2021生物竞赛-生物化学-00引言和绪论-杨荣武《生物化学原理》

合集下载

2021生物竞赛-生物化学-00引言和绪论-杨荣武《生物化学原理》

2021生物竞赛-生物化学-00引言和绪论-杨荣武《生物化学原理》
庞卡赫猜想的证据 人类遗传变异
细胞再编程(Cellular reprogramming )
拉密达猿人(Ardipithecus ramidus) 第一个量子机器
口服抗艾药物可防止HI生理学奖
英国的约翰·戈登(John B. Gurdon)和日本 的山中伸弥(Shinya Yamanaka)因在诱导多 功能干细胞领域的贡献共同分享这一奖项 。
表-1 科学杂志的年度分子与年度突破
年度 1989 1990 1991 1992 1993 1994 1995 1996
1997 1998 1999
2000
年度分子/年度突破 Taq DNA聚合酶 人造钻石
富勒烯(buckminsterfullerene) 一氧化氮(NO) p53蛋白 DNA修复酶
关键词: cystic fibrosis (囊性纤维变性) glutathione(谷胱甘肽) Mucus(粘液) tdy_curry_fibrosis_030617.asf
玻色-爱因斯坦凝聚态 艾滋病毒(HIV)
多莉羊(Dolly the sheep) 暗物质 干细胞
全基因组测序
年度 2001 2002 2003 2004 2005 2006 2007 2008
2009 2010 2011
2012
年度分子/年度突破 纳米电路
小RNA(small RNAs) 暗能量
勇气号火星车 进化
2012年的诺贝尔化学奖
两位美国科学家罗伯特·莱夫科维茨(Robert J. Lefkowitz)和布莱恩·克比尔卡(Brian K. Kobilka)因“G蛋白偶联受体研究”获奖。
2010年两大生化发现
☺Synthia(辛西娅) ☺GFAJ-1

生物竞赛讲义-生物化学-20生物氧化-《生物化学原理(第二版)(代谢生物化学)》

生物竞赛讲义-生物化学-20生物氧化-《生物化学原理(第二版)(代谢生物化学)》

生物竞赛-生物化学原理(第二版)(代
生物竞赛-生物化学原理(第二版)(代谢生物化学)-南京大学杨荣武
电子传递体在呼吸链中的位置与其E0'之间的关系
生物竞赛-生物化学原理(第二版)(代谢生物化学)-南京大学杨荣武
几种呼吸链抑制剂的作用位点
生物竞赛-生物化学原理(第二版)(代谢生物化学)-南京大学杨荣武


生物竞赛-生物化学原理(第二版)(代谢生物化学)-南京大学杨荣武
呼吸链的组分
NAD+及与NAD+偶联的脱氢酶:NAD+是一种流 动的电子传递体。 黄素及与黄素偶联的脱氢酶 辅酶Q:属于一种流动的电子传递体。 铁硫蛋白 细胞色素:细胞色素c是一种流动的电子传递体 氧气
生物竞赛-生物化学原理(第二版)(代谢生物化学)-南京大学杨荣武
复合体 IV 即细胞色素c氧化酶
有4个氧还中心 主要成分为细胞色素a和a3 电子来自还原性的细胞色素c,电子的最终 受体为氧气 一对电子可产生2个质子梯度
生物竞赛-生物化学原理(第二版)(代谢生物化学)-南京大学杨荣武
电子在复合体IV上的传递
生物竞赛-生物化学原理(第二版)(代谢生物化学)-南京大学杨荣武
生物竞赛-生物化学原理(第二版)(代谢生物化学)-南京大学杨荣武
氧化磷酸化的偶联机制
˟ ˟ √ 化学偶联假说 构象偶联假说 化学渗透学说:该学说由Peter Mitchell于1961年 提出,其核心内容是电子在沿着呼吸链向下游传 递的时候,释放的自由能转化为跨线粒体内膜 (或跨细菌质膜)的质子梯度,质子梯度中蕴藏 的电化学势能直接用来驱动ATP的合成。驱动 ATP合成的质子梯度通常被称为质子驱动力 (pmf),它由化学势能(质子的浓度差)和电 势能(内负外正)两部分组成。

杨荣武生物化学原理-南京大学-生物氧化

杨荣武生物化学原理-南京大学-生物氧化

通过改变离体线粒体的悬液的pH而 建立的pH梯度可以驱动ATP合成
由细菌视紫红质创造的质 子梯度可被牛F1F0-ATP 合酶用于合成ATP
质子梯度的产生机制:Q循环
F1/F0 ATP合酶的结构和功能
质子通过这种蛋白质的扩散驱动ATP合成和释放
两个部分: F1和F0 (后者因为受寡霉素的抑制而得名) F1 催化单元——由5种亚基组成 a3b3gde. Fo 膜整合单元——质子通道 ab2c10
化学渗透学说图解
支持化学渗透学说的主要的证据
(1)氧化磷酸化的进行需要完整的线粒体内膜的存在。 (2)使用精确的pH计可以检测到跨线粒体内膜的质子梯 度存在。据测定,一个呼吸活跃的线粒体的膜间隙的 pH要比其基质的pH低0.75个单位。 (3)破坏质子驱动力的化学试剂能够抑制ATP的合成。 (4)从线粒体内膜纯化得到一种酶能够直接利用质子梯 度合成ATP,此酶称为F1F0-ATP合酶。 (5)人工建立的跨线粒体内膜的质子梯度也可驱动ATP 的合成
FMN、铁硫蛋 白 FAD、铁硫蛋 白、血红素b 血红素b、血 红素c、铁硫 蛋白 Cu、血红素a
鱼藤酮、安米 妥、杀粉菌素 萎锈灵 (carboxin) 抗霉素A
II III
0.14 0.25
4~5 11
非 是
2 3
IV 细胞色素c氧化酶
0.16~ 0.17
13

CO、H2S、 CN-、叠氮化 物
氧化还原反应
H H2O、ATP???
参与生物氧化主要的酶
氧化酶(Oxidases) 脱氢酶(Dehydrogenases)最普遍 过氧化物酶(Peroxidases) 加氧酶(Oxygenase )
呼 吸

生物化学原理杨荣武

生物化学原理杨荣武

生物化学原理杨荣武生物化学原理。

生物化学是研究生物体内化学反应和物质代谢的科学,它是生物学和化学的交叉学科,对于理解生命现象和生物体内部的化学过程至关重要。

本文将围绕生物化学的基本原理展开讨论,希望能够对读者有所帮助。

首先,我们来谈谈生物化学的基本概念。

生物体内的化学反应和物质代谢是由一系列生物大分子(如蛋白质、核酸、多糖、脂类)构成的,这些分子在生物体内发挥着重要的功能。

生物化学的研究对象包括生物大分子的结构、功能和代谢途径等,通过对这些内容的研究,我们可以深入理解生物体内的化学过程。

其次,我们来介绍一下生物大分子的结构和功能。

蛋白质是生物体内最重要的大分子之一,它们参与了几乎所有的生物化学反应和物质代谢过程。

蛋白质的结构包括一级结构、二级结构、三级结构和四级结构,不同的结构决定了蛋白质的功能。

另外,核酸是生物体内储存和传递遗传信息的分子,它们包括DNA和RNA两种类型,分别承担着遗传信息的传递和转录、翻译等功能。

多糖和脂类也是生物体内重要的大分子,它们在细胞结构、能量储存和信号传导等方面发挥着重要作用。

再者,我们来探讨一下生物体内的化学反应和能量代谢。

生物体内的化学反应包括合成反应和分解反应两种类型,合成反应是指生物体内分子的合成过程,而分解反应则是指生物体内分子的降解过程。

这些化学反应需要消耗能量,而能量的来源主要是细胞内的三磷酸腺苷(ATP)。

ATP是细胞内的能量储存分子,它通过水解反应释放能量,为细胞内的化学反应提供动力。

最后,我们来谈谈生物体内的代谢途径。

代谢是生物体维持生命活动所必需的化学反应过程,包括物质的合成代谢和分解代谢两种类型。

合成代谢是指生物体内分子的合成过程,它需要消耗能量;而分解代谢则是指生物体内分子的降解过程,它释放能量。

生物体内的代谢途径是一个复杂的网络,各种代谢反应相互联系,共同维持着生物体内的稳态。

总的来说,生物化学是一个重要的学科,它对于理解生命现象和生物体内的化学过程具有重要意义。

生物竞赛-生物化学-43真核生物的基因表达调控-杨荣武《生物化学原理(第二版)(三)》

生物竞赛-生物化学-43真核生物的基因表达调控-杨荣武《生物化学原理(第二版)(三)》

生物竞赛—生物化学原理(分子生物学)—南京大学杨荣武
DNA甲基化与印记
生物竞赛—生物化学原理(分子生物学)—南京大学杨荣武
多个启动子的选择性使用
某些真核生物的基因不止一个启动子,例如,抗肌营
养不良蛋白有8个启动子,通过使用不同的启动子可转 录出不同长度的mRNA,它们经过翻译可产生不同性 质或功能的蛋白质产物。 人谷胱甘肽还原酶的基因具有两个启动子,这两个启 动子分别指导定位于细胞质和线粒体的谷胱甘肽还原 酶的合成。指导线粒体谷胱甘肽还原酶的启动子在指 导细胞质谷胱甘肽还原酶启动子的上游。显然,上游 启动子转录出来的mRNA要比下游启动子转录出来的 mRNA要长。分析它们的核苷酸序列以后发现,长 mRNA的起始密码子位置前移,因而会多翻译一段指 导进入线粒体的信号肽序列。
生物竞赛—生物化学原理(分子生物学)—南京大学杨荣武
DNA重排

B淋巴细胞在成熟过程Ig基因经历的重排 锥体虫主要的表面抗原基因发生的重排 酿酒酵母在交配类型转换过程中发生的基因 重排
生物竞赛—生物化学原理(分子生物学)—南京大学杨荣武
抗体基因多样性产生的分子机制
1. 2.
3. 4. 5.
生物竞赛—生物化学原理(分子生物学)—南京大学杨荣武
在染色质水平上的基因调控
组蛋白的共价修饰; 染色质重塑因子对染色质的作用; 组蛋白变体取代标准组蛋白。
生物竞赛—生物化学原理(分子生物学)—南京大学杨荣武
组蛋白不同化学修饰对基因表达的影响以及其他功能
修饰形式
乙酰化 单甲基化
修饰位点
生物竞赛—生物化学原理(分子生物学)—南京大学杨荣武
生物竞赛—生物化学原理(分子生物学)—南京大学杨荣武

杨荣武生物化学原理-南京大学-生物氧化ppt课件

杨荣武生物化学原理-南京大学-生物氧化ppt课件

化学渗透学说图解
支持化学渗透学说的主要的证据
(1)氧化磷酸化的进行需要完整的线粒体内膜的存在。 (2)使用精确的pH计可以检测到跨线粒体内膜的质子梯
度存在。据测定,一个呼吸活跃的线粒体的膜间隙的 pH要比其基质的pH低0.75个单位。 (3)破坏质子驱动力的化学试剂能够抑制ATP的合成。 (4)从线粒体内膜纯化得到一种酶能够直接利用质子梯 度合成ATP,此酶称为F1F0-ATP合酶。 (5)人工建立的跨线粒体内膜的质子梯度也可驱动ATP 的合成
✓ 根据在有氧环境下氧化反应达到平衡时各电子传递体的 还原程度来确定
✓ 使用特异性呼吸链抑制剂和人工电子受体 ✓ 呼吸链的拆分和重组
呼吸链各组分的标准氧化还原电位
在有氧条件下,线粒体中TCA循环反应达到平衡时,呼吸链中 各组分的还原程度
电子传递体 还原程度(%)
辅酶I 53
黄素蛋白 细胞色素b
20
氧化磷酸化
• 呼吸链的主要功能是产生能量货币ATP。当电子沿着 呼吸链向下游传递的时候总伴随着自由能的释放,释 放的自由能有很大一部分用来驱动ATP的合成,这种 与电子传递偶联在一起的合成ATP方式(ADP被磷酸 化)被称为氧化磷酸化。
氧化磷酸化的偶联机制
☻ 化学偶联假说 ☻ 构象偶联假说 ☺ 化学渗透学说
OH ∣
CuB+
H+
e-
H2O
目录
复合体
细胞色素 血红素
aa3
a
b
b
c
c
c1
c
几种细胞色素的性质比较
线粒体内膜上的定位
辅基与蛋白质的连接方式
跨膜蛋白 跨膜蛋白 水溶性的外周蛋白 (膜间隙一侧) 跨膜蛋白

生物化学原理杨荣武第四版

生物化学原理杨荣武第四版

生物化学原理杨荣武第四版摘要:一、生物化学原理杨荣武第四版简介1.作者介绍2.书籍版本介绍3.生物化学原理的内容简介二、生物化学原理杨荣武第四版的主要内容1.生物化学的基本概念2.生物分子的结构与功能3.代谢途径与生物能学4.基因、蛋白质与代谢调控5.生物化学在生物学研究中的应用三、生物化学原理杨荣武第四版的学术价值与实践意义1.对生物学研究的影响2.对医学、农业等领域的应用价值3.对我国生物化学学科发展的贡献四、生物化学原理杨荣武第四版的优缺点分析1.优点a.内容全面、系统b.理论与实践相结合c.注重学科前沿与发展趋势2.缺点a.部分内容过于专业,难以理解b.更新速度较慢,需要结合最新研究进展正文:生物化学原理杨荣武第四版是一本关于生物化学的经典教材,由我国著名生物化学专家杨荣武教授撰写。

本书以生物化学基本原理为主线,系统地介绍了生物化学的基本概念、生物分子的结构与功能、代谢途径与生物能学、基因、蛋白质与代谢调控等方面的内容。

此外,还强调了生物化学在生物学研究中的应用,以及生物化学与医学、农业等领域的关联。

在生物化学原理杨荣武第四版中,作者首先介绍了生物化学的基本概念,包括生命的基本特征、生物大分子的结构与功能、生物反应与调控等方面的内容。

随后,详细阐述了生物分子的结构与功能,例如蛋白质、核酸、糖、脂质等生物大分子的结构、性质和功能。

此外,还介绍了代谢途径与生物能学,包括生物氧化、糖酵解、三羧酸循环、脂肪酸氧化等代谢途径及其与生物能的关系。

在基因、蛋白质与代谢调控方面,本书详细阐述了遗传信息传递、基因表达调控、蛋白质翻译与修饰等方面的内容。

这些内容对于理解生物化学在生物学研究中的应用具有重要意义。

此外,书中还介绍了生物化学在生物学研究中的应用,如分子生物学、细胞生物学、发育生物学等领域。

生物化学原理杨荣武第四版具有很高的学术价值和实践意义。

首先,本书全面、系统地介绍了生物化学的基本原理和主要内容,为生物学研究提供了理论基础。

《生物化学》教案(完整)

《生物化学》教案(完整)

基因转移与导入
通过生物化学方法将外源基因导入靶细胞,实现基因的转移和整 合,为基因治疗提供技术支持。
基因表达调控
应用生物化学手段对导入的外源基因进行表达调控,以确保其在 靶细胞中的安全、有效表达,达到治疗目的。
07 课程总结与复习 指导
课程重点回顾与总结
基因表达调控
生物小分子代谢
深入探讨了生物体内糖、脂、蛋 白质等小分子的代谢途径及其调 控机制。
蛋白质相互作用网络分析
相互作用数据库
收集并整理已知蛋白质相互作 用信息,构建相互作用数据库。
模块识别与功能注释
通过聚类分析等方法识别网络 中的功能模块,并对模块进行 功能注释和解析。
网络拓扑结构分析
利用图论等方法分析蛋白质相 互作用网络的拓扑结构特征, 如节点度、介数中心性等。
网络动态变化研究
利用时间序列数据或不同条件 下的蛋白质相互作用数据,研 究网络动态变化及其与生物过 程的关系。
02 生物大分子结构 与功能
蛋白质结构与功能
1 2
蛋白质的基本组成单位 氨基酸的种类、结构和性质
蛋白质的四级结构 一级、二级、三级和四级结构的定义、特点和相 互作用力
3
蛋白质的功能 酶、激素、抗体、转运蛋白等的功能和作用机制
核酸结构与功能
核酸的基本组成单位
核苷酸的结构和种类
DNA的双螺旋结构
碱基配对、磷酸二酯键、DNA的 超螺旋结构等
《生物化学》教案(完整)
contents
目录
• 课程介绍与教学目标 • 生物大分子结构与功能 • 生物小分子代谢与能量转换 • 基因表达调控与蛋白质组学 • 细胞信号传导与受体介导作用 • 生物化学技术在医学领域应用 • 课程总结与复习指导

代谢生物化学(杨荣武《生物化学原理》)

代谢生物化学(杨荣武《生物化学原理》)

代谢生物化学代谢:生命最基本的特征之一,指生物体内发生的所有化学反应,包括物质代谢和能量代谢两个方面。

合成代谢中能量的输入方式:①分解代谢中产生的通用能量货币,即ATP(或GTP、CTP、UTP、NAD+)②以NADPH形式存在的高能电子能量代谢中辅酶的递能作用:①辅酶Ⅰ(NAD+)和辅酶Ⅱ(NADP+)的递能作用②FAD(黄素-腺嘌呤二核苷酸)和FMN(黄素单核苷酸)递能作用③CoA在能量代谢中的作用生物氧化:生物体内发生的各种氧化反应的统称生物氧化的主要方式:脱氢生物氧化是在一系列酶、辅酶(辅基)和电子传递体的作用下逐步进行的,每一步释放一部分能量,既能防止能量的骤然释放而损害有机体,又能让机体更好地捕获能量合成ATP,还方便了机体对其进行调控。

呼吸链/电子传递链(ETS):有一系列电子传递体构成的链状复合体呼吸链一般分为:NADH呼吸链和FADH2呼吸链构成呼吸链的所有电子传递体都有两种形式:氧化型和还原性,电子是通过这两种形式的相互转变进行传递的呼吸链的主要成分:1.辅酶Ⅰ和NADH脱氢酶2.黄素及与黄素偶联的脱氢酶3.辅酶Q4.铁硫蛋白5.细胞色素6.氧气NADH呼吸链电子传递的方向:复合体Ⅰ→CoQ→复合体Ⅲ→细胞色素C→复合体Ⅳ→O2 FADH2呼吸链电子传递的方向:复合体Ⅱ→CoQ→复合体Ⅲ→细胞色素C→复合体Ⅳ→O2蛋白质复合体复合体Ⅰ(NADH-Q还原酶):将NADH中的电子传递给泛醌Q;辅基:FMN、Fe-S复合体Ⅱ(琥珀酸-Q还原酶):将电子从琥珀酸传递到泛醌;辅基:FAD、Fe-S复合体Ⅲ(泛醌-细胞色素还原酶):将电子从还原型Q传递至细胞色素C;辅基:血红素b、血红素c1复合体Ⅳ(细胞色素氧化酶):将电子从细胞色素C传递给氧;辅基:Fe-S、血红素a、血红素a3氧化磷酸化:当电子沿着呼吸链向下游传递的时候,总伴随着自由能的释放,释放的自由能有很大一部分用来驱动ATP的合成,这种与电子传递相偶联的合成ATP的方式。

生物竞赛-生物化学-38基因组RNA的复制-杨荣武《生物化学原理(第二版)(三)》(45张PPT)

生物竞赛-生物化学-38基因组RNA的复制-杨荣武《生物化学原理(第二版)(三)》(45张PPT)

生物竞赛—生物化学原理(分子生物学)—南京大学杨荣武
艾滋病毒与宿主细胞的附着
生物竞赛—生物化学原理(分子生物学)—南京大学杨荣武
艾滋病毒外被与宿主细胞膜的融合
生物竞赛—生物化学原理(分子生物学)—南京大学杨荣武
HIV-1病毒的附着与融合
融合肽 gp120
C N
CD4
C N
gp41 病毒外膜
趋化因子受体
逆转录病毒的结构
生物竞赛—生物化学原理(分子生物学)—南京大学杨荣武
逆转录病毒的基因组RNA的结构
逆转录病毒的基因组RNA等同于一个全长的病毒 mRNA,其非编码序列包括5'端的帽子结构、5'端的 末端直接重复序列(R)、5'端特有的序列(U5)、 引物结合位点(PBS)、剪接信号、引发第二条链 合成的多聚嘌呤区域(PPT)、3' 端的多聚腺苷酸 尾巴、3' 端特有的序列(U3)和3'端的末端直接重 复序列。编码序列通常含有3个结构基因,它们是 编码MA、CA和NC的gag基因,编码逆转录酶、整 合酶和蛋白酶的pol基因以及编码SU和TM的env基 因。如果是肿瘤病毒,还含有编码癌蛋白的癌基因 onc。
逆转录病毒的RNA复制 逆转座子 端聚酶催化的逆转录反应 某些DNA病毒生活史中的逆转录现象
1. 2. 3. 4.
生物竞赛—生物化学原理(分子生物学)—南京大学杨荣武
依赖于RNA的RNA合成
1. RdRP主要由病毒基因组编码,有的还需要宿 主细胞编码的辅助蛋白 2. 合成的方向总是5′→3′ 3. 绝大多数在模板的一端从头启动合成,少数 需要合成引物 4. 属于易错、高突变合成 5. 对放线菌素D不敏感,但对核糖核酸酶敏感 6. 复制的场所绝大多数在宿主细胞的细胞质, 少数在细胞核

生物化学原理杨荣武

生物化学原理杨荣武

生物化学原理杨荣武生物化学原理。

生物化学是研究生物体内化学反应和分子结构的科学。

它是生物学和化学的交叉学科,是探索生命的基本原理和规律的重要手段之一。

生物化学的研究对象主要是生物大分子,如蛋白质、核酸、多糖和脂类等,以及这些分子在细胞内的组织、功能和代谢过程。

生物化学的研究内容主要包括生物大分子的结构和功能、生物体内的代谢过程、遗传信息的传递和表达等。

生物化学原理是生物化学的基础,它主要包括以下几个方面的内容:1. 生物大分子的结构和功能。

生物大分子是生命的基础,它们包括蛋白质、核酸、多糖和脂类等。

这些分子在生物体内具有各种不同的功能,如蛋白质是生物体内最重要的功能分子之一,它们参与了生物体内的几乎所有生化过程,如酶的催化作用、细胞的结构支持和调节、免疫反应等。

核酸是生物体内的遗传物质,它携带了生物体内的遗传信息,参与了蛋白质的合成和细胞的分裂等重要生化过程。

多糖和脂类在生物体内也具有重要的功能,如多糖是细胞壁和细胞膜的主要组成成分,脂类参与了细胞内的能量储存和信号传导等。

2. 细胞的代谢过程。

细胞是生命的基本单位,它是生物体内生化反应和分子转化的场所。

细胞内的代谢过程包括物质的合成和降解两个方面。

物质的合成是指细胞内各种生物大分子的合成过程,如蛋白质的合成、核酸的合成等。

物质的降解是指细胞内各种生物大分子的降解过程,如葡萄糖的降解、脂肪的降解等。

这些代谢过程是生物体内能量和物质的来源,它们对维持生命活动起着至关重要的作用。

3. 遗传信息的传递和表达。

遗传信息是生物体内的重要信息载体,它决定了生物体的遗传性状。

遗传信息的传递是指遗传物质在细胞内的传递和复制过程,它包括DNA的复制和RNA的转录等。

遗传信息的表达是指遗传物质在细胞内的表达和实现过程,它包括蛋白质的合成和细胞的分裂等。

生物化学原理是生物化学研究的基础,它对于揭示生命的奥秘、探索生命的本质具有重要的意义。

通过对生物大分子的结构和功能、细胞的代谢过程、遗传信息的传递和表达等内容的深入研究,可以更好地理解生命的起源和演化,为生命科学的发展和生物技术的应用提供理论基础和技术支持。

生物竞赛-生物化学-39蛋白质的生物合成及其在细胞内的降解-杨荣武《生物化学原理(第二版)(三)》

生物竞赛-生物化学-39蛋白质的生物合成及其在细胞内的降解-杨荣武《生物化学原理(第二版)(三)》
ห้องสมุดไป่ตู้
生物竞赛—生物化学原理(分子生物学)—南京大学杨荣武
氨酰-tRNA合成酶的双筛机制
生物竞赛—生物化学原理(分子生物学)—南京大学杨荣武
辅助蛋白因子
蛋白质合成的每一步都需要一些特殊的 可溶性的蛋白质因子的参与,包括起始 因子(IF)、延伸因子(EF)、释放因 子(RF)和核糖体循环因子(RRF), 它们分别参与肽链合成的起始、延伸、 肽链释放和核糖体循环。其中的某些蛋 白质因子为小G蛋白。
即:nNDPs → (NMP)n + nPi
在1961年,Matthaei发现,当将Poly U加到大肠杆 菌无细胞翻译系统中以后,一种仅由苯丙氨酸组 成的多肽即多聚苯丙氨酸被合成了,这就意味着 他们成功破译出第一个密码子即UUU的密码子。
生物竞赛—生物化学原理(分子生物学)—南京大学杨荣武
破译其余的遗传密码
1. 2. 3. 4.
四. 五.
六.
mRNA的质量控制 翻译的抑制剂 蛋白质在细胞内的降解
生物竞赛—生物化学原理(分子生物学)—南京大学杨荣武
核糖体的主要功能定位
1. A部位—氨酰tRNA结合部位,也称为受体 部位; 2. P部位—肽酰tRNA结合部位; 3. E部位—空载tRNA临时结合的部位; 4. 肽酰转移酶活性部位——催化肽键形成的 部位; 5. mRNA结合部位; 6. 多肽链离开通道——正在延伸的多肽链离 开核糖体的通道; 7. 一些可溶性蛋白质因子(起始因子、延伸 因子和终止因子)的结合部位。
生物竞赛—生物化学原理(分子生物学)—南京大学杨荣武
核糖体结合技术
19AAs + [14C]-Pro + aaRSs
生物竞赛—生物化学原理(分子生物学)—南京大学杨荣武
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年的诺贝尔化学奖
两位美国科学家罗伯特·莱夫科维茨(Robert J. Lefkowitz)和布莱恩·克比尔卡(Brian K. Kobilka)因“G蛋白偶联受体研究”获奖。
2010年两大生化发现
☺Synthia(辛西娅) ☺GFAJ-1
谁是Craig Venter?
辛西娅的诞生
表-1 科学杂志的年度分子与年度突破
年度 1989 1990 1991 1992 1993 1994 1995 1996
1997 1998 1999
2000
年度分子/年度突破 Taq DNA聚合酶 人造钻石
富勒烯(buckminsterfullerene) 一氧化氮(NO) p53蛋白 DNA修复酶
庞卡赫猜想的证据 人类遗传变异
细胞再编程(Cellular reprogramming )
拉密达猿人(Ardipithecus ramidus) 第一个量子机器
口服抗艾药物可防止HIV在异性之间 的转播 ?
2012年的诺贝尔医学或生理学奖
英国的约翰·戈登(John B. Gurdon)和日本 的山中伸弥(Shinya Yamanaka)因在诱导多 功能干细胞领域的贡献共同分享这一奖项 。
Biochemistry Biochemistry I’m truly in a panic The mechanisms murder me I should have learned organic
For all I have to memorize I ought to win the Nobel Prize. Biochemistry Biochemistry I wish that I were wiser
玻色-爱因斯坦凝聚态 艾滋病毒(HIV)
多莉羊(Dolly the sheep) 暗物质 干细胞
全基因组测序
年度 2001 2002 2003 2004 2005 2006 2007 2008
2009 2010 2011
2012
年度分子/年度突破 纳米电路
小RNA(small RNAs) 暗能量
勇气号火星车 进化
生物化学的应用
农业:基因修饰的食品 医学:基因治疗 营养:抗肥胖 临床化学:生化诊断和疾病治疗msnbc video
Student researches own disease.flv 药学:AZT 和万艾可(Viagra) 毒物学:蓖麻毒素(ห้องสมุดไป่ตู้icin)
仔细观看和听下面的 英文短片,简述其大意。
2021生物竞赛-生物化学 -00引言和绪论-杨荣武
《生物化学原理》
2020/9/11
Biochemistry (cont.)
I promise I would not complain If I could store them in my brain Biochemistry Biochemistry I wish that I were wiser
☺ 乌尔夫-西蒙表示,每天去实验室的时候都会摒住呼吸, 生怕这些微生物会死去,但它们没有。如果这一结果被确 认,那么“生命及生命存在于何处”的定义将被扩大。
☺ 碳、氢、氮、氧、磷和硫是地球所有已知生命形式的六 大基本构建元素。磷是携带生命基因的DNA和RNA的化 学成分之一,被认为是所有活细胞的必需元素。
一些推荐的免费网络资源
♥ .sina/njuyangsir ♥ /vc/802276 ♥ sciencedaily ♥ worthpublishers/lehninger ♥ pearsonhighered/mathews/ ♥ / ♥ web-books/MoBio/ ♥ almaz/nobel ♥ wiley/college/voetfundamentals ♥ ♥
☺ 砷在化学元素周期表的位置正好位于磷的下方,正是由于 两者化学习性相近,所以砷很容易被细胞吸收导致中毒。
生物化学引言
什么是生物化学? 生物(Bio)+ 化学(Chemistry) = 生物化学 ( Biochemistry)
学习生物化学的目的: 在分子水平上研究细胞的结构、组织和功能 (1) 结构生物化学 (2) 代谢生物化学 (3) 分子遗传学
生物化学的起源 生物化学的应用
生命的微观层次
生物化学发展中几个重要的里程碑
Wohler合成尿素:“我得告诉你我不需要肾脏或 一只动物就制备了尿素”
Buchners利用酵母抽取物成功进行了糖发酵 Sumner获得脲酶结晶 Flemming发现染色体 Mendel提出基因概念,并对基因定性。 Miescher分离核酸 Watson和Crick提出DNA双螺旋结构 基因组学和蛋白质组学
学好生化的秘诀
正如一句谚语所说的: 我听,我忘。 我看,我记得。 我做,我理解。
生物化学学习办法.pdf
教材
《生物化学原理》第二版(高等教育出版社 杨荣武主编)
《生物化学学习指南与习题解析》 (高等教 育出版社杨荣武主编)
几本好的英文教材: (1) Lehninger—Principles of Biochemistry (2) Stryer—Biochemistry (3) Mathews—Biochemistry (4) Voet—Fundamentals of Biochemistry
关键词: cystic fibrosis (囊性纤维变性) glutathione(谷胱甘肽) Mucus(粘液) tdy_curry_fibrosis_030617.asf
NASA发现生命新可能 -砷元素或能形成生命体
☺ 以剧毒砷生长的菌株GFAJ-1,将改写生物教科书,使地 球外寻找生命的范围得以拓展
☺ 美国宇航局天体生物学家费丽莎·乌尔夫-西蒙(Felisa Wolfe-Simon),将从加利福尼亚州莫纳湖湖底收集而来的 微生物,置于实验室含有砷的混合试剂内培殖了数月,结 果发现微生物体内的磷原子被砷原子置换出来了。
相关文档
最新文档