化工原理第一章第六节讲稿.ppt
合集下载
化工原理天大修订版第一章流体流动幻灯片PPT
18
比例法计算:
ρ=ρ0 PT0 / P0T
▪ ρ0= M/22.4 kg/m3
▪ (标态下, T0=273 K, P0=101.325×103 Pa, 摩尔体积是 22.4 m3/kmol )
19
混合气体密度计算
ρm= ρAxVA+ ρBxVB +…+ ρnxVn
当P 、T适中, M 用Mm代替,
▪ 液体被视为不可压缩流体,其密度只与 温度有关,即ρ= ρ(T)
15
可压缩性流体(Compressible
fluid)
▪ 它的密度随温度和压强的不同而出现较 大的差别,气体是可压缩流体。
▪ 一般在压强不太高,温度不太低的情况 下,可以按理想气体处理。即 ρ=ρ(p,T)
16
2.2.1 气体密度的计算
▪2.2.3 相对密度(relative density )/ 比重
Mm=∑(M yi) , ρm = pMm/RT
or
ρm = ∑(yi·ρi)
yi– 摩尔分数
20
2.2.2 液体混合物密度计算
若混合前后体积变化不大或不变, 则,g 混合液的体积 = 各组分单独存在的 体积之和,
1/ρm=∑(ωi /ρi )
ρi— i组分的密度, ωi—i组分的质量分率,
21
▪ 当压力温度适中,按照理想气体状态方程,
pV=mRT /M → ρ=pM/RT
▪ p— kPa ▪ T—K ▪ M—kg/kmol(摩尔质量) ▪ R—8.31 kJ /kmol·K
17
▪ 标准状态下: ρ=pMT0/22.4Tp0
▪ 质量一定时,温度、压力和体积变化关系: pV/T = p’V’/T’
比例法计算:
ρ=ρ0 PT0 / P0T
▪ ρ0= M/22.4 kg/m3
▪ (标态下, T0=273 K, P0=101.325×103 Pa, 摩尔体积是 22.4 m3/kmol )
19
混合气体密度计算
ρm= ρAxVA+ ρBxVB +…+ ρnxVn
当P 、T适中, M 用Mm代替,
▪ 液体被视为不可压缩流体,其密度只与 温度有关,即ρ= ρ(T)
15
可压缩性流体(Compressible
fluid)
▪ 它的密度随温度和压强的不同而出现较 大的差别,气体是可压缩流体。
▪ 一般在压强不太高,温度不太低的情况 下,可以按理想气体处理。即 ρ=ρ(p,T)
16
2.2.1 气体密度的计算
▪2.2.3 相对密度(relative density )/ 比重
Mm=∑(M yi) , ρm = pMm/RT
or
ρm = ∑(yi·ρi)
yi– 摩尔分数
20
2.2.2 液体混合物密度计算
若混合前后体积变化不大或不变, 则,g 混合液的体积 = 各组分单独存在的 体积之和,
1/ρm=∑(ωi /ρi )
ρi— i组分的密度, ωi—i组分的质量分率,
21
▪ 当压力温度适中,按照理想气体状态方程,
pV=mRT /M → ρ=pM/RT
▪ p— kPa ▪ T—K ▪ M—kg/kmol(摩尔质量) ▪ R—8.31 kJ /kmol·K
17
▪ 标准状态下: ρ=pMT0/22.4Tp0
▪ 质量一定时,温度、压力和体积变化关系: pV/T = p’V’/T’
化工原理第一章流速和流量的测量
••2020/10/11
•【孔板流量计的两种取压方法】 •(1)角接法(角接取压) 其取压口在孔板前后两 片法兰上,尽量靠近孔板。 •(2)径接法(缩脉取压) 其上游取压口在距离孔 板1倍管径处,下游取压口在距离孔板0.5倍管径处 ,尽量接近缩脉。
••2020/10/11
•3、孔板流量计的流量方程 • 孔板流量计的流量与压差的关系,可由连续性方 程和柏努利方程推导。结果如下:
•3、文氏流量计的优缺点 •【优点】阻力损失小,大多数用于低压气体输送中 的测量; •【缺点】加工精度要求较高,造价较高,并且在安 装时流量计本身占据较长的管长位置。
••2020/10/11
•【说明】洗涤液(水)从喉管加入时,气液两相 间相对流速很大,液滴在高速气流下雾化,尘粒 被水湿润。尘粒与液滴或尘粒与尘粒之间发生激 烈碰撞和凝聚。在扩散管中,气流速度减小,压 力回升,以尘粒为凝结核的凝聚作用加快,凝聚 成粒径较大的尘粒,而易于被捕集。
•【原理】由于流量(qv)与环隙面积(AR)有关, 在圆锥形筒与浮子的尺寸固定时,环隙面积AR决定 于浮子在筒内的位置,因此,转子流量一般都以转 子的停留位置来指示流量。 •【读数】转子流量计玻璃管外表面上刻有流量值, 根据转子平衡时其上端平面(最大截面)所处的位 置,即可读取相应的流量。
••2020/10/11
• 外管测压孔测得为静压头:
••2020/10/11
•内外管之压强差为:
•测速管管口处的点速度为:
•——测速管测定管内流体的点速度的 基 本公式
•【结论】可通过测量内、外管的压力差计算管内流 体的点速度。
••2020/10/11
• 若使用U形管压差计,所测流体的密度为ρ,U型管 压差计内充有密度为ρ0 的指示液,读数为R。
化工原理第1章课件PPT
贾绍义 《化工原理》(下册)授课课件 在本课件制作过程中,得到天津大学化工学院化工系的有关教师的 指导和帮助,在此致以诚挚的感谢!由于制作者水平所限, 本课件不妥之处甚至错误在所难免,恳请用户批评指正。 制作者 2008年12月
1
学时安排
总学时48
绪论 第1章 流体流动 第2章 流体输送机械
1学时 13学时 8学时
m pM V RT
T0 pM 22.4Tp0
24
流体的密度
(2)混合物的密度 液体混合物,混合前后体积不变
1
组分的 质量分 数 组分的体 积分数
m
x wA
A
x wB
B
...
x wn
n
气体混合物,混合前后质量不变
m A x VA B xVB ... n x Vn
29
一、牛顿黏性定律
牛顿型流体(Newtonian fluid)
遵循牛顿黏性定律的流体为牛顿型流体。
所有气体和大多数低分子量液体均属牛顿 型流体,如水、空气等。
30
一、牛顿黏性定律
非牛顿型流体(non-Newtonian fluid)
凡不遵循牛顿黏性定律的流体为非牛顿型 流体(non-Newtonian fluid)。
13
三、课程的学习要求
①单元操作设备的选择能力。 ②工程设计能力。
③操作和调节生产过程的能力。
④过程开发或科学研究能力。
14
绪 论
0.1 化工原理课程的性质和基本内容 0.2 单位制和单位换算
15
一、 物理量的单位
1.基本单位和导出单位 基本单位:质量、长度、时间和温度。 导出单位:速度、密度、加速度。 2.绝对单位制和重力单位制 绝对单位制:长度、质量、时间。 重力单位制:长度、时间和力。
化工原理ppt
2-2
1-1
Ws1
Ws2
如上图所示:
根据质量守恒定律,有:
Ws1=Ws2
而 Ws1=u1·A1·ρ1 Ws2=u2·A2·ρ2
A1=d12·π/4
A2=d22·π/4
代入有: u1/u2= d22/ d12 , 此式即为连续性方程。
三、能量守恒与柏努利方程 流体在做定态流动时,根据能量守恒定律,对任意截面进行能量衡算。 1、定态流动时的总能量衡算 A、内能 物质内部能量的总和,用U表示。单位是:kJ/kg B、位能 物体因受重力作用,在不同的高度所具有的能量。m.g.z(kJ/kg) C、动能 物体因运动而具有的能量。m·u2/2 D、静压能 流体的静压强是推动流体流动的动力,即静压强对流体做功。p·Vs(kJ/kg) E、热 流体温度变化,而带来的热能的变化,被加热则为为正,被冷却则为负。 用Q来表示。(kJ/kg) F、功 流体流动获得机械能为正(用We来表示);流体损失机械能为负(用Hf表示)。
对一般工程问题我们不需要讨论单个分子的运动。而是将流体看成由 无数个质点(或微团)所组成的一个连续介质。这就是我们所谓的连续性 假设。
实践证明,在绝大部分情况下是成立的。
1.1 流体的基本性质
一、流体的密度
单位体积的流体所具有的质量。
表达式:
m
V
式中: m-流体的质量(kg) V-流体的体积(m3) ρ-流体的密度(kg·m-3)
实验证明:F∝ u S
y
引入比例系数μ
F=μ u S μ就是流体的粘度。 y
单位面积上的内摩擦力:
τ=
F μ du S dy
2)、流体的粘度
根据上式可以看出:流体粘度的物理含义是:使流体产生单位
化工原理完整教材课件 PPT
基本原理及其流动规律解决关问题。以
图1-1为煤气洗涤装置为例来说明: 流体动力学问题:流体(水和煤气)
在泵(或鼓风机)、流量计以及管道中 流动等;
流体静力学问题:压差计中流体、 水封箱中的水
图1-1 煤气洗涤装置
1.1 概述
确定流体输送管路的直径, 计算流动过程产生的阻力和 输送流体所需的动力。
根据阻力与流量等参数 选择输送设备的类型和型号, 以及测定流体的流量和压强 等。
流体流动将影响过程系 统中的传热、传质过程等, 是其他单元操作的主要基础。
图1-1 煤气洗涤装置
1.1.1 流体的分类和特性
气体和流体统称流体。流体有多种分类方法: (1)按状态分为气体、液体和超临界流体等; (2)按可压缩性分为不可压流体和可压缩流体; (3)按是否可忽略分子之间作用力分为理想流体与粘
化工原理完整教材课件
第一章 流体流动
Fluid Flow
--内容提要--
流体的基本概念 静力学方程及其应用 机械能衡算式及柏努 利方程 流体流动的现象 流动阻力的计算、管路计算
1. 本章学习目的
通过本章学习,重点掌握流体流动的基本原理、管 内流动的规律,并运用这些原理和规律去分析和解决流 体流动过程的有关问题,诸如:
气体的密度必须标明其状态。 纯气体的密度一般可从手册中查取或计算得到。当压
强不太高、温度不太低时,可按理想气体来换算:
(1-3)
式中
p ── 气体的绝对压强, Pa(或采用其它单位); M ── 气体的摩尔质量, kg/kmol;
性流体(或实际流体); (4)按流变特性可分为牛顿型和非牛倾型流体;
流体区别于固体的主要特征是具有流动性,其形状随容器形状 而变化;受外力作用时内部产生相对运动。流动时产生内摩擦从而 构成了流体力学原理研究的复杂内容之一
《化工原理第一讲》ppt课件
•单元操作特点: •1〕.都是物理操作。 •2〕.都是化工消费过程中共有的操作。 •3〕.用于不同化工消费过程的同一单元操作,其原理一 样,所用设备亦通用。
化工单元操作的目的是:
①物料的保送;
②物料物理形状的改动;
③混合物料的分别。
三传实际:动量;热量;质量
一反:化学反响
2 单位制与单位换算
•1〕 单位制
结晶器
II
I
P kg/h
96%KNO3
R kg/h 37.5%KNO3
• 4.列算式: • 方框I:总物料:1000=W+P • KNO3组
方分框:1I0I0:0×总0物.2料=W:×S=0+PP+×R 0.96
KNO3组分:S×0.5=P×0.96+R×0.375
W=791.7 kg/h P=208.3 kg/h S=974.8 kg/h R=766.5 kg/h
解:1.绘简图 0.095kg/s
25℃溶液 1.0kg/s
换热器
80℃溶液 1.0kg/s
2.定基准:1s,0℃,液体 3.划范围:以换热器为衡算范围
120℃饱和水 0.095kg/s
120℃饱和水蒸汽 0.095kg/s
25℃溶液 1.0kg/s
换热器
80℃溶液 1.0kg/s
120℃饱和水 0.095kg/s
• 阅历公式的单位换算,也可采用换算因数将规定单位换 算成所要求单位。
• 例0-2:水蒸汽在空气中分散系数为:
1.46104
5
T2
D
P T441
式中:D-分散系数,ft2/h;
P-压强,atm;
T-兰氏温度,oR。
试将式中各符号单位换算成 D:m2/s;P:Pa;T:K
化工原理第1章 流体流动 流动6课件
A( f B ) B ( f A)
b)实验,重新标定刻度-流量曲线(常用方法) * 量程不符时,
改变转子ρf、Vf、Sf
qV CR s2
2gVf ( f ) sf
3) 转子流量计的量程
4) 阻力损失
qV max S2,max
q S V min
2,m in
Re 10 4时,阻力损失不随流量 变化。
喉管
2) 特点 节流式流量计 (恒截面,变压差)
(2) 测量原理 列1-1及2-2面间的机械能方程式:
p1 u12 p2 u22
2 2
代入: u1
u2S2 S1
得:u22[1
(
S2 S1
)2
]
2
p
u2 C
2p
u2 C
2p
考虑流动阻力,引入校正系数
校正:u2 CV
2p
CV
2( )gR
p2 p1
20%时,视为不可压缩流体
,
m
p1 p2 20%时,按可压缩流体处理 p1
处理方法,见书P69-73
1.6 流速和流量测定
应用公式:
p1
gz1
u12 2
We
p2
gz2
u22 2
R
1u1s1 2u2s2
R
(
l
le
d
)
u2 2
1.6.1 测速管(毕托管 Pitot ) (1) 结构 同心套管、压差计
2) 特点: 变截面,恒压差
(2) 测量原理 原理:转子在流体中受力平衡,重力=浮力 对控制体(含转子的圆柱体)作力衡算:
V f f g (V V f )g S f ( p1 p2 )
化工原理-第一章-流体流动PPT课件
.
4
第一节 流体静力学
研究外力作用下的平衡规律
一、流体的压力
1.定义: 流体垂直作用于单位面积上的力。
2.单位:
lim p
P
A0 A
Pa(帕斯卡,SI制), atm(标准大气压), 某流体柱高度, kgf/cm2(工程大气压) , bar(巴)等
.
5
其之间换算关系为:
1 atm = 760 mmHg = 1.0133×105 Pa = 1.033 kgf/cm2 = 10.33 mH2O = 1.0133 bar
.
6
3.表示方法
绝对压强:以绝对零压作起点计算的压强,是 流体的真实压强;以绝对真空为基准 表压强:绝对压强比大气压强高出的数值;以 当时当地压力为基准 真空度:绝对压强低于大气压强的数值。
.
7
绝对压
表压 真空度 绝压(余压)
实测压力
大气压 实测压力
绝对零压
表压=绝对压-大气压 真空度=大气压 - 绝对压
P1-P2=(a- c)Rg
A
.
23
例1-4:常温水在管道中流动,用双U型管测两
点压差,指示液为汞,其高度差为100mmHg,计
算两处压力差如图:
2
1'' 1 1'
2'
R
x
ab
P1= P1’
P2= P2’
Pa= P1’+水 g x
P1’= 汞 g R+ P2
Pb = 水 g x +水 g R + P2’
0
P1 - P2= R g 0
倒U型管压差计? P15
.
20
U管压差计 指示液要与被测流体不互溶,不起化学反
化工原理第一章流体力学基础.ppt
1.3.1基本概念
• 4.非牛顿型流体
凡是剪应力与速度梯度不符合牛顿粘性定律的流体 均称为非牛顿型流体。非牛顿型流体的剪应力与速度 梯度成曲线关系,或者成不过原点的直线关系,如图
1-11所示。 宾汉塑性流体
涨塑性流体
牛顿流体
假塑性流体
d v/d y 图 1-11 剪 应 力 与 速 度 梯 度 关 系
此,位置越高的流体,其位能越大,而静压能则越小。
1.2.3 静力学原理在压力和压力差测量 上的应用
• 1.压力计
(1)单管压力计
pa
p1pa gR
或表压
p1 p1pagR
式中pa为当地大气压。 单管压力计只能用来测量高于
R
A 1• ..
图 1-5 单 管 压 力 计
大气压的液体压力,不能测气体压力。
质点:由大量分子构成的微团,其尺寸远小于设备 尺寸、远大于分子自由程。
1.1 概述
• 2 流体的压缩性
流体体积随压力变化而改变的性质称为压缩 性。实际流体都是可压缩的。 液体的压缩性很 小,在大多数场合下都视为不可压缩,而气体 压缩性比液体大得多,一般应视为可压缩,但 如果压力变化很小,温度变化也很小,则可近 似认为气体也是不可压缩的。
应根据被测流体的种类及压差的大小选择指示液。
1.2.3 静力学原理在压力和压力差测量 上的应用
思考:若U形压差计安装在倾斜管路中,此时读
数 R反映了什么?
p1p2
(0)gR(z2z1)g
p1 z1
p2 z2
R A A’
1.2.3 静力学原理在压力和压力差测量
上的应用
• 2.压差计
表压绝压当地大气压
真空度 当地大气 绝压 压
化工原理 第一章-精馏6.
第二次作业评述
• 方格纸 • 逐板计算时从何处进料, 从何处换用操作 线? • 小数板时? (圆整? 调R或者组成) • Rmin与xw • 操作型计算
2018/9/16 多组分精馏 1
第七节 多组分精馏
• 流程设计 • 如何计算N和R(估算)
2018/9/16
多组分精馏
2
1. 流程设计
• 单塔: 间歇操作时可以改变操作条件而得 到多个相对较纯的产品. (如何改变?)
10
蒸馏
• 平衡关系 • 平衡蒸馏与闪蒸 • 精馏
– – – – – 原理 设备 理论级 回流比 效率
• 多组分 • 相对挥发度接近或者等于1
2018/9/16 多组分精馏 11
2018/9/16 多组分精馏
C
4
B
2. 参数设计
• 已知: 料液量和组成xFi, 以及主要组分的 分离要求 (对于系列塔中的一个而言) • 待设计的参数:
– D和W –R –N
• 如何确定关键(主要)组分?
2018/9/16 多组分精馏 5
D和W的确定
• 由物料衡算求得 • 由于物料组分多, 物料衡算是大方程组 (MESH) • 关键组分的清晰分割(简单)和非清晰分割 (复杂,需要试算)
• 单塔: 连续操作时不能同时得到多个纯品,
但可以得到多个产品.
(例子?)
• 若要连续地得到多个纯的产品, 必须使用 N-1个塔来得到N个纯产品.
2018/9/16 多组分精馏 3
A
B
流程设计
AB A
ABC I
II性/等等 •全面考虑各种原因
• 简捷: Gilliland图
N N min N 2
Gilliland图
• 方格纸 • 逐板计算时从何处进料, 从何处换用操作 线? • 小数板时? (圆整? 调R或者组成) • Rmin与xw • 操作型计算
2018/9/16 多组分精馏 1
第七节 多组分精馏
• 流程设计 • 如何计算N和R(估算)
2018/9/16
多组分精馏
2
1. 流程设计
• 单塔: 间歇操作时可以改变操作条件而得 到多个相对较纯的产品. (如何改变?)
10
蒸馏
• 平衡关系 • 平衡蒸馏与闪蒸 • 精馏
– – – – – 原理 设备 理论级 回流比 效率
• 多组分 • 相对挥发度接近或者等于1
2018/9/16 多组分精馏 11
2018/9/16 多组分精馏
C
4
B
2. 参数设计
• 已知: 料液量和组成xFi, 以及主要组分的 分离要求 (对于系列塔中的一个而言) • 待设计的参数:
– D和W –R –N
• 如何确定关键(主要)组分?
2018/9/16 多组分精馏 5
D和W的确定
• 由物料衡算求得 • 由于物料组分多, 物料衡算是大方程组 (MESH) • 关键组分的清晰分割(简单)和非清晰分割 (复杂,需要试算)
• 单塔: 连续操作时不能同时得到多个纯品,
但可以得到多个产品.
(例子?)
• 若要连续地得到多个纯的产品, 必须使用 N-1个塔来得到N个纯产品.
2018/9/16 多组分精馏 3
A
B
流程设计
AB A
ABC I
II性/等等 •全面考虑各种原因
• 简捷: Gilliland图
N N min N 2
Gilliland图
化工原理课件PPT
物理量的基本量的量纲为其本身。
SI量制中7个基本量的量纲符号:
L(长度) 、 M(质量) 、 T(时间) 、 I(电流) 、 (热力学温度) 、N(物质的量) 、J(发光强度) 。
导出量 的量纲表达式:
dQ im L M T I N J
dim—量纲符号 ,; ,—量纲指数或因次。
华东交大化工原理电子课件
表0-1 国际单位制的基本单位
量的名称
单位名称
长度 质量 时间 电流 热力学温度 物质的量 发光强度
米 千克
秒 安培 开尔文 摩尔 坎德拉
单位符号
m kg s A K mol cd
华东交大化工原理电子课件
表0-2 国际单位制的辅助单位
量的名称
平面角 立体角
单位名称
弧度 球面角
单位符号
rad sr
华东交大化工原理电子课件
一、物质的量浓度与物质的量分数
1.物质的量浓度
ci
ni V
2.物质的量分数
对于液体混合物: 其中,
xi
ni n
nn 1n 2 n i
x 1x2 xi 1
华东交大化工原理电子课件
二、物质的质量浓度与物质的质量分数
1.物质的质量浓度 2.物质的质量分数
i
mi V
对于液体混合物:
i
mi m
其中,
最终状态就是体系的平衡状态。
四、传递速率
传递速率
推动力 阻力
五、 经济核算
为生产定量的某种产品所需要的设备,根据设备的型式和
材料的不同,可以有若干设计方案。对同一台设备,所选用
的操作参数不同,会影响到设备费与操作费。因此,要用经
济核算确定最经济的设计方案。
SI量制中7个基本量的量纲符号:
L(长度) 、 M(质量) 、 T(时间) 、 I(电流) 、 (热力学温度) 、N(物质的量) 、J(发光强度) 。
导出量 的量纲表达式:
dQ im L M T I N J
dim—量纲符号 ,; ,—量纲指数或因次。
华东交大化工原理电子课件
表0-1 国际单位制的基本单位
量的名称
单位名称
长度 质量 时间 电流 热力学温度 物质的量 发光强度
米 千克
秒 安培 开尔文 摩尔 坎德拉
单位符号
m kg s A K mol cd
华东交大化工原理电子课件
表0-2 国际单位制的辅助单位
量的名称
平面角 立体角
单位名称
弧度 球面角
单位符号
rad sr
华东交大化工原理电子课件
一、物质的量浓度与物质的量分数
1.物质的量浓度
ci
ni V
2.物质的量分数
对于液体混合物: 其中,
xi
ni n
nn 1n 2 n i
x 1x2 xi 1
华东交大化工原理电子课件
二、物质的质量浓度与物质的质量分数
1.物质的质量浓度 2.物质的质量分数
i
mi V
对于液体混合物:
i
mi m
其中,
最终状态就是体系的平衡状态。
四、传递速率
传递速率
推动力 阻力
五、 经济核算
为生产定量的某种产品所需要的设备,根据设备的型式和
材料的不同,可以有若干设计方案。对同一台设备,所选用
的操作参数不同,会影响到设备费与操作费。因此,要用经
济核算确定最经济的设计方案。
化工原理ppt课件汇总全套ppt完整版课件最全教学教程整套课件全书电子教案全套电子讲义完整版ppt
二、压力、流速和流量的测量
为了了解和控制生产过程,需要测定管路或设备内的 压力、流速及流量等参数,以便合理地选用和安装测量仪 表。而这些测量仪表的工作原理又多以流体的静止或流动 规律为依据。
第二节 流体静力学
一、流体的压缩性
流体的特征是分子之间的内聚力极小,几乎有无限的 流动性,而且可以几乎毫无阻力地将其形状改变。当流速 低于声速时,气体和液体的流动具有相同的规律。
热力学基本方程式是以液体为例推导出来的,也适用 于气体。因在化工容器中,气体的密度也可认为是常数。 值得注意的是,静力学基本方程式只能用于静止的连通着 的同一种流体内部,因为他们是根据静止的同一种连续的 液柱导出的。
3、静力学基本方程的应用 流体静力学基本方程在化工生产过程中应用广泛,通 常用于测量流体的压力或压差、液体的液位高度等。
2、静力学基本方程的讨论
(1)在静止的液体中,液体任一点的压力与液体密度 和其深度有关。液体密度越大,深度越大,则该点的压力 越大。
(2)在静止的、连续的同一液体内,处于同一水平面 上各点的压力均相等。此压力相等的截面称为等压面。
第二节 流体静力学
(3) 当液体上方的压力或液体内部任一点的压p1 力 有变化时,液体内部各点的压力p2 也发生同样大小的变 化。
气压强为基准测得的流体 表压=绝对压强-(外界)大气压强
③真空度 当被测流体内的绝对压强小于当地(外界)大气压强 时,使用真空表进行测量时真空表上的读数称为真空度。即
真空度=(外界)大气压强-绝对压强
第二节 流体静力学
在这种条件下,真空度值相当于负的表压值。 图1-1 绝对压强、表压和真空度的关系 因此,由压力表或真空表上得出的读数必须根据当时、 当地的大气压强进行校正,才能得到测点的绝对压。 绝对压强、表压强与真空度之间的关系,可以用图11表示。 为了避免绝对压强、表压与真空度三者关系混淆,在 以后的讨论中规定,对表压和真空度均加以标注,如 2000Pa(表压)、600mmHg(真空度)。如果没有注明, 即为绝压。
为了了解和控制生产过程,需要测定管路或设备内的 压力、流速及流量等参数,以便合理地选用和安装测量仪 表。而这些测量仪表的工作原理又多以流体的静止或流动 规律为依据。
第二节 流体静力学
一、流体的压缩性
流体的特征是分子之间的内聚力极小,几乎有无限的 流动性,而且可以几乎毫无阻力地将其形状改变。当流速 低于声速时,气体和液体的流动具有相同的规律。
热力学基本方程式是以液体为例推导出来的,也适用 于气体。因在化工容器中,气体的密度也可认为是常数。 值得注意的是,静力学基本方程式只能用于静止的连通着 的同一种流体内部,因为他们是根据静止的同一种连续的 液柱导出的。
3、静力学基本方程的应用 流体静力学基本方程在化工生产过程中应用广泛,通 常用于测量流体的压力或压差、液体的液位高度等。
2、静力学基本方程的讨论
(1)在静止的液体中,液体任一点的压力与液体密度 和其深度有关。液体密度越大,深度越大,则该点的压力 越大。
(2)在静止的、连续的同一液体内,处于同一水平面 上各点的压力均相等。此压力相等的截面称为等压面。
第二节 流体静力学
(3) 当液体上方的压力或液体内部任一点的压p1 力 有变化时,液体内部各点的压力p2 也发生同样大小的变 化。
气压强为基准测得的流体 表压=绝对压强-(外界)大气压强
③真空度 当被测流体内的绝对压强小于当地(外界)大气压强 时,使用真空表进行测量时真空表上的读数称为真空度。即
真空度=(外界)大气压强-绝对压强
第二节 流体静力学
在这种条件下,真空度值相当于负的表压值。 图1-1 绝对压强、表压和真空度的关系 因此,由压力表或真空表上得出的读数必须根据当时、 当地的大气压强进行校正,才能得到测点的绝对压。 绝对压强、表压强与真空度之间的关系,可以用图11表示。 为了避免绝对压强、表压与真空度三者关系混淆,在 以后的讨论中规定,对表压和真空度均加以标注,如 2000Pa(表压)、600mmHg(真空度)。如果没有注明, 即为绝压。
化工原理第一章 流体流动-PPT课件
§1-1 流体静力学基本方程
p (p dx )dydz Xdxdydz 0 ➢ X方向受力 pdydz x p 化简: X 0 x
p ➢ Y方向受力 同理得: Y 0 y
➢ Z方向受力
欧拉平衡方程
p p p Xdx Ydy Zdz ( dx dy dz ) 0 x y z
四、讨论 ➢等压面:静止的、连续的、同一液体的同一水平面上 ➢压力可传递——巴斯噶定理、 ➢ h=(p1-p2)/(ρ g) ➢化工设备中可压缩流体内各点压强相等
§1-1-4流体静力学基本方程式的应用
一、压差或压强测量 液柱式压差计
化工原理 流体流动 材料与化学工程学院 化学工程与工艺教研室 10
§1-1 流体静力学基本方程
X
二、定态流动
0
X
化工原理 流体流动
0
材料与化学工程学院 化学工程与工艺教研室
18
§1-2 流体在管内的流动
§1-2-3连续性方程 一、管路系统 简单管路 串联管路
管路系统
复杂管路
二、连续性方程
3 2 3 2
分支管路
Ws Ws Ws 1 2 3 当 1 2 i
gdz dp
C
gz p gz p 1 1 2 2
P1 1 P2
2 Z
2
p p g ( z z ) 2 1 1 2
Z
1
p p 2 1 (z 1 z 2) g g
化工原理 流体流动 材料与化学工程学院 化学工程与工艺教研室 9
§1-1 流体静力学基本方程
流体类别 水及一般液体 粘度较大的液体 低压气体 易燃、易爆的 低压气体
化工原理教材ppt 第一章 流体力学与应用
du 与法向速度梯度 dy 成正比,此即牛顿粘度定律。
单位面积上的切向力-----剪应力, N m 2
作业:下周课前上交,请勿抄袭
考核方式:平时与期末比例同时参照教务办相关要求。 网上学习:
绪 论
《化工原理》是化工及其相关专业学生必 修的一门技术基础课,是《高等数学》、 《大学物理》、《基础化学》、《物理化 学》等课程的后继课程,为反应工程、传 递过程、工艺过程开发等专业课程的先行 课程,是自然科学领域的基础课向工程科 学的专业课过渡的入门课程。
量的名称
度
转每分 吨
(°)
r/min t
1°=60'(π/180)rad
1r/min=(1/60)s-1 1t=103kg
原子质量单位
升
u
L,(l)
1u≈1.6605655×10-27kg
1L=1dm3=10-3m3
因目前常用的物理、化学数据和工程用数、表、列线图仍 有许多是用物理制(CGS制)单位和工程单位,尚未换算 过来,CGS与工程单位制中的基本单位如表6所示。工程 单位制中以“力”为基本量,用符号kgf表示。
第二个问题是,若水塔高度确定了,需要选用什么类型的泵?即图 中泵的有效功率 Ne ?
第三个问题是,保持楼底水压为表压,那么一、二、三楼出水是均等 的吗?即图中 V1 : V2 : V3 ?
物质的三种形态:
物质的三种常规聚集状态:固体、液体和气体 物质外在宏观性质由物质内部微观结构和分子间力所决定 分子的随机热运 动和相互碰撞 分子间相互作用 力的约束 给分子以动能 使之趋于飞散 以势能的作用 使之趋于团聚
表6 CGS制与工程制的基本单位
CGS制 量的名称 单位符号 长度 质量 时间 温度 长度 cm g s ℃ m 工程制 力 kgf 时间 s 温度 ℃
单位面积上的切向力-----剪应力, N m 2
作业:下周课前上交,请勿抄袭
考核方式:平时与期末比例同时参照教务办相关要求。 网上学习:
绪 论
《化工原理》是化工及其相关专业学生必 修的一门技术基础课,是《高等数学》、 《大学物理》、《基础化学》、《物理化 学》等课程的后继课程,为反应工程、传 递过程、工艺过程开发等专业课程的先行 课程,是自然科学领域的基础课向工程科 学的专业课过渡的入门课程。
量的名称
度
转每分 吨
(°)
r/min t
1°=60'(π/180)rad
1r/min=(1/60)s-1 1t=103kg
原子质量单位
升
u
L,(l)
1u≈1.6605655×10-27kg
1L=1dm3=10-3m3
因目前常用的物理、化学数据和工程用数、表、列线图仍 有许多是用物理制(CGS制)单位和工程单位,尚未换算 过来,CGS与工程单位制中的基本单位如表6所示。工程 单位制中以“力”为基本量,用符号kgf表示。
第二个问题是,若水塔高度确定了,需要选用什么类型的泵?即图 中泵的有效功率 Ne ?
第三个问题是,保持楼底水压为表压,那么一、二、三楼出水是均等 的吗?即图中 V1 : V2 : V3 ?
物质的三种形态:
物质的三种常规聚集状态:固体、液体和气体 物质外在宏观性质由物质内部微观结构和分子间力所决定 分子的随机热运 动和相互碰撞 分子间相互作用 力的约束 给分子以动能 使之趋于飞散 以势能的作用 使之趋于团聚
表6 CGS制与工程制的基本单位
CGS制 量的名称 单位符号 长度 质量 时间 温度 长度 cm g s ℃ m 工程制 力 kgf 时间 s 温度 ℃
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/12/9
二、孔板流量计
1、孔板流量计的结构
2020/12/9
2、孔板流量计的工作原理
流体流到孔口时,流股截面收缩,通过孔口后,流股还 继续收缩,到一定距离(约等于管径的1/3至2/3倍)达到最 小,然后才转而逐渐扩大到充满整个管截面,流股截面最小 处,速度最大,而相应的静压强最低,称为缩脉。因此,当 流体以一定的流量流经小孔时,就产生一定的压强差,流量 越大,所产生的压强差越大。因此,利用来自量压强差的方法 就可测量流体流量。
3)测速管应放置于流体均匀流段,且其管口截面严格垂 直于流动方向,一般测量点的上,下游最好均有50倍直径长 的直管距离,至少应有8~12倍直径长的直管段。
4)测速管安装于管路中,装置头部和垂直引出部分都将 对管道内流体的流动产生影响,从而造成测量误差。因此, 除选好测点位置,尽量减少对流动的干扰外,一般应选取皮 托管的直径小于管径的1/50。
流量与环隙面积有关,在圆锥形筒与浮子的尺寸固定 时,AR决定于浮子在筒内的位置,因此,转子流量一般都 以转子的位置来指示流量,而将刻度标于筒壁上。
转子流量计在出厂时一般是根据20℃的水或20℃、 0.1MPa下的空气进行实际标定的,并将流量值刻在玻璃管 上。
使用时若流体的条件与标定条件不符时,应实验标定 或进行刻度换算。
CD:排出系数。取决于截面比A0/A1,管内雷诺数Re1,孔口的形
状及加工精度等。
2020/12/9
与
1
1
A0
A1
2
合并
C0 CD 1 A0 A1 2
u0 C0
2 p1 p0
用孔板前后压强的变化来计算孔板小孔流速u0的公式 U型管压差计读数为R,指示液的密度为ρA
p1 p0 gRA
指示液,读数为R。
u2 R' g
2g
g
u 2gR( )
——测速管测定管内流体的基本原理和换算公式
实际使用时
uc
2gR( )
c=0.98~1.00
2020/12/9
3、使用皮托管的注意事项
1)测速管所测的速度是管路内某一点的线速度,它可以 用于测定流道截面的速度分布。
2)一般使用测速管测定管中心的速度,然后可根据截面 上速度分布规律换算平均速度。
u0 C0
2gR A
2020/12/9
若以体积或质量表达,则
Vs C0 A0
2gR A
ws A0u0
C0 A0
2gR A
C0---孔流系数, C0=f( A0/A1,Re1 )
2020/12/9
当Re1超过某界限值时,C0不再随Re1而变C0=const,此时 流量就与压差计读数的平方根成正比,因此,在孔板的设 计和使用中,希望Re1大于界限值。
一、测速管
1、测速管(皮托管)的结构
2020/12/9
2、测速管的工作原理
对于某水平管路,测速管的内管A点测得的是管口所在
位置的局部流体动压头与静压头之和,称为冲压头 。
hA
u2 2g
pA
g
B点测得为静压头
hB
pB
g
冲压头与静压头之差
hA hB
pA pB
g
u2 2g
2020/12/9
压差计的指示数R代表A,B两处的压强之差。 若所测流体的密度为ρ,U型管压差计内充有密度为ρ’的
管道中的流量为
Vs Cv A0
2gR A
Cv的值一般为0.98 ~ 0.99。
优点:阻力损失小,大多数
用于低压气体输送中的测量
缺点:加工精度要求较高,
造价较高,并且在安装时流量计本身占据较长的管长位置。
2020/12/9
2020/12/9
四、转子流量计
1、转子流量计的结构及工作原理
2、流量公式 假设在一定的流量条件下,转子处于
在1-1’和2-2’间列柏努利方程,略去阻力损失 p1 u12 p2 u22 2 2
2020/12/9
A1u1 A2u2 A0u0
p1 p2
u22
u12 2
u
2 2
2
1
A2 A1
2
u2
1
1
A2
A1
2
2 p1 p2
1 u0 CD 1 A0 A1 2
2 p1 p0
2020/12/9
V s2 1 f 2
VS1
2 f 1
下标1代表标定流体(水或空气)的流量和密度值,下 标2代表实际操作中所用流体的流量和密度值。
2020/12/9
3、孔板流量计的优缺点
优点:构造简单,安装方便 缺点:流体通过孔板流量计的阻力损失很大
hf C02 Rg '
孔板的缩口愈小,孔口速度愈大,读数就愈大,阻力 损失愈大。所以,选择孔板流量计A0/A1的值,往往是设计 该流量计的核心问题。
2020/12/9
2020/12/9
三、文丘里流量计
第一章 流体流动
第六节 流速和流量的测量
一、测速管 二、孔板流量计 三、文丘里流量计 四、转子流量计
2020/12/9
流量计
变压头流量计 将流体的动压头的变化以静压头 的变化的形式表示出来。一般, 读数指示由压强差换算而来。 如:测速管、孔板流量计和文丘 里流量计
2020/12/9
变截面流量计 流体通过流量计时的压力降是固 定的,流体流量变化时流道的截 面积发生变化,以保持不同流速 下通过流量计的压强降相同。 如:转子流量计
平衡状态,截面2-2’和截面1-1’的静
压强分别为p2和p1,若忽略转子旋转的切
向力 p1 p2 Af Vf f g
p1
p2
Vf Af
f g
Vs CR AR
2P1 P2
2020/12/9
CR为转子流量计的流量系数,AR为环隙面积
Vs CR AR 2gV f f Af
二、孔板流量计
1、孔板流量计的结构
2020/12/9
2、孔板流量计的工作原理
流体流到孔口时,流股截面收缩,通过孔口后,流股还 继续收缩,到一定距离(约等于管径的1/3至2/3倍)达到最 小,然后才转而逐渐扩大到充满整个管截面,流股截面最小 处,速度最大,而相应的静压强最低,称为缩脉。因此,当 流体以一定的流量流经小孔时,就产生一定的压强差,流量 越大,所产生的压强差越大。因此,利用来自量压强差的方法 就可测量流体流量。
3)测速管应放置于流体均匀流段,且其管口截面严格垂 直于流动方向,一般测量点的上,下游最好均有50倍直径长 的直管距离,至少应有8~12倍直径长的直管段。
4)测速管安装于管路中,装置头部和垂直引出部分都将 对管道内流体的流动产生影响,从而造成测量误差。因此, 除选好测点位置,尽量减少对流动的干扰外,一般应选取皮 托管的直径小于管径的1/50。
流量与环隙面积有关,在圆锥形筒与浮子的尺寸固定 时,AR决定于浮子在筒内的位置,因此,转子流量一般都 以转子的位置来指示流量,而将刻度标于筒壁上。
转子流量计在出厂时一般是根据20℃的水或20℃、 0.1MPa下的空气进行实际标定的,并将流量值刻在玻璃管 上。
使用时若流体的条件与标定条件不符时,应实验标定 或进行刻度换算。
CD:排出系数。取决于截面比A0/A1,管内雷诺数Re1,孔口的形
状及加工精度等。
2020/12/9
与
1
1
A0
A1
2
合并
C0 CD 1 A0 A1 2
u0 C0
2 p1 p0
用孔板前后压强的变化来计算孔板小孔流速u0的公式 U型管压差计读数为R,指示液的密度为ρA
p1 p0 gRA
指示液,读数为R。
u2 R' g
2g
g
u 2gR( )
——测速管测定管内流体的基本原理和换算公式
实际使用时
uc
2gR( )
c=0.98~1.00
2020/12/9
3、使用皮托管的注意事项
1)测速管所测的速度是管路内某一点的线速度,它可以 用于测定流道截面的速度分布。
2)一般使用测速管测定管中心的速度,然后可根据截面 上速度分布规律换算平均速度。
u0 C0
2gR A
2020/12/9
若以体积或质量表达,则
Vs C0 A0
2gR A
ws A0u0
C0 A0
2gR A
C0---孔流系数, C0=f( A0/A1,Re1 )
2020/12/9
当Re1超过某界限值时,C0不再随Re1而变C0=const,此时 流量就与压差计读数的平方根成正比,因此,在孔板的设 计和使用中,希望Re1大于界限值。
一、测速管
1、测速管(皮托管)的结构
2020/12/9
2、测速管的工作原理
对于某水平管路,测速管的内管A点测得的是管口所在
位置的局部流体动压头与静压头之和,称为冲压头 。
hA
u2 2g
pA
g
B点测得为静压头
hB
pB
g
冲压头与静压头之差
hA hB
pA pB
g
u2 2g
2020/12/9
压差计的指示数R代表A,B两处的压强之差。 若所测流体的密度为ρ,U型管压差计内充有密度为ρ’的
管道中的流量为
Vs Cv A0
2gR A
Cv的值一般为0.98 ~ 0.99。
优点:阻力损失小,大多数
用于低压气体输送中的测量
缺点:加工精度要求较高,
造价较高,并且在安装时流量计本身占据较长的管长位置。
2020/12/9
2020/12/9
四、转子流量计
1、转子流量计的结构及工作原理
2、流量公式 假设在一定的流量条件下,转子处于
在1-1’和2-2’间列柏努利方程,略去阻力损失 p1 u12 p2 u22 2 2
2020/12/9
A1u1 A2u2 A0u0
p1 p2
u22
u12 2
u
2 2
2
1
A2 A1
2
u2
1
1
A2
A1
2
2 p1 p2
1 u0 CD 1 A0 A1 2
2 p1 p0
2020/12/9
V s2 1 f 2
VS1
2 f 1
下标1代表标定流体(水或空气)的流量和密度值,下 标2代表实际操作中所用流体的流量和密度值。
2020/12/9
3、孔板流量计的优缺点
优点:构造简单,安装方便 缺点:流体通过孔板流量计的阻力损失很大
hf C02 Rg '
孔板的缩口愈小,孔口速度愈大,读数就愈大,阻力 损失愈大。所以,选择孔板流量计A0/A1的值,往往是设计 该流量计的核心问题。
2020/12/9
2020/12/9
三、文丘里流量计
第一章 流体流动
第六节 流速和流量的测量
一、测速管 二、孔板流量计 三、文丘里流量计 四、转子流量计
2020/12/9
流量计
变压头流量计 将流体的动压头的变化以静压头 的变化的形式表示出来。一般, 读数指示由压强差换算而来。 如:测速管、孔板流量计和文丘 里流量计
2020/12/9
变截面流量计 流体通过流量计时的压力降是固 定的,流体流量变化时流道的截 面积发生变化,以保持不同流速 下通过流量计的压强降相同。 如:转子流量计
平衡状态,截面2-2’和截面1-1’的静
压强分别为p2和p1,若忽略转子旋转的切
向力 p1 p2 Af Vf f g
p1
p2
Vf Af
f g
Vs CR AR
2P1 P2
2020/12/9
CR为转子流量计的流量系数,AR为环隙面积
Vs CR AR 2gV f f Af