飞机空气动力学课件

合集下载

空气动力学基础ppt课件

空气动力学基础ppt课件
30
2.1.7 连续性定理和伯努利定
理的应用
① 用文邱利管测流量
1 A1, v1 ,P1
2 A2, v2 ,P2

v1
v2
A2 A1
文邱利管测流量
v2 2 P1 P2 / 1 A22 / A12
1 2
v12

P1

1 2
v22

P2
31
无粘流动 沿物面法线方向速度一致
“附面层”
粘性流动 沿物面法线方向速度不一致
55
②附面层的特点
I. 附面层内沿物面法向方向压强不变且等于法线主 流压强。
P1
P2
只要测出附面层边界主流的静压,便可得到物面各点的静 压,它使理想流体的结论有了现实意义。
56
II. 附面层厚度随气流流经物面的距离增长而增厚。
B C’ C
A
75
●影响压差阻力的因素
总的来说,飞机压差阻力与迎风面积、形状和迎角有关。迎风面 积大,压差阻力大。迎角越大,压差阻力也越大。
压差阻力在飞机总阻力构成中所占比例较小。
76
③干扰阻力
飞机的各个部件,如机翼、机身、尾翼的单独阻力之和小于把 它们组合成一个整体所产生的阻力,这种由于各部件气流之间的 相互干扰而产生的额外阻力,称为干扰阻力。
质量守恒定律是连续性定理的基础。
22
●连续性定

1
A1,v1
2 A2,v2
单位时间内流过截面1的流体体积为 v1 A1
单位时间内流过截面1的流体质量为1 v1 A1
同理, 2v2A2
则根据质量守恒定律可得:
单位时 间内流
1 v1 A1 2 v2 A2 即 v1 A1 v2 过A截2 面C常数

《飞机空气动力学》PPT课件

《飞机空气动力学》PPT课件
l u
4 Y N cos N q b B 平板升力系数: Y 4 (C y ) qb B
EXIT
垂直于来流的升力为:
B
9.2
线化理论
弯度部分
作用于微元面积dS上的升力为: dYf (C p C p ) f q dS cosq l u
由于: dx dS cos q 所以: dYf (C p C p ) f q dx l u
EXIT
飞机空气动力学
第9章
超声速翼型的气动特性
9.1 9.2 9.3 9.4
引言; 线化理论 布泽曼理论; 激波-膨胀波法
· 重点:线化理论 · 难点:布泽曼理论
EXIT
9.2
线化理论
9.2.1 9.2.2 9.2.3
升 阻
力 力
俯仰力矩
EXIT
第9章 超声速翼型的气动特性
9.2 线化理论
为减小波阻,超音速翼型厚度都比较薄,弯度很小甚至为零
dy 4( ) f b 将弯度载荷代入后积分得:Y dx q dx 4q f 0 B B
EXIT
9.1
引言
超音速薄翼型的绕流特点和流动图画
在运动翼型的上下方某一处,各作一平行于运动方向的控制面, 研究受扰动的气流质点进出此控制面的情况。翼型前、后方受扰 气流质点在控制面处的运动情况分别如图所示:
EXIT
9.1
引言
超音速薄翼型的绕流特点和流动图画
由动量定律,向前流入控制面的气流将给翼型一推力分量。而向 后流入控制面的气流则将给翼型一阻力分量,从控制面垂直进出 的流动不会使翼型承受推力或阻力。这样,在无粘性流体中作亚 声速流动的翼型不承受阻力(推力与阻力相消),而超声速翼型 将承受阻力,这种与马赫波传播有关的阻力称为波阻。

直升机空气动力学基础--课件

直升机空气动力学基础--课件

直升机空气动力学基础
—第八章 直升机空气动力学实验
旋臂式模型旋翼机动飞行试验机
国际首创,获国家技术发明三等奖
直升机涡环边界试验研究 直升机贴地飞行试验 直升机盘旋试验 直升机瞬态操纵响应试验 旋翼/机翼气动干扰试验 倾转机旋翼/机翼气动干扰试验 大机动旋翼非定常气动力试验 ……
旋翼动力学国防科技重点实验室
直升机空气动力学基础
—第八章 直升机空气动力学实验
倾转旋翼试验台
南航 “211”国家重点学科建设 “新概念 倾转旋翼飞行器综合试验系统”项目的重 要组成部分。建成了一套能够进行倾转旋 翼飞行器及未来新一代高速旋翼飞行器技 术研究的综合试验系统,拓展了实验室的 研究能力。2006年完成并通过了国家 “211”建设项目的验收。它的建成将为我 国研制倾转旋翼飞行器提供技术基础,并 为武器装备的发展提供技术支撑。
直升机空气动力学基础
—第八章 直升机空气动力学实验
1.5 Cu
P
1.0 0.5 0.0 -0.5 -1.0 -1.5 0
Experimental Value Calculation Value
3 Cu
P
2 1 0 -1
Experimental Value Calculation Value
=0.05,CT/=0.156, point# 1
863-705项目 国防基础科研课题 重点实验室基金课题
旋翼动力学国防科技重点实验室
直升机空气动力学基础
—第八章 直升机空气动力学实验
直升机飞行特性与动力学综合试验系统 可模拟模型旋翼的六自由度 运动,为研究直升机机动飞 行条件下的旋翼气动和动力 学特性创造了条件。该试验 系统的建成提升了我室在直 升机空气动力学、飞行力学 和动力学方面的综合科研能 力,也为发展和试验新一代 旋翼飞行器提供了先进的试 验手段。 旋翼动力学国防科技重点实验室

《空气动力学》课件

《空气动力学》课件

未来挑战与机遇
环境保护需求
新能源利用
随着环境保护意识的提高,对空气污 染和气候变化的研究需求增加,这为 空气动力学带来了新的挑战和机遇。
新能源的利用涉及到流动、传热和燃 烧等多个方面,需要空气动力学与其 他学科合作,共同解决相关问题。
航空航天发展
航空航天领域的发展对空气动力学提 出了更高的要求,需要不断改进和完 善现有技术,以满足更高性能和安全 性的需求。
04
翼型与机翼空气动力学
翼型空气动力学
翼型概述
翼型分类
翼型是机翼的基本截面形状,具有特定的 弯度和厚度。
根据弯度和厚度的不同,翼型可分为超临 界、亚音速和超音速翼型等。
翼型设计
翼型与升力
翼型设计需考虑气动性能、结构强度和稳 定性等多个因素。
翼型通过产生升力使飞机得以升空。
机翼空气动力学
01
机翼结构
课程目标
掌握空气动力学的基本概 念和原理。
提高分析和解决实际问题 的能力。
了解空气动力学在各领域 的应用和发展趋势。
培养学生对空气动力学的 兴趣和热爱。
02
空气动力学基础
流体特性
01
02
03
04
连续性
流体被视为连续介质,由无数 微小粒子组成,彼此之间存在
相对运动。
可压缩性
流体的密度会随着压力和温度 的变化而变化。
《空气动力学》PPT课件
目 录
• 引言 • 空气动力学基础 • 流体动力学 • 翼型与机翼空气动力学 • 空气动力学应用 • 未来发展与挑战
01
引言
主题介绍
空气动力学:一门研 究空气运动规律和空 气与物体相互作用的 科学。
课件内容涵盖了基础 理论、应用实例和实 验演示等方面。

空气动力学课件-第1章 翼型资料

空气动力学课件-第1章 翼型资料
yf f 2 [( 1 2 p ) 2 px x ] 2 (1 p)
x p
x p
式中,p为弧线最高点的弦向位置。中弧线最高点的高度 f(即弯度)和该点的弦向位置都是人为规定的。给f和p 及厚度c以一系列的值便得翼型族。
§1.1 翼型的几何参数及其发展
其中第一位数代表f,是弦长的百分数;第二位数代表p,是弦长的十 分数;最后两位数代表厚度,是弦长的百分数。例如NACA 0012是一 个无弯度、厚12%的对称翼型。有现成实验数据的NACA四位数翼族 的翼型有6%、8%、9%、10%、12%、15%、18%、21%、24%
CL (C pl C pu ) cosdx
0
1
C pu
Pu P Pl P , C pl 1 1 2 V V 2 2 2
§ 1.3 低速翼型的低速气动特性概述
§ 1.3 低速翼型的低速气动特性概述
§ 1.3 低速翼型的低速气动特性概述
(1)在升力系数随迎角的变化曲线中,CL在一定迎角范围 内是直线,这条直线的斜率记为
随时间的发展翼面上边界层形成下翼面气流绕过后缘时将形成很大的速度压力很低从后缘点到后驻点存在大的逆压梯度造成边界层分离从而产生一个逆时针的环量称为起动1414儒可夫斯基后缘条件及环量的确定儒可夫斯基后缘条件及环量的确定3起动涡离开翼缘随气流流向下游封闭流体线也随气流运动但始终包围翼型和起动涡根据涡量保持定律必然绕翼型存在一个反时针的速度环量使得绕封闭流体线的总环量为零
在飞机的各种飞行状态下,机翼是飞机承受升力的主要 部件,而立尾和平尾是飞机保持安定性和操纵性的气动 部件。一般飞机都有对称面,如果平行于对称面在机翼 展向任意位置切一刀,切下来的机翼剖面称作为翼剖面 或翼型。翼型是机翼和尾翼成形重要组成部分,其直接 影响到飞机的气动性能和飞行品质。

空气动力学与飞行原理课件:机翼空气动力学

空气动力学与飞行原理课件:机翼空气动力学

2mg v
S CL
它表明在相同翼型下,翼载荷越大,则定直平飞速度越快。从另一个方面来看
vmin
2mg
S CL max
即,最小平飞速度为机翼接近失速迎角飞行。在翼型失速迎角一定的情况下,翼载荷越 大,最小平飞速度也越大。
5
壹 翼面负载
下面是典型的无人机的翼面负载。
无人机机型 全球鹰 长空-1 捕食者 徘徊者
贰 目录
一、
翼面负载
二、
展弦比
三、
后掠角
四、
根梢比
7
贰 展弦比 展弦比λ定义为翼展L除以平均翼弦b(λ=L/b)。 展弦比对机翼升力的影响为:当机翼产生升力时,下表面压强向上,上表面压强向下,且下表面压强值 大于上表面。则在翼尖处,下表面的高压气流流向上表面,减小了翼尖附近的升力。同时,如上节所述,有 限展长机翼也是诱导阻力产生的重要来源。 因此,展弦比越大,则翼尖效应对机翼升力的影响越小。理想情况是和翼型升阻特性一样。对于低速和 亚声速无人机,机翼展弦比越大,则升力线斜率和升阻比都较大。 展弦比的另外一个特性是翼尖涡减小了翼尖处的有效迎角,增大了翼尖处的失速迎角。因此,在机翼展 向各翼型扭转角相同的情况下,翼根比翼尖较易失速,这也是要设计机翼扭转的作用。一般翼尖剖面翼型与 翼根剖面翼型的扭转角在±3度左右。另外,相同情况下,展弦比越大则机翼滚转方向转动惯量越大,滚转机 动性越差。
这对无人机结构设计产生一定影响。即后掠 翼无人机翼梢处气动力增大,需要适当加强梢部 结构强度。
后掠机翼升力分布
15
肆 目录
第一章
翼面负载
第二章
展弦比
第三章
后掠角
第四章
根梢比
16
肆 根梢比

飞机的飞行原理--空气动力学基本知识 ppt课件

飞机的飞行原理--空气动力学基本知识  ppt课件
PPT课件 21
4、电离层(暖层、热层)






电离层位于中间层之上,顶界离地面大约 800公里。 电离层的特点: 1)空气温度随着高度的增加而急剧增加, 气温可以增加到400 ℃以上(最高可达1000 ℃ 以上)。 2)空气具有很大的导电性,空气已经被 电离,主要是带负电的电离子。 3)空气可以吸收、反射或折射无线电波。 4)空气极为稀薄,占整个大气的1/亿. 这层空气主要有人造卫星、宇宙飞船飞行。
PPT课件 16



对流层的特点: 1)气流随高度升高而降低 在对流层中.由于空气受热的直接来源不是太阳,而 是地面,太阳放射出的能量,大部分被地面吸收,空气是 被太阳晒热的地面而烤热的,所以越靠近地面,空气温度 就越高。在中纬度地区,随着高度的增加,空气温度从15 ℃降低到11公里高时的-56.5 ℃。 2)风向、风速经常变化 由于太阳对地面的照射程度不一,加之地球表面地形、 地貌的不同,地面各地区空气气温和密度不相同,气压也 不相等,即使同一地区,气温、气压也常会发生变化,使 大气产生对流现象,形成风,且风向、风速也会经常变化。 3)空气上下对流激烈 地面各处的温度不同,受热多的空气膨胀而上升,受 热少的空气冷却而下降,就形成了空气的上下对流。
PPT课件 17



4)有云、雨、雾、雪等天气现象 地球表面的海洋、江河中的水由于太阳照射而不断蒸 发,使大气中常常聚集着各种形态的水蒸气,在空中形成 了“积雨云”,随着季节的变化,就会形成云、雨、雾、 雪、雹和打雷、闪电等天气现象。 5)空气的组成成分一定 对流层中几乎包含了全部大气质量的3/4,主要是由于 地球引力作用的结果。 由于对流层具有以上特点,会给飞机的飞行带来很大 影响。在高空飞行时,气温低,容易引起飞机结冰,温度 变化还会引起飞机各金属部件收缩,改变机件间隙,甚至 影响飞机正常工作。上下对流空气会使飞机颠簸,既不便 于操纵,又使飞机受力增大。

直升机空气动力学基础--课件

直升机空气动力学基础--课件
同类事物、几何相似、运动相似、边界条件相似、对应点的 同名物理量同比例。
各相似准则数相等,分别代表满足某一相似条件,如试验模 型与事物的:
S数相等——运动相似,M数相等——空气压缩性作用相似, Re数相等——空气黏性力作用相似,Fr数相等——重力场中的作 用相似,Lo数相等——质量惯性力相似,Ca数相等——弹性力相 似,等等。
除非用实物做试验,模型试验中完全相似是不可能的。
只能按试验目的选定最关键的相似准则。
旋翼动力学国防科技重点实验室
直升机空气动力学基础
—第八章 直升机空气动力学实验
旋翼模型试验常用的相似准则
几何相似是前提:
桨毂型式及相对尺寸,如铰偏置量等
翼型及其沿径向配置
桨叶片数k、宽度
b(r ) / R ,扭度 D j ( r ),桨尖形状
旋翼动力学国防科技重点实验室
直升机空气动力学基础
—第八章 直升机空气动力学实验
倾转旋翼试验台
南航 “211”国家重点学科建设 “新概念 倾转旋翼飞行器综合试验系统”项目的重 要组成部分。建成了一套能够进行倾转旋 翼飞行器及未来新一代高速旋翼飞行器技 术研究的综合试验系统,拓展了实验室的 研究能力。2006年完成并通过了国家 “211”建设项目的验收。它的建成将为我 国研制倾转旋翼飞行器提供技术基础,并 为武器装备的发展提供技术支撑。
➢力、力矩、扭矩测量试验 如旋翼、尾桨、机身等
➢诱导速度测量试验 如旋翼、尾桨、机身附近诱导速度,桨尖涡等
➢表面压力测量试验 如机身表面、桨叶表面等
➢噪声测量试验 如旋翼噪声、尾桨噪声等 旋翼动力学国防科技重点实验室
直升机空气动力学基础
—第八章 直升机空气动力学实验
试验的相似性 试验与实际相似,试验结果才有用。条件:

《飞行原理空气动力》课件

《飞行原理空气动力》课件
气动力学对先进科技的贡献
回顾气动力学在推动先进科技发展中的贡献。
让我们一起探索气动力学的更多奥秘!
鼓励听众深入学习气动力学,并探索其更多的应用和发展。
《飞行原理空气动力》 PPT课件
通过本课件,我们将带您深入了解飞行原理中的空气动力学,包括其定义、 基本概念、应用以及与先进科技的关系。
认识空气动力学
空气动力学定义
探索飞行中的空气力学现象和原理。
空气动力学发展历程
了解空气动力学在航空和航天领域的演变过程。
空气动力学研究的重要意义
探讨空气动力学在飞行器设计中的关键作用。
能优化中的应用。
3
气动力的计算方法
探讨气动力学计算方法和模拟技术。
气动力学设计
1 气动力学和设计的联 2 飞行器设计中的气动 3 气动力学设计的实例

力学问题
分析
解释气动力学在飞行器设 计中的关键作用。
探索飞行器设计过程中涉 及的气动力学挑战。
通过实例研究,深入理解 气动力学设计的关键概念 和技术。
空气动力学基本概念
空气动力学的基本概念
介绍空气动力学中的重要概念, 如空气动力学力、气流等。
气体的物理性质
了解气体在空气动力学中的行为 和特性。
流体的基本特性
探索流体在空气动力学中的运动 和变化。
空气动力学原理
1
空气动力学公式
学习空气动力学中的关键公式和计算方
空气动力学原理的应用
2
法。
了解空气动力学原理在飞行器设计和性
气动力学与先进科技
先பைடு நூலகம்科技的气动力学 应用
探索先进科技领域中气动力学 的创新应用。
气动力学在航空航天 中的应用

飞机的空气动力课件

飞机的空气动力课件
因为R2=X2+Y2+Z2
故 CR2= CL2+ CD2+CZ2CLLeabharlann 12Lv 2s或CYY
12v 2s
CD12D v 2s或CX
X
12v 2s
CZ
1 2
Z
v2 s
飞机的空气动力
• 气动力系数
➢滚转力矩系数mx ➢偏航力矩系数my
➢俯仰力矩系数mz
mX
MX
1 2
v2 sCA
mY
MY
1 2
v2 sCA
➢ 攻角(迎角)——翼弦和无穷远来流速度V∞(即飞行速度) 的夹角α。图示的α为正。
➢焦点——翼弦上距前缘1/4弦长的点,通常用F表示焦点
飞机的空气动力
➢机翼的平面形状及参数
• 矩形机翼 • 梯形机翼 • 椭圆形机翼 • 后掠翼 • 前掠翼 • 三角翼
飞机的空气动力
飞机的空气动力
飞机的空气动力
✓ 把这些气动力等效平移到重心,然后矢量求和 ✓ 得到合力R和合力矩M
飞机的空气动力
飞机的气动力合力R
➢ 升力
• 是指与飞机速度方向垂直的力 • 不一定在铅垂面内 • 通常用L或Y表示,与气流坐标系的Y轴重合 • 主要有机翼产生
➢阻力
• 是与飞行速度相反的力 • 用D或X表示,与气流坐标系的X轴重合
飞机的空气动力
➢翼型的平面形状及参数
后略角--焦点线在XOZ平面的投影与OZ轴的夹角, 用∧表示
飞机的空气动力
飞机的空气动力
• 翼型的平面形状及参数
➢上反角
• 焦点线与XOZ平面的夹角,用ψ表示。 • 如果翼低于XOZ平面,则称下反角
飞机的空气动力
飞机的空气动力

航空航天概论空气动力学 ppt课件

航空航天概论空气动力学  ppt课件
105
稳定性,翼尖失速,上反角
106
稳定性
107
跨声速流动(Transonic Flow) 音速-扰动传播的速度 温度越高音速越高。 高空温度低,容易超音速。
速度与音速之比,称为马赫数(Mach数,Ma)
108
109
110
Subsonic 亚音速 Transonic 跨音速 Supersonic 超音速 Hypersonic 高超音速
171
反作用控制(在没有空气时)
172
27
滑翔机的飞行
28
三.流体运动
空气的基本性质:粘性(虽然小但却重要) 可压缩性(在高速时体现)
29
流动-流线的概念
30
非定常流动:不同时刻的流线不一致
31
定常与非定常流动,定常流动流线与粒子 轨线一致
32
有旋和无旋流动
33
流管和近似一维流动
34
理想流-质量守恒和连续性方程
流管相当于一个变截面管道
航空航天概论
空气动力学部分
1
参考书: Introduction to the Aerodynamics of Flight, Theodore A.Talay, Langley Research Center. 模型飞机空气动力学,马丁.西蒙斯,航空 工业出版社。
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
George Cayley, airfoil design, 1804
George Cayley, Glider, 1804
7
一战、二战到现代
8
二.背景知识 大气层-飞机飞行的环境
9
大气层分层

《飞行原理空气动力》PPT课件

《飞行原理空气动力》PPT课件
航程
飞机在无风和不加油的条件下,连续飞行耗尽 可用燃油时飞行的水平距离
航时
飞机耗尽可用燃油时能持续飞行的时间。
28
起飞
起飞定义:从起飞线开始,经过滑跑-离地爬升到安全高度(飞机高于起飞表面10.7 米—CCAR-25)为止的全过程。
主要性能指标:地面滑跑距离、离地速度和 起飞距离。
影响起飞性能的主要因素:起飞重量、大气 条件(密度、风向等)、离地时的迎角、增 升装置的使用、发动机的推力及爬升阶段爬 升角的选择等。
18
3.4 巡航飞行
飞机巡航飞行应满足的平衡条件:升力等 于重力、推力等于阻力。
平飞所需速度:飞机在某高度上保持平飞 所需的升力(等于重量)对应的飞行速度。
平飞速度
1
平飞 (2W / CL S)2
19
影响平飞所需速度的因素: 飞机重量:重量愈大所需速度愈高。 升力系数:取决于飞机的迎角,迎角减小
如果着陆重量过大或机场温度较高或在海拔较高 的机场着陆,都会造成接地速度过大,使飞机接 地时受到较大的地面撞击力,损坏起落架和机体 受力结构;也会使着陆滑跑距离过长,导致飞机 冲出跑道的事故发生。
着陆时的重量不能超过规定的着陆重量。 在不超过临界迎角和护尾迎角的条件下,接地迎
角应取最大值,增升增阻的后缘襟翼在着陆时要 放下最大的角度,以最大限度的增加升力系数减 小接地速度
最大正过载表示飞机承受的气动升力指向 机体立轴的正向并达到最大;
最大最负过载表示飞机承受的气动升力指 向机体立轴的反向并达到最大;
最大速度表示此时飞机的载荷或升力不一 定最大,但机翼表面的局部气动载荷很大, 压力中心靠后,考验机翼结构局部强度的 严重受载情况。
27
巡航飞行
巡航速度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气体的压强(P)
作用在单位面积上的法向力。单位:牛顿/米2(N/m2) 习惯上把压强称为压力,压强分布称为压力分布
温度(T)
表示物体冷热程度的物理量 反应了物体内能的大小
常用摄氏温度和开氏温度,°K= ℃ +273.15
1.1 流体的属性
➢气体的热力学性质
完全气体状态方程
气体状态参数:P、 ρ 、T 气体状态方程:P=RρT,
定容比热CV – 使单位质量气体保持容积不变温度升高1 °K 所需热量 – 单位J/(kg °K)
CP>CV,且 CP - CV=R CP、CV与气体的种类和温度有关
1.1 流体的属性
➢气体的热力学性质
绝热指数
κ= CP/CV称为绝热指数(等熵指数、比热比),与 气体的种类和温度有关
空气温度在300 ℃以下时, κ=1.4,可看作常
– 即质量为1千克的物体重量就是1公斤
➢热力学方面
热量单位--卡
使1千克纯净的水在14.5℃时的温度升高1 ℃所需要的热量为1卡
1卡=4.1868J(焦耳)
温度
摄氏温度,用℃表示 开氏温度(绝对温标),用°K表示 华氏温度,用℉表示
°K=273.15+ ℃(经常用到) ℃+×1.8+32= ℉
第一章 流体力学基础
导出量纲
– 速度--米/秒 – 加速度--米/秒2 ,标准重力加速度=9.80065米/秒2 – 力--1牛顿(N)=1千克×1米/秒2
» 使质量为1千克的物体产生1米/秒2加速度的力被定义为 1N
– 压强--1帕(par)=1牛/米2 » 曾用单位:巴。1巴=105牛/米2,1巴=1000毫巴,1毫 巴=1百帕
dS dq T
温度为T的单 位质量气体得 到热量dq,则 说明单位质量 气体的熵增加 了dS.
空气动力学的研究方法
理论分析 实验研究:风洞、试飞 数值计算
学习方法
理论学习 视频、图像
该课程内容及课时安排
我 们
流体力学基础 (14课时)
飞机空气动力学 飞机的空气动力(14课时)

国际标准大气及其应用 (8课时)


飞机的静稳定性与操纵 (4课时)
内 容
飞机的稳定性 与操纵性飞机的动Fra bibliotek定性(4课时)
– T是绝对温度°K – R--气体常数
方程成立条件:完全气体
– 忽略气体分子之间间隔 – 忽略气体分子之间相互作用力 – 认为气体之间是完全弹性碰撞
– 空气除高温高压外一般可看为完全气体 – 对于空气R=287.06J/(kg °K),J-焦耳
1.1 流体的属性
➢气体的热力学性质
比热
定压比热CP – 使单位质量气体保持压强不变温度升高1 °K 所需热量 – 单位J/(kg °K)
很重要参数,在空气动力学和飞行性能计算中经常 用到
1.1 流体的属性
➢气体的热力学性质

熵表示任何一种能量在空间中分布的均匀 程度。能量分布得越均匀,熵就越大。
对于系统来说,能量完全均匀地分布,这 个系统的熵就达到最大值。
对于气体微团来说,熵的增加反映了该气 团的可用能量的减少,能力品质下降。
在孤立系统中,实际发生的过程,总使整个 系统的熵值增大,此即熵增原理。
➢连续介质(连续性假设)
介质
– 能使物体在其中运动并给物体一定作用力的物质 – 如空气、水等
连续介质
– 连绵不断地、没有空隙地充满整个空间的介质。 – 对于几十公里高度以下飞行的飞机来说,空气可
以认为是连续介质
1.1 流体的属性
➢气体的密度、压强、温度
气体密度(ρ)
单位体积所含的气体质量。单位:千克/米3(kg/m3) 比重:单位体积所含气体的重量。γ=ρg 比容:单位质量气体的体积,及密度的倒数。υ=1/ρ
交通运输专业
简明飞机空气动力学
2008年春季版
赵向领
飞机为什么会 飞呢
绪论:
➢我们学的是什么?
什么是空气动力学? --考虑学习的对象
➢为什么要学习空气动力学?
--考虑学习的目的
➢怎样学习空气动力学
--考虑学习的方法
➢我们学的是什么?
--空气动力学
空气动力学是研究空气运动规律及空气与物 体发生作用的科学。其内容包含: 不可压缩空(低速)气动力学 可压缩(高速)空气动力学
– 体积--米3,1米3=1000公升=1000立方分米 – 密度--千克/米3 – 能量(J)--焦耳,1焦耳=1牛顿米 – 功率--瓦特,1瓦特=1焦耳/秒
➢力学方面的物理量纲
英制单位及换算
力学基本量
– 质量--斯勒格(Slug),1斯勒格=14.5939千克 – 长度
» 英尺,1英尺=12英寸;1米=3.28084英尺 » 英里,1英里=5280英尺=1.609316公里 » 海里,1海里=1.852公里,即地球大圆周上1’的弧长
– 时间--秒
导出单位
– 速度--节(Knot) – 1节=1海里/小时=1.852×1000/3600(m/s) – 力--磅,1磅=1斯勒格×1英尺/秒2
» 1公斤=2.20462磅,1磅=4.44822牛顿
➢力学方面的物理量纲
力学工程单位
力--千克力(公斤力,公斤)
– 纬度450海平面上质量1千克的物体所受到的引力 被定义为1公斤
➢§1、流体的属性 ➢§2、作用在流体上的力 ➢§3、流场的基本概念 ➢§4、空气动力学的基本方程 ➢§5、膨胀波与激波 ➢§6、附面层
1.1 流体的属性
➢什么是流体
液体和气体不能保持固定的形状,富有流动性,
故统称为流体。
固体在静止状态下可以承受一定的剪切力 流体没有运动是不能反抗剪切力作用的
1.1 流体的属性
空气动力学
属于力学分支 空气的运动规律
➢ 为什么要学习空气动力学?
应用广泛
航空、航天 汽车工业 其他领域
属于专业基础课程
需要基础课程的知识,又是后续课程 的基础
今后的实际工作会接触到
空气动力学的应用举例
➢一级方程式赛车空气动力学的应用
空气动力学的应用举例
➢其他领域(两个小试验)
➢怎样学习空气动力学
飞机对操纵的响应--飞机的动操纵性(2
课时)
2课时用于实践
共48课时,课时少,属于介绍性课程
附录A 常用单位及换算
➢ 力学方面的物理量纲
国际单位制 英制单位及换算 其他
➢ 热力学方面的物理量纲
热量单位 温度
摄氏温标 开式温标 华式温标
➢力学方面的物理量纲
国际单位制
基本量纲
– 质量(M) --千克 长度(L)--米 时间(T)--秒
相关文档
最新文档