条件相同,故这两个问题是静力等效的.【2-11】检验平面问题中的位移分量是否为正确解答的条件是什么? 【解答】(1)在区域内用位移暗示的平衡微分方程式(2-18); (2)在s 上用位移暗示的应力鸿沟条件式(2-19); (3)在u s 上的位移鸿沟条件式(2-14); 对平面应变问题,需将E 、μ作相应的变换.【分析】此问题同时也是按位移求解平面应力问题时,位移分量必需满足的条件.【2-12】检验平面问题中的应力分量是否为正确解答的条件是什么? 【解答】(1)在区域A 内的平衡微分方程式(2-2);(2)在区域A 内用应力暗示的相容方程式(2-21)或(2-22);(3)在鸿沟上的应力鸿沟条件式(2-15),其中假设只求解全部为应力鸿沟条件的问题;(4)对多连体,还需满足位移单值条件.【分析】此问题同时也是按应力求解平面问题时,应力分量必需满足的条件. 【补题】检验平面问题中的应变分量是否为正确解答的条件是什么? 【解答】用应变暗示的相容方程式(2-20)【2-13】检验平面问题中的应力函数是否为正确解答的条件是什么? 【解答】(1)在区域A 内用应力函数暗示的相容方程式(2-25); (2)在鸿沟S 上的应力鸿沟条件式(2-15),假设全部为应力鸿沟条件; (3)若为多连体,还需满足位移单值条件. 【分析】此问题同时也是求解应力函数的条件. 【2-14】检验下列应力分量是否是图示问题的解答:y图2-20 图2-21(a )图2-20,22xy q b ,0==y xyστ. 【解答】在单连体中检验应力分量是否是图示问题的解答,必需满足:(1)平衡微分方程(2-2);(2)用应力暗示的相容方程(2-21);(3)应力鸿沟条件(2-15).(1)将应力分量代入平衡微分方程式,且0==x y f f0∂∂+=∂∂yx x x y τσ0∂∂+=∂∂y xyy xστ 显然满足 (2)将应力分量代入用应力暗示的相容方程式(2-21),有等式左=()2222x y x y σσ⎛⎫∂∂++ ⎪∂∂⎝⎭=220≠qb =右应力分量不满足相容方程.因此,该组应力分量不是图示问题的解答.(b )图2-21,由资料力学公式,=x M y I σ,*=s xy F S bIτ(取梁的厚度b=1),得出所示问题的解答:332=-x x y q lh σ,22233-(4)4=-xy q x h y lh τ.又根据平衡微分方程和鸿沟条件得出:333222=--y q xy xy q xq lh lh lσ.试导出上述公式,并检验解答的正确性. 【解答】(1)推导公式在分布荷载作用下,梁发生弯曲形变,梁横截面是宽度为1,高为h 的矩形,其对中性轴(Z 轴)的惯性矩312=h I ,应用截面法可求出任意截面的弯矩方程和剪力方程()23(),62=-=-q qx M x x F x l l.所以截面内任意点的正应力和切应力分别为:()332==-x M x x yy q I lhσ()()2222233431.424⎛⎫=-=-- ⎪⎝⎭s xy F x y q x h y bh h lh τ. 根据平衡微分方程第二式(体力不计).0∂∂+=∂∂y xy yxστ得:333.22=-+y q xy xy q A lh lhσ 根据鸿沟条件()/20==yy h σ得q .2=-x A l故 333.2.22=--y q xy xy q xq lh lh lσ将应力分量代入平衡微分方程(2-2) 第一式:22336.60x y x yq q lh lh=-+==左右 满足第二式 自然满足 将应力分量代入相容方程(2-23)()22223312.12.0⎛⎫∂∂=++=--≠= ⎪∂∂⎝⎭左右x y xy xyq q x y lh lh σσ应力分量不满足相容方程.故,该分量组分量不是图示问题的解答.【2-15】试证明:在发生最年夜与最小切应力的面上,正应力的数值都即是两个主应力的平均值.【解答】(1)确定最年夜最小切应力发生位置任意斜面上的切应力为()21n lm τσσ=-,用关系式221l m +=消去m,得)))212121n τσσσσσσ=±-=-=-由上式可见那时2102l -=,即l =时,n τ为最年夜或最小,为 ()12max min2n σστ-=±.因此,切应力的最年夜,最小值发生在与x 轴及y 轴(即应力主向)成45°的斜面上.(2)求最年夜,最小切应力作用面上,正应力n σ的值任一斜面上的正应力为()2122n l σσσσ=-+最年夜、最小切应力作用面上2/1±=l ,带入上式,得()()122121122n σσσσσσ=-+=+ 证毕.【2-16】设已求得一点处的应力分量,试求112,,σσα()100,50,)2000,400;x y xy x y xy a b σστσστ======-,()20001000400; ()1000,1500,500.x y xy x y xy c d σστσστ=-==-=-=-=,,【解答】由公式(2-6)122x y σσσσ+⎫=⎬⎭11tan x xy σσατ-=,得11arctan x xy σσατ-= (a)121501005002σσ⎫⎧+=±=⎬⎨⎩⎭13516'α==︒(b)1251220003122σσ⎫⎧+==⎬⎨-⎩⎭()1512200arctanarctan 0.783757'400α-==-=-︒-(c)1210522000100020522σσ⎫⎧-+=±=⎬⎨-⎩⎭()110522000arctanarctan 7.388232'400α+==-=-︒-(d)126911000150018092σσ-⎫⎧--=±=⎬⎨-⎩⎭16911000arctanarctan 0.6183143'500α-+===︒【2-17】设有任意形状的等待厚度薄板,体力可以不计,在全部鸿沟上(包括孔口鸿沟上)受有均匀压力q.试证-xyq及0xy τ=能满足平衡微分方程、相容方程和应力鸿沟条件,也能满足位移单值条件,因而就是正确的解答.【解答】(1)将应力分量,0x y xy q σστ==-=,和体力分量0x y f f ==分别带入平衡微分方程、相容方程00xyx x y xy yf x y f yx τσστ∂⎧∂++=⎪∂∂⎪⎨∂∂⎪++=⎪∂∂⎩ (a ) ()20x y σσ∇+= (b )显然满足(a )(b )(2)对微小的三角板A,dx,dy 都为正值,斜边上的方向余弦()()cos ,,cos ,l n x m n y ==,将-,0x y xy q σστ===,代入平面问题的应力鸿沟条件的表达式(2-15),且()()-cos ,,cos ,x y f q n x f q n y ==,则有()()()()cos ,cos ,,cos ,cos ,x y n x q n x n y q n y σσ=-=-所以,x y q q σσ=-=-.对单连体,上述条件就是确定应力的全部条件. (3)对多连体,应校核位移单值条件是否满足.该题为平面应力情况,首先,将应力分量代入物理方程(2-12),得形变分量,(1)(1),,0x y xy q q E Eμμεεγ---=== (d )将(d )式中形变分量代入几何方程(2-8),得=,=,0u v v u q q x y x yμμ∂∂∂∂+=∂∂∂∂(-1)(-1)E E (e ) 前两式积分获得12--=(),=()u qx f y v qy f x μμ++(1)(1)E E(f )其中()()12,f y f x 分别任意的待定函数,可以通过几何方程的第三式求出,将式(f )代入式(e )的第三式,得12()()df y df x dy dx -=等式左边只是y 的函数,而等式右边只是x 的函数.因此,只可能两边都即是同一个常数ω,于是有12()(),df y df x dy dxωω=-= 积分后得()()1020,f y y u f x x v ωω=-+=+ 代入式(f )得位移分量00(1)(1)u qx y u Ev qy x v Eμωμω-⎧=-+⎪⎪⎨-⎪=++⎪⎩ (g ) 其中00,,u v ω为暗示刚体位移量的常数,需由约束条件求得从式(g )可见,位移是坐标的单值连续函数,满足位移单值条件.因而,应力分量是正确的解答.【2-18】设有矩形截面的悬臂梁,在自由端受有集中荷载F (图2-22),体力可以不计.试根据资料力学公式,写出弯应力0y σ=,然后证明这些表达式满足平衡微分方程和相容方程,再说明这些表达式是否就暗示正确的解答.【解答】(1)矩形悬臂梁发生弯曲变形,任意横截面上的弯矩方程()M x Fx =-,横截面对中性轴的惯性矩为3/12z I h =,根据资料力学公式弯应力3()12x z M x Fy xy I hσ==-; 该截面上的剪力为()s F x F =-,剪应力为()*2233()/262241/12s xy z F x S F h h y F h y b y y bI h h τ⎛⎫--⎛⎫⎡⎤==⋅-⋅⋅+=-- ⎪ ⎪⎢⎥⨯⎝⎭⎣⎦⎝⎭取挤压应力0y σ=(2)将应力分量代入平衡微分方程检验 第一式:2312120F Fy y h h=-+==左右第二式:左=0+0=0=右 该应力分量满足平衡微分方程.(3)将应力分量代入应力暗示的相容方程y2()0x y σσ=∇+==左右 满足相容方程 (4)考察鸿沟条件①在主要鸿沟/2y h =±上,应精确满足应力鸿沟条件(2-15)lmx fyf2h y =-上0 -1 0 0 2h y =上1代入公式(2-15),得()()()()-/2/2/2/20,0;0,0yxy y yx y h y h y h y h στστ==-======②在主要鸿沟x=0上,列出三个积分的应力鸿沟条件,代入应力分量主矢主矩/20/2/20/22/2/2203/2/2()0()06()()4h x x h h x x h h h xy x h h dy x ydy F h dy y dy F y h σστ=-=-=--⎧⎪==⎪⎪==⎨⎪⎡⎤⎪=--=-=⎢⎥⎪⎣⎦⎩⎰⎰⎰⎰向面力主矢面力主矩向面力主矢满足应力鸿沟条件③在主要鸿沟上,首先求出固定边面力约束反力,按正方向假设,即面力的主矢、主矩,0,,N S F F F M Fl ==-=- 其次,将应力分量代入应力主矢、主矩表达式,判断是否与面力主矢与主矩等效:/2/23/2/212()0h h x x l Nh h Fdy lydy F h σ=--=-==⎰⎰/2/223/2/212()h h x x l h h F ydy ly dy Fl M h σ=--=-=-=⎰⎰2/2/223/2/26()4h h xy x l S h h F h dy y dy F F h τ=--⎛⎫=--=-=⎪⎝⎭⎰⎰满足应力鸿沟条件,因此,它们是该问题的正确解答.【2-19】试证明,如果体力虽然不是常量,但却是有势的力,即体力分量可以暗示为,x y V Vf f x y∂∂=-=-∂∂,其中V 是势函数,则应力分量亦可用应力函数暗示成为M22222=,=,x y xy V V y x x yσστ∂Φ∂Φ∂Φ++=-∂∂∂∂,试导出相应的相容方程. 【解答】(1)将,x y f f 带入平衡微分方程(2-2)00 00yx yx x x x y xy y xy yVf x y x y x V f y x yx y ττσσστστ∂∂⎧⎧∂∂∂++=+-=⎪⎪∂∂∂∂∂⎪⎪⇒⎨⎨∂∂∂∂∂⎪⎪++=+-=⎪⎪∂∂∂∂∂⎩⎩ (a ) 将(a )式变换为()0()0yx x xy yV x y V yy τστσ∂⎧∂-+=⎪∂∂⎪⎨∂∂⎪-+=⎪∂∂⎩ (b ) 为了满足式(b ),可以取22222,,x y xy V V y x x yσστ∂Φ∂Φ∂Φ-=-==-∂∂∂∂即22222,,x y xy V V y x x yσστ∂Φ∂Φ∂Φ=+=+=-∂∂∂∂(2)对体力、应力分量,,,x y x y f f σσ求偏导数,得222222424222222422242422422222, , , y x xx yy f f V Vx x y y V V xx y x y y y V V x x x y x y y σσσσ⎧∂∂∂∂=-=-⎪∂∂∂∂⎪⎪∂∂∂Φ∂∂Φ∂⎪=+=+⎨∂∂∂∂∂∂∂⎪⎪∂∂∂Φ∂∂Φ∂⎪=+=+∂∂∂∂∂∂∂⎪⎩(c )将(c )式代入公式(2-21)得平面应力情况下应力函数暗示的相容方程()2(1)y x x y f f x y σσμ∂⎛⎫∂∇+=-++ ⎪∂∂⎝⎭(2-21)4242424222222424222222(1)V V V VV V x y x y y x x x y y x y μ⎛⎫∂Φ∂∂Φ∂∂Φ∂∂Φ∂∂∂+++++++=++ ⎪∂∂∂∂∂∂∂∂∂∂∂∂⎝⎭ 整理得:444224224222(1)V V x x y y xy μ⎛⎫∂Φ∂Φ∂Φ∂∂++=--+ ⎪∂∂∂∂∂∂⎝⎭(d ) 即平面应力问题中的相容方程为42(1)V μ∇Φ=--∇将(c )式代入公式(2-22)或将(d )式中的替换为1μμ-,的平面应变情况下的相容方程:444224224221221V Vx x y y x yμμ⎛⎫∂Φ∂Φ∂Φ-∂∂++=-+ ⎪∂∂∂∂-∂∂⎝⎭(e ) 即 42121V μμ-∇Φ=-∇-. 证毕.第三章平面问题的直角坐标解答【3-1】为什么在主要鸿沟(年夜鸿沟)上必需满足精确的应力鸿沟条件式(2-15),而在小鸿沟上可以应用圣维南原理,用三个积分的应力鸿沟条件(即主矢量、主矩的条件)来取代?如果在主要鸿沟上用三个积分的应力鸿沟条件取代式(2-15),将会发生什么问题?【解答】弹性力学问题属于数学物理方程中的边值问题,而要使鸿沟条件完全获得满足,往往比力困难.这时,圣维南原理可为简化局部鸿沟上的应力鸿沟条件提供很年夜的方便.将物体一小部份鸿沟上的面力换成份布分歧,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计.如果在占鸿沟绝年夜部份的主要鸿沟上用三个积分的应力鸿沟条件来取代精确的应力鸿沟条件(公式2-15),就会影响年夜部份区域的应力分布,会使问题的解答精度缺乏.【3-2】如果在某一应力鸿沟问题中,除一个小鸿沟条件,平衡微分方程和其它的应力鸿沟条件都已满足,试证:在最后的这个小鸿沟上,三个积分的应力鸿沟条件肯定是自然满足的,固而可以不用校核.【解答】区域内的每一微小单位均满足平衡条件,应力鸿沟条件实质上是鸿沟上微分体的平衡条件,即外力(面力)与内力(应力)的平衡条件.研究对象整体的外力是满足平衡条件的,其它应力鸿沟条件也都满足,那么在最后的这个主要鸿沟上,三个积分的应力鸿沟条件是自然满足的,因而可以不用校核.【3-3】如果某一应力鸿沟问题中有m个主要鸿沟和n个小鸿沟,试问在主要鸿沟和小鸿沟上各应满足什么类型的应力鸿沟条件,各有几个条件?【解答】在m个主要鸿沟上,每个鸿沟应有2个精确的应力鸿沟条件,公式(2-15),共2m个;在n个主要鸿沟上,如果能满足精确应力鸿沟条件,则有2n个;如果不能满足公式(2-15)的精确应力鸿沟条件,则可以用三个静力等效的积分鸿沟条件来取代2个精确应力鸿沟条件,共3n个.【3-4】试考察应力函数3ayΦ=在图3-8所示的矩形板和坐标系中能解决什么问题(体力不计)?【解答】⑴相容条件:不论系数a取何值,应力函数3ayΦ=总能满足应力函数暗示的相容方程,式(2-25).⑵求应力分量y当体力不计时,将应力函数Φ代入公式(2-24),得6,0,0x y xy yx ay σσττ====⑶考察鸿沟条件上下鸿沟上应力分量均为零,故上下鸿沟上无面力. 左右鸿沟上;当a>0时,考察x σ分布情况,注意到0xy τ=,故y 向无面力 左端:0()6x x x f ay σ===()0y h ≤≤()00y xy x f τ=== 右端:()6x x x l f ay σ===(0)y h ≤≤()0y xy x l f τ=== 应力分布如图所示,那时l h 应用圣维南原理可以将分布的面力,等效为主矢,主矩xf xf主矢的中心在矩下鸿沟位置.即本题情况下,可解决各种偏心拉伸问题.偏心距e :因为在A 点的应力为零.设板宽为b,集中荷载p 的偏心距e :2()0/6/6x A p pee h bh bh σ=-=⇒=同理可知,当a <0时,可以解决偏心压缩问题.【3-5】取满足相容方程的应力函数为:⑴2,ax y Φ=⑵2,bxy Φ=⑶3,cxy Φ=试求出应力分量(不计体力),画出图3-9所示弹性体鸿沟上的面力分布,并在小鸿沟上暗示出头具名力的主矢量和主矩.【解答】(1)由应力函数2ax y Φ=,得应力分量表达式0,2,2x y xy yx ay ax σσττ====-考察鸿沟条件,由公式(2-15)()()()()x yx s x y xy s y l m f s m l f s στστ⎧+=⎪⎨+=⎪⎩yO )①主要鸿沟,上鸿沟2hy =-上,面力为()22=-=x hf y ax ()2y h f y ah =-=②主要鸿沟,下鸿沟2hy =,面力为()2,2x h f y ax ==-()2y hf y ah ==③主要鸿沟,左鸿沟x=0上,面力的主矢,主矩为x 向主矢:/20/2()0h x x x h F dy σ=-=-=⎰y 向主矢:/20/2()0h y xy x h F dy τ=-=-=⎰主矩:/20/2()0h x x h M ydy σ=-=-=⎰主要鸿沟,右鸿沟x=l 上,面力的主矢,主矩为 x 向主矢:/2/2()0h x x x l h F dy σ=-'==⎰y 向主矢:/2/2/2/2()(2)2h h y xy x l h h F dy al dy alh τ=--'==-=-⎰⎰主矩:/2/2()0h x x l h M ydy σ=-==⎰弹性体鸿沟上面力分布及主要鸿沟面上面力的主矢,主矩如图所示 ⑵2bxy Φ=将应力函数代入公式(2-24),得应力分量表达式2x bx σ=,0y σ=,2xy yx by ττ==-考察应力鸿沟条件,主要鸿沟,由公式(2-15)得在2h y =-主要鸿沟,上鸿沟上,面力为,022x y h h f y bh f y ⎛⎫⎛⎫=-==-= ⎪ ⎪⎝⎭⎝⎭在2h y =,下鸿沟上,面力为,022x y h h f y bh f y ⎛⎫⎛⎫==-== ⎪ ⎪⎝⎭⎝⎭ 在主要鸿沟上,分布面力可按(2-15)计算,面里的主矢、主矩可通过三个积分鸿沟条件求得:在左鸿沟x=0,面力分布为()()00,02x y f x f x by ==== 面力的主矢、主矩为 x 向主矢:()2020hh x x x F dy σ=-=-=⎰Oxyy 向主矢:()()22002220h h h h y xy x x F dy by dy τ==--=-=--=⎰⎰主矩;/20/2()0h x x h M ydy σ=-=-=⎰在右鸿沟x=l 上,面力分布为()()2,2x y f x l bl f x l by ====- 面力的主矢、主矩为 x 向主矢:()/2/2/2/222h h x x x lh h F dy bldy blh σ=--'===⎰⎰y 向主矢:()()/2/2/2/2'20h h y xy x lh h F dy by dy τ=--==-=⎰⎰主矩:()/2/2/2/2'20h h x x l h h M ydy blydy σ=--===⎰⎰弹性体鸿沟上的面力分布及在主要上面力的主矢和主矩如图所示ahxyah(3)3cxy Φ=将应力函数代入公式(2-24),得应力分量表达式26,0,3x y xy yx cxy cy σσττ====-考察应力鸿沟条件,在主要鸿沟上应精确满足式(2-15)①2hy =-上边界上,面力为23,0242x y h h f y ch f y ⎛⎫⎛⎫=-==-= ⎪ ⎪⎝⎭⎝⎭②hy=2下边界上,面力为23,0242x y h h f y ch f y ⎛⎫⎛⎫==-== ⎪ ⎪⎝⎭⎝⎭主要鸿沟上,分布面力可按(2-15)计算,面力的主矢、主矩可通过三个积分鸿沟求得:③左鸿沟x=0上,面力分布为。

弹性力学简明教程[第四版]_课后习题解答

弹性力学简明教程[第四版]_课后习题解答

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。

【解答】均匀的各项异形体如:竹材,木材。

非均匀的各向同性体如:混凝土。

【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。

【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。

【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。

因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。

这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。

均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。

各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。

小变形假定:假定位移和变形是微小的。

亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。

弹性力学简明教程[第四版]_课后习题解答

弹性力学简明教程[第四版]_课后习题解答

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。

【解答】均匀的各项异形体如:竹材,木材。

非均匀的各向同性体如:混凝土。

【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。

【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。

【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。

因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。

这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。

均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。

各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。

小变形假定:假定位移和变形是微小的。

亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。

弹性力学简明教程(第四版)_课后习题解答

弹性力学简明教程(第四版)_课后习题解答

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。

【解答】均匀的各项异形体如:竹材,木材。

非均匀的各向同性体如:混凝土。

【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。

【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。

【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。

引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。

因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。

这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。

均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。

各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。

小变形假定:假定位移和变形是微小的。

亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。

弹性力学ppt课件

弹性力学ppt课件
x
y
z
o
图1-5
*
图示单元体面的法线为y,称为y面,应力分量垂直于单元体面的应力称为正应力。 正应力记为σy,沿y轴的正向为正,其下标表示所沿坐标轴的方向。
σy
x
y
z
o
图1-6
(2)符号规定:
平行于单元体面的应力称为切应力,用 、 表示,其第一下标y表示所在的平面,第二下标x、z分别表示沿坐标轴的方向。如图1-6所示的 、 。
*
其它x、z正面上的应力分量的表示如图1-7所示。
凡正面上的应力沿坐标正向为正,逆坐标正向为负。
图1-7
x
y
z
o
平行于单元体面的应力如图示的τyx、τyz,沿x轴、z轴的负向为正。
图1-8
图1-8所示单元体面的法线为y的负向,正应力记为 ,沿y轴负向为正。
x
y
01
弹性力学基本假定,确定了弹性力学的研究范围:
理想弹性体的小变形问题。
02
1-4 弹性力学的学习方法
理解:偏微分方程组的直接求解是十分困难的,理解基本方程的意义。
做题:适当做题。
记忆:不要过分拘泥于细节,应着眼于推导的主要过程,公式的推导和记忆,最好通过矩阵形式和张量。
化简:善于利用小变形略去高阶小量,要分清主要边界和次要边界。
变形状态假定:
小变形假定--假定位移和形变为很小。
<<1弧度(57.3°).
例:梁的 ≤10-3 <<1,
a.位移<<物体尺寸,
例:梁的挠度v<<梁高h.
*
b.简化几何方程:在几何方程中,由于 可略去 等项,使几何方程成为线性方程。
小变形假定的应用: a.简化平衡条件:考虑微分体的平衡 条件时,可以用变形前的尺寸代替变形后 的尺寸。

弹性力学讲义(徐芝纶版)-PPT

弹性力学讲义(徐芝纶版)-PPT

换,
E
1
E
2
,
。 1
边界条件
边界条件--应用极坐标时,弹性体的 边界面通常均为坐标面,即:
常数,或 常数,
故边界条件形式简单。
平面应力问题在极坐标下的基本方程
1
f
0
1
2
f
0
4 1
u
,
1
u
u
,
u
1
u
u

1 E
(
),
1 E
(
),
x ρ x φ x
Φ y
Φ ρ
ρ y
Φ φ
φy .
一阶导数

cos,
x
sin , x
sin;
y
y
cos 。
代入,即得一阶导数的变换公式,
Φ cosφ Φ sin Φ (cosφ sinφ )Φ
x
ρ ρ φ
ρ ρ φ

(e)
Φ sinφ Φ cos Φ (sinφ cosφ )Φ。
σ x σ ρ cos2 φσφsin2 φ2τ ρφ cosφsinφ,

σ
x
2Φ y 2
2Φ ρ2
sin
2
φ(
1 ρ
Φ ρ
1 ρ2
2Φ ρ2
)cos2
φ
2[ ( 1 Φ )]cosφsinφ, ρ ρ
比较两式的 cos2 φ,sin2 φ,cosφsinφ 的系数,便 得出 σ ρ,σφ,τ ρφ 的公式。
2(1 E
)

4 2
物理方程
物理方程
对于平面应变问题,只须将物理方程作如下 的变换即可。

弹性力学简明教程课后答案徐芝纶第四版略改动

弹性力学简明教程课后答案徐芝纶第四版略改动

第一章错爸本章学习重点•与难点■点-、弹性力学的内容:邨性力学的妍究对象、内容和柜删•注总勺戕它力学任任务•研究对象和研究方法匕的相同点及不同点.二■弾性力学的基本假定、基本凰和坐标系1. 为简化计算•弾性力学假定所研究的翎休处于连续的•完全弹性的、均匀的•各向崗性的、小变形的状态.2. 各种基本联的正负号规定’注意弹性力学中应力分St的正负号规定与材料力学中的正负号规定有何相同点和不同点•外力《体力,面力〉均以沿坐标轴正向为正•而力的正负特与所处的面无关(只与坐标系有垃).注意与应力分贰正面正向、负面负向约宦的区别-3. 五个幕本假定在漣立號力力学科本方程时的用途•难点建立正面•负面的概念•确立弹性力学中应力分16的正负号规定.典型例题讲解例*八试分别根据在材料力学中•和牀性力学中符号的規定•确定图中所示的切应力Ti »r3 .rj.ri的符可■・thMI ira(MSI (l)ft材料力学中规症・凡企图使触元成典财祁顺时社转动的切应力为正•反之为负.所以为正$"・口为负.4)在弹性力学中规宦,作用于正坐标面上的切应力以正坐标轴方向为正•作用于负坐怀面L的切应力以负坐标轴方向为正•相反的方向均为负.所以““珂, T"i «T4均为负.习题全解11试举例说明•什么是均匀的各向斥性体,什久垦非均匀的备向同杵体,什么捲转均匀的特向舁性体.【解??】木材、竹材定均匀的孑向舁性体X泯合材料通富称为非均匀的各向同性律■如沙石混凝土构件•为非均匀的各向同性体;有生物级斌如长骨.为非均匀的各向异性体.1-2 —股的混凝土构件和钢筋混匿上构件能否作为理想弹性体?一般的岩质地基利上质地基能否作为理想弹性体?{解?H —般的混凝土构件可臥作为理想的弹性休•而钢筋混凝土构件不可以作为理想的禅性体I-叙的兽值地堪不可以作为理想养性体,而土质地基可比作为理想的弹性休.1 • 3五个旅本假定在建立弹性力学基本方程时有什么用逢?【解答】(】》连续性假定「引用这一俶宦以后•物体中的应力、应变和位降等物理虞就可看成是连续的•因此,建立豹性力学的基本方稈时就可以用坐标的连续噸敢来表示它们的变化规律.(2)完全弹性假定:引用这一完全弹性的假進还包含形变号形变引起的正应力成正比的含义,亦即二者成线性的关系,服从胡克宦律,从而使物理方程成为线性的方程.«3)的匀性假定:在该假崖所硏究的物怵内部各点的物理性质显然都是相同的&因此•反映这些物理性质的弹性常数(如弹性税就E和泊松比“等)就不随位置坐标而变化.5各向同性個定価谓-各向同性'暹捋物休的物理性庾從各个方向上都艇相同的.进一步地说•就楚物体的弹性常数也不随方向而变化.(5)小变形假定’我们研究掬体受力后的平衡冋题时•不用考虑物体尺寸的改变■而仍然按照原来的尺寸和形状进行计算「同时•住研究物体的变形和位移时.可以将它们的二次帮或乘税略左不计,使得弾性力学中的微分方段都简化为线性啟分方程.在上述这些假定下•弹性力学何題都化为线性问題•从而可以应用独加原理・14应力和面力的符号规定有什么区别?试分别画岀正面和负面匕的正的应力和正的面力的方向.it【解答】应力的符号規起是:当作用潮的外法线指向坐杯抽的止为向时(即正面时》•这个面匕的应如不论址止应力或切应力)以沿坐标辆的止方向为正•沿坐标轴的负方向为负.与此相反严作用血的外法线指向坐标铀的负方向时(即负血时》•这亍面上的应力就以沿坐标轴的负方向为正.沿坐标轴的正方向为负.面力的符号规進是:当面力的捋向沿坐标轴的正方向时为正•沿坐:标轴的负方向时为负.1-5试比较弹性力学和材料力学中关于切应力的符号规崖.【解答】理弾性力学利材料力学中切应力的符号规定不尽相同t材料力学中规定•凡企图使徴段顺时甘转动的切应力为诳干在弹性力学中规定•作用于正坐标面上的切应力以沿坐擁轴正方向为正,作用尸负坐标面上的切应力以沿坐标轴负方向为正•相反的方向均为负•试举例说明iE的应力肘应于正的形变那【解善】如樂受拉伸时•其形状发比故变・正的应力(拉应力〉对应于正的形变.17 试画01题1 -7图中的矩形薄板的正的体力•面力和应力的方向.注*:U)无论玄哪-个位置的体力•住哪一个边界面上的血力,均以沿坐标轴正方向为正•反之为负.(2〉边界面1:的应力应是以在正坐标面上•方向沿坐标轴iE方向为正•反弹忸力学简驷4MJU 甲三程[金枫爭学获号邀金**题I -SfflM 1-7 图 “)萍力和Ifc 力Mb )协力和应力 之为负I 在负坐标面上•方向沿坐标轴负方向为正,反之为负• 1・8试倆出題I 8田屮的三角形薄板的正的面力和体力的方向./(hO:解】・8图第二* 年而问廳的生漳理枪本章学习重点与难点■点一,两类平面问曲的概念二、平面问題的基本方程平面问题的越本方穆共冇八个•见卜我・JC中+E屮•&分别晁弹性模虽、泊松比和切变模皿―是八.弾性刀孝蘭叭戟uu篥厶版)会枚琴悌艮习反金站三•平面问題的边界条件強性力学平面问题的边界条件右三类•如下表-英中$,$■分别表示面力、位移已知的边界M和加则是边界面的方向余弦.四•平面问艙的两条求解途径h处理平面问題时•粘用按位移求解和按应力求解这嗚条途住•在满足相应的求解方程和边界条件之后•前着5t求出位移再用几何方程、物理方甩分别求出应变和应力;后者先求出应力再由物理方程、几何方程分别求出应变和位移•2. 按位移求解平面问题•归结为在给定边界条件F,求解以位移表示的平衡微分方程(平面应力情况A(工4色+上2£乜+也亘1L)= Q,1 一尸巩十2孑护2 紅小I芒?(薛+ * 諮+ 中黑)=。

弹性力学简明教程第四版徐芝纶专业知识讲座

弹性力学简明教程第四版徐芝纶专业知识讲座
弹性力学在力学学科和工程学科中,具
有重要的地位:
弹性力学是其他固体力学分支学科的基 础。
弹性力学是工程结构分析的重要手段。尤 其对于安全性和经济性要求很高的近代大型工 程结构,须用弹力方法进行分析。
本第文一节档所弹提性供力的学信的息内仅容当供之参处考,之请用联,系不能本作人为或科网学站依删据除,。请勿模仿。文学档习如目有的不
§1-1 弹性力学的内容
弹性力学─研究弹性体由于受外力、边界
约束或温度改变等原因而发生的应力、形变 和位移。 研究弹性体的力学,有材料力学、结构力学、
弹性力学。它们的研究对象分别如下:
本文第档一所节提供弹的性信力息学的仅内供容参考之用,不能作为科学依据,请勿模仿。文研档究对如象有不 当之处,请联系本人或网站删除。
内力─假想切开物体,截面两边互相作用 的力(合力和合力矩),称为内力。
本文第档二所节提弹供性的力信学息中仅的当供几之参个处考基,之本请用概念联,系不能本作人为或科网学站依删据除,。请勿模仿。文档如有不
应力─截面上某一点处,单位截面面积上的 内力值。
(量纲) ML1T2. 力/长度²
(表示) σ x ─ x面上沿 x向正应力, xy ─ x面上沿 y向切应力。
(符号)坐标正向为正 。
本文第档二所节提弹供性的力信学息中仅的当供几之参个处考基,之本请用概念联,系不能本作人为或科网学站依删据除,。请勿模仿。文档如有不
例:表示出下图中正的体力和面力
O(z)
y
x
fx
fx
fyfyຫໍສະໝຸດ O(z)fy fx
fy
y
x
fx
本文第档二所节提弹供性的力信学息中仅的当供几之参个处考基,之本请用概念联,系不能本作人为或科网学站依删据除,。请勿模仿。应文力档如有不

弹性力学简明教程(第四版)_课后习题解答

弹性力学简明教程(第四版)_课后习题解答

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例解释什么是平均的各向异性体,什么长短平均的各向同性体?【剖析】平均的各项异形体就是知足平均性假定,但不知足各向同性假定;非平均的各向异性体,就是不知足平均性假定,但知足各向同性假定.【解答】平均的各项异形体如:竹材,木材.非平均的各向同性体如:混凝土.【1-2】一般的混凝土构件和钢筋混凝土构件可否作为幻想弹性体?一般的岩质地基和土质地基可否作为幻想弹性体?【剖析】可否作为幻想弹性体,要剖断可否知足四个假定:持续性,完整弹性,平均性,各向同性假定.【解答】一般的混凝土构件和土质地基可以作为幻想弹性体;一般的钢筋混凝土构件和岩质地基不成以作为幻想弹性体.【1-3】五个根本假定在树立弹性力学根本方程时有什么感化?【解答】(1)持续性假定:假定物体是持续的,也就是假定全部物体的体积都被构成这个物体的介质所填满,不留下任何闲暇.引用这一假定后,物体的应力.形变和位移等物理量就可以算作是持续的.是以,树立弹性力学的根本方程时就可以用坐标的持续函数来暗示他们的变更纪律.完整弹性假定:假定物体是完整弹性的,即物体在对应形变的外力被去除后,可以或许完整恢回复复兴型而无任何形变.这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变屈服胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变.平均性假定:假定物体是平均的,即全部物体是由统一材料构成的,引用这一假定后全部物体的所有各部分才具有雷同的弹性,所研讨物体的内部各质点的物理性质都是雷同的,因而物体的弹性常数不随地位坐标而变更.各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个偏向都雷同,引用此假定后,物体的弹性常数不随偏向而变.小变形假定:假定位移和变形是渺小的.亦即,假定物体受力今后全部物体所有各点的位移都远远小于物体本来的尺寸,并且应变和转角都远小于 1.如许在树立物体变形今后的均衡方程时,就可以便利的用变形以前的尺寸来代替变形今后的尺寸.在考核物体的位移与形变的关系时,它们的二次幂或乘积相对于其本身都可以略去不计,使得弹性力学中的微分方程都简化为线性的微分方程.【1-4】应力和面力的符号划定有什么差别?试画出正坐标面和负坐标面上的正的应力和正的面力的偏向.【解答】应力的符号划定是:当感化面的外法线偏向指向坐标轴偏向时(即正面时),这个面上的应力(不管是正应力照样切应力)以沿坐标轴的正偏向为正,沿坐标轴的负偏向为负.当感化面的外法线指向坐标轴的负偏向时(即负面时),该面上的应力以沿坐标轴的负偏向为正,沿坐标轴的正偏向为负.面力的符号划定是:当面力的指向沿坐标轴的正偏向时为正,沿坐标轴的负偏向为负.由下图可以看出,正面上应力分量与面力分量同号,负面上应力分量与面力分量符号相反.正的应力正的面力【1-5】试比较弹性力学和材料力学中关于切应力的符号划定.【解答】材料力学中划定切应力符号以使研讨对象顺时针迁移转变的切应力为正,反之为负.弹性力学中划定,感化于正坐标面上的切应力以沿坐标轴的正偏向为正,感化于负坐标面上的切应力以沿坐标轴负偏向为正,反之为负.【1-6】试举例解释正的应力对应于正的形变.【解答】正的应力包含正的正应力与正的切应力,正的形变包含正的正应变与正的切应变,本题应从两方面解答.正的正应力对应于正的正应变:轴向拉伸情形下,产生轴向拉应力为正的应力,引起轴向伸长变形,为正的应变.正的切应力对应于正的切应变:在如图所示应力状况情形下,切应力均为正的切应力,引起直角减小,故为正的切应变.【1-7】试画出图1-4中矩形薄板的正的体力.面力和应力的偏向.【解答】正的体力.面力正的体力.应力【1-8】试画出图1-5中三角形薄板的正的面力和体力的偏向. 【解答】【1-9】在图1-3的六面体上,y 面上切应力yz τ的合力与z 面上切应力zy τ的合力是否相等?【解答】切应力为单位面上的力,量纲为12L MT --,单位为2/N m .是以,应力的合力应乘以响应的面积,设六面体微元尺寸如dx ×dy ×dz ,则y 面上切应力yz τ的合力为:yz dx dz τ⋅⋅ (a)z 面上切应力zy τ的合力为:zy dx dy τ⋅⋅ (b)由式(a )(b)可见,两个切应力的合力其实不相等.【剖析】感化在两个互相垂直面上并垂直于该两面交线的切应力的合力不相等,但对某点的合力矩相等,才导出切应力互等性.第二章 平面问题的根本理论【2-1】试剖析解释,在不受任何面力感化的空间体概况邻近的薄层中(图2-14)其应力状况接近于平面应力的情形.【解答】在不受任何面力感化的空间概况邻近的薄层中,可以以为在该薄层的高低概况都无面力,且在薄层内所有各点都有0===z xz yz σττ,只消失平面应力分量,,x y xy σστ,且它们不沿z 偏向变更,仅为x,y 的函数.可以以为此问题是平面应力问题.【2-2】试剖析解释,在板面上处处受法向束缚且不受切向面力感化的等厚度薄片中(2-15),当板边上只受x,y 向的面力或束缚,且不沿厚度变更时,其应变状况接近于平面应变的情形.【解答】板上处处受法向束缚时0z ε=,且不受切向面力感化,则0xz yz γγ==(响应0zx zy ττ==)板边上只受x,y 向的面力或束缚,所以仅消失,,x y xy εεγ,且不沿厚度变更,仅为x,y 的函数,故其应变状况接近于平面应变的情形.【2-3】在图2-3的微分体中,若将对形心的力矩平很前提CM0=∑改为对角点的力矩均衡前提,试问将导出什么情势的方程?【解答】将对形心的力矩均衡前提CM0=∑,改为分离对四个角点A.B.D.E 的均衡前提,为盘算便利,在z 偏向的尺寸取为单位1.0AM=∑1()1()11222()1()1110222xy x y x xy y y yx y yx x x dx dy dydx dx dy dx dy dx dy x x dx dy dx dy dx dy dx dy f dxdy f dxdy y y τσσστσστστ∂∂⋅⋅++⋅⋅-+⋅⋅-⋅⋅∂∂∂∂-+⋅⋅++⋅⋅+⋅⋅-⋅⋅=∂∂ (a)0BM=∑()1()1()1221111102222yx y x x yx y xy x y x y dy dxdx dy dy dx dy dy dx x y y dy dx dy dxdy dx dy dx f dxdy f dxdy τσσστστσσ∂∂∂+⋅⋅++⋅⋅++⋅⋅∂∂∂-⋅⋅-⋅⋅-⋅⋅+⋅⋅+⋅⋅= (b)Ozy0DM=∑()1111221()11102222yy xy x yx x x x x y dx dydy dx dy dx dy dx dyy dx dy dy dxdx dx dy f dxdy f dxdy x σστστσσσ∂+⋅⋅-⋅⋅+⋅⋅+⋅⋅∂∂-⋅⋅-+⋅⋅-⋅⋅+⋅⋅=∂ (c)0EM=∑()1111222()1()1110222yy x yx y xy x x xy x y dx dy dxdy dx dy dx dy dx y dy dy dxdx dy dx dy dx f dxdy f dxdy x x σσστστσστ∂-+⋅⋅+⋅⋅+⋅⋅+⋅⋅-∂∂∂+⋅⋅-+⋅⋅-⋅⋅+⋅⋅=∂∂ (d)略去(a).(b).(c).(d)中的三阶小量(亦即令22,d xdy dxd y 都趋于0),并将各式都除今后dxdy 归并同类项,分离得到xy yx ττ=.【剖析】由本题可得出结论:微分体对任一点取力矩均衡得到的成果都是验证了切应力互等定理.【2-4】在图2-3和微分体中,若斟酌每一面上的应力分量不是平均散布的,验证将导出什么情势的均衡微分方程?【解答】微分单元体ABCD 的边长,dx dy 都是微量,是以可以假设在各面上所受的应力如图a 所示,疏忽了二阶以上的高阶微量,而看作是线性散布的,如图(b )所示.为盘算便利,单元体在z 偏向的尺寸取为一个单位.)C)C(a) (b)各点正应力:()=x A x σσ;()=y A y σσ()xx B x dy yσσσ∂=+∂;()y y B y dy yσσσ∂=+∂()∂=+∂xx D x dx xσσσ;()∂=+∂xy D y dx xσσσ ()∂∂=++∂∂∂x xx C x dx y x yσσσσ; ()∂∂=++∂∂∂y y y C y dx y xyσσσσ各点切应力:()xy A xy ττ=;()yx A yx ττ=()∂=+∂xy xy B xy dy yτττ;()∂=+∂yx yx A yx dy yτττ()xy xy D xy dx x τττ∂=+∂;()∂=+∂yx yx D yx dx xτττ()xy xy xy C xy dx dy xyττττ∂∂=++∂∂;()∂∂=++∂∂yx yx yx C yx dx dy xyττττ由微分单元体的均衡前提 0,∑=x F 0,∑=y F 得112211+22x x x x x x x xyx yx yx yx yx yx yx yx dy dy dx dx dy dy y x x y y dx dx dy dx dy x y x y σσσσσσσστττττττ⎧⎧⎫⎫⎡⎤⎡⎤⎛⎫⎛⎫∂∂∂∂⎪⎪⎪⎪⎛⎫-+++++++-⎨⎬⎨⎬⎢⎥⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎪⎪⎣⎦⎣⎦⎪⎪⎭⎭⎩⎩⎧⎫⎡∂⎤⎡∂∂∂⎤⎛⎫⎛⎫⎛⎫⎪⎪++++++⎨⎬⎢⎥⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎪⎣⎦⎣⎦⎪⎭⎩0x dx f dxdy ⎧⎫⎪⎪+=⎨⎬⎪⎪⎭⎩112211+++22y y y y y y y y xy xy xy xy xy xy xy xy dx dx dy dx dy dx x y x y dy dy dx dy dx y x y x σσσσσσσσττττττττ⎧⎧⎫⎫⎡∂⎤⎡∂∂∂⎤⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪-+++++++-⎨⎬⎨⎬⎢⎥⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎪⎪⎣⎦⎣⎦⎪⎪⎭⎭⎩⎩⎧⎫⎡∂⎤⎡∂∂∂⎤⎛⎫⎛⎫⎛⎫⎪⎪++++⎨⎬⎢⎥⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎪⎣⎦⎣⎦⎪⎭⎩0y dy f dxdy ⎧⎫⎪⎪+=⎨⎬⎪⎪⎭⎩以上二式分离睁开并约简,再分离除以dxdy ,就得到平面问题中的均衡微分方程:0;0yxy xy x x y f f x y y xτστσ∂∂∂∂++=++=∂∂∂∂ 【剖析】由本题可以得出结论:弹性力学中的均衡微分方程实用于随意率性的应力散布情势. 【2-5】在导出平面问题的三套根本方程时,分离运用了哪些根本假定?这些方程的实用前提是什么?【解答】(1)在导出平面问题的均衡微分方程和几何方程时运用的根本假设是:物体的持续性和小变形假定,这两个前提同时也是这两套方程的实用前提.(2)在导出平面问题的物理方程时运用的根本假定是:持续性,完整弹性,平均性和各向同性假定,即幻想弹性体假定.同样,幻想弹性体的四个假定也是物理方程的运用前提.【思虑题】平面问题的三套根本方程推导进程中都用到了哪个假定?【2-6】在工地上技巧人员发明,当直径和厚度雷同的情形下,在自重感化下的钢圆环(接近平面应力问题)总比钢圆筒(接近平面应变问题)的变形大.试根据响应的物理方程来解释这种现象.【解答】体力雷同情形下,两类平面问题的均衡微分方程完整雷同,故所求的应力分量雷同.由物理方程可以看出,两类平面问题的物理方程重要的差别在于方程中含弹性常数的系数.因为E 为GPa 级此外量,而泊松比μ取值一般在(0,0.5),故重要掌握参数为含有弹性模量的系数项,比较两类平面问题的系数项,不难看出平面应力问题的系数1/E 要大于平面应变问题的系数()21/-E μ.是以,平面应力问题情形下应变要大,故钢圆环变形大.【2-7】在常体力,全体为应力鸿沟前提和单连体的前提下,对于不合材料的问题和两类平面问题的应力分量x σ,y σ和xy τ均雷同.试问其余的应力,应变和位移是否雷同?【解答】(1)应力分量:两类平面问题的应力分量x σ,y σ和xy τ均雷同,但平面应力问题0z yz xz σττ===,而平面应变问题的()0,xz yz z x y ττσμσσ===+.(2)应变分量:已知应力分量求应变分量须要运用物理方程,而两类平面问题的物理方程不雷同,故应变分量0,xz yz xy γγγ==雷同,而,,x y z εεε不雷同.(3)位移分量:因为位移分量要靠应变分量积分来求解,故位移分量对于两类平面问题也不合. 【2-8】在图2-16中,试导出无面力感化时AB 鸿沟上的xy ,,x y σστ之间的关系式【解答】由题可得:()()()cos ,cos 90sin 0,0x y l m f AB f AB ααα==-===将以上前提代入公式(2-15),得:()()()()()2cos sin 0, sin ()cos 0()tan tan x yx y xy AB AB AB AB x AB yx y ABABσατασαταστασα+=+=⇒=-=x图2-16【2-9】试列出图2-17,图2-18所示问题的全体鸿沟前提.在其端部小鸿沟上,运用圣维南道理列出三个积分的应力鸿沟前提.xM图2-17图2-18【剖析】有束缚的鸿沟上可斟酌采取位移鸿沟前提,若为小鸿沟也可写成圣维南道理的三个积分情势,大鸿沟上应准确知足公式(2-15).【解答】图2-17:上(y =0)左(x =0) 右(x =b )l0 -1 1 m-1() x f s()1g y h ρ+()1g y h ρ-+() yfs1gh ρ代入公式(2-15)得①在重要鸿沟上x=0,x=b 上准确知足应力鸿沟前提:()()100(),0;===-+=x xy x x g y h σρτ ()()1b b (),0;===-+=x xy x x g y h σρτ②在小鸿沟0y =上,能准确知足下列应力鸿沟前提:()(),0yxy y y gh σρτ===-=③在小鸿沟2y h =上,能准确知足下各位移鸿沟前提:()()220,0====y hy h u v这两个位移鸿沟前提可以运用圣维南道理,改用三个积分的应力鸿沟前提来代替,当板厚=1δ时,可求得固定端束缚反力分离为:10,,0s N F F gh b M ρ==-=因为2y h =为正面,故应力分量与面力分量同号,则有:()()()222100000b y y h by y h bxy y h dx gh b xdx dx σρστ===⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩⎰⎰⎰ ⑵图2-18①高低重要鸿沟y=-h/2,y=h/2上,应准确知足公式(2-15)m x y f 2h y =-0 -1 0 q2h y =1-1q-/2()y y h q σ==-,-/2()0yx y h τ==,/2()0y y h σ==,/21()yx y h q τ==-②在x =0的小鸿沟上,运用圣维南道理,列出三个积分的应力鸿沟前提:负面上应力与面力符号相反,有/20/2/20/2/20/2()()()h xy x Sh h x x N h h x x h dx Fdx F ydx M τσσ=-=-=-⎧=-⎪⎪=-⎨⎪⎪=-⎩⎰⎰⎰ ③在x=l 的小鸿沟上,可运用位移鸿沟前提0,0====l x l x v u 这两个位移鸿沟前提也可改用三个积分的应力鸿沟前提来代替.起首,求固定端束缚反力,按面力正偏向假设画反力,如图所示,列均衡方程求反力:110,xN NN N F F F q l F q l F ''=+=⇒=-∑ 0,0yS S S S FF F ql F ql F ''=++=⇒=--∑2211110,'02222A S S q lh ql M M M F l ql q lh M M F l =+++-=⇒=---∑因为x=l 为正面,应力分量与面力分量同号,故/21/22/21/2/2/2()()22()h x x l N Nh h x x l S h h xy x l S Sh dy F q l Fq lh ql ydy M M F l dy F ql Fσστ=-=-=-⎧'==-⎪⎪⎪'==---⎨⎪⎪'==--⎪⎩⎰⎰⎰M '【2-10】试运用圣维南道理,列出图2-19所示的两个问题中OA 边上的三个积分的应力鸿沟前提,并比较两者的面力是否是是静力等效?【解答】因为hl ,OA 为小鸿沟,故其上可用圣维南道理,写出三个积分的应力鸿沟前提:(a)上端面OA 面上面力q bx f f y x ==,0 因为OA 面为负面,故应力主矢.主矩与面力主矢.主矩符号相反,有()()()0000200000022120bb b y y y b b b y y y byx y x qb dx f dx qdx b x b qb xdx f xdx q x dx b dx σστ===⎧=-=-=-⎪⎪⎪⎛⎫=-=-=⎨ ⎪⎝⎭⎪⎪=⎪⎩⎰⎰⎰⎰⎰⎰⎰(对OA 中点取矩) (b)运用圣维南道理,负面上的应力主矢和主矩与面力主矢和主矩符号相反,面力主矢y 向为正,主矩为负,则()()()00200002120by N y by y b xy y qb dx F qb xdx M dx σστ===⎧=-=-⎪⎪⎪=-=⎨⎪⎪=⎪⎩⎰⎰⎰ 综上所述,在小鸿沟OA 上,两个问题的三个积分的应力鸿沟前提雷同,故这两个问题是静力等效的.【2-11】磨练平面问题中的位移分量是否为准确解答的前提是什么? 【解答】(1)在区域内用位移暗示的均衡微分方程式(2-18); (2)在s σ上用位移暗示的应力鸿沟前提式(2-19); (3)在u s 上的位移鸿沟前提式(2-14); 对于平面应变问题,需将E.μ作响应的变换.【剖析】此问题同时也是按位移求解平面应力问题时,位移分量必须知足的前提. 【2-12】磨练平面问题中的应力分量是否为准确解答的前提是什么? 【解答】(1)在区域A 内的均衡微分方程式(2-2);2qb 212qb 图2-19(2)在区域A内用应力暗示的相容方程式(2-21)或(2-22);(3)在鸿沟上的应力鸿沟前提式(2-15),个中假设只求解全体为应力鸿沟前提的问题; (4)对于多连体,还需知足位移单值前提.【剖析】此问题同时也是按应力图解平面问题时,应力分量必须知足的前提.【补题】磨练平面问题中的应变分量是否为准确解答的前提是什么?【解答】用应变暗示的相容方程式(2-20)【2-13】磨练平面问题中的应力函数是否为准确解答的前提是什么?【解答】(1)在区域A内用应力函数暗示的相容方程式(2-25);(2)在鸿沟S上的应力鸿沟前提式(2-15),假设全体为应力鸿沟前提;(3)若为多连体,还需知足位移单值前提.【剖析】此问题同时也是求解应力函数的前提.【2-14】磨练下列应力分量是否是图示问题的解答:图2-20 图2-21(a)图2-20,22xyqb,0==y xyστ.【解答】在单连体中磨练应力分量是否是图示问题的解答,必须知足:(1)均衡微分方程(2-2);(2)用应力暗示的相容方程(2-21);(3)应力鸿沟前提(2-15).(1)将应力分量代入均衡微分方程式,且0==x yf f∂∂+=∂∂yxxx yτσ∂∂+=∂∂y xyy xστ显然知足(2)将应力分量代入用应力暗示的相容方程式(2-21),有等式左=()2222x yx yσσ⎛⎫∂∂++⎪∂∂⎝⎭=22≠qb=右应力分量不知足相容方程.是以,该组应力分量不是图示问题的解答.(b)图2-21,由材料力学公式,=xMyIσ,*=sxyF SbIτ(取梁的厚度b=1),得出所示问题的解答:332=-x x y q lh σ,22233-(4)4=-xy q x h y lh τ.又根据均衡微分方程和鸿沟前提得出:333222=--y q xy xy q xq lh lh lσ.试导出上述公式,并磨练解答的准确性. 【解答】(1)推导公式在散布荷载感化下,梁产生曲折形变,梁横截面是宽度为1,高为h 的矩形,其对中性轴(Z 轴)的惯性矩312=h I ,运用截面法可求出随意率性截面的弯矩方程和剪力方程()23(),62=-=-q qx M x x F x l l.所以截面内随意率性点的正应力和切应力分离为:()332==-x M x x yy q I lhσ()()2222233431.424⎛⎫=-=-- ⎪⎝⎭s xy F x y q x h y bh h lh τ. 根据均衡微分方程第二式(体力不计).0∂∂+=∂∂y xy yxστ得: 333.22=-+y q xy xy q A lh lhσ 根据鸿沟前提()/20==yy h σ得 q .2=-xA l故 333.2.22=--y q xy xy q x q lh lh lσ 将应力分量代入均衡微分方程(2-2) 第一式:22336.60x y x yq q lh lh=-+==左右 知足第二式 天然知足将应力分量代入相容方程(2-23)()22223312.12.0⎛⎫∂∂=++=--≠= ⎪∂∂⎝⎭左右x y xy xyq q x y lh lh σσ应力分量不知足相容方程.故,该分量组分量不是图示问题的解答.【2-15】试证实:在产生最大与最小切应力的面上,正应力的数值都等于两个主应力的平均值. 【解答】(1)肯定最大最小切应力产生地位 随意率性斜面上的切应力为()21nlm τσσ=-,用关系式221l m +=消去m,得)))212121n τσσσσσσ=±-=-=-由上式可见当2102l -=时,即l =,n τ为最大或最小,为 ()12max min 2n σστ-=±.是以,切应力的最大,最小值产生在与x 轴及y 轴(即应力主向)成45°的斜面上.(2)求最大,最小切应力感化面上,正应力n σ的值 任一斜面上的正应力为()2122n l σσσσ=-+最大.最小切应力感化面上2/1±=l ,带入上式,得()()122121122n σσσσσσ=-+=+证毕.【2-16】设已求得一点处的应力分量,试求112,,σσα()100,50,)2000,400;x y xy x y xy a b σστσστ======-,()20001000400; ()1000,1500,500.x y xy x y xy c d σστσστ=-==-=-=-=,,【解答】由公式(2-6)122x y σσσσ+⎫=±⎬⎭及11tan x xy σσατ-=,得11arctan x xy σσατ-= (a)121501005002σσ⎫⎧+=±=⎬⎨⎩⎭13516'α==︒(b)1251220003122σσ⎫⎧+==⎬⎨-⎩⎭ ()1512200arctanarctan 0.783757'400α-==-=-︒-(c) 1210522000100020522σσ⎫⎧-+=±=⎬⎨-⎩⎭ ()110522000arctanarctan 7.388232'400α+==-=-︒-(d) 126911000150018092σσ-⎫⎧--==⎬⎨-⎩⎭ 16911000arctanarctan 0.6183143'500α-+===︒【2-17】设有随意率性外形的等候厚度薄板,体力可以不计,在全体鸿沟上(包含孔口鸿沟上)受有平均压力q .试证-xyq 及0xy τ=能知足均衡微分方程.相容方程和应力鸿沟前提,也能知足位移单值前提,因而就是准确的解答.【解答】(1)将应力分量,0x y xy q σστ==-=,和体力分量0x y f f ==分离带入均衡微分方程.相容方程00xyx x y xy yf xy f yx τσστ∂⎧∂++=⎪∂∂⎪⎨∂∂⎪++=⎪∂∂⎩ (a ) ()20x y σσ∇+= (b )显然知足(a )(b )(2)对于渺小的三角板A,dx,dy 都为正值,斜边上的偏向余弦()()cos ,,cos ,l n x m n y ==,将-,0x y xy q σστ===,代入平面问题的应力鸿沟前提的表达式(2-15),且()()-cos ,,cos ,x y f q n x f q n y ==,则有()()()()cos ,cos ,,cos ,cos ,x y n x q n x n y q n y σσ=-=-所以,x y q q σσ=-=-.对于单连体,上述前提就是肯定应力的全体前提.y(3)对于多连体,应校核位移单值前提是否知足.该题为平面应力情形,起首,将应力分量代入物理方程(2-12),得形变分量,(1)(1),,0x y xy q q E Eμμεεγ---=== (d ) 将(d )式中形变分量代入几何方程(2-8),得=,=,0u v v u q q x y x yμμ∂∂∂∂+=∂∂∂∂(-1)(-1)E E (e ) 前两式积分得到12--=(),=()u qx f y v qy f x μμ++(1)(1)E E(f )个平分()()12,f y f x 离随意率性的待定函数,可以经由过程几何方程的第三式求出,将式(f )代入式(e )的第三式,得12()()df y df x dy dx -=等式左边只是y 的函数,而等式右边只是x 的函数.是以,只可能双方都等于统一个常数ω,于是有12()(),df y df x dy dxωω=-= 积分后得()()1020,f y y u f x x v ωω=-+=+ 代入式(f )得位移分量00(1)(1)u qx y u Ev qy x v Eμωμω-⎧=-+⎪⎪⎨-⎪=++⎪⎩ (g ) 个中00,,u v ω为暗示刚体位移量的常数,需由束缚前提求得从式(g )可见,位移是坐标的单值持续函数,知足位移单值前提.因而,应力分量是准确的解答. 【2-18】设有矩形截面的悬臂梁,在自由端受有分散荷载F (图2-22),体力可以不计.试根据材料力学公式,写出弯应力0y σ=,然后证实这些表达式知足均衡微分方程和相容方程,再解释这些表达式是否就暗示准确的解答.【解答】(1)矩形悬臂梁产生曲折变形,随意率性横截面上的弯矩方程()M x Fx =-,横截面临中性轴的惯性矩为3/12z I h =,根据材料力学公式y弯应力3()12x z M x Fy xy I hσ==-; 该截面上的剪力为()s F x F =-,剪应力为()*2233()/262241/12s xy z F x S F h h y F h y b y y bI h h τ⎛⎫--⎛⎫⎡⎤==⋅-⋅⋅+=-- ⎪ ⎪⎢⎥⨯⎝⎭⎣⎦⎝⎭取挤压应力0y σ=(2)将应力分量代入均衡微分方程磨练 第一式:2312120F Fy y h h=-+==左右 第二式:左=0+0=0=右 该应力分量知足均衡微分方程.(3)将应力分量代入应力暗示的相容方程2()0x y σσ=∇+==左右 知足相容方程(4)考核鸿沟前提①在重要鸿沟/2y h =±上,应准确知足应力鸿沟前提(2-15)lmx fyf2h y =-上0 -1 0 0 2h y =上1代入公式(2-15),得()()()()-/2/2/2/20,0;0,0yxy y yx y h y h y h y h στστ==-======②在次要鸿沟x=0上,列出三个积分的应力鸿沟前提,代入应力分量主矢主矩/20/2/20/22/2/2203/2/2()0()06()()4h x x h h x x h h h xy x h h dy x ydy F h dy y dy F y h σστ=-=-=--⎧⎪==⎪⎪==⎨⎪⎡⎤⎪=--=-=⎢⎥⎪⎣⎦⎩⎰⎰⎰⎰向面力主矢面力主矩向面力主矢知足应力鸿沟前提③在次要鸿沟上,起首求出固定边面力束缚反力,按正偏向假设,即面力的主矢.主矩,0,,N S F F F M Fl ==-=-其次,将应力分量代入应力主矢.主矩表达式,断定是否与面力主矢与主矩等效:/2/23/2/212()0h h x x l Nh h Fdy lydy F h σ=--=-==⎰⎰M/2/223/2/212()h h x x l h h F ydy ly dy Fl Mh σ=--=-=-=⎰⎰2/2/223/2/26()4h h xy x l S h h F h dy y dy F F h τ=--⎛⎫=--=-= ⎪⎝⎭⎰⎰知足应力鸿沟前提,是以,它们是该问题的准确解答.【2-19】试证实,假如体力固然不是常量,但倒是有势的力,即体力分量可以暗示为,x y V Vf f x y∂∂=-=-∂∂,个中V 是势函数,则应力分量亦可用应力函数暗示成为22222=,=,x y xy V V y x x yσστ∂Φ∂Φ∂Φ++=-∂∂∂∂,试导出响应的相容方程.【解答】(1)将,x y f f 带入均衡微分方程(2-2)00 00yx yx x x x y xy y xy yVf x y x y x V f y x yx y ττσσστστ∂∂⎧⎧∂∂∂++=+-=⎪⎪∂∂∂∂∂⎪⎪⇒⎨⎨∂∂∂∂∂⎪⎪++=+-=⎪⎪∂∂∂∂∂⎩⎩ (a ) 将(a )式变换为()0()0yx x xy yV xy V yy τστσ∂⎧∂-+=⎪∂∂⎪⎨∂∂⎪-+=⎪∂∂⎩ (b ) 为了知足式(b ),可以取22222,,x y xy V V y x x yσστ∂Φ∂Φ∂Φ-=-==-∂∂∂∂即22222,,x y xy V V y x x yσστ∂Φ∂Φ∂Φ=+=+=-∂∂∂∂ (2)对体力.应力分量,,,x y x y f f σσ求偏导数,得222222424222222422242422422222, , , y x xx yy f f V Vx x y y V V x x y x y y y V V x x x y x y y σσσσ⎧∂∂∂∂=-=-⎪∂∂∂∂⎪⎪∂∂∂Φ∂∂Φ∂⎪=+=+⎨∂∂∂∂∂∂∂⎪⎪∂∂∂Φ∂∂Φ∂⎪=+=+∂∂∂∂∂∂∂⎪⎩(c ) 将(c )式代入公式(2-21)得平面应力情形下应力函数暗示的相容方程()2(1)y x x y f f x y σσμ∂⎛⎫∂∇+=-++ ⎪∂∂⎝⎭(2-21)4242424222222424222222(1)V V V VV V x y x y y x x x y y x y μ⎛⎫∂Φ∂∂Φ∂∂Φ∂∂Φ∂∂∂+++++++=++ ⎪∂∂∂∂∂∂∂∂∂∂∂∂⎝⎭整顿得:444224224222(1)V V x x y y xy μ⎛⎫∂Φ∂Φ∂Φ∂∂++=--+ ⎪∂∂∂∂∂∂⎝⎭(d ) 即平面应力问题中的相容方程为42(1)V μ∇Φ=--∇将(c )式代入公式(2-22)或将(d )式中的调换为1μμ-,的平面应变情形下的相容方程: 444224224221221V Vx x y y x y μμ⎛⎫∂Φ∂Φ∂Φ-∂∂++=-+ ⎪∂∂∂∂-∂∂⎝⎭(e ) 即 42121V μμ-∇Φ=-∇-. 证毕.第三章 平面问题的直角坐标解答【3-1】为什么在重要鸿沟(大鸿沟)上必须知足准确的应力鸿沟前提式(2-15),而在小鸿沟上可以运用圣维南道理,用三个积分的应力鸿沟前提(即主矢量.主矩的前提)来代替?假如在重要鸿沟上用三个积分的应力鸿沟前提代替式(2-15),将会产生什么问题?【解答】弹性力学问题属于数学物理方程中的边值问题,而要使鸿沟前提完整得到知足,往往比较艰苦.这时,圣维南道理可为简化局部鸿沟上的应力鸿沟前提供给很大的便利.将物体一小部分鸿沟上的面力换成散布不合,但静力等效的面力(主矢.主矩均雷同),只影响近处的应力散布,对远处的应力影响可以疏忽不计.假如在占鸿沟绝大部分的重要鸿沟上用三个积分的应力鸿沟前提来代替准确的应力鸿沟前提(公式2-15),就会影响大部分区域的应力散布,会使问题的解答精度缺少.【3-2】假如在某一应力鸿沟问题中,除了一个小鸿沟前提,均衡微分方程和其它的应力鸿沟前提都已知足,试证:在最后的这个小鸿沟上,三个积分的应力鸿沟前提必定是天然知足的,固而可以不必校核.【解答】区域内的每一渺小单元均知足均衡前提,应力鸿沟前提本质上是鸿沟上微分体的均衡前提,即外力(面力)与内力(应力)的均衡前提.研讨对象整体的外力是知足均衡前提的,其它应力鸿沟前提也都知足,那么在最后的这个次要鸿沟上,三个积分的应力鸿沟前提是天然知足的,因而可以不必校核.【3-3】假如某一应力鸿沟问题中有m 个重要鸿沟和n 个小鸿沟,试问在重要鸿沟和小鸿沟上各应知足什么类型的应力鸿沟前提,各有几个前提?【解答】在m 个重要鸿沟上,每个鸿沟应有2个准确的应力鸿沟前提,公式(2-15),共2m 个;在n 个次要鸿沟上,假如能知足准确应力鸿沟前提,则有2n 个;假如不克不及知足公式(2-15)的准确应力鸿沟前提,则可以用三个静力等效的积分鸿沟前提来代替2个准确应力鸿沟前提,共3n 个.【3-4】试考核应力函数3ay Φ=在图3-8所示的矩形板和坐标系中能解决什么问题(体力不计)?【解答】⑴相容前提:不管系数a 取何值,应力函数3ay Φ=总能知足应力函数暗示的相容方程,式(2-25).⑵求应力分量当体力不计时,将应力函数Φ代入公式(2-24),得6,0,0x y xy yx ay σσττ====⑶考核鸿沟前提高低鸿沟上应力分量均为零,故高低鸿沟上无面力. 阁下鸿沟上;当a>0时,考核x σ散布情形,留意到0xy τ=,故y 向无面力 左端:0()6x x x f ay σ=== ()0y h ≤≤ ()0y xy x f τ===右端:()6x x x l f ay σ=== (0)y h ≤≤ ()0y xy x l f τ=== 应力散布如图所示,当lh 时运用圣维南道理可以将散布的面力,等效为主矢,主矩xf xf主矢的中间在矩下鸿沟地位.即本题情形下,可解决各类偏幸拉伸问题.偏幸距e :因为在A 点的应力为零.设板宽为b,分散荷载p 的偏幸距e :2()0/6/6x A p pee h bh bh σ=-=⇒= 同理可知,当a <0时,可以解决偏幸紧缩问题. 【3-5】取知足相容方程的应力函数为:⑴2,ax y Φ=⑵2,bxy Φ=⑶3,cxy Φ=试求出应力分量(不计体力),画出图3-9所示弹性体鸿沟上的面力散布,并在小鸿沟上暗示出面力的主矢量和主矩.【解答】(1)由应力函数2ax y Φ=,得应力分量表达式0,2,2x y xy yx ay ax σσττ====-考核鸿沟前提,由公式(2-15)()()()()x yx s x y xy s y l m f s m l f s στστ⎧+=⎪⎨+=⎪⎩①重要鸿沟,上鸿沟2hy =-上,面力为()22=-=x hf y ax ()2y h f y ah =-=②重要鸿沟,下鸿沟2hy =,面力为y()2,2x h f y ax ==- ()2y hf y ah ==③次要鸿沟,左鸿沟x=0上,面力的主矢,主矩为 x 向主矢:/20/2()0h x x x h F dy σ=-=-=⎰y 向主矢:/20/2()0h y xy x h F dy τ=-=-=⎰主矩:/20/2()0h x x h M ydy σ=-=-=⎰次要鸿沟,右鸿沟x=l 上,面力的主矢,主矩为 x 向主矢:/2/2()0h x x x l h F dy σ=-'==⎰ y 向主矢:/2/2/2/2()(2)2h h y xy x l h h F dy al dy alh τ=--'==-=-⎰⎰主矩:/2/2()0h x x l h M ydy σ=-==⎰弹性体鸿沟上面力散布及次要鸿沟面上面力的主矢,主矩如图所示 ⑵2bxy Φ=将应力函数代入公式(2-24),得应力分量表达式2x bx σ=,0y σ=,2xy yx by ττ==-考核应力鸿沟前提,重要鸿沟,由公式(2-15)得 在2h y =-重要鸿沟,上鸿沟上,面力为,022x y h h f y bh f y ⎛⎫⎛⎫=-==-= ⎪ ⎪⎝⎭⎝⎭在2h y =,下鸿沟上,面力为,022x y h h f y bh f y ⎛⎫⎛⎫==-== ⎪ ⎪⎝⎭⎝⎭在次要鸿沟上,散布面力可按(2-15)盘算,面里的主矢.主矩可经由过程三个积分鸿沟前提求得:在左鸿沟x=0,面力散布为()()00,02x y f x f x by ==== 面力的主矢.主矩为 x 向主矢:()2020h h x x x F dy σ=-=-=⎰y 向主矢:()()22002220hh h h y xy x x F dy by dy τ==--=-=--=⎰⎰主矩;/20/2()0h x x h M ydy σ=-=-=⎰在右鸿沟x=l 上,面力散布为Oxy()()2,2x y f x l bl f x l by ====-面力的主矢.主矩为 x 向主矢:()/2/2/2/222h h x x x lh h F dy bldy blh σ=--'===⎰⎰y 向主矢:()()/2/2/2/2'20h h y xy x l h h F dy by dy τ=--==-=⎰⎰主矩:()/2/2/2/2'20h h x x l h h M ydy blydy σ=--===⎰⎰弹性体鸿沟上的面力散布及在次要上面力的主矢和主矩如图所示ahxyah(3)3cxy Φ=将应力函数代入公式(2-24),得应力分量表达式26,0,3x y xy yx cxy cy σσττ====-考核应力鸿沟前提,在重要鸿沟上应准确知足式(2-15) ①2h y =-上边界上,面力为23,0242x y h h f y ch f y ⎛⎫⎛⎫=-==-= ⎪ ⎪⎝⎭⎝⎭②hy=2下边界上,面力为 23,0242x y h h f y ch f y ⎛⎫⎛⎫==-== ⎪ ⎪⎝⎭⎝⎭次要鸿沟上,散布面力可按(2-15)盘算,面力的主矢.主矩可经由过程三个积分鸿沟求得:③左鸿沟x=0上,面力散布为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——单元对结点 的作用力,与 Fi 数 值相同,方向相反, 作用于结点。
Fiy vi
vyj
Fjy
i uj
j
Fjx

i
Fix
ui
Fiy
Fix
vm Fmy um
m
Fmx

x
结力法求解
(6)将每一单元中的各种外荷载,按虚功 等效原则移置到结点上,化为结点荷 载,表示为
FLe (FLi FLj FLm e.
y
Fiy ,vi*
i
Fix ,ui*
F
* jy
,v
j
j
Fjx
,u
* j
其中
δ* ——结点虚位移, o
图6-1
x
ε* ——对应的虚应变。
在FEM中,用结点的平衡方程代替平衡微分
方程,后者不再列出。
FEM的概念
FEM的概念,可以简述为:用结构力学 方法求解弹性力学问题。即 1. 将连续体变换为离散化结构。 2.再应用结构力学方法进行求解。
(c) 深梁(离散化结构)
结构离散化
例如:将深梁划分为许多三角形单元,这 些单元仅在角点用铰连接起来。
图(c)与图(a)相比,两者都是离散 化结构;区别是,桁架的单元是杆件,而 图(c)的单元是三角形块体(注意:三角 形单元内部仍是连续体)。
结力法求解
2.应用结构力学方法(位移法)进行求解:
仿照桁架的结构力学位移法,来求解
简史
(2)对同一类问题,可以编制出通用程 序,应用计算机进行计算。 (3)只要适当加密网格,就可以达到工程 要求的精度。 3. FEM简史 FEM是上世纪中期才出现,并得到迅速发 展和广泛应用的一种数值解法。 1943年柯朗第一次在论文中提出了FEM的 概念。
简史
1956年,特纳等人提出了FEM。 20世纪50年代,平面问题的FEM建立, 并应用于工程问题。 1960年提出了FEM的名称。 20世纪60年代后,FEM应用于各种力学 问题和非线性问题,并得到迅速发展。 1970年后,FEM被引入我国,并很快地得 到应用和发展。
概述 第一节 基本量及基本方程的矩阵表示 第二节 有限单元法的概念 第三节 单元的位移模式与解答的收敛性 第四节 单元的应变列阵和应力列阵
第五节 单元的结点力列阵与劲度列阵 第六节 荷载向结点移置 单元的结点荷载列阵
第七节 结构的整体分析结点平衡方程组 第八节 解题的具体步骤 单元的划分 第九节 计算成果的整理 第十节 计算实例 第十一节 应用变分原理导出有限单元法的基本方程
f ( fx f y )T 。
面力 位移函数
f ( fx f y )T 。 d (u(x, y),v(x, y))T。
应变 应力
ε (εx εy γxy )T 。
σ (σ x σ y τ xy )T 。
结点位移列阵 δ (ui vi u j v j)T 。
结点力列阵 F (Fix Fiy Fjx Fjy)T 。
例题 习题的提示与答案 教学参考资料
FEM
第六章 用有限单元法解 平面问题
概述 1.有限元法(Finite Element Method,简称
FEM) —是弹力的一种近似解法。首先将 连续体变换为离散化结构,然后再应用 结构力学方法或变分法进行求解。 2. FEM的特点 (1)具有通用性和灵活性。
移 δe
(δi
δ i
δ m
)T
,求单元的位移函数
d (u(x, y),v(x, y))T 。
这个插值公式称为单元的位移模式,表示为
d Νδe。 (a)
结力法求解
(3)应用几何方程,由单元的位移函数d,
求出单元的应变,表示为ε Bδe。(b)
(4)应用物理方程,由单元的应变ε ,求 出
单元的应力,表示为
σ Sδe。
(c)
(5)应用虚功方程,由单元的应力σ,求出
单元的结点力,表示为
F e (Fi Fj Fm kδe。 (d)
结力法求解
Fi (Fix Fiy T——结点对单元的作用力,作用 于单元,称为结点力,以正标向为正。
Fi (Fix Fiy T
FEM中应用的方程:
几何方程
ε
(
u x
v y
u x

v y
)T

应用的方程
(a)
物理方程
σ Dε,
(b)
其中D为弹性矩阵,对于平面应力问题



1 μ 0
D
E 1 μ
2

μ
0
1 0
0 。 1 μ
2
(c)
应用的方程
虚功方程
(δ* )T F
(ε* )T σdxdyt, A
FEM求解过程。 1. 结构离散化——将连续体变换为离散 化结构;
结构离散化
结构力学的研究对象是离散化结构。如桁 架,各单元(杆件)之间除结点铰结外,没 有其他联系(图(a))。
弹性力学的研究对象,是连续体(图(b))
(a) 桁架
图 6-2
(b) 深梁(连续体)
结构离散化
将连续体变换为离散化结构(图(c)): 即将连续体划分为有限多个、有限大小的单 元,并使这些单元仅在一些结点处用绞连结 起来,构成所谓‘离散化结构’。
图(c)的平面离散化结构。其中应注意,
三角形单元内部仍是连续体,应按弹性力 学方法进行分析。
分析步骤如下:
结力法求解
(1)取各结点位移 δi (ui vi )T (i 1,2,)为基 本未知量。然后对每个单元,分别求出各物理
量,并均用δi (i 1,2,) 来表示。
(2) 应用插值公式, 由单元结点位
并从而求出各单元的应变和应力。
归纳起来,FEM分析的主要内容:
结力法求解
1. 将连续体变换为离散化结构。 2.应用结构力学方法求解离散化结构,
导出方法
4. FEM的两种主要导出方法: 应用结构力学方法导出。 应用变分法导出。
5. 本章介绍平面问题的FEM,仅叙述按位 移求解的方法。且一般都以平面应力问 题来表示。
采用矩阵表示,可使公式统一、简洁, 且便于编制程序。
本章无特别指明,均表示为平面应力 问题的公式。
基本物理量
基本物理量:
体力
(e)
(7) 对每一结点建立平衡方程。
结力法求解
作用于结点i上的力有:
各单元对i 结点的结点力Fi ,
各单位移置到i 结点上的结点荷载 FLi ,
Fi FLi , (i 1,2,)
(f)
e
e
其中 表示对围绕i 结点的单元求和;
e
FLi 为已知值, Fi 是用结点位移表示的值。
通过求解联立方程 ( f ),得出各结点位移值,
相关文档
最新文档