第九章气体动力循环
第九章工程热力学思考题答案
第九章气体动力循环1、从热力学理论瞧为什么混合加热理想循环的热效率随压缩比ε与定容增压比λ的增大而提高,随定压预胀比ρ的增大而降低?答:因为随着压缩比ε与定容增压比λ的增大循环平均吸热温度提高,而循环平均放热温度不变,故混合加热循环的热效率随压缩比ε与定容增压比λ的增大而提高。
混合加热循环的热效率随定压预胀比ρ的增大而减低,这时因为定容线比定压线陡,故加大定压加热份额造成循环平均吸热温度增大不如循环平均放热温度增大快,故热效率反而降低。
2、从内燃机循环的分析、比较发现各种理想循环在加热前都有绝热压缩过程,这就是否就是必然的?答:不就是必然的,例如斯特林循环就没有绝热压缩过程。
对于一般的内燃机来说,工质在气缸内压缩,由于内燃机的转速非常高,压缩过程在极短时间内完成,缸内又没有很好的冷却设备,所以一般都认为缸内进行的就是绝热压缩。
3、卡诺定理指出两个热源之间工作的热机以卡诺机的热效率最高,为什么斯特林循环的热效率可以与卡诺循环的热效率一样?答:卡诺定理的内容就是:在相同温度的高温热源与相同温度的低温热源之间工作的一切可逆循环,其热效率都相同,与可逆循环的种类无关,与采用哪一种工质无关。
定理二:在温度同为T1的热源与同为T2的冷源间工作的一切不可逆循环,其热效率必小于可逆循环。
由这两条定理知,在两个恒温热源间,卡诺循环比一切不可逆循环的效率都高,但就是斯特林循环也可以做到可逆循环,因此斯特林循环的热效率可以与卡诺循环一样高。
4、根据卡诺定理与卡诺循环,热源温度越高,循环热效率越大,燃气轮机装置工作为什么要用二次冷却空气与高温燃气混合,使混合气体降低温度,再进入燃气轮机?答:这就是因为高温燃气的温度过高,燃气轮机的叶片无法承受这么高的温度,所以为了保护燃气轮机要将燃气降低温度后再引入装置工作。
同时加入大量二次空气,大大增加了燃气的流量,这可以增加燃气轮机的做功量。
5、卡诺定理指出热源温度越高循环热效率越高。
气体动力循环2011_B
3
P 4
2
1
P
s
Brayton循环分析
v1 v2
k 1
T2 T1
p2 p1
k 1
k
k 1
k
增压比
p 23
p2
p1
T3 v3 T4 v4 T2 v2 T1 v1
SS
1
4
v
v4 v1
k 1
T3 T4
p3 p4
k 1
k
p2 p1
k 1
k
k 1
k
T2 T1
第九章 气体动力循环
§ 9-4. 斯特林(Stirling)循环 § 9-5. 燃气轮机装置 § 9-6. 定压加热理想(Brayton)循环 § 9-7. Brayton循环的改进 § 9-8. 喷气发动机理想循环
斯特林(Stirling)循环
能不能使内部可逆循环的热效率
等于卡诺循环的热效率?
regeneration
T
2
3
T
回热器
?
2
3
C V
V
R
qR V
1
4
1
4
s
s
q12 u2 u1 u3 u4 q43 qR Stirling循环
1816年提出,近20年才实施(核潜艇,制冷…)
活塞外燃式Stirling热机
热端
冷端
有缝
T
2
3
V
R
qR V
1
4
位移活塞A
动力活塞B 2 3
回热器
p 3’ 3 4
② 涡轮轴功近似等于 压气机轴功
5’
5
2’
wT45 wi45 wT32 wi32
第九章 气体动力循环
热能动力装置: 能够将燃料燃烧释放出来的热 量的一部分,连续不断的转换成机械能的整套热工 设备,称为热能动力装置,简称热机。
热机的分类
•根据运动机构的运动形式分
压燃式:
点燃式 四冲程
往复式
二冲程 回转式 利用高速流动的工质在叶轮内膨胀,推动叶轮 转动而工作的。 是连续的,但由于受叶轮材 料热强度的影响,其工质的最高温度不能太高, 这就限制了其热效率的进一步提高。
o
s
该循环由于兼有定容和定压加热过程,所以称为 “混合加热循环”,也称“萨巴特循环”。
2.内燃机的特性参数
压缩比:压缩前的比体积与压缩后的比体积之比。它是
表征内燃机工作体积大小的结构参数。
v1 v2
定容升压比: 定容加热后的压力与加热前的压力之比。 它表示定容加热量的多少,与前期喷油量有关。前期喷
2
2 4
4
v4 v1
o
1
v
o
1
s
v3 k 1 v2 k 1 1 k 1 T4 ( ) ( ) ( ) T3 v4 v1
T4 T3 ( )
1
k 1
T1
v3 k p4 1 k ( ) ( ) p3 v4
p4 p3 ( ) p1
k
1
3、定容加热循环的能量分析和热效率
第九章
学习目标:
气体动力循环
•掌握将实际循环抽象和简化为理想循环的一般方法, 并能分析各种循环的热力过程的组成; •掌握热机循环的分析方法,能够按照循环的热力过 程性质,确定参数间的关系,分析和计算各种循环 的吸热量、放热量、做功量及热效率; •会分析影响各种循环热效率的主要因素及提高各种 循环能量利用经济性的具体方法和途径。
工程热力学-09 气体动力循环
气体动力循环
能源与动力工程学院 新能源科学与工程系
吉恒松
混和加热循环 活塞式内燃机 定容加热循环
定压加热循环
燃气轮机装置
定压加热燃气轮机循环 回热循环 采用多级压缩中间冷却的回热循环
目的
按照循环过程性质,确定参数间的关系 写出循环热效率关系式 分析参数变化对循环热效率的影响
能源与动力工程学院 新能源科学与工程系
T2
T1
(
v1 v2
) k 1
T1 k1
T3
T2
p3 p2
T2
T1 k1
T4
T3
v4 v3
T3
T1 k1
T5
T4
(
v4 v5
)k 1
T4
(
v3 v1
)k 1
T4
(
)k
1
T1 k
t
1
1
k 1
(
k 1 1) k(
3 Ws
汽轮机 4
燃气轮机装置示意图
闭式燃气轮机装置示意图
能源与动力工程学院 新能源科学与工程系
13
一、定压加热燃气轮机循环
2
1、循环的四个过程
①可逆绝热压缩过程1-2 (压气机) 压气机 ②可逆定压加热过程2-3 (燃烧室) ③可逆绝热膨胀过程3-4 (燃气轮机)1 ④可逆定压放热过程4-1 (大气中) 空气
能源与动力工程学院 新能源科学与工程系
20
1)
能源与动力工程学院 新能源科学与工程系
5
t
1
1
k 1
(
工程热力学复习参考题-第九章
第九章气体动力循环一、选择题1。
燃气轮机装置,采用回热后其循环热效率显著升高的主要原因是 CD A.循环做功量增大B.循环吸热量增加C.吸热平均温度升高D.放热平均温度降低2.无回热等压加热燃气轮机装置循环的压气机,采用带中冷器的分级压缩将使循环的 BCDA.热效率提高 B.循环功提高C.吸热量提高 D.放热量提高3.无回热定压加热燃气轮机装置循环,采用分级膨胀中间再热措施后,将使BCA.循环热效率提高B.向冷源排热量增加C.循环功增加D.放热平均温度降低4。
燃气轮机装置采用回热加分级膨胀中间再热的方法将ACA.降低放热平均温度B.升高压气机的排气温度C.提高吸热平均温度D.提高放热的平均温度5。
燃气轮机装置等压加热实际循环中,燃气轮机装置的内部效率的影响因素有ABCDiA.燃气轮机的相对内效率B.压气机的压缩绝热效率C.压缩比D.升温比6.采用分级压缩中间冷却而不采取回热措施反而会使燃气轮机装置的循环热效率降低的原因是ABA.压气机出口温度降低B.空气在燃烧室内的吸热量增大C.燃气轮机做功量减少D.燃气轮机相对内效率降低7.采用分级膨胀中间再热而不采用回热措施,会使燃气轮机装置循环热效率降低的原因是BDA.压气机出口温度降低B.循环吸热增大C.循环做功量减少D.循环放热量增加8。
目前燃气轮机主要应用于 BD A .汽车B .发电站C .铁路轨车D .飞机二、填空题1。
最简单的燃气轮机装置的主要设备有压气机,燃烧室,燃气轮机。
2.燃气轮机装置的理想循环由绝热压缩,定压加热,绝热膨胀,定压放热四个可逆过程组成。
3。
燃气轮机装置循环中,压气机的绝热压缩过程工质的终态压力与初态压力之比称为增压比。
4。
工程上把燃气轮机的实际做功量与理想做功量之比称为相对内效率. 5.燃气轮机装置中,最高温度与最低温度之比称为升温比。
6。
工程上,把在回热器中实际吸收的热量与极限回热条件下可获得的热量之比称为回热度。
三、简答题1.实际简单燃气轮机装置循环的热效率与哪些因素有关? t η=1—κκπ11-κ取决于燃料的成分及空气的增压比情况 增压比π越大,热效率越高2.提高燃气轮机装置循环的热效率的措施有哪些? 回热。
工程热力学思考题答案
第九章气体动力循环1、从热力学理论看为什么混合加热理想循环的热效率随压缩比ε和定容增压比λ的增大而提高,随定压预胀比ρ的增大而降低答:因为随着压缩比ε和定容增压比λ的增大循环平均吸热温度提高,而循环平均放热温度不变,故混合加热循环的热效率随压缩比ε和定容增压比λ的增大而提高.混合加热循环的热效率随定压预胀比ρ的增大而减低,这时因为定容线比定压线陡,故加大定压加热份额造成循环平均吸热温度增大不如循环平均放热温度增大快,故热效率反而降低.2、从内燃机循环的分析、比较发现各种理想循环在加热前都有绝热压缩过程,这是否是必然的答:不是必然的,例如斯特林循环就没有绝热压缩过程.对于一般的内燃机来说,工质在气缸内压缩,由于内燃机的转速非常高,压缩过程在极短时间内完成,缸内又没有很好的冷却设备,所以一般都认为缸内进行的是绝热压缩.3、卡诺定理指出两个热源之间工作的热机以卡诺机的热效率最高,为什么斯特林循环的热效率可以和卡诺循环的热效率一样答:卡诺定理的内容是:在相同温度的高温热源和相同温度的低温热源之间工作的一切可逆循环,其热效率都相同,与可逆循环的种类无关,与采用哪一种工质无关.定理二:在温度同为T1的热源和同为T2的冷源间工作的一切不可逆循环,其热效率必小于可逆循环.由这两条定理知,在两个恒温热源间,卡诺循环比一切不可逆循环的效率都高,但是斯特林循环也可以做到可逆循环,因此斯特林循环的热效率可以和卡诺循环一样高.4、根据卡诺定理和卡诺循环,热源温度越高,循环热效率越大,燃气轮机装置工作为什么要用二次冷却空气与高温燃气混合,使混合气体降低温度,再进入燃气轮机答:这是因为高温燃气的温度过高,燃气轮机的叶片无法承受这么高的温度,所以为了保护燃气轮机要将燃气降低温度后再引入装置工作.同时加入大量二次空气,大大增加了燃气的流量,这可以增加燃气轮机的做功量.5、卡诺定理指出热源温度越高循环热效率越高.定压加热理想循环的循环增温比τ高,循环的最高温度就越高,但为什么定压加热理想循环的热效率与循环增温比τ无关而取决于增压比π答:提高循环增温比,可以有效的提高循环的平均吸热温度,但同时也提高了循环的平均放热温度,吸热和放热均为定压过程,这两方面的作用相互抵消,因此热效率与循环增温比无关.但是提高增压比,p不变,即平均放1提高,即循环平均吸热温度提高,因此循环的热效率提高.热温度不变,p26、以活塞式内燃机和定压加热燃气轮机装置为例,总结分析动力循环的一般方法.答:分析动力循环的一般方法:首先,应用“空气标准假设”把实际问题抽象概括成内可逆理论循环,分析该理论循环,找出影响循环热效率的主要因素以及提高该循环效率的可能措施,以指导实际循环的改善;然后,分析实际循环与理论循环的偏离程度,找出实际损失的部位、大小、原因及提出改进办法.7、内燃机定容加热理想循环和燃气轮机装置定压加热理想循环的热效率分别为111--=κεηt 和κκπη111--=t .若两者初态相同,压缩比相同,他们的热效率是否相同为什么若卡诺循环的压缩比与他们相同,则热效率如何为什么答:若两者初态相同,压缩比相同,它们的热效率相等.因为21v v =ε,12p p =π. 对于定压加热理想循环来说κ⎪⎪⎭⎫ ⎝⎛=2112v v p p ,将其带入定压加热理想循环热效率的公式可知,二者的效率相等.对于卡诺循环来说,112121--=⎪⎪⎭⎫ ⎝⎛=κκεv v T T ,又因为卡诺循环的热效率为1211211111--=-=-=κεηT T T T ,所以卡诺循环和它们的效率相等.8、活塞式内燃机循环理论上能否利用回热来提高热效率实际中是否采用为什么答:理论上可以利用回热来提高活塞式内燃机的热效率,原因是减少了吸热量,而循环净功没变.在实际中也得到适当的应用.如果采用极限回热,可以提高热效率但所需的回热器换热面积趋于无穷大,无法实现9、燃气轮机装置循环中,压缩过程若采用定温压缩可减少压缩所消耗的功,因而增加了循环净功如图8-1,但在没有回热的情况下循环热效率为什么反而降低,试分析之.答:采用定温压缩后,显然循环的平均吸热温度T 1降低,而循环的平均放热温度T 2却没有变化,121T T -=η,因此整个循环的热效率反而降低. 10、燃气轮机装置循环中,膨胀过程在理想极限情况下采用定温膨胀,可增大膨胀过程作出的功,因而增加了循环净功如图8-2,但在没有回热的情况下循环热效率反而降低,为什么图 8-2答:在膨胀过程中采用定温膨胀,虽然增加了循环净功,但是却提高了循环的平均放热温度T 2,而整个循环的平均吸热温度T 1没有变化,热效率121T T -=η因此循环的热效率反而降低. 11、燃气轮机装置循环中,压气机耗功占燃气轮机输出功的很大部分约60%,为什么广泛应用于飞机、舰船等场合答:因为燃气轮机是一种旋转式热力发动机,没有往复运动部件以及由此引起的不平衡惯性力,故可以设计成很高的转速,并且工作是连续的,因此,它可以在重量和尺寸都很小的情况下发出很大的功率.而这正是飞机、舰船对发动机的要求.12、加力燃烧涡轮喷气式发动机是在喷气式发动机尾喷管入口前装有加力燃烧用的喷油嘴的喷气发动机,需要突然提高飞行速度是此喷油嘴喷出燃油,进行加力燃烧,增大推力.其理论循环1-2-3-6-7-8-1如图8-3的热效率比定压燃烧喷气式发动机循环1-2-3-4-1的热效率提高还是降低为什么答:理论循环1-2-3-6-7-8-1的热效率小于定压燃烧喷气式发动机循环1-2-3-4-1的热效率.因为由图中可以看出循环6-7-8-4-6的压缩比小于循环1-2-3-4-1,因此循环6-7-8-4-6的热效率小于循环1-2-3-4-1,因此理论循环1-2-3-6-7-8-1虽然增大了循环的做功量,但是效率却降低了.13、有一燃气轮机装置,其流程示意图如图8-4 所示,它由一台压气机产生压缩空气,而后分两路进入两个燃烧室燃烧.燃气分别进入两台燃气轮机,其中燃气轮机Ⅰ发出的动力全部供给压气机,另一台燃气轮机Ⅱ发出的动力则为输出的净功率.设气体工质进入让汽轮机Ⅰ和Ⅱ时状态相同,两台燃气轮机的效率也相同,试问这样的方案和图9-16、图9-17所示的方案相比较压气机的s C ,η和燃气轮机的T η都相同在热力学效果上有何差别装置的热效率有何区别答:原方案:循环吸热量:t cm Q ∆=1循环功量:()()][1243h h h h m w w w c T net ---=-=题中方案:循环吸热量:t cm t cm t cm Q B A ∆=∆+∆='1 1 循环净功:()43'h h m w B net -= 2对于此方案,m A h 3-h 4=mh 2-h 1 3由123可以得到()()[]1243'h h h h m w net ---=所以这两种方案的循环吸热量和循环净功均相等,因此它们的热力学效果和热效率均相等.。
气体动力循环
1
T3
1
T4 T3
T2
(1
)
代入参数间的关系式 T2 T3 ,( 可1)/得
T1 T4
t
(
1)
/
1 ( 1)/
1
1
( 1) /
(1
)
( 1) /
2024年5月31日
第九章 气体动力循环
9
热效率影响因素分析
由 可见:
t
(
1)
/
1( ( 1)/
1)
1
( 1) /
(1
平均放热温度。因此,由等效卡诺循环的热效率公 式可知,采用回热措施能提高燃气轮机装置循环的 热效率。
2024年5月31日
燃气轮机回热循环热效率可表示为
t
1
w0 q1
(ws )T
(ws )c q1
(h3 h4 ) (h2 h1) h3 h6
比热容为定值时,有 t
T4
T3 T4
1
T1
T2 T1
3 b b' 2' 2 3代表燃气轮机所输出的轴功,根据喷气发动机
的工作原理,两轴功的数值相等,故两面积相等。 显然,喷气式发动机的热力循环和定压加热燃气轮机循环相同,
故可引用有关的结论来对其进行分析。
2024年5月31日
第九章 气体动力循环
15
9-3 活塞式热气发动机及其循环
活塞式热气发动机又称斯特林发动机,是一种外部加热的 闭式循环的发动机,只是在近几十年来才取得较大的进展。 突出优点: 采用外部加热,故废气的污染少,可以采用多种 燃料特别是劣质燃料,还可以利用核能。
过程的不可逆损失较大。
压气燃气轮机轴功:(ws )T T (h3 h4 )
工程热力学-10气体动力循环
柴油机的实际示功图
实际循环:
0-1 进气过程 1-2 压缩过程 2-3-4 燃烧过程 4-5 膨源自(作功)过程 5-1 自由排气过程
+强制排气过程
2020年8月4日
第九章 气体动力循环
2
实际循环的理想化: 1. 把热力过程理想化→理论示功图 ①进气过程→0-1定压吸气 ②压缩过程→1-2定熵压缩 ③燃烧过程→2-3定容加热+3-4定压加热 ④膨胀过程→4-5定熵膨胀 ⑤排气过程→5-1定容排气+1-0定压排气
2020年8月4日
第九章 气体动力循环
6
w0 q23 34 q51
p1v1 { 1[( 1) ( 1)] ( 1)} 1
可见 , , w0
混合加热循环热效率 thermal efficiency
t
1
q2 q1
1
cp0 (T5 T1)
cV 0 (T3 T2 ) cp0 (T4 T3)
2020年8月4日
第九章 气体动力循环
3
2. 把工质看做理想气体 3. 把开口系统简化为闭口系统 (进排气功近似相等,相互抵消)
混合加热循环 (萨巴特循环)
混合加热循环的热效率:
t
1
q2 q1 q1
cV 0 (T3
cV 0 (T5 T1) T2 ) cp0 (T4
T3 )
2020年8月4日
ρ
T4 T3 T1k1
T5
T4
(
)k 1
T1
k1(
)k 1
T1 k
能量分析:
吸热量 q23 u23 cV 0(T3 T2) q34 h34 cp0(T4 T3)
q1 q23 q34
放热量 q2 q51 u51 cV 0(T1 T5)
9第九章 气体动力循环
T-s图分析吸热量的分配对热效率的影响 压缩比不变,单位质量加热量不变,热量分配比例改变
T
3’ 3 2 1 a 5’
4’
4
5
如图:增加定容加热量(定容 升压比增加),减少定压加热
量(定压预胀比降低),总加 热量不变,而放热量减少,则 热效率增加。
b’ b s
t
总结
t
k 1.4 k 1.3 1.5 k 1.2 2 3
热效率
T5 T1 q2 w q1 q2 1 1 t q1 T3 T2 k T4 T3 q1 q1
s
理想混合加热循环的热效率计算
热效率
T5 T1 t 1 T3 T2 k T4 T3
v1 T2 T1 v2
各因素对混合加热循环热效率的影响
1 t 1 k 1 1 k 1 1、当 、 不变:即
k
T
3’ 2’ 2 1 3
4’
4
5 5’
单位质量加热量不变, 热量分配不变,压缩比 t 对热效率的影响
k
t
受气缸材料限制 一般柴油机 12 22
tv tm tp
4m
4v
平均温度法
循环最高温度和最高压力 :定容>混合>定压 1
在压缩比和加热量相同的情况下,定容加热循 s 环经济性最高,但定压加热循环安全性最高。
第二节
定容加热理想循环和定压加热理想循 环
现代柴油机与汽油机动力循环图示
p
3 2 5 4
p
3 2
1
4
1
v 柴油机,压燃式
二、定压加热循环
《工程热力学》学习资料 (2)
连续的,转速高,输出功率大。
34
燃气轮机(gas turbine)装置简介
35
q2
排气
燃烧室
4
q1
3
2
泵
压气机
汽轮机
燃料
1 进气
燃 气 轮 机 装 置 示 意 图
36
循环示意图
2 燃烧室 3
压气机
燃气轮机
1
4
理想化: 1)工质:数量不变,定比热理想气体 2)闭口 循环 3)可逆过程
作业:结合思考题看书。9-1、9-15
66
本章结束
67
思考
同样是柴油机 为什么有混合加热循环和定压加热循环之分?
p
3 2
4
5 1
v
p 2(3)
4 5 1 v
29
高速柴油机与低速柴油机循环图示
p 34
p
tp
1
k 1
k1k 1
2
2(3) 4 1
5
5
1
v
高速柴油机,压燃式、轻 柴油、高压油泵供油。
1
v
低速柴油机,压燃式、重柴 油、压缩空气喷油。
30
四冲程高速柴油机工作过程
3—4 边喷油,边膨胀
p3 4
近似 p 膨胀
t4可达1700~1800℃
2 2'
4 停止喷柴油
4—5 多变膨胀
p0
p5=0.3~0.5MPa
0
t5500℃ 5—1‘ 开阀排气
,V
降压
1‘—0 排气,完成循环。
5 1'
1 V
17
四冲程高速柴油机的理想化
09章习题提示与答案
提示:循环热效率 ηt
=
w0 q1
,循环净功w0=q1-│q2│;1-2过程为等熵压缩过程, T1 T2
= ⎜⎜⎝⎛
p1 p2
⎟⎟⎠⎞(κ −1) / κ
,2-3
过程为定容加热过程, T3 = p3 = λ ;工质可看做理想气体。 T2 p2
9-11 某活塞式内燃机定容加热循环的参数为:p =0.1 MPa、t =27 ℃,压缩比 ε =7,加热量q =
过程组成:绝热压缩过程1-2、定容加热过程2-3、绝热膨
胀过程3-4及定压放热过程4-1。已知压缩过程的增压比为
π =p /p ,定容加热过程的压力升高比为 λ =p /p ,试证
21
32
第九章 气体动力循环
·45·
明其循环热效率为
ηt
=
κ (λ1 κ − 1) π (κ −1) κ (λ − 1)
=
1−
1 εκ-1
;平均温度 Tm
=
q Δs
。
答案:ΔTm1=58.8 K,ΔTm2=14.3 K, Δηt =3.8%。
9-3 根据习题9-1所述条件,若比热容按变比热容考虑,试利用气体热力性质表计算该循环的热效率 及循环净功。
提示:w0=q1-│q2│, ηt
=1−
q2 q1
,q=Δu,工质可看做理想气体;热力过程终态与初态的比体积之比
·47· 图9-21
9-15 在一定的最大容积(或比体积)和最小容积(或比体积)范围内,内燃机定容加热循环(即奥图循环) 具有最高的热效率,故可称为容限循环。试以卡诺循环与奥图循环相比,利用p-v图及T-s图分析证明:
ηt,otto≥ηt,carnot w0,otto≥w0,carnot
【汽车精品】09气体动力循环
所以有
t
( 1) /
T
1
c,s
1
( 1) /
1
1
c,s
2020年12月 Tuesday
第九章 气体动力循环
14
热效率影响因素分析
由 可见:
t
( 1) /
T
1
c,s
1
( 1) /
1
1
c,s
① (T3 ) t ; ②当 、、c,s 一T定时,随着增压比π的
提高,循环热效率有一个极大值 ;
③ c,s , T t 。
T4 T3
v4 v1
1
T1 1
T1 1
v4
v1
vv231 T11
1
2020年12月 Tuesd第ay九章 气体动力循环
5
混合加热循环热效率
将各点温度与特性参数的关系代入热效率表达式,得到
t
1
1
1
(
1 1) (
1)
可见: const, const, t ;
, w0 。
2020年12月 Tuesd第ay九章 气体动力循环
8
②定压加热循环(笛塞尔循环)
特点:λ=1,为混合加热循环的一个特例,将λ=1代入混合加 热循环热效率及循环净功的表达式,即分别有
t
1
1
1
1 ( 1)
w0
p1v1 [ 1( 1
1)] (
1)]
可见: , t ;
2020年12月 Tuesd第ay九章 气体动力循环
3
3. 开口系统简化为闭口系统(进排气功近似相等,相互抵消) 得到如下理论循环。
混合加热循q1
cV 0 (T3
第9章 习题提示和答案
p1 100 kPa , t1 20 C 。求:(1)循环中每个过程的初始压力和温度;(2)循环热效率。
提示和答案: v1
RgT1 p1
0.841
m3 /kg 、 v2
v1
0.042
m3 /kg 、 T2
2设123参数与题91所点给出的相同求循环1吸收同样多的热量吸热线23相同而前者循环功较大故t123451t12341各点参数与题91相同913若使活塞式内燃机按卡诺循环进行并设其温度界限和例91中混合加热循环相同试求循环各特性点的状态参数和循环热效率
第九章 气体动力循环
第九章 气体动力循环
9-1 某活塞式内燃机定容加热理想循环(图 9-1),压缩 10 ,气体在压缩冲程的起
p3
RgT3 v3
5.450
MPa ; v4
v1 、
p4
p3
v3 v4
p3
v2 v1
p3
1
0.217
MPa 、
T4
p4v4 Rg
668.60
K ;t
1 q2 q1
1 T4 T1 T3 T2
0.602 、c
1 TL TH
0.817 ;
MEP Wnet Wnet q1t 491.6 kPa 。 Vh v1 v2 v1 v2
v1
RgT1 p1
1.042
m3 /kg
、
v2
RgT2 p2
0.210
m3 /kg
。内燃机混合加热循环
v3
v2
、
p4
p3 、v5
v1 , p5
RgT5 v5
《工程热力学》第九章 气体动力循环
c , s
分析热效率 提高途径!
t
( k 1) / k ( k 1) / k
T
1
1
c , s c , s
1
1
31
四.燃气轮机回热循环 (定压加热回热循环)
1、回热的概念: 利用废气高温余热对进入燃烧室前的空气进行预 热,以减少燃料消耗,提高热效率的措施 回热度μ :空气在回热器中实际得到的热量与理想 情况下得到热量之比为回热度,一般在0.5-0.8 之间 2、多级压缩、级间冷却回热循环
低 压 压 气 机
9
燃料
中间燃烧室
中间冷却器
37
P
2 8 7 6 3 9
T
6
3 9
3’
4
2
7 1
1
5
4
V
5 s
8
多级压缩级间冷却回热循环 P-V图、T-S图
38
ξ 8.3
增压机及其循环(略)
一、增压机概念及简单装置 二、增压机工作过程及简化
39
第九章
气体动力循环(3学时)
基本内容: 热效率法分析循环;活塞式内燃机工作原理及 热力学方法;内燃机理想循环;燃气轮机装置 循环及提高热效率的方法;增压器及其循环; 其他循环简介 基本要求: 掌握分析循环热效率的方法;理解实际工作循 环合理简化的方法;掌握内燃机理想循环及提 高热效率的方法掌握;燃气轮机装置循环及提 高热效率的方法;了解其他循环
t 1
1
k 1 k
以P-V图、T-S图 分析热效率提高途径!
26
4、轴功计算及其最大值与增温比关系
燃气轮机作功 压缩机耗功
( ws )T h3 h4 CP 0 (T3 T4 )
《工程热力学》第九章 气体动力循环
9-4 活塞式内燃机各种理想循环的热力学比较
一、压缩比相同、吸热量相同时的比较 压缩比相同,1-2重合
吸热量相同,q1v q1m q1p
q2v q2m q2 p
tv tm tp
或
T 2v T 2m T 2 p
T 1v T 1m T 1p
tv
tm
tp
二、循环最高压力和最高温度相同时的比较
放热量相同:
又称萨巴德循环 12 等熵压缩;23 等容吸热; 34 定压吸热;45 等熵膨胀; 51 定容放热
特性参数:
压缩比(compression ratio) v1
v2 定容增压比(pressure ratio) p3
p2
定压预胀比 (cutoff ratio) v4
v3
反映气缸容积 反映供油规律
热效率
t
wnet q1
t
1
1
1
1
1
(9 7)
讨论:
v1 p3
v2
p2
v4
v3
a)循环1-2’-3’-4’-5-1
压缩比
Tm1 t
b)循环1-2-3”-4”-5-1
定容增压比
Tm1 t
c)循环1-2-3’”-4’”-5-1
定压预胀比
Tm1 t
二、定压加热理想循环(狄塞尔循环) 柴油机定压加热过程
3-4 等熵膨胀(燃气轮机内) 4-1 定压放热(排气,假想换热器)
热效率ηt
q1 h3 h2
cpm
t3 t2
T3 T2
cp
T3 T2
q2
h4
h1
c pm
t4 t1
T4 T1
cp T4 T1
气体动力循环热效率分析归纳
q2 q51 cV T5 T1
11
t
1
q2 q1
1
T3
T5 T1
T2 T4
T3
利用 、、 表示 t
1 2 23
34
T2
T1
v1 v2
1
T1 1
T3
T2
p3 p2
T1 1
T5
T1
p5 p1
T5 T1
把T2、T3、T4和T5代入
t
1
T3
T5 T1
T2 T4
T3
t
1
1
1
1
1
13
讨论:
a) t
b) t c) t
6
二、活塞式内燃机循环的简化
7
三、平均有效压力(mean effective pressure)
pMEP
Wnet Vh
8
9–3 活塞式内燃机的理想循环
一、混合加热理想循环
01 吸气
(dual combustion cycle) 12 压缩
23 喷油、燃烧
34 燃烧
45 膨胀作功
50 排气
按点火方式:点燃式(spark ignition engine) 压燃式(compression ignition engine)
按冲程:二冲程(two-stroke ) 四冲程(four-stroke )
5
2.活塞式内燃机循环特点 开式循环(open cycle); 燃烧、传热、排气、膨胀、压缩均为不可逆; 各环节中工质质量、成分稍有变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、定容加热理想循环(Otto循环,汽油机)
汽油机是点燃式内燃机。由吸气过程吸入的汽油与空气的可燃
混合物,经活塞压缩至上止点时,由电火花塞点火而迅速燃烧,
这时活塞位移极小。
p
T
1-2:绝热压缩过程
3
3
s
2
s
2-3:定容加热过程
v
4 3-4:绝热膨胀过程
2
4
v
4-1:定容放热过程
1
1
v
s
定容加热理想循环的p-v图及T-s图
则循环加热量全部由定容过程加入,此时的循环成为定容加热循环
反之增加定压加热量至 q1p q1, q1v 0
则循环加热量全部由定压过程加入,此时的循环成为定压加热循环
压缩比及吸热量相同时,活塞式内燃机各种循环的比较如图所示
从图中可以看出
q2,定容 q2,混合 q2,定压
因此热效率
t,定容 t,混合 t,定压
定压加热理想循环为 1 时混合加热理想循环的特例,故可得
t
1
1
k 1
k k(
1 1)
定压预胀比对循环热效率的影响
p
2
3
3'
s
T
3'
3
p
2
4'
4'
s
4
4
v
1
1
v
s
增大预胀比ρ,可使吸热平均温度升高,放热平均温度
也升高,因定容线比定压线陡,所以放热平均温度增长
的比吸热平均温度增长的快,使循环热效率减小。
3.把内燃变为外部加热,用工质从外界的定容吸热和定压吸热过程 代替燃油的燃烧放热过程;
4.膨胀和压缩过程忽略热交换,变多变过程为绝热过程; 5.用定容放热代替排气过程,认为工质恢复到循环的初始状态; 6.所有热力过程均可逆。
三、柴油机理想循环及其热效率
p
3
4
T
4
p
3
s
2
s
5
v
5
2
v
1
1
v
s
柴油机混合加热理想循环的p-v图及T-s图
排气
进气
四冲程内燃机工作过程
(four-stroke cycle engine)
进气
排气
二、提高柴油机功率的主要途径
柴油机在每个循环中所作的功为
mw ptVs J
当柴油机转速为n r/min时,活塞每秒走过的冲程数量为2n/60;
设柴油机的冲程数为 ,则每秒完成的工作循环数为 2n / 60
定容加热理想循环为 1 时混合加热理想循环的特例,故可得
t
1
1
k 1
t
1
1 k1
分析: 若循环加热量不变,提高
增压比ε,实际上提高
了吸热平均温度,降低
了放热的平均温度,所
T
T3
T1'
T1
2'
2
T2 T2'
3' 3
v
4
4' v
以循环的热效率提高了。
1
s
实际上压缩比过大,使压缩终了时的气体产生爆燃现象,
v
p
3 2 0
火花塞
4
1" Atmosphere 1'
v
p
3 2 0
火花塞
4
1" Atmosphere 1'
v
p
3 2 0
火花塞
续3
4
1" Atmosphere 1'
v
9-1 柴油机实际循环和 理想循环
一、柴油机的实际工作过程
P 34 2
P0
b
0-1:吸气过程。由于阀门的阻力,吸入
气缸内空气的压力略低于大气压力。
压部分的比例。
3、用T-s图分析影响混合加热理想循环热效率的因素
1)、单位质量加热量q1不变,热量分配q1v、q1p也不变, 压缩比对热效率的影响
现代柴油机的压缩比一般在12-22之间
2)压缩比不变,单位质量加热量也不变,改变定容和 定压加热量分配比例对热效率的影响
t
1
q2 q1
q1相等, q2减小
4
p
3
放热量 q2 cv T5 T1
v
5
2
循环净功 w0 q1 q2
循环热效率
t
w0 q1
1 q2 q1
v
1
s
t
1
cv T3
cv (T5 T1)
T2 cP T4
T3
T5 1
1
T3
T5 T1
T2 kT4
T3
1
T2 T1
T3 T2
T1 1
k
T3 T1
T4 T3
1
t
1
T2 T1
1-2:绝热压缩过程 2-3:定容加热过程 3-4:定压加热过程
4-5:绝热膨胀过程 5-1:定容放热过程
该循环由于兼有定容和定压加热过程,所以称为“混合加热循环”
1、为了计算柴油机理想循环热效率,引入柴油机循环的特性参 数: (1)压缩比:压缩前的比体积与压缩后的比体积之比,它是表 征内燃机工作体积大小的结构参数。
T3 T2
T5 1 T1
1
k
T3 T1
T4 T3
1
1
T2 T1
T3 T2
T3 T2
T4 T3
k
1
1
k
T3 T1
T4 T3
1
上式表明,
1
1
k 1
1
k 1
k
1
混合加热理想循环的热效率随压缩比ε、定容升压比λ的增
大而增大,随定压预胀比ρ的增大而减小。因此,在组织
燃烧过程时,应尽可能增加定容燃烧部分的比例,减少定
T4 T3
T1 T2
T4 T1 T1 T3 T2 T2
t
1 T1 T2
1
1
1
注意:式中T1,T2并非指高温 热源,低温热源。
t
1 T1 T2
1
1
1
热效率 t 取决于气体的绝热指数k和压气机的增压 比β值。因为工质是空气,k=1.4,所以定压加热燃 气轮机装置的理想循环热效率只与压气机的增压比 β有关。压气机的增压比β越大,定压加热燃气轮机 装置的理想循环的热效率也增大。实际上,压气机 的增压比β通常在5~20之间。
三.定压加热理想循环分析
1.热效率ηt
q1
h3 h2
cpm
t3 t2
T3 T2
cp T3 T2
q2
h4
h1
c pm
t4 t1
T4 T1
cp T4 T1
t
1 q2 q1
1 T4 T1 T3 T2
1
T4
T3
p4 p3
1
T1
T2
p1 p2
p4 p1 p3 p2
循环热效率增加
在压缩比和单位质量加热量不变的条件下,增加定容加热量、减 少定压加热量,可以提高混合加热理想循环的热效率。
不能单纯为了提高热效率而盲目增加定容加热量的比例。定容加 热量过大,会使压力升高比过大而导致循环的最高压力和最高温 度过高,引起柴油机各部件受力过大或过热,影响机器使用寿命。
如果增加定容加热量至 q1v q1, q1p 0
空气首先进入轴流式压气机, 压缩后的空气进入燃烧室, 一部分空气直接参与燃料燃 烧,并与另一部分空气混合, 然后进入燃气轮机中膨胀做 功,最后排到大气中去。
构成: 压气机(compressor) 燃烧室(combustion chamber) 燃气轮机(gas turbine)
二.定压加热理想循环
活塞式内燃机分类:
按燃料:煤气机、汽油机和柴油机; 按点火方式:点燃式(汽油机、煤气机)和压燃式(柴油机); 按冲程:四冲程和二冲程
外燃机:如果只是利用燃烧产物来加热循环的工质(如蒸汽动力 装置中利用燃气加热水),则这种动力装置称为外燃动力装置(或称外 燃机)。
两冲程内燃机工作过程 (two-stroke cycle engine)
—constant-pressure combustion cycle; Brayton cycle
由于其加热过程是在定压下进行的,因此 其遵循的理想循环称为定压加热燃气轮机 装置的理想循环,也称为布雷顿循环。
1-2 绝热压缩(压气机内) 2-3 定压吸热(燃烧室内) 3-4 等熵膨胀(燃气轮机内) 4-1 定压放热(大气)
火花塞
续3
Atmosphere
1'
v
p
3 2 0
火花塞
Atmosphere
1'
v
p
3 2 0
火花塞
4 Atmosphere
1'
v
p
3 2 0
火花塞
续3
4
1" Atmosphere 1'
v
p
3 2 0
火花塞
4
1" Atmosphere 1'
v
p
3 2 0
火花塞
4
1" Atmosphere 1'
在安全性条件相同的前提下,定压加热循环由于允许较高的压缩 比而获得最好的经济性。
第三节 提高柴油机功率的主要途径
一、 平均压力的概念
单位气缸体积在每一循环中 所作的功称为“内燃机理想循 环的平均压力”。
pt
mw Vs
N / m2
平均压力大,说明单位气缸容 积做功能力大,柴油机的动力 性能优良 。