MAXON燃烧系统培训资料
MAXON设备产品和应用基础培训教程
空气过剩率(%)= 供气量 − 理论空气需要量 × 100% 理论空气需要量
过剩空气通常用于表示空气比当量配比超出的百分比,如 10%的过剩空气指空气量是完 全燃烧所需要空气的 110%。
一家历史悠久和规模最大的工业燃烧器制造厂商。总部在美国印第安纳州的曼西市。初期, 公司拥有 300 名员工,38 个销售点。
1966 年在欧洲比利时布鲁塞尔市建立分公司,有 150 名员工,10 个销售点。 1994 年亚太地区代表处在新加坡成立,有 8 名员工,12 个销售点。 1993 年在众多的工业燃烧器制造商中是首家率先通过 ISO 9001 质量体系认证的公司。 1998 年进入中国市场,设立办事机构;2002 年在中国上海设立工厂。 MAXON 一直在工业加热领域处于先驱的位置,这源于 MAXON 始终锲而不舍地专注于 新的技术、制造工艺和产品开发研究,其产品性能不仅满足而且大大超越了当今急剧变化的 工业界对产品性能和环境的要求。近九十年来,正是基于雄厚的科研开发投入,使得今天的 MAXON 可以向遍及全球的用户提供门类齐全、世界一流的产品。MAXON 生产制造综合性 的燃烧设备,满足了几乎所有行业需要用热的工艺要求。种类繁多的产品加上丰富的经验和 出色的服务,使得 MAXON 成为全球值得信赖的燃烧设备供应之源泉。 二、上海永屹机电工程有限公司 :
8、调节比:调节比指烧嘴最大功率与最小功率之比,如: 一个烧嘴的最大功率为 1×106Btu/hr,最小功率为 25,000Btu/hr则该烧嘴的调节比为
40:1. 六、公制/英制相关换算:
1、功能、热量单位换算 ________(kcal/hr)×(3.968)=___________(Btu/hr) ________(kw)×(3413)=______________(Btu/hr) ________(KJ/hr)×(0.948)=_____________(Btu/hr) 2、热值单位换算 _________(kcal/m3)×(0.11235)=___________(Btu/ft3) _________(MJ/m3)×26.86=__________(Btu/ft3) _________(kcal/kg)×1.8=____________(Btu/#) _________(MJ/kg)×429.9=___________(Btu/#) _________(kcal/liter)×15=___________(Btu/gal) 3、压力单位换算 _________(mmHg)×0.0193=___________(psi) _________(bar)×14.5=__________(psi) _________(mbar)×0.402=___________(“wc) _________(KPa)×0.145=_________(psi) _________(kg/cm2)×14.22=__________(psi)
烧成系统培训资料
烧成系统培训资料一、中控操作师的职责:以高度的责任感,运用丰富的理论知识,在熟悉现场环境并了解设备有关性能的基础上,精心操作,认真监控、分析各参数,果断处理即将发生的问题。
不断优化工艺参数,努力实现优质、高产、低消耗。
二、操作指导思想1、树立安全生产、质量第一的观念,整定出系统最佳操作参数,确保窑长期安全运转及优质高产、低消耗。
2、树立全局观念,与原料系统、煤磨系统、质控处互相协调,密切配合。
3、统一操作思想,精心操作,不断摸索总结,达到系统稳定的目的。
4、力求系统热工制度稳定,注意风、料、煤、窑速的配合以消除热工波动,确保燃料完全燃烧,避免CO产生和系统局部高温,防止预热器各旋风筒、分解炉、窑尾烟室等结皮、堵塞,同时保护窑皮和窑衬,延长窑系统的运转周期。
5、正确调整篦冷机篦床速度和各室风量,防止堆“雪人”。
三、工艺流程及设备1、要求操作员准确绘制烧成系统工艺流程图。
2、要求操作员了解烧成系统内每一个设备的型号、功能、设备参数。
四、专业基础知识1、烧成温度的判断(1)火焰温度高低窑内的热流是靠燃料燃烧,产生火焰发出热量,而使窑温升高,因此火焰温度高,窑温也高。
目前判断火焰温度高低的方法是通过比色高温计结合计算机,可测出比较接近实际温度的数据,除此之外,在正常操作时,对火焰温度高低的判断,还可通过火焰的颜色。
火焰的颜色及相对应的温度如表所示,表中所列数据是实际火焰温度颜色,不是通过有色玻璃看到的颜色,通过钴玻璃所看到的颜色相对应的温度数值要比表中的温度高。
正常火焰的温度通过钴玻璃看到:最高温度处于火焰中部发白亮,最高温度两边呈浅色,前部发黑。
正常情况下,物料随窑运转方向被带到一定高度而后下落,落时略带黏性,熟料颗粒细小均齐温度过高时,物料被带起来的高度比较高,向下落时黏性较大,翻滚不灵活而颗粒粗大,有时呈饼状下落;烧成温度低时,熟料被带起高度低,顺窑壁滑落,无黏性,物料颗粒细小,严重时呈粉状,这主要是因为温度增高使物料中液相增加,温度降低液相减少。
马克森 67 系列 TUBE-O-FLAME 燃烧器 零配件手册说明书
Air Inlet Filter Assembly for Silencer Assembly above includes (1) permanent element
6-08, 8-15 21772 (12) 29758 (.5) 50826
34651 (2)
31242 (32)
10-25 24672
67 35620 (15)
2" 10-30, 12-38, 14-50, 12LB, 14LB
138 19123 (6)
80 35621 (18)
Approximate net weight (in pounds) shown in parentheses
8/11 Maxon practices a policy of continuous product improvement. It reserves the right to alter specifications without prior notice.
Balancing Cv Flow Factor Valves Valve Assembly Number
5
42
19120 (3) 19121 (4)
80 19122 (4)
Balancing Cv Flow Factor Valves Valve Assembly Number
34
51
35619 (11) 35937 (15)
30460 (4)
[1] Spark ignitor is 24699 for the UV_TUBE option; 19407 for all others
Replacement Gas Nozzles
Series “67” TUBE-O-FLAME® Burner Natural gas nozzle Propane gas nozzle Natural gas nozzle w/ guide tube Propane gas nozzle w/ guide tube Guide tube - NPT threaded Guide tube - ISO threaded
燃烧器系统培训
燃烧器的基本知识
燃烧器的概念和用途
燃烧器是用燃烧方法将燃料转化 为热能的一种高效燃烧设备。为使燃 油或燃气燃烧良好,有效地利用热能 ,必须使燃油或燃气与空气充分混合 ,这主要借助于燃烧器来实现。
燃烧器是锅炉的重要设备,同时 还广泛应用于金属热处理、烘熔、烤 漆、干燥、焚烧、溴化锂制冷机组等 行业。
21
燃烧器的系统构成
燃料系统
燃料系统的功能在于保证燃烧 器燃烧所需的燃料。
燃油燃烧器的燃料系统主要有:油管及接 头、油泵、电磁阀、喷嘴、重油预热器。 燃气燃烧器主要有过滤器、调压器、电磁 阀组、点火电磁阀组。
22
燃烧器的系统构成
设备结构
5、过滤器:其作用是防止杂质 进入电磁阀组和燃烧器内。 6、调压器:作用是降压稳压。 7、电磁阀组:由安全电磁阀和 主电磁阀组成,有分体式和一体 式,一体式电磁阀组内组合有稳 压阀和过滤网。安全电磁阀一般 为快开快闭式。 8)、电磁阀泄漏检测器:作用是 检测电磁阀组的关闭是否严密。 9)、点火电磁阀组:一般有手动 球阀、稳压器、电磁阀组成。主 要用于功率较大的燃烧器。
时燃油属于易燃介质,储存时占地面积大,需单独配置消防、喷淋降温
、防雷接地等安全系统,本质安全要求相对较高;同时燃油燃烧不充分
时容易导致CO等参数异常波动,影响环保参数;在启停炉操作时,燃油
的不充分燃烧导致油雾随着气流粘附在布袋除尘器表面,导致滤孔堵塞
,影响酸性气体、粉尘的进一步处理;布置在烟囱上的连续在线监测系
19
燃烧器的系统构成
燃气(阀组)系统
20
燃烧器的系统构成
监测系统
送风系统 电控系统
燃料系统
Hale Waihona Puke 点火系统下面通过对合肥垃圾焚烧 发电厂一期燃油燃烧器介 绍,就可了解目前使用的 全自动燃烧器的结构和构 成。
燃烧培训资料ppt课件
优点
·比例调节器自动补偿操作条件中的变化—如污染空气过滤器—这会使连接阀系统 中的空气/气体比发生变化。
·调节范围100:1。 ·直接传动蝶形阀可排除泄漏,可在操作过程中位移或堵塞。 ·快速混合喷嘴以所有点火率提供清洁、稳定火焰,并将热量释放到点火室中,而
不会释放到烘箱壁上。 ·由于低NOx,CO和乙醛,用于发射-灵敏的过程是很理想的。 ·能量从500,000~25,000,000英国热量单位/小时。容易安装、操作和维修……全
稳定引火
No Image
出主火焰
出主火后五 秒后关引火
No Image
关引火
No Image
正常状态
No Image
吹扫
点火前一定需要了解一个概念------吹扫 吹扫容量是炉内容积的4倍以上,(美国标准是4倍,欧洲标准是5倍),
建议吹扫6倍比较好. 大型的炉子可能要吹扫20~30分钟 每次点火之前,燃烧机本般都要扫风一次,时间具体而定,越长越好
开通
阀1工作方式
阀门1上的阀门-调节器组合装置工作方式 在阀门V1中装有一个经预压平衡的器(压力调节部分)。V1的衔铁
不和阀盘部分连接。在开启时,衔铁施压于压力弹簧并使调节器单元接 通。切断衔铁,则切断力直接作用于调节器单元的阀盘。阀门V1和V2由 电力同时控制。在关闭状态,阀门V3把工作隔膜M下的压力室与A室的输 入压力隔断。阀门V1的衔铁控制阀门V3。工作隔膜M下的压力由一个可 变的流出横截面D来决定。
Lock-out 可以点火,点火棒点火3秒后引火阀打开。
Lock-out 出主火,5秒后关引火。
正常使用时的状态
|
空气压力开关运作
风压开关一定要在程控器启动之前要闭合,之后才会开始
MCS系统培训讲义--第4章燃烧调节系统
第4章 锅炉燃烧自调系统1调节任务 1.1任务1) 保持主汽压力(P T )为给定值(P T S )。
P T S 是衡量机、炉能量平衡的重要参数。
当锅炉出力>汽机出力时,P T ↑,P T S ↑,反之,则P T ↓ 2) 保证燃烧过程的经济性。
保证α在一定X 围内:α=22121O ,其中:燃煤炉α=1.15~1.25; 燃油炉α=1.05~1.15 3) 维持炉膛负压不变:P h =20~40Pa (2~4mmH 2O ) 1.2 调节手段:1) 燃煤量——对于中间仓储式制粉系统,调节给粉量;对于直吹式制粉系统,调节给煤量及一次风量。
2) 送风量——送风机入口调节档板,或送风机调速机构。
3) 引风量——引风机入口调节档板,引送风机调速机构。
1.3 燃烧率(u B )定义:单位时间内燃料燃烧产生的发热量。
广义是指燃料量、风量的配比。
1.4 本章符号定义:L B ——炉负荷指令;p T ——主汽压; p n ——炉负压; q f ——燃料量; q a ——送风量; q g ——引风量;Pb ——汽包压力; u B ——燃烧率; u D ——汽机进汽阀开度;2 调节对象动态特性:特点:有三项调节任务,即有三个调节量,三个被调量,且互相影响燃料量送风量引风量主汽压P T过剩空气系数α炉膛负压Pn调节量调节对象被调量2.1 汽压P T 动态特性:主要影响因素有:燃烧率u B (内扰)和负荷量D (外扰) 1) 燃烧率u B 扰动(u B - P T 关系)a) 当D 不变(负荷不变):采用调节汽机进汽阀开度实现。
当u B∵D不变——管道阻力不变∴△P1=△P2结论:无自平衡特性b)当u D(汽机进汽阀开度)不变结论:有自平衡特性2)负荷D阶跃扰动下(D—P1):a) D阶跃扰动下∵D突然增加时,PT阶跃下降△P,而其后D保持而变。
∴△P1+△P=△P2结论:无自平衡性b)u D阶跃扰动下∵D恢复到D∴△P2=△P1结论:有自平衡性P当DuDP当u B D△P2 > △P1由于DuP当u D D D恢复原值,但P T,P bPPPP Tu总结论:当锅炉出力 = 汽机出力时:有自平衡(u B ↑D↑)当锅炉出力 ≠汽机出力时:无自平衡(D 不变,Ud ↑) 2.2 过剩空气系数α的动态特性:主要影响因素:送风量q a 、燃料量q f ——过程相似。
燃烧机知识培训106日
02
燃烧机点火与控制系统
点火方式及原理
03
高压电火花点火
利用高压电产生电火花,点燃燃烧室内的 可燃气体。点火电极间隙要适当,以确保 电火花能够成功点燃可燃气体。
预热式点火
通过预热器将空气加热至一定温度后,再 与可燃气体混合进入燃烧室进行点火。这 种方式适用于燃烧重油或高粘度燃料。
催化点火
利用催化剂降低可燃气体的着火温度,使 其在较低温度下就能被点燃。催化点火具 有点火能量低、安全性高的优点。
减压阀、电磁阀等装置。
空气供给系统
空气供给系统的主要作用是为燃烧机提供适量的空气,并保证空气的质量。通常包括空 气滤清器、风机和空气调节阀等装置。其中,空气滤清器用于过滤空气中的杂质和微粒, 保证空气的清洁度;风机则用于将空气吸入燃烧机,并提供必要的空气压力;空气调节
阀则用于调节空气的流量和压力,以满足燃烧机的不同工作需求。
节能减排技术应用
采用先进的燃烧控制技术, 提高燃烧效率。
使用高效节能型燃烧器,降 低能源消耗。
回收利用燃烧产生的余热, 提高能源利用率。
加强设备管理和维护,减少 能源浪费和污染物排放。
01
02
03
04
05
05
燃烧机选型与安装指导
不同类型燃烧机特点比较
燃油燃烧机
以燃油为燃料,具有高热效率、 低污染排放的特点。适用于需要
高温、快速加热的场合。来自燃气燃烧机以天然气、液化气等气体为燃料, 具有环保、节能、安全的特点。适 用于对环保要求较高的场合。
生物质燃烧机
以生物质颗粒、压块等为燃料,具 有可再生、低碳排放的特点。适用 于注重环保和可持续发展的场合。
选型依据和参数设置
选型依据
Maxon KINEDIZER LE 高温燃烧器说明书
Specifications of KINEDIZER® LE burnersTypical burner dataFuel: natural gas at 60°F with 1000 Btu/ft3 (st) HHV - sg = 0.6 [1]Combustion air: 60°F - 21% O2 - 50% humidity - sg = 1.0 [1]Stated pressures are indicative. Actual pressures are a function of air humidity, altitude, type of fuel and gas quality.KINEDIZER® LE size1-1/2”3”4”6”8”10”Max. capacity @ n=1.3 (low NOx) [2]MBtu/h0.55 2.4 4.6 9.8 16 25 Max. capacity @ n=1.1MBtu/h0.59 2.6 5.2 11.2 17.7 32 Min. capacity KBtu/h27 120 230 490 740 1200 Turndown @ n=1.3 [2]1:201:201:201:201:201:20 Turndown @ n=1.11:221:221:221:221:221:22 Air flow at max. capacity scfm110 500 950 2000 3225 5000 Air flow at min. capacity scfm18 57 66 120 167 248 Advised pilot capacity [3]MBtu/h0.1 0.2 0.2 0.3 0.5 1.0 Pilot gas pressure [4]“wc<0.4 1.0 <0.4 0.6 1.0 4.0 Advised pilot gas piping diameter [5]1/2”3/4”3/4”3/4”1”1-1/2”Combustion air pressure @ inlet [6]“wc28 32 32 32 32 32 Combustion air pressure differential [7]“wc26 28 29 31 27 28 Natural gas inlet pressure differential [8]“wc55 52 42 64 40 75 Flame length @ n=1.3 [2]ft0.98 1.47 1.96 3.93 5.9 8.85 Flame diameter @ n=1.3 [2]ft0.49 0.65 0.82 1.47 2.95 3.93 Flame length @ n=1.1ft 1.6 2.46 3.28 6.56 9.84 14.76 Flame diameter @ n=1.1ft0.49 0.65 0.82 1.47 2.95 3.93[1]sg (specific gravity) = relative density to air (density air = 0.0763 lb/ft3 (st))[2]n=1.3 meaning 30% excess air[3]Most installations will require a stronger pilot (advised pilot capacity will be required - see (3))[4]Natural gas pressure at pilot burner gas inlet (absolute minimum pilot capacity)[5]For information only - strong pilots require adapted piping[6]Differential air pressure needed to the burner[7]Air pressure as measured at the air pressure connection port[8]Differential natural gas pressure required at burner gas inlet (gas inlet test connection) relative to process, for the “n=1.3” maximum capaci-ties.E-i-7/08Materials of construction52Item number Burner part Material 1Burner housing Carbon steel, painted [1]2Burner parts (in contact with furnace)AISI 304 (1.4301)3Burner tip AISI 310 (1.4541)4Burner block Castable refractory [2]5Burner block sleeve (optional)AISI 304 (1.4301)[1]Optional available: 100% stainless steel burner[2]Typical composition of castable refractory: refractory with 50% SiO2, 45% AI2O3 and smaller fractionsof iron oxide, titanium, lime, reinforced with needles (AISI 304-1.4301)Selection criteriaKINEDIZER® LE burner versionsTo suit the local demands of industry and specific regulations worldwide, the standard KINEDIZER® LE burner is available in different versions.All burners can be ordered with NPT gas connection and SCH 10/40 air pipe connection (ANSI version - see drawings on page 3-11.9-10 through 3-11.9-13).On request, special versions for hazardous locations, ISO connections, or high back pressure may be supplied. Contact MAXON for more details.Application detailsKINEDIZER® LE burners can be used in all direct fired high temperature air heating applications. It combines flexibility and stability with high turndown and the lowest available NOx emissions. The use of KINEDIZER® LE burners in indirect applications requires special consideration. Contact MAXON for application details.Maximum capacitiesAll KINEDIZER® LE burners can be fired at higher maximum capacities if sufficient combustion air and fuel gas is allowed to the burner. Maximum capacities of all sizes can be 20% higher.Preheated air/reduced O2 airKINEDIZER® LE burners accept preheated combustion air up to 660°F (800°F on request). Maximum capacities shall be reduced. Preheated combustion air can have reduced O2 (as low as 17% if combustion air temperature is 800°F ). Mixing of some low O2 flue gas allows to combine increased system thermal efficiency with best emissions.Process back pressureStandard KINEDIZER® LE burners can accept static back pressures between -40”wc and 40”wc . The burner shall be connected to a fuel gas and combustion air control system that is capable of controlling a correct fuel gas ratio against all possible installation back pressures. Special versions are available to accept up to 14.5 psi back pressure (with PED-certification).Process temperatureThe construction of the burner allows operation in all applications with process temperatures from ambient up to 2000°F . Protect burner from high furnace temperatures during burner stop (purge to avoid back flow of hot furnace/process air).Piloting & ignitionDirect ignition of standard KINEDIZER® LE burners is possible. In case the use of a pilot is preferred, the KINEDIZER® LE burner will be equipped with a raw gas pilot to ignite the main flame (using main burner combustion air). Pilots shall be used only for ignition of the main flame (interrupted). Permanent pilot operation is not advised (no permanent or intermittent pilot). Use main burner at minimum capacity for continuous operation.Use minimally 5000 V/200 VA ignition transformers for sparking of the spark ignitor. Optional ignition equipment for hazardous locations is available as well as high energy ignitors for direct ignition.E-i-7/08Typical ignition sequencePre-purge of burner and installation, according to the applicable codes and the installation’s requirements.Combustion air control valve shall be in the minimum position to allow minimum combustion air flow to the burner.Pre-ignition (typically 2 s sparking in air).Open pilot gas and continue to spark the ignitor (typically 5 s).Stop sparking, continue to power the pilot gas valves and start flame check. Trip burner if no flame from here on.Check pilot flame stability (typically 5 s to prove stable pilot).Open main gas valves and allow enough time to have main gas in the burner (typically 5 s + time required to have main gas in the burner).Close the pilot gas valves.Release to modulation (allow modulation of the burner).Above sequence shall be completed to include all required safety checks during the start-up of the burner (process and burner safeties).Locate one pilot gas valve as close as possible to the pilot burner gas inlet to have fast ignition of the pilot burner.Ratio controlKINEDIZER® LE burners can be fired stable with air factors (“n”) : 1.05 < n < 1.60 (5% to 60% excess air) from 20% to 100% of listed maximum air flows (lower capacities require somewhat higher excess air). Flame dimensions and burner emissions are heavily affected by the excess air amount.In order to achieve the best ratio control and emissions, MAXON SMARTFIRE® or SMARTLINK® control systems should be utilized. MAXON MICRO-RATIO® valves are also available to obtain good performance over the entire turndown of the burner.Ratio control on reduced capacityMost KINEDIZER® LE applications will require burner operation with 30% excess air to have low NOx.On reduced capacities, the excess air will slowly increase.KINEDIZER® LE burners will operate with low NOx between 20% and 100% of their listed maximum capacity. Below 20% firing rate, the air factor will slightly increase to have the listed air flow at minimum capacity. Changes of combustion air temperature, system back pressure and other parameters could influence gas/air ratio if the control system is not designed to compensate for these.Flame supervisionKINEDIZER® LE flames shall be supervised by UV scanners. Two scanner positions are available. Both locations allow verfication of both pilot flame and main flame. (It is not possible to distinguish main and pilot flame.)Scanners are mounted on the burner flange and look through the block (30° relative to the burner center line).Pay attention to possible pick-up of strange flames (if any in the furnace). Allow some purge or cooling air to the scannerconnections (typically 1.5 scfm of fresh clean air).Flame developmentKINEDIZER® LE burners shall be installed in combustion chambers or furnaces that allow full development of the burner flame.Cylindrical combustion chambers shall have diameters of 1.5 to 2 times burner flame diameter (see table on page 3-11.9-5).Consult MAXON for proper combustion chamber lay-out.Cross velocitiesCross velocities up to 3000 ft/min can be allowed over the KINEDIZER® LE flame. Contact MAXON for proper lay-out and correct emission information in case of cross velocity over the flame.Combustion air control and pipingKINEDIZER ® LE burners require combustion air control valves with high turndown (to guarantee correct air flow at minimum capacity). Air control valves shall be properly sized. Typically, the air control valve diameter shall be smaller than the burner air inlet. Combustion air piping to the burner shall be done in such a way that the air flow to the burner will not disturb the flame. Location of air control valves directly on the burner inlet is not possible.FuelsStandard KINEDIZER ® LE burners are designed for low NOx firing of natural gas only. Special versions are available to fire propane/LPG. Multi-fuel burners will have higher NOx on the alternative fuel.Expected emissionsTypical NOx for KINEDIZER ® LE burners firing natural gas with 30% excess air:cold furnaces (< 1382°F ): 50% of a conventional burner furnaces up to 1742°F : 40% of a conventional burnerCO highly depends on the installation’s lay-out and can be reduced if sufficient dwell time after the flame is allowed. Consult MAXON for correct application information.Low NOx furnace requirementsLow NOx operation requires properly designed combustion chamber or furnace.KINEDIZER ® LE flames have a medium velocity and will be influenced by the atmosphere around the flame. Contact MAXON for proper design.CO and low NOx operationLow NOx in combination with low CO is possible if sufficient dwell time is available after the flame. Mixing that occurs too fast with cold process air will increase CO.Burner blocksStandard KINEDIZER ® LE burners will be shipped with block as shown on page 3-11.9-10. Two long block options are available: standard (without supporting sleeve) and with supporting sleeve.Standard blocks without supporting sleeves shall be used only if the blocks are supported by the furnace walls. Supporting sleeves shall be used in all installations where the blocks are not supported (soft walls or steel ducting). Protect the supporting sleeve with insulation if used on high temperature furnaces. Consult installation instructions for detailed information.1)Air flow 2)Sight glassTypical lay-outs with correct piping between air control valve on the KINEDIZER ® LE burnerE -i -7/08Dimensions and weights 1-1/2” KINEDIZER ® LE burners1)1/4” NPT air testconnection 2)Observation port 3)1/4” NPT chambertest connection 4)1/4” NPT pilot gasinlet 5)Spark ignitor 6)Optional air inletflange 7)1/4” NPT gas testconnection 8)1/2” NPT main gasinlet 9)Standard block orblock with sleeve option 10)1/4” NPT purge airconnection 11)1/2” NPT scannerportView A-AView B-BDimensions in inches unless stated otherwiseSize A ØB C D E F G H K L M Ø1-1/2” 3.5 2.0 1.97 0.25 4.6 3.6 5.7 7.86 0.25 9.5 8.6 Size N ØP ØQ ØR ØS ØT U V W ØWeight lbs1-1/2”0.625 0.75 7.5 10.73 12.0 22°60°45°6.0663” & 4” KINEDIZER ® LE burners1)1/4” NPT air test con-nection 2)Observation port 3)1/4” NPT chamber testconnection 4)3/8” NPT pilot gas inlet 5)Spark ignitor 6)Optional air inletflange 7)1/4” NPT gas test con-nection 8)Main gas inlet 9)Standard block orblock with sleeve option 10)1/4” NPT purge airconnection 11)Scanner portView A-AView B-BDimensions in inches unless stated otherwiseSize A ØB C D E F G H J NPT K L3” 6.62 2.99 3.12 0.25 6.25 4.69 6.94 10.06 1-1/4”0.375 9.5 4”8.62 2.31 3.84 0.25 7.5 5.94 11.24 15.09 1-1/2”0.375 9.5 Size M ØN ØP ØQ ØR ØS ØTU V W NPT Weight lbs3”10.4 0.625 0.875 11.0 12.52 14.15 22°45°15°1/2”100 4”12.9 0.625 0.875 13.5 15.12 16.75 30°45°15°1”165E -i -7/086” & 8” KINEDIZER ® LE burners1)1/4” NPT air test con-nection 2)Observation port 3)1/4” NPT chambertest connection 4)Pilot gas inlet 5)Spark ignitor 6)Optional air inletflange 7)1/4” NPT gas testconnection 8)Main gas inlet 9)Standard block orblock with sleeve option 10)1/4” NPT purge airconnection 11)1” NPT scanner portView A-A View B-BDimensions in inches unless stated otherwiseSize A ØB C D E F G H J NPT K L M Ø6”12.75 3.3 5.0 0.25 9.38 7.81 14.76 19.75 1-1/2”0.5 12.1 14.6 8”12.75 3.81 7.2 0.25 11.69 9.35 16.42 22.79 2”0.5 12.1 16.6 Size NP ØR ØS ØT ØUV W NPT X ØYZ Weight lbs6”0.5 0.625 17.0 19.0 16.823 45°30°1/2”18.45 15°3°265 8”0.5 0.625 17.0 19.0 18.82 45°30°3/4”20.45 15°3°33110” KINEDIZER® LE burners1)1/4” NPT air test connec-tion2)Observation port3)1/4” NPT chamber testconnection4)3/4” NPT pilot gas inlet5)Spark ignitor6)Optional air inlet flange7)1/4” NPT gas test con-nection8)2” NPT main gas inlet9)Standard block or blockwith sleeve option10)1/4” NPT purge air con-nection11)1” NPT scanner portDimensions in inches unless stated otherwiseSize A ØB C D E F G H K L M ØN10”18.0 3.81 7.2 0.25 14.31 11.97 23.86 29.71 0.5 12.1 18.7 0.62 Size P ØR ØS ØT ØU V W X ØY Z Weight lbs10”0.625 22.75 25.0 20.95 45°22°11°22.57 15°3°662。
气体灭火系统安全培训课件讲义
气体灭火系统的特点:
没有水渍损失; 电绝缘性好; 灭火后无残留,易于清理; 灭火设备价值相对较高; 卤代烷、七氟丙烷等化工类灭火剂需要专业的化 工厂生产。
灭火原理:
切断链式反映,大量扑捉自由基; 窒息; 混合作用。
气体灭火系统安全培训课件
第一节 气体灭火系统的分类、应用 条件及适用范围
5、储存装置的布置,应便于操作、维修及避免阳光照射。 操作面距墙面或两操作面之间的距离,不宜小于1m, 且不应小于储存容器外径的1.5倍。
在储存容器或容器阀上,应设安全泄压装置和压力表。 组合分配系统的集流管,应设安全泄压装置。安全泄 压装置的动作压力,应符合相应气体灭火系统的设计 规定。
在通向每个防护区的灭火系统主管道上,应设压力讯 号器或流量讯号器。压力开关是用来检测并反馈灭火 剂是否喷放的信号装置。
1、保护对象周围的空气流动速度不宜大于3m/s,必要 时,应采取挡风措施;
2、在喷头与保护对象之间,喷头喷射角范围内不应有 遮挡物;
3、当保护对象为可燃液体时,液面至容器缘口的距离 不得小于150mm;
4、启动释放CO2之前或同时,必须切断可燃、助燃气 体的气源。如不切断气源,易发生爆炸,因此CO2 局部应用系统不能用于可燃气体灭火。
(3)采用预制灭火系统时,一个防护区的面积不宜大 于500m2,且容积不气体宜灭火大系统于安全培1训6课0件0m3。
3、防护区围护结构及门窗的耐火极限均不宜 低于0.5h;吊顶的耐火极限不宜低于0.25h。
4、防护区围护结构承受内压的允许压强,不 宜低于1200Pa。
5、防护区应设置泄压口,七氟丙烷灭火系统 的泄压口应位于防护区净高的2/3以上。
护区喷射设计规定用量的灭火剂,并使其 均匀地充满整个防护区的灭火系统。因此, 全淹没灭火系统适用于扑救封闭空间内的 火灾,要求防护区要有必要的封闭性、耐 火性和耐压、泄压能力。
INCNO-PAK燃烧系统操作指南
燃烧系统操作指南
内容: 燃烧系统基本参数及特性 燃烧系统天然气管路各部组件介绍 燃烧系统使用方法及操作顺序 主火大小控制示意图 燃气燃烧系统异常时的检查方法 定期维修与保养
厦门创齐机电设备有限公司
INCNO-PAK® 8M 燃烧系统基本参数和特性
INCINO-PAK 燃烧系统操作指南
<熄 火>
如(5)之动作而未着火時,请押【燃烧机 OFF】钮,然后警报停止。其次 请轻押控制盘內之燃烧控制器(EC7890/RA890)之复位按钮数次,然後再 做点火动作,经 2~3 次这种操作后仍无法着火時,请依〝异常時的检查方 法〞处理。
<停止运转>
1.押下【燃烧机 OFF】钮。
6) 请设定温度控制器至所需的温度。( 請参考原有油系统温度控制器说明 书)
-5-
INCINO-PAK 燃烧系统操作指南
点火调试指南: 初次调试和点火必须由经过培训或者有此经验并熟悉燃烧系统,对全面安
装、控制、安全电路知识熟练掌握的专业人员操作。 慢慢打开主燃气球阀。查看气体供应压力并调节调压器(使得调压器后的压
2.电气自动化控制要求(原理详见“电控原理图”)
1) 把“控制柜电源”开关打到“开”的位置,会观察到“控制柜电源开” 灯亮,说明电源正常。同时系统进行安全连锁(包括高压开关连锁,低 压开关连锁,风压开关连锁,客户连锁,高温限位连锁)检测,连锁通 过后,系统开始点火。
2) 当客户选择“启动”,“吹扫”灯亮,系统会进行高位吹扫,驱动马达行 至最高位,高火位开关闭合后,根据吹扫继电器设定的时间决定吹扫时 间,吹扫结束后,马达回至低火位。当火焰调节控制器低位开关闭合后, 燃烧控制器得电。燃烧控制器经过 STANDBY,SELF TEST 过程以后,点 火变压器得电,点火阀得电,当 UV 检测到火焰后,“引导火运行”灯亮。 然后放散阀和主副燃料阀得电,当副燃料阀得电后,引导火阀切断计时 器开始计时,到达设定时间后,引导火阀失电,“燃烧器运行”灯亮,内 部控温信号对火焰调节控制器进行调节。
火灾自动报警系统培训资料
工程部内部培训资料(一)2014年2月一、施工前准备:⑪在施工前应认真并熟悉设备安装平面图、接线图、系统图。
⑫安装人员应熟悉相关设计、施工及验收规范。
二、钢管内穿线、布线、校线⑪工艺流程:选择导线→扫管→放线→导线与导线的绑扎→带护口→穿线→导线接头→包扎→线路检查绝缘摇测⑫在管道内穿线应在建、构筑物抹灰及地面工程结束后进行。
在穿之前,应先将管道内的积水和杂物清除干净。
要求埋管到位,引线畅通,否则向甲方报告,办理洽商。
⑬管内扫管穿带线:管内扫管穿带线其目的是检查管路是否畅通、准确,清扫管内积水和杂物,用空压机吹扫后,用棉布条两端牢固的绑扎在带线上来回拖拉。
穿线时须放适量滑石粉,以便线路滑行。
⑭穿线、布线前,根据设计图纸要求选择导线型号,应对导线的电缆种类、电压等级及是否有断线进行检查,合格后方可使用。
⑮不同系统、不同电压等级、不同电流类别的线路,不应穿在同一管内或线槽的同一槽孔内。
⑯导线在管内,不应有接头或扭结。
导线的接头,应在接线盒内焊接或用端子箱连接。
导线外径总截面不应超过管内面积的40%。
⑰不同用途的导线,应采用不同颜色加以区分,但同种用途的导线颜色应一致。
⑱管路穿线前,应首先检查各个管口的护口是否齐整,如有遗漏或破损,均就地补齐和更换。
⑲管线经过建筑物的变形缝(伸缩缝、沉降缝、抗震缝等),应采取补偿措施,导线跨越变形缝的两侧应固定,并留有适当的余量,一般为15~20 m。
⑳火灾自动报警系统的导线敷设后,应对每个回路导线用500V的兆欧表测量绝缘电阻,其对地绝缘电阻值不应小于20MΩ。
⑴外围设备及主机外接线预留长度:①探测器底座外接导线预留长度不小于15cm;②手动报警按钮,消火栓按钮,模块等预留长度不小于10cm;③进入主机的导线及电缆芯,应留有不小于20cm的余量。
⑵线路检查及绝缘检测:本系统导线敷设完毕后,管内穿线结束后,应按规范及质量验评标准进行自检互检,不符合规定时应立即纠正,检查导线的规格和根数,检查无误后再进行绝缘检测。
低氮燃烧系统设备培训说明共50页PPT
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
低氮燃ቤተ መጻሕፍቲ ባይዱ系统设备培训说明
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
全氧燃烧
氧纯度
电量(kWh/Nm3) 副产物
≥99.2%
0.60-1.00 液氧、液氮
30~95%
0.38-0.60 富 氮
25~50%
0.10-0.30 富 氮
设备启动时间 数小时至数十小时 数分钟至数十分钟 数分钟至数十分钟
KMTC
KMTC氧气来源:氧气外购液氧。
3、全氧燃烧流量控制
天然气
过滤器 压力检测 1.9bar 减压阀 压力检测 0.9bar 电磁阀 压力检测 流量检测 电磁阀 压力检测 电磁阀 压力检测 流量调节阀
二、氧气制备
1、水电解
2、化学法 3、空气分离法 低温法、吸附法、膜分离法
1、水电解法
H2O=H2+O2
可以同时生产氧气和氢气;
较危险,氢气属于易燃易爆气体,
耗电量大,没生产1M3的氧气耗电量为12-15 度,
2、化学法
氯酸钾加热分解 2KClO3=2KCl+3O2
BaO+O2=BaO2
燃烧器的选择
BaO2=BaO+O2
原料贵重,消耗量大; 生产能力小; 不适宜大量生产氧气
3、低温分离制氧
氧气:-183℃ 氮气:-196℃
变压吸附制氧
分子筛对氮、氧 选择性吸附
膜分离制氧
有机聚合膜选择渗 透性,分离氮、氧
三种空气制氧法比较
低温精馏法 原理 技术掌握情况 装置规模 变压吸附法 膜分离法 利用液化后沸点差 利用吸附剂对氧、 利用膜对特定气体 异来精馏分离 氮吸附性能的差异 的选择性透过 技术成熟 大规模 比较成熟 中、小规模 开发阶段 小规模或超小型
序号 1 2 3 4 5
氧含量% 20 25 30 40 45
麦克森燃烧系统控制说明
麦克森燃烧系统控制说明A.设计原理及使用性能a.设计要求:再出现任何不满足以下安全连锁条件下,一秒钟内关闭燃烧机系统,确保整个燃烧过程在安全的范围内工作。
1).风压连锁:只有助燃风机启动,风压开关得到稳定的风压或压差信号,风压连锁才能通过。
2).燃气低压保护连锁:管路燃气压力过低时,低压保护开关常开点会断开。
3).燃气高压保护连锁:管路中燃气压力过高时,高压保护开关常闭点会断开。
4).客户连锁:连接循环风机的启动信号,循环风机启动后才能通过。
5).超温连锁:系统的温度超过设定的保护温度时,高温开关常闭点会断开。
6).阀门开关检测:只有关断阀在关闭状态下,检测才能通过,保证点小火时主管路中没有燃气通过。
7).燃气泄漏连锁:燃烧使用过程中或启动前,燃气检测传感器若感应到天然气存在,则连锁也不会通过。
b.使用性能1).具备自动吹扫功能,防止燃烧室内有易燃易爆气体存在。
2).具备自动点小火功能,保证主火点燃的安全和稳定。
3).全程火焰监测,从点小火开始到系统停止,保证系统在安全下运行。
5).自动转大火,系统输出4—20mA信号,控制燃气阀为开度,从0位到100﹪输出,以保证精确的热量输出及温度调节。
6).恒温控制比例燃烧,调节比大,保证快速升温均匀保温,空气和燃料的比值不变洁净燃烧。
7).故障切断报警,出现火焰检测,安全连锁等任何不满足安全条件下,两个关断阀会迅速切断气源,确保设备在安全下运行。
B.设备工作原理1. 启动控制面板电源开关到送电状态,启动助燃风机,火焰程序控制器得电自检,温控表和温度限位得电自检,并显示系统温度,打开燃气泄漏表后面的开关,燃气泄漏表开始自检,系统进入安全连锁检测状态。
2. 安全连锁检测完成后,控制面板“连锁指示”灯亮。
3. 启动点火开关到“运行”状态,系统进入到吹扫程序,吹扫指示灯亮,系统助燃风机开始吹扫燃烧室内易燃易爆气体,吹扫完成后吹扫指示灯灭,系统检测低火限位位置,检测正常后点火变压器得电。
2024版燃烧器培训课程
0102燃烧器是一种将燃料和空气按一定比例混合并点燃,产生高温烟气的装置。
根据燃料类型,燃烧器可分为燃油燃烧器、燃气燃烧器和生物质燃烧器等。
燃烧器定义燃烧器分类燃烧器定义与分类燃料在燃烧器内与空气按一定比例混合,形成可燃混合物。
燃料与空气混合可燃混合物在点火装置的作用下被点燃,产生高温火焰。
点火与燃烧高温火焰将热量传递给受热面,使受热面温度升高。
热量传递燃烧产生的烟气经过处理后排入大气。
烟气排放燃烧器工作原理工业锅炉用于工业锅炉中,提供蒸汽或热水等热能。
热力发电在火力发电厂中,燃烧器用于将燃料转化为高温高压蒸汽,驱动汽轮机发电。
化工领域在化工生产中,燃烧器用于提供反应所需的高温热源。
环保领域在环保工程中,燃烧器可用于废气处理、垃圾焚烧等领域。
燃烧器应用领域01燃烧室提供燃料与空气混合并燃烧的空间,通常由耐高温材料制成。
02喷嘴将燃料以雾状喷入燃烧室,与空气充分混合,确保燃烧效率。
03点火装置用于点燃燃料与空气的混合物,通常由火花塞或点火线圈组成。
燃烧器主要部件03提供燃烧所需的空气,并确保空气与燃料的充分混合。
风机包括燃料泵、过滤器等,用于将燃料从储罐输送到喷嘴。
燃料供应系统监测燃烧过程,并根据需要调整燃料和空气的供应,以确保燃烧的稳定和安全。
控制系统燃烧器辅助设备01020304包括燃料储罐、燃料管道、阀门等,用于储存和输送燃料。
燃料系统包括进风口、风机、空气管道等,用于提供燃烧所需的空气。
空气系统包括点火装置、火焰监测器等,用于点燃燃料并监测燃烧过程。
点火与监测系统包括控制器、传感器等,用于监测和控制燃烧过程,确保燃烧的稳定和安全。
控制系统燃烧器系统组成确保燃气、空气、电源等供应正常,检查燃烧器及各部件是否完好。
启动前检查启动操作停止操作按照燃烧器操作规程,逐步启动燃烧器,观察火焰状态,调整燃气和空气比例,确保燃烧稳定。
在燃烧器运行稳定后,逐步减少燃气供应量,直至火焰熄灭,然后关闭燃烧器及相关设备。
马克森 8000 系列燃烧器操作手册说明书
mGas supply piping must be large enough tomaintain the required fuel pressures cataloged for the particular burner size used with burner operating at full rated capacity.Anything more than minimal distance or piping turns may necessitate oversizing piping runs to keep pressure drops within acceptable ranges.Inlet pipe leading to any burner should be at least four pipe diameters in length. If multiple burners are fed from a single gas train, care should be taken to minimize pressure drop and give maximum uniformity.Clean fuel lines are essential to prevent blockage of pipe train components or burner gas ports.Main Shut-Off Cock should be upstream of both the main gas regulator and pilot line take-off. Use it to shut off fuel to both pilot and main burner during shut-down periods of more than a few hours.The fuel throttling valve contained within a Maxon burner is not intended for tight shut-off.Main gas regulator is essential to maintain a uniform system supply pressure. If one pipe train supplies multiple burners, provide a separate regula-tor in the branch leading to each burner system.Size the regulator for full system capacity at the required pressure, carefully considering pipe train losses. Follow the instructions attached to the regula-tor during installation and be sure to remove any shipping pin or block.Pilot take-off should be upstream of the main gas regulator, but downstream of the main gas cock. It should normally include its own pilot gas regulator, a solenoid valve and shut-off cock. A pilot adjustable orifice at the pilot inlet simplifies adjustment.Pilot piping must be large enough to provide for the full flow and pressures shown in the catalog for your particular burner size.The 3/8" pilot connection of the Series “67” TUBE-O-FLAME ® Burner is adequate for the pilot gas flows shown, but care must be taken to assure that the required gas pressure is available at pilot inlet. To avoid excessive drop through solenoid and upstream valves and cocks, follow these guidelines:Installation InstructionsGeneral InstructionsImportant: Do not discard packing material until all loose items are accounted for.To prevent damage in transit, the spark ignitor,mounting ring, flame rod and connecting linkage components may be packed separately and shipped loose with your new Maxon TUBE-O-FLAME ® Burner.The burner itself is normally only a part of your complete combustion system. Additional pipe train accessories and control components will be required for a complete system installation. The sketch below shows a typical gas train as might be used with a Series “67” TUBE-O-FLAME ® gas fired burner.Piping Layout as sometimes required by insurance and standards groupsBlock and Bleed gas train arrangement illustrated with Series “67” TUBE-O-FLAME ® BurnerTUBE-O-FLAME ® Burner provides the air supply (unless it is an LB version, which requires a separate combustion air blower). It also serves as a fuel flow control and fuel/air mixing device.Burner should not be exposed to direct radiant heat or positioned where it might draw in inert gases.If such conditions exist, consider filters, relocation,and/or use of the LB version and external air supply.Electrical service must match the voltage, phase,and cycle of all electrical system components and be compatible with burner nameplate ratings. Insure that all normal control safeguards are satisfied. Combus-tion air blower should continue to run after shutdown to allow burner to cool.le d o M r e n r u B d e t s e g g u S ez i S e p i P wo l F s a G l a r u t a N t o l i P )h f c (80-6"8/35551-8"8/30852-01"2/154103-01"2/108183-21"2/159105-41"4/3003Installation InstructionsSuggested supporting arrangements Fuel Shut-Off Valves (when properly connected toa control system) shut the fuel supply off when ahazardous operating condition is sensed. Manualreset valves require operator attendance each timethe system is started up (or restarted after a trip-out).Motorized shut-off valves permit automatic start orrestart when used with an appropriate control system.Test connections are essential for burner adjust-ment. They should be provided immediately down-stream of the regulator and are included in the burneritself. Test connections must be plugged exceptwhen readings are being taken.Exhaust stack dampers are necessary to theproper operation of an immersion tube burner system.They should be lockable, suitable for 1000ºF anddesigned to prevent full stack closure.Horizontal mounting is preferred. Most manufac-turers’ control motors require operating shaft in ahorizontal plane.Burner mounting requires four studs and a flat mounting surface perfectly centered on the firing tube. Burner can be mounted directly on tank wall using four welded studs, but the more common practice utilizes an optional mounting ring (complete with studs) welded to tank wall, end of tube, or other mounting surface. If the application calls for position-ing the burner in other than its normal upright position, be sure to align studs appropriately.After placing burner in position over studs, add lock washers and nuts, then draw up all four hand-tight only. Check that burner is seated evenly around the flange, filling any gaps to prevent air leakage, then tighten all nuts firmly.For proper performance of any burner, air inlet and motor should be surrounded by clean, fresh, cool air.Burner and pipe manifold support may be required to support weight of the burner and con-nected pipe train components. Air control motors, in particular, require additional support. Maxon connect-ing base and linkage assemblies are designed to position the control motors to work with the burner, not to support their weight.The Series “67” TUBE-O-FLAME®Burner may require external auxiliary support provided by the user. The support configuration may be similar to the leg support or knee bracket support illustrated.Additional burner support may be required in conjunction with a stiffener plate when mounting TUBE-O-FLAME® Burner (weighing 100-350 pounds) onto tube or thin tank walls.Exhaust ConsiderationsImmersion tubes are usually vented to the outdoors, except for those in highly ventilated areas such as a plating room with continuous high volume exhaust. An exhaust fan may be required if the building is under negative pressure. Exhaust is normally diluted to avoid the need for high temperature fans, but adequate make-up air must be available.This diluting can be done with an open tee installed in a vertical run (or in a horizontal run with the open end down), but such a system mixes slowly.An adjustable hood (shown in sketch below) offers much better performance. In all cases, care must be taken that all products of combustion are exhausted from the building.An exhaust stack damper must be used, suit-able for 1000°F, and designed to prevent full stack closure.mInstallation InstructionsProtective covers for burner should be added in the field if exposure to dripping condensate, splashing flux, exhaust steam, etc. is unavoidable.Sketches below illustrate some possible arrange-ments. Any cover used should be removable to provide access to burner and should not interfere with control linkage motion or observation port viewing.Field conversion from a flame rod version to a UVscanner version and vice versa may require additional parts in the burner. Contact Maxon for requirements.Alternate fuels may require correction of supply pressures.If TUBE-O-FLAME® Burner is equipped with Maxon Hi/Lo Control Motor, low-fire start wiring can be accomplished as shown in the sketch below. Maxon assumes no responsibility for the use or misuse of the layouts shown. Specific piping and wiring diagrams should always be submit-ted to the appropriate agencies for approval oneach application.Multi-burner installations require special consid-erations if supplied by a common pipe train and/or air supply. Air and Gas Balancing Valves should be used for improved heating uniformity; Gas Swing-Check Valves should be installed as close as pos-sible to each burner inlet for dependable lightoff (gas manifold may otherwise act as a reservoir, preventing lightoff during trial-for-ignition period).Control system's circuitry must not allow main Fuel Shut-Off Valve to be opened unless combustion air is on, and must de-energize valve upon loss of combustion air pressure, along with the other usual system interlocks. Motor starter is to be interlocked with valve, whether or not a combustion air pressure switch is used.WARNING: Welding of burner flange to astiffener plate or firing tube may cause warpageof burner flange and require additional sealmaterial to prevent leakage.Flame sensing can be accomplished by eitherflame rod or UV scanner. When UV scanner is used,it should be kept as close to burner as feasible. Donot use cooling air to scanner port: sighting isthrough gas cavity. Heat block, if used, may affectsignal strength with some brands of scanners.mmInitial start-up adjustment should only be accomplished during a “manual ” burner control mode.5.Start all system-related fans and blowers.Check for proper motor rotation and impeller direction. Verify that all control interlocks are working. Allow air handling equipment to run for adequate purge of your manifolds and immersion tubes. With main gas shut off, manually advance TUBE-O-FLAME ® Burner's operating crank to “high fire ” position so that air only flows through burner and firing tube.CAUTION: Do not by-pass control panel timers typically controlling sequential operations.Series “67”TUBE-O-FLAME ®Burners6.Determine static condition of tube (draft or suction) and verify differential air pressure at burner backplate air test port.Measure your air pressure reading withmanometer connected between the burner's air pressure test port and atmosphere with the burner at “high fire ” position, fuel valves closed, and all air handling systems running.Start-Up InstructionsRead complete instructions before proceeding ,and familiarize yourself with all the system's equip-ment components. Verify that your equipment has been installed in accordance with the original manu-facturer's current instructions.CAUTION: Initial adjustment and light-off should be undertaken only by trained and experienced personnel familiar with combus-tion systems, with control/safety circuitry, and with knowledge of the overall installation.Instructions provided by the company and/or individuals responsible for the manufacture and/or overall installation of complete system incorporating Maxon burners take precedence over these provided by Maxon. If Maxoninstructions conflict with any codes or regula-tions, contact Maxon Corporation before attempting start-up.For initial TUBE-O-FLAME ® Burner start-up:1.Close all burner fuel valves and cocks. Make preliminary adjustments to fuel gas regulators.Remove pilot and main gas regulators' adjusting screw covers. Turn adjusting screw down (clock-wise) to approximately mid-position. Close pilot gas adjustable orifice screw by turning in clock-wise until it stops. (Do not over-tighten.) Then back out the adjustable orifice (counter-clockwise)approximately 2-3 turns.2.Check all electric circuitry. Verify that all control devices and interlocks are operable and function-ing within their respective settings/ranges. Be sure all air and gas manifolds are tight and that test ports are plugged if not being used.3.Check that the immersion tube stack damper is properly positioned and locked into operating position.4.Disconnect the automatic control motor's linkage from your TUBE-O-FLAME ® Burner's operating crank arm by loosening the control motor's connecting rod from the burner's toggle linkage.mStart-Up Instructions11.Open main and pilot gas cocks, then attemptspark ignition to light pilot while slowly turning pilot gas regulator clockwise and/or adjustable orifice screw counter-clockwise to increase fuel flow. Repeat procedure as necessary until pilot ignites, as air might have to be bled out of fuel supply lines before reliable pilot flame is estab-lished. Pilot gas regulator should normally be set for as low a pressure as possible, using fuller opening of pilot gas adjustable orifice (if used).12.After ignition, adjust pilot flame for good stableflame shape. A rule of thumb is that any pilot over a tennis ball size is probably too large. This assumes you have visual access to the pilot flame. If this is not possible, then adjust pilot to give the strongest and most stable flame signal through your flame safety circuit. This signalstrength can be read with a micro-amp meter. The signal strength (or range) will be determined by the specific type of flame safeguard instrument you have with your burner system.13.Re-check pilot ignition by closing pilot gas cockor otherwise causing pilot outage. Re-light and refine pilot gas adjustment as necessary to get ignition within a second or two. The flame safe-guard relays should now power your main fuel Shut-Off Valve(s).CAUTION: After completing steps above, re-check all interlocking safety components and circuitry to prove that they are properly in-stalled, correctly set, and fully operational. If in doubt, shut the system down, close pilot cock and contact responsible individual before proceeding further.14.Establish main flame. With burner at low fireposition, back out main gas pressure regulator adjusting screw (counter-clockwise) to get lowest outlet pressure possible. Open all manual fuel shut-off valves (automatic fuel shut-off valve should already be open) so gas flows to burner inlet. There should be little, if any, change inflame appearance. Turn main regulator adjust-ing screw in (clockwise) to obtain outlet pressure of about 4"-6" wc higher than combustion cham-ber pressure (2"-4" wc for propane, considerably higher for some LB versions). Main flame should now appear larger than pilot-only flame.Record air test port reading. Chart below shows normal balanced tube static condition readings.If your reading exceeds these normal readings,you have a back pressure in your tube.If your readings are lower than the normal balanced readings, you have an exhaust suction in your tube.Excessive suction can cause chugging and implies hot combustion products are being drawn out of the tube too fast, reducing thermal transfer efficiency. High tube suction also may affect differential gas pressure settings. Too high of a suction may lower inlet gas pressures so that low gas pressure switches cannot be adjusted.Excessive back pressure can cause smoke and may restrict firing capacity of burner.NOTE: The differential air pressure setting deter-mines the burner's capacity and performance capabili-ties.7.Adjust exhaust fan and/or stack damper to create burner air pressure test port readings as close as possible to those shown for normalbalanced conditions to maximize system's thermal transfer efficiency.NOTICE: Burner performance can be drastically affected by tube configuration and staticconditions within tube created by exhaust fans and dampers in exhaust stack.8.Determine the required differential gas pres-sure using this differential air pressure reading obtained from step 6. High fire pressures are provided in Maxon product line catalog literature and/or read data stamped into burner nameplate.9.Verify that spark ignitor is properly positioned and lines up with the appropriate dimensions required for your specific burner. (Refer to appro-priate Maxon catalog specification table.) Check that spark ignitor arcs at the end of your properly positioned ignitor.10.Return burner control valve/crank to low fireposition when purge of system is complete.l e d o M r e n r u B 80-651-852-0103-0183-2105-41e r u s s e r P r i A )c w "(0.30.20.30.50.5m17.Re-check differential gas pressure with unit atoperating temperature. Refine high fire setting if necessary, considering differential pressure,flame length, and appearance. Dust or contami-nants in the air stream may affect flame appear-ance.18.Plug all test connections not in use to avoiddangerous fuel leakage. Replace equipment cover caps and tighten linkage screws.19.Check out overall system operation by cyclingthrough light-off at minimum, interrupting pilot,and allowing temperature control system to cycle burner from minimum to maximum and return.NOTE: Typical gas firing control sequence for Maxon burner is provided only as a guide. Instruc-tions provided by complete system manufacturer incorporating Maxon burners take precedence.For gas firing Series “67”TUBE-O-FLAME ® BurnerLight-off:Shut-down:1.Close cocks, shut-off valve(s) 1.Close main &2.Verify burner at low fire pilot gas cocks3.Start recirculating/exhaust fans 2.Keep combustion4.Start burner blower air blower running5.Purge at least 4 air changes after shut-down long6.Open pilot & main gas cocks enough to allowburner to coolRecheck all safety system interlocks for propersetting and operation.WARNING: Test every UV installation for danger-ous spark excitation from ignitors and other pos-sible sources of direct or reflected UV e only gas-tight scanner connections.20.Before system is placed into full service,instruct operator personnel on proper start-up operation with shut-down of system, establishing written instructions for their future reference.Start-Up Instructions15.Establish high fire setting by slowly movingburner crank toward high fire position while observing gas pressure at burner gas test con-nection. Refine main gas regulator adjustment as necessary to provide correct differential gas pressure at high fire. If pressure cannot be adjusted low enough, a different regulator or regulator spring may be necessary, or a limiting orifice valve (such as Maxon's Series “BV ”)should be added. Do not, however, exceed 4" wc pressure drop between regulator outlet and burner inlet.CAUTION: If burner(s) go out, close shut-off valve or shut main gas cock at once. Return to minimum setting, re-light pilots if necessary,then turn main gas on again. Check carefully that every burner is lit before proceeding.Cycle burner from minimum to maximum and refine adjustment, if necessary.For operation with interrupted pilot (as recommended), shut off pilots and cycle burner from minimum to maximum and back several times to verify the flame is maintained.16.When burner performance is satisfactory andstable throughout the firing range, reconnect linkage to control motor.Control linkage travel must be such that burner crank is moved throughout its complete travel, or cataloged capacities and turndowns will not be achieved.If less than full-rated burner capacity is re-quired, linkage can be adjusted to limit maximum output. With interrupted pilot, it may be neces-sary to set control for somewhat higher thanminimum burner setting to permit hold-in of flame detection system without pilot.CAUTION: Internal drive mechanism within the control motor may be damaged if linkage is adjusted so as to cause binding with burner in high or low fire position.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电源频率对风机影响
不同的电源对风压影响 比较频率 (60 Hz):
P2 = ( P1 ) ( X2 / 602 )
对风量影响 比较频率 (60 HZ). Q 2 = Q 1 ( X / 60 )
麦克森培训资料
着火极限值 (% )
Fuel
天然气 (CH4) 乙 烷 (C2H6) 液化气 (C3H8) 丁 烷 (C4H10)
Prove all system interlocks 安全连锁通过
Purge combustion chamber 风机开启吹扫
Trial for pilot ignition 点引导火
Prove pilot flame 引导火稳定点着 Power main fuel valves,Prove main flame 开启主燃气阀,主火建立 Interrupt Pilot
NP1燃烧器风速与差压对照表 麦克森培训资料
主燃气调压阀 打开调压阀顶盖,调整弹簧松紧度,
预设调压阀出口压力在调节范围的中间 位置(逆时针方向,压力降低,顺时针 方向,压力升高) .压力开关
检查低压开关接线为NO/COM 检查高压开关接线为NC/COM
麦克森培训资料
切断阀结构 麦克森培训资料
燃烧系统操作顺序
监控燃料压力
- Turn gas on and off to main and pilot burners
according to safety& process requirements.
根据安全和工艺的需要为主烧嘴和引导火烧嘴提供或 切断燃料供应
- Fuel flow control
燃料流量控制
NP烧嘴简介
麦克森培训资料
-
+
wolf ri a ssecor P
NP烧嘴简介
麦克森培训资料
NP烧嘴简介
麦克森培训资料
NP烧嘴简介
麦克森培训资料
NP烧嘴附件
引导火orifice 阀 打开后盖,用内六角扳手 顺时针调节为关,逆时针调节为开
火花塞 需要定期检查是否积碳,更换时需注意两电极间隙
麦克森培训资料
麦克森培训资料
风机常用规律
空气体积(CFM)与风机速率是成比例的 (Q2 / Q1) = (RPM2 / RPM1)
空气压力 (静压, 速率, 或全部) 是与风机速率成平 方的比例
(P2 / P1) = (RPM 2 / RPM 1)2
麦克森培训资料
风机常用规律
马力是与风机速率成立方的比例 HP 2 / HP 1 = (RPM 2 / RPM 1)3
最低 5 3.2 2.4 1.9
最高 15 12.8 9.5 8.4
麦克森培训资料
着火极限值
Flammability Limits
(percentage of fuel in the mixture)
0% 5% 10% 15% 20%
too lean
nat gas ethane propane butane 麦克森培训资料
燃气通路
麦克森培训资料
火焰区域
麦克森培训资料
火焰检测区域
麦克森培训资料
内部视图
麦克森培训资料
混合锥的更换
• 更换混合锥的步骤。
- 取出火花塞,松开四颗定位螺丝,抽出混合锥,检查混
合锥是否圆整,如果发现有少许变形,可以使用车削、 磨床等机加工方式使混合锥外径圆整后,混合锥可以继 续使用,如果发现严重变形或有开裂则必须更换新的混 合锥。
麦克森培训资料
燃烧器常见故障排除
引导火焰点着但是不能过渡到主火焰
阀门没有打开 引导火焰信号不稳定 燃气压力过低 空气/燃气流量控制阀的初始开度太小
麦克森培训资料
燃烧器常见故障排除
引导火无火焰
故障现象 火花塞不打火
火花塞不在打火端打火花 火花塞火花不正常 无引导火燃气
引导火有火焰但点火失败
燃气流量变化 风速变化 燃气压力不正常
麦克森培训资料
燃烧四大基本要素:
可燃燃料 氧气 可燃比 火源
麦克森培训资料
天然气:
CH4 + 2 O2 CO2 + 2 H2O + Heat
大气组成:
21% O2 ,79% N2…
CH4 + 2 O2 + 8 N2 CO2 + 2 H2O + 8 N2 + 1,000 Btu Heat
麦克森培训资料
UV看不到火焰
主火没建立
原因分析 点火高压线松动 点火变压器故障 火花塞陶瓷段破裂 高压帽破损
对应措施 紧固接线 更换变压器 更换火花塞 更换高压帽
更换的火花塞两个电极有变形 火花塞积碳
调整火花塞电极间隙 打磨火花塞
引导火燃气未及时到达点火区域
引导火电磁阀故障 引导火电磁阀里有铁屑等杂质
将引导火电磁阀前移 调整引导火调压阀压 力 更换电磁阀 清理杂质
燃烧器日常维护事项
• 定期检查和清理火花塞 • 定期检查和清理紫外线火焰检测器 • 定期清理燃气过滤器 • 每次开机前,确认燃气进口压力 • 定期清洗风机过滤器 • 检查连杆是否移动位置
麦克森培训资料
问题?
•
- 旋进上部的定位螺丝直至它碰到混合锥,然后松开1/2
圈,拧紧缩紧螺母。
- 结束了上述步骤后,用手扳动混合锥,它应该可以在位
置上轻微的摆动,但不会从安装位置上取下。
以上这些工作的目的:防止混合锥因热胀冷缩而损 坏!!
麦克森培训资料
OVENPAK 空气/燃气流量控制阀示意图
麦克森培训资料
OP 燃烧器火花塞和火检棒安装尺寸示意图
too rich
理论火焰温度, °C
Fuel 天然气 (CH4) 乙 烷 (C2H6) 液化气 (C3H8) 丁 烷 (C4H10)
Temp
1,918 1,948 1,967 1,972
麦克森培训资料
燃烧器基本知识
常用的燃烧器
麦克森培训资料
燃烧设备
燃烧设备的7个必要组成
• Note: Not every function is present in every burner system.
停止引导火
麦克森培训资料
11.54
燃烧系统操作顺序
Control gas flow according to temperature 调节燃气流量控制温度
Shut down on flame failure 检测不到火焰,关闭燃烧系统 Shut down on system interlock failure 安全连锁失败,关闭燃烧系统 Shut down on high temperatures alarm
麦克森培训资料
燃烧器常见故障排除
安全连锁通过后便可启动燃烧器
先导火焰没点着
阀门没有打开 火花塞没打火 点火电磁阀没打开 低火位置开关没有闭合 燃气压力过低 管道中有空气,需要重新排空或重复几次点 火动作将空气排尽
麦克森培训资料
燃烧器常见故障排除 先导火焰点着,但是火焰检测器没有检测到火焰信号
火焰检测器表面有蒙灰或水汽 火焰检测器本身故障 火焰放大器故障 火焰检测器的安装方式
Gas 天然气 液化气 丁烷
空气-燃料配比 Ratio Heat(Btu) 10 : 1 1,000 25 : 1 2,500 32 : 1 3,200
放热量跟风量成比例关系,而跟 燃料体积无关
麦克森培训资料
燃料属性
不同燃气的放热量 (Btu/ft3)
燃料
HHV
天然气 (CH4) 乙 烷 (C2H6) 液化气 (C3H8) 丁 烷 (C4H10)
MAXON燃烧系统 培训资料
培训内容
• 第一部分 公司介绍 • 第二部分 燃烧基本知识 • 第三部分 燃烧器基本知识 • 第四部分 烘干炉燃烧系统 • 第五部分 RTO燃烧系统 • 第六部分 空调燃烧系统 • 第七部分 燃烧系统操作顺序 • 第八部分 故障排除及维护
麦克森培训资料
麦克森公司介绍
• 美国麦克森公司建立于1916年,总部在美国 INDIANA • 一家全球制造商,专营燃烧器、阀门以及燃烧控制系统
烘炉管路系统
麦克森培训资料
一段火空调管路图
麦克森培训资料
二段火空调管路图
麦克森培训资料
RTO管路图
麦克森培训资料
OVENPAK 燃烧器
麦克森培训资料
OVENPAK燃烧器结构
麦克森培训资料
助燃风机 风压开关 点火铜阀 观火孔 UV紫外探头 燃气入口 比例阀
点火棒 铭牌
助燃风通路
麦克森培训资料
麦克森培训资料
Pipe trains 管路系统
Typical Gas Pipe Train 典型的管路系统
内混就是燃气跟助燃空气分别输送到燃烧器内, 边混合边燃烧。
Vent
To Pilot
Gas Inlet
Fuel Manifold
麦克森培训资料
Air Manifold
NPLE pipe trains燃烧器管路系统示意图
超温报警,关闭燃烧系统
麦克森培训资料
11.55
燃烧系统操作顺序
麦克森培训资料
燃烧器常见故障排除
常见故障排除
麦克森培训资料
燃烧器常见故障排除
常见故障排除
麦克森培训资料
燃烧器常见故障排除
安全连锁故障 安全连锁指示灯不亮时,检查安全连锁故障 • 燃气低压开关-阀门没有打开;燃气压力过低 • 燃气高压开关-燃气压力过高 • 空气低压开关-风机故障或压力开关本身故障
麦克森培训资料
INCINO-PAK烧嘴简介