自动增益控制电路的设计与实现
一种自动增益控制放大器的设计
![一种自动增益控制放大器的设计](https://img.taocdn.com/s3/m/f24c3e3954270722192e453610661ed9ad515526.png)
一种自动增益控制放大器的设计摘要:本文介绍了一种自动增益控制放大器的设计方法,该方法采用反馈电路实现自动增益控制,使放大器在输入信号强度变化时保持输出信号稳定。
设计中采用了MOSFET管和电容的组合连接方式,使放大器具有高增益和低噪声系数,同时实现了高稳定性和可靠性。
实验结果表明,该自动增益控制放大器具有优良的性能,适用于信号放大和处理的多种应用场景。
关键词:自动增益控制;放大器设计;反馈电路;MOSFET管;电容连接;稳定性正文:1.引言随着科技的不断发展,信号处理技术在通信、电子、计算机等领域得到了广泛应用。
在众多信号处理技术中,信号放大是其中的重要环节之一。
而自动增益控制放大器是实现信号放大的重要器件之一。
它可以在输入信号强度变化时自动调整增益,使输出信号稳定。
因此,本文提出了一种自动增益控制放大器的设计方法,旨在提高放大器的性能和稳定性,并适用于多种信号处理场景。
2.设计原理自动增益控制放大器的设计原理是基于反馈电路实现自动调节增益。
如图1所示,当输入信号Uin经过放大器后,产生的输出信号Uout被反馈到放大器的控制端A处,与输入信号进行比较,产生一个误差电压Ue。
该误差电压被输入到一个控制器中进行处理,控制器通过调节放大器的增益,使误差电压接近于0,从而实现自动增益控制。
图1 自动增益控制放大器原理图在设计中,我们采用了MOSFET管和电容的组合连接方式,如图2所示。
MOSFET管可以提供高增益和低噪声系数,电容与MOSFET管的组合连接方式可以提供稳定性。
此外,在设计中还考虑了放大器的输出阻抗和带宽等因素,使放大器的性能更加优良。
图2 自动增益控制放大器组合连接示意图3.实验方法为验证设计的可行性和有效性,我们进行了一系列实验。
实验中,我们利用模拟电路软件对自动增益控制放大器进行模拟分析,并对其输出信号进行测量分析。
实验结果表明,该放大器具有优良的性能和稳定性。
4.实验结果与分析实验结果显示,该自动增益控制放大器在不同频率和输入信号强度下均能达到稳定的输出信号。
无线定位系统中自动增益控制电路的设计与研究
![无线定位系统中自动增益控制电路的设计与研究](https://img.taocdn.com/s3/m/5877965b2f3f5727a5e9856a561252d380eb2008.png)
无线定位系统中自动增益控制电路的设计与研究周永强【摘要】针对卫星无线定位系统,其民用需求加大,促使商业上对更为廉价、更低功耗的射频收发前端技术进行研究和探索。
设计实现了一款用于无线定位系统的数字可编程增益控制系统,可用于IMT⁃Advanced新一代4G无线通信网络中。
对模拟控制和数字可编程两种模式进行了系统上的分析,针对系统建立数学模型,进行了可行性研究。
在设计该芯片的同时,对具体模块的不同实现形式进行了阐述,并提出了可优化的结构。
%Since the civilian requirement of satellite wireless positioning system is increased,the cheaper and lower⁃power consumption RF receiving front⁃end technology is studied and explored for business. A digital programmable gain control system used for wireless positioning system was designed and implemented,which can be applied to the emerging IMT⁃Advanced new generation 4G wireless communication network. The analog control mode and digital programmable mode are analyzed systemati⁃cally. The mathematical model of the system was established to study the feasibility. The different realization forms of the speci⁃fic module are described while designing the chip,and the optimizable structures are proposed.【期刊名称】《现代电子技术》【年(卷),期】2016(039)023【总页数】5页(P157-160,164)【关键词】RFIC;CMOS;PGA;数字自动增益控制;带隙基准电压源【作者】周永强【作者单位】四川工商学院,四川成都 611745【正文语种】中文【中图分类】TN710-34;TM417随着CMOS工艺的发展,数字电路在晶体管栅宽降低中受益最大,能够实现廉价的、大数量和快速的设计和实现。
自动增益控制电路的设计与实现_图文.
![自动增益控制电路的设计与实现_图文.](https://img.taocdn.com/s3/m/540800cadaef5ef7bb0d3c51.png)
自动增益控制电路的设计与实现实验报告北京邮电大学信息与通信工程学院一:课题名称自动增益控制电路的设计与实现二:摘要及关键词1、摘要:在处理输入的模拟信号时,经常会遇到通信信道或传感器衰减强度大幅变化的情况;另外,在其他应用中,如监控系统中的多个相同传感器返回的信号中,频谱结构和动态范围大体相似,而最大波幅却相差甚多的现象。
很多时候系统会遇到不可预知的信号,导致因为非重复性事件而丢失数据。
此时,可以使用带AGC(自动增益控制)的自适应前置放大器,使增益能随信号强弱而自动调整,以保持输出相对稳定。
本实验在介绍了AGC电路的基础上,采用了一种相对简单而有效实现预通道AGC的方法,电路中使用了一个短路双极晶体管直接进行小信号控制的方法。
2、关键词:驱动缓冲可变衰减自动增益控制电压跟随器反馈三:设计任务要求1、基本要求:1)设计实现一个AGC电路,设计指标以及给定条件为:输入信号0.5~50mVrms;输出信号:0.5~1.5Vrms;信号带宽:100~5KHz;2)设计该电路的电源电路(不要求实际搭建),用PROTEL软件绘制完整的电路原理图(SCH)及印制电路板图(PCB)2、提高要求:1)设计一种采用其他方式的AGC电路;2)采用麦克风作为输入,8Ω喇叭作为输出的完整音频系统。
3、探究要求:1)如何设计具有更宽输入电压范围的AGC电路;2)测试AGC电路中的总谐波失真(THD)及如何有效的降低THD。
四:设计思路及总体结构框架1、设计思路①该实验电路中使用了一个短路双极晶体管直接进行小信号控制的方法,从而相对简单而有效实现预通道AGC的功能。
如下图,可变分压器由一个固定电阻R1和一个可变电阻构成,控制信号的交流振幅。
可变电阻采用基极-集电极短路方式的双极性晶体管微分电阻实现为改变Q1电阻,可从一个由电压源和大阻值电阻R2组成的直流源直接向短路晶体管注入电流。
为防止R2影响电路的交流电压传输特性。
R2的阻值必须远大于R1.DetetorVGAInput Output反馈式AGC由短路三极管构成的衰减器电路②对正电流的I所有可用值(一般都小于晶体管的最大额定设计电流),晶体管Q1的集电极-发射极饱和电压小于它的基极-发射极阈值电压,于是晶体管工作在有效状态。
自动增益控制AGC电路
![自动增益控制AGC电路](https://img.taocdn.com/s3/m/988be5e69ec3d5bbfd0a74ab.png)
自动增益控制(AGC)电路自动增益控制(AGC)电路是无线电接收设备中的重要电路,用来保证接收幅度的稳定。
自动增益控制(AGC)电路的作用是能根据输入信号的电压的大小,自动调整放大器的增益,使得放大器的输出电压在一定范围内变化。
它一般由电平检测器(峰值检波电路)、低通滤波器、直流放大器、电压比较器、控制电压产生器和可控增益放大器组成。
其中可控增益放大器是实现增益控制的关键。
一、自动增益控制电路(AGC)的工作原理(一)AGC的作用自动增益控制电路的作用,是在输入信号幅度变化很大的情况下,自动保持输出信号幅度在很小范围内变化的一种自动控制电路。
自动增益控制电路可以看成由反馈控制器和(控制)对象两部分组成,其中反馈控制器由电平检测器、低通滤波器、直流放大器、电压比较器和控制电压产生器组成,被控对象是可控增益放大器。
可控增益放大器的输入信号就是AGC电路的输入信号.(二)AGC各单元电路的功能与基本工作原理1.电平检测器电平检测器的功能是检测出输出信号的电平值,通常由振幅检波器实现,它的输出与输入信号电平成线性关系,其输出电压为。
2.低通滤波器环路中的低通滤波器具有非常重要的作用。
由于发射功率变化、距离远近变化、电波传播衰落等引起信号强度的变化是自动增益控制电路需要进行控制的范围,这些变化比较缓慢,而当输入为调幅信号时,调幅波的幅值变化是传递信息的有用幅值变化.这种变化不应被自动增益控制电路的控制作用减弱或抵消(此现象称为反调制),由于两类信号的变化频率不同,就可以恰当选择环路的频率响应特性,适当地选择低通滤波器的传输特性,使环路对高于某一频率的调制信号的变化无响应,而对低于这一频率的缓慢变化具有抑制作用。
3.直流放大器直流放大器将低通滤波器输出的电平值进行放大后送至电压比较器,由于电平检测器输出的电平信号的变化频率很低,例如几赫左右,所以一般均采用直流放大器进行放大。
4.电压比较器经直流放大器放大后的输出电压与给定的基准电压进行比较,输出误差信号电压,当电压比较器增益为时,服从下列关系式5.控制电压产生器控制电压产生器的功能是将误差电压变换为适合可变增益放大器需要的控制电压,这种变换可以是幅度的放大或电压极性的变换。
三极管自动增益电路
![三极管自动增益电路](https://img.taocdn.com/s3/m/ae5e77b2cd22bcd126fff705cc17552707225ea0.png)
三极管自动增益电路三极管自动增益电路是一种常见的电子电路,它通过控制三极管的工作状态来实现信号的放大。
三极管是一种半导体器件,具有放大作用,可用于放大电流、放大电压和放大功率等应用。
在自动增益电路中,三极管的放大特性被充分利用,使得输入信号经过放大后输出信号的幅度自动调节,从而实现信号的稳定放大。
自动增益电路的设计主要包括三个部分:输入级、放大级和输出级。
输入级负责接收输入信号,放大级负责对信号进行放大增益,输出级负责将放大后的信号输出到外部设备。
三极管通常用作放大级的核心元件,其基、发、集三个引脚分别对应于输入信号、输出信号和电源。
在自动增益电路中,三极管的工作状态由电路中的电流和电压共同决定。
通过恰当选择电路中的电阻、电容等元件,可以控制三极管的工作点,使得其在合适的工作状态下工作。
这样,当输入信号的幅度发生变化时,三极管能够自动调节其放大倍数,以保持输出信号的稳定性。
自动增益电路的设计需要考虑多个因素,如增益范围、频率响应、输入输出阻抗等。
增益范围是指电路的输入信号能够放大的倍数范围,一般用分贝(dB)来表示。
频率响应是指电路对不同频率的输入信号的放大程度,一般用频率响应曲线来表示。
输入输出阻抗是指电路与外部设备之间的阻抗匹配情况,影响信号传输的质量和稳定性。
三极管自动增益电路广泛应用于各种电子设备中。
以音频放大器为例,自动增益电路可以使得输入信号的音量在一定范围内保持稳定,不受外界干扰的影响。
在通信系统中,自动增益电路可以使得接收到的信号能够在不同距离、不同信号强度下都能保持一定的质量。
此外,自动增益电路还被广泛应用于雷达、医疗设备、广播电视等领域。
三极管自动增益电路是一种重要的电子电路,通过控制三极管的工作状态来实现输入信号的自动放大。
它具有设计灵活、应用广泛的特点,可以满足各种不同领域的需求。
随着科技的不断进步,三极管自动增益电路在未来将继续发挥重要作用,为各种电子设备提供稳定可靠的信号放大功能。
一种自动增益控制电路的设计与实现
![一种自动增益控制电路的设计与实现](https://img.taocdn.com/s3/m/20e6fb17ee06eff9aef80745.png)
一种自动增益控制电路的设计与实现作者:王坤来源:《中国科技博览》2016年第18期[摘要]本文设计实现了反馈型自动增益控制(AGC)电路,该AGC电路由驱动缓冲、衰减器、检波整流、级联放大和跟随输出等部分组成。
本文详细地介绍了各部分的设计方法及工作原理,测试结果表明:当该AGC电路的输入信号在40dB范围内变化时,输出信号的幅度变化不超过4dB,该AGC电路很好地实现了自动增益控制的功能。
[关键词]自动增益控制;负反馈;衰减器;检波整流中图分类号:U445.57 文献标识码:A 文章编号:1009-914X(2016)18-0110-020 引言在光纤通信、广播电视、传感器处理等电路系统中,接收机的输入信号和增益共同决定着接收机的输出信号。
在现实生活中,影响接收机输入信号的因素有很多,例如:发射功率的大小、收发距离的远近、信号传播媒介的变化[1]、噪声对接收机的影响等。
如果接收机增益过小,则强输入信号能正常接收,而弱输入信号将接收不到,从而造成信号的丢失。
如果接收机增益过大,则弱输入信号能正常接收,而强输入信号有可能使接收机过载而导致阻塞,甚至使接收机损坏。
因此,需要接收机的增益能随输入信号的强度而自动调整,即需要引入自动增益控制(AGC)电路。
AGC电路能够在输入信号幅度变化很大的情况下,保证输出信号的幅度恒定或仅在较小范围内变化[2]。
AGC电路从结构上大致可分为三种:前馈型、反馈型和混合型。
其中,前馈型电路收敛比反馈型要快,但是不稳定;混合型克服了前馈型和反馈型电路的缺点,尤其适合用于快速衰落信道,但是电路复杂、功耗大、调试困难。
所以,本文采用反馈型结构设计实现了AGC电路,并分析了该AGC电路各个部分的原理与具体功能。
1 电路设计反馈型AGC电路本质是一个负反馈系统,该电路可以分成放大电路和控制电路两部分,其中放大电路用于放大输入信号,其增益大小受控制电路的输出信号控制。
如图1所示,该AGC电路由驱动缓冲、衰减器、检波整流、级联放大和跟随输出等部分组成。
雷达自动增益控制电路硬件设计与实现
![雷达自动增益控制电路硬件设计与实现](https://img.taocdn.com/s3/m/c45480372f60ddccda38a01f.png)
开 发应用
雷达 自动增益控制 电路硬件设计 与实现
余 立
( 中国电子科技 集 团公 司第二十研 究所,陕西 西安 7 1 0 0 6 8) 摘 要 :雷达 自动增益控制 电路 的主要作用是对接收到的回波信 号进行增益控制 ,当回波信号弱时,接收机工作于 高增益状
态;当回波信 号强时,接收机工作于低增 益状 态。本文介绍 了一种基于 F P G A 的闭环 AG C电路 的软硬件设计 ,该 电路 一方
面作为雷达接收机 跟 中心机通信 的一个接 口,负责接收 中心机下发 的数据 ,并上传接 收机 的 自 检信息给 中心机;另一方面,
该 电路还接收 中频接收机传 输过来的中频信号 的检 波电平 , 并以此计算接 收通道的数控衰减量 ,然后将衰减量反馈给接收前
端和 中频 接 收 机 进 行 增 益 控 制 。
所有C P L D / F P G A 产 品 。基 于 Q u a r t u s I I 的C P L D / F P G A设 计 开
本 设 计 选 用 的 电源 芯 片 是 L i n e a r T e c h n o l o g y的 L T M4 6 1 5 ,该芯 片 效率 高 达 9 5 %, 可 提 供 双 路 4 ADC ( 0 . 8 V 至5 V) 以及 一 路 1 . 5 A ( 1 . 1 4 V至 3 . 5 V) 的L D O输 出 。其 输 入
为Al t e r a 公 C y c l o n e I V系列 的E P 4 C E 1 5 。 由于系统对于A D采样 的速率要求 并不高,所 以本设计
选 用 的 是A D公司 的A D9 2 2 5 。该 A D是~ 片单 通道 的1 2 位 A D,最高采样率为2 5 Ms p s ,本设计使用的采样率为5 Ms p s 。 通过改变S E N S E ̄ I 脚 、R E F C O M ̄ l 脚 、C ML 引脚 的接法可 以改变其输 入信 号的范 围。经实测 ,本设计的检波 电平输入 范围2 ~3 V,因此 ,将AD的S E N S E引脚与v I F 引脚相连, R E F C OM ̄ I 脚 接地 ,C ML 引脚 与vI N B引脚相连 ,此 时AD 的输入范围为2 . 5 V~3 . 5 V。
自动增益控制电路的设计与实现计划书
![自动增益控制电路的设计与实现计划书](https://img.taocdn.com/s3/m/2be85d8eaf1ffc4fff47acb3.png)
自动增益控制电路的设计与实现计划书1自动增益控制电路的背景与意义1.1自动增益控制电路的背景随着微电子技术、计算机网络技术和通信技术等行业的迅速发展,自动增益控制电路越来越被人们熟知并且广泛的应用到各个领域当中。
自动增益控制线路,简称AGC 电路。
它是限幅装置的一种,是利用线性放大和压缩放大的有效组合对输出信号进行调整。
当输入信号较弱时,线性放大电路工作,保证输出声信号的强度;当输入信号强度达到一定程度时,启动压缩放大电路,使声输出幅度降低,满足了对输入信号进行衰减的需要。
也就是说,AGC功能可以通过改变输入输出压缩比例自动控制增益的幅度,扩大了接收机的接受范围,它能够在输入信号幅度变化很大的情况下,使输入信号幅度保持恒定或仅在较小范围内,不至于因为输入信号太小而无法正常工作,也不至于因为输入信号太大而使接收机发生饱和或堵塞。
在电路设计中,这种线路被大量的运用,从尖端的雷达技术到日常的广播电视系统,自动增益控制无疑很好的解决了各种技术中存在的信号强度问题。
1.2自动增益控制电路的意义当输入信号电压变化很大时,保持接收机输出电压恒定或基本不变。
具体地说,当输入信号很弱时,接收机的增益大,自动增益控制电路不起作用;当输入信号很强时,自动增益控制电路进行控制,使接收机的增益减小。
这样,当接收信号强度变化时,接收机的输出端的电压或功率基本不变或保持恒定。
因此对AGC电路的要求是:在输入信号较小时,AGC电路不起作用,只有当输入信号增大到一定程度后,AGC电路才起控制作用,使增益随输入信号的增大而减少。
为实现上述要求,必须有一个能随外来信号强弱而变化的控制电压或电流信号,利用这个信号对放大器的增益自动进行控制。
由上述分析可知,调幅中频信号经幅度检波后,在它的输出中除音频信号外,还含有直流分量。
直流分量大小与中频载波的振幅成正比,也即与外来高频信号成正比。
因此,可将检波器输出的直流分量作为AGC控制信号。
2.Rb变化对Q点和电压放大倍数的影响2.1原理图图 2-12.2仿真模拟1.当Rb=3MΩ时电路图如下图2-2所示图 2-2UCEQ和Au仿真结果如下图2-3所示图 2-3 2.当Rb=3.2MΩ时电路图如下图2-4所示图 2-4 UCEQ和Au仿真结果如下图2-5所示:图 2-5 3.当信号源V1=10mv时,输出波形如下图2-6所示图 2-6 4.当信号源V1=20mv时,输出波形如下图2-7所示图 2-72.3仿真数据Rb=3MΩ和3.2MΩ时的UCEQ和Au仿真结果如下表2-1所示:表2-1 仿真数据2.4实验结论:(1)Rb增大时,ICQ减小,UCEQ增大,|Au |减小。
1-自动增益控制算法及其实现
![1-自动增益控制算法及其实现](https://img.taocdn.com/s3/m/bc0707016c175f0e7cd1379f.png)
自动增益控制算法(AGC)及其实现传统模拟放大电路的自动增益控制电路用输出信号作为反馈控制量对前向放大电路的增益进行动态调整,简称AGC。
自动增益控制电路广泛应用于信号处理过程中,其性能直接影响信号处理的质量。
实现自动增益的方法较多,一般情况下可以使用模拟自动增益控制电路或数字自动增益控制电路。
使用数字信号处理算法实现自动增益控制功能,具有成本低、易实现的优点,有利于信号的进一步分析和处理,完全能够代替传统的自动增益控制电路。
本设计要求利用DSP 实验系统实现AGC功能,使得当输入信号的幅度在一定范围内变化时,输出信号的幅度基本保持一个恒定值,达到自动增益控制的目的。
1.实验目的掌握DSP集成开发环境CCS的使用和调试方法;掌握DSP片上资源和片外资源访问的基本方法;学习A/D、D/A的工作原理和编程方法。
掌握利用DSP进行信号采集以及信号回放的方法。
掌握DSP的自动增益控制算法以及编程实现方法,提高学生系统地思考问题和解决实际问题的能力。
2.技术指标及设计要求基本部分:编程实现:当输入不同幅度的正弦信号时,输出信号的幅度可以稳定在一个基本固定的范围内。
发挥部分:输入一段音频信号,并实现这段音频信号幅度的实时自动增益控制,即当输入信号幅度大时自动减小其幅度,而当输入信号幅度小时增大其幅度。
当输入信号过大时,能够自动降低A/D 转换器增益,防止A/D 转换器过载的发生。
3. 设计思路用DSP对输入信号进行ADC采样,确定输入信号的峰值。
根据输出信号的保持幅度与输入信号的峰值的关系来调节自动控制增益来保持输出信号平稳,并将AGC处理后的信号经过DAC 输出。
在此过程中,DSP处理器必须监测A/D转换器的输入电平,防止A/D 转换器过载的发生。
如果在A/D转换器的采样数据中持续接收到了一些强信号,就必须降低A/D 转换器增益防止A /D转换器过载。
下图为对增益调整的流程。
首先由DSP对输入信号的幅值进行计算,得到最大幅值AGC-IN,然后将幅值和预定的自动增益控制值AGC-CFOO相乘的结果和已经设定的门槛值AGC-MAX进行比较,若没有超出门槛值,就说明输出信号在可接受的范围内,不必调整自动增益值,将音频数据和预定的自动增益值相乘的结果AGC-OUT作为输出信号;若幅值和预定的自动增益控制值相乘的结果超出了已经设定的门槛值,就说明输入信号的幅度过大,需要调整自动增益控制值,将自动增益控制值调小后和幅值继续相乘,直到达到输出的要求才准许将输入信号和调整后的自动增益控制值相乘得到的值作为输出信号。
自动增益控制(AGC)
![自动增益控制(AGC)](https://img.taocdn.com/s3/m/68fbae1d5acfa1c7ab00cc1d.png)
任务一自动增益控制(AGC)电路任务引入在调幅接收机接收电台信号时,由于各发射台功率有大有小,发射台离接收机的距离远近不一,无线电波传播过程中的多径效应和衰落等原因,使接收天线上感生的有用信号强度相差非常悬殊,而且往往有很大的起伏变化(约为~倍),有可能在接收微弱信号时造成某些电路(例如检波器)不能正常工作而丢失信号,而在接收强信号时造成放大电路的阻塞(非线性失真)。
为此在接收设备中几乎无例外的都必须采用自动增益控制电路,用来压缩有用信号强度的变化范围。
任务分析自动增益控制(AGC)电路的作用是能根据输入信号的电压的大小,自动调整放大器的增益,使得放大器的输出电压在一定范围内变化。
自动增益控制(AGC)电路是无线电接收设备中的重要电路,用来保证接收幅度的稳定。
它一般由电平检测器(峰值检波电路)、低通滤波器、直流放大器、电压比较器、控制电压产生器和可控增益放大器组成。
其中可控增益放大器是实现增益控制的关键。
相关知识一、自动增益控制电路(AGC)的工作原理1.AGC的作用自动增益控制电路的作用,是在输入信号幅度变化很大的情况下,自动保持输出信号幅度在很小范围内变化的一种自动控制电路。
2.AGC的组成框图自动增益控制电路的组成框图如图3-5-2所示。
图3-5-2 自动增益控制电路的组成框图由图可见,自动增益控制电路可以看成由反馈控制器和(控制)对象两部分组成,其中反馈控制器由电平检测器、低通滤波器、直流放大器、电压比较器和控制电压产生器组成,被控对象是可控增益放大器。
可控增益放大器的输入信号就是AGC电路的输入信号,其输出信号,其增益为增益受控制电压的控制,控制电压是由电压比较器产生的误差电压经控制电压产生器变换后得到的,增益可写成或,它是误差电压(或控制电压)的函数。
也可以直接用误差电压控制可控增益放大器的增益。
3.AGC各单元电路的功能与基本工作原理(1)电平检测器电平检测器的功能是检测出输出信号的电平值,通常由振幅检波器实现,它的输出与输入信号电平成线性关系,其输出电压为。
高性能自动增益控制_AGC_电路的设计与实现
![高性能自动增益控制_AGC_电路的设计与实现](https://img.taocdn.com/s3/m/c808a72f915f804d2b16c1d7.png)
《电测与仪表》199817总第35卷第391期高性能自动增益控制(A GC)电路的设计与实现天津大学精仪学院 张汉奇 黄战华 蔡敬忠摘要 介绍利用AD603设计的自动增益控制电路,试验结果表明:该电路增益调节范围宽,频率响应带宽高,具有良好的性能。
关键词 放大器 自动增益控制一、引 言在信号检测处理过程中,经常需要对信号电平进行调整;微弱的电信号经长线传输后,需要进行适当的补偿和校正。
自动增益控制电路在解决上述问题时具有其独特的效果。
我们利用可控增益放大器(AD603)配以适当的外围电路,用反馈控制技术实现了自动增益控制的设计电路。
该电路可广泛用于仪器仪表检测及视频信号处理等领域。
二、AD603的性能特点AD603为单通道、低噪声、增益变化范围线性连续可调的可控增益放大器。
带宽90MHz时增益变化范围为-11dB~+31dB;带宽为9MHz时为9dB~51dB。
增益变化范围可进行控制。
共有三种模式:(1)5脚与7脚断开时,增益变化范围为9dB~51dB;(2)5脚与7脚短接时,增益变化范围为-11dB~+31dB;(3)5脚与7脚之间接一电阻时,可使增益变化范围进行平移,例如5脚与7脚间接2115kΩ电阻时,增益变化范围为0dB~40dB。
其主要技术指标如下:信号输入电阻(3、4脚)100Ω峰值输入电压90MHz 峰值输出电压(R L≥500Ω)±3V 输出短路电流50mA 输出阻抗(f≤10MHz)2Ω增益控制精度(-015V≤V G≤+015V)±015dB增益控制输入电阻(1、2脚)50MΩ供电电压±5V(±5%)静态电流1215mA 值得注意的是:(1)在±5V电源供电时,最大信号输入为1Vrms(±114V峰—峰值);(2)信号输入阻抗为100Ω,在某些应用场合下,需要在输入端加一级缓冲器或预放大器用以阻抗匹配;(3)将两个AD603串联使用可扩展增益控制范围。
自动增益控制(AGC)放大器实现方案
![自动增益控制(AGC)放大器实现方案](https://img.taocdn.com/s3/m/8261ca5cb307e87101f6965f.png)
{
if(adval>vref_t)
dac_code++;
else
dac_code--;
D=4096/dac_code/10;//占空比
}
//DAC控制函数
void dac_spi(uint dac_code)
{
uchar n;
sync=0;
sclk=1;
for(n=0;n<16;n++)
void start_ad()
{
adwr=1;
_nop_();
adwr=0;
_nop_();
adwr=1;
}
//AD读取函数
uchar get_ad()
{
P1=0xff;
adrd=1;
_nop_();
adrd=0;
_nop_();
adval=P1;
adrd=1;
return adval;
}
//CODE处理函数
{
sclk=1;
dac_code=dac_code<<1;
sdin=CY;
sclk=0;
}
sdin=1;
sync=1;
sclk=0;
delayus(10);
}
//主函数
void main()
{
uchar ad_n;
T0_init();
vref_s=0.5;
dac_code=0x0029;
pwm=0;
——得到输出电压幅值后,将adval与设定电压幅值相比较(vref_t为转化后的值,与adval直接比较),若adval>vref_t,说明输出电压幅值应该减小,增益应该减小,相应dac_code应该增大——dac_code++;反之,dac_code--。同时通过增益计算占空比。
自动增益控制放大器电路设计
![自动增益控制放大器电路设计](https://img.taocdn.com/s3/m/61ff448427d3240c8547ef69.png)
自动增益控制放大器电路设计作者:赛前辅导教师:摘要系统由变增益放大电路,峰值检测电路,AD转换电路,控制电路组成。
可变增益电路部份以AD603为核心,信号经AD603后,经峰值检测电路检测电压峰值、以ADC0809进行AD转换。
再将信号传至AT89S52,AT89S52产生PWM波控制AD603的放大倍数。
从而实现可变增作用。
AbstractSystem consists of variable gain amplifier, peak detector circuit, AD converter circuit, control circuit. AD603 variable gain circuit section to the core, the signal by the AD603, after the peak detection circuit detects the peak voltage to the AD converter ADC0809. Then the signal transmitted AT89S52, AT89S52 generate PWM wave control AD603 magnification. Increasing role in achieving variable.一、系统方案论证与比较可变增益放大器选择方案一:利用放大器和场效应管一路组成的电路实现自动增益控制。
整个电路由包括场效应管在内的压控增益放大器,整流滤波电路,直流放大器组成,实现增益的闭环控制。
信号自输入端进入到电路中,运放A1组成压随器,作为输入级。
由运放A2组成反向放大器,其增益由场效应管的源极和漏极之间的电阻决定。
输出电压通过整流电路和滤波电路形成压控电压,加到场效应管的栅极,当压控电压发生转变时,源极和漏极之间的电阻亦发生转变,因此放大器的放大倍数也发生转变,因此当音频信号强时自动减小放大器的倍数,信号弱时自动增大放大器的倍数,从而实现音量的自动调节,达到自动增益控制的目的。
agc电路设计
![agc电路设计](https://img.taocdn.com/s3/m/5025d7ef85254b35eefdc8d376eeaeaad1f31638.png)
agc电路设计AGC电路是自动增益控制电路(Automatic Gain Control Circuit)的简称,是一种常用于电子设备中的控制电路,用于自动调节信号的增益,以保持信号的稳定性和恢复度。
本文将从AGC电路的基本原理、工作过程和应用领域等方面进行介绍。
我们来了解一下AGC电路的基本原理。
AGC电路通过不断检测输入信号的幅度变化,然后根据设定的增益范围和目标值,自动调节放大器的增益,使输出信号的幅度保持在一个稳定的范围内。
这样做的好处是,可以有效地抑制信号的干扰和失真,提高信号的恢复度和质量。
AGC电路的工作过程可以分为三个主要阶段:检测、比较和调节。
首先,输入信号经过检测电路,将信号的幅度转换为电压信号。
然后,将检测到的电压信号与设定的目标值进行比较,得到一个误差信号。
最后,根据误差信号的大小和方向,通过控制放大器的增益来调节输出信号的幅度,使其逼近目标值。
AGC电路广泛应用于各种电子设备中,尤其在无线通信系统和音频处理领域中得到了广泛的应用。
在无线通信系统中,AGC电路可以用来自动调节接收信号的增益,以适应信号强度的变化,提高通信质量和覆盖范围。
在音频处理领域中,AGC电路可以用来自动调节音频信号的增益,使音频信号的幅度保持在一个合适的范围内,避免因音量过高或过低而影响音质。
除了在无线通信系统和音频处理领域中的应用,AGC电路还可以应用于其他领域,如雷达系统、图像处理和医学设备等。
在雷达系统中,AGC电路可以用来自动调节接收信号的增益,以适应目标距离和强度的变化,提高雷达探测的精度和可靠性。
在图像处理中,AGC 电路可以用来自动调节图像的亮度和对比度,使图像显示更清晰和鲜明。
在医学设备中,AGC电路可以用来自动调节医学图像的亮度和对比度,以提供更准确的诊断结果。
总结一下,AGC电路是一种常用的控制电路,通过自动调节信号的增益,保持信号的稳定性和恢复度。
它的工作原理是通过检测、比较和调节三个阶段来实现的。
自动增益控制电路的设计与实现
![自动增益控制电路的设计与实现](https://img.taocdn.com/s3/m/b201c7d0d4bbfd0a79563c1ec5da50e2524dd18b.png)
⾃动增益控制电路的设计与实现电⼦电路综合设计实验实验5 ⾃动增益控制电路的设计与实现实验报告学院:信息与通信⼯程学院班级:姓名:学号:班内序号:⼀.课题名称:⾃动增益控制电路的设计与实现⼆.实验⽬的1.了解AGC(⾃动增益控制)的⾃适应前置放⼤器的应⽤。
2.掌握AGC电路的⼀种实现⽅法。
3.提⾼独⽴设计电路和验证实验的能⼒。
三.实验摘要在处理输⼊模拟信号时,经常会遇到通信信道或传感器衰减强度⼤幅变化的情况。
针对此问题,可以采⽤⾃动增益控制(AGC)的⾃适应前置放⼤器,使增益能够随信号强弱⽽⾃动调整,以保持输出相对稳定。
AGC电路实现有反馈控制、前馈控制和混合控制三种,本实验采⽤了短路双极晶体管直接进⾏⼩信号控制的⽅法,控制输⼊信号在0.5mV~50Vrms范围(40dB 范围内),使输出信号在0.5~1.5Vrms,即输出电压变化不超过5dB,信号带宽100~5KHz,从⽽简单有效地实现了AGC的功能。
关键词:⾃动增益控制反馈控制直流耦合互补级倍压整流四.设计任务要求1.基本要求:1)设计⼀个AGC电路,要求设计指标以及给定条件为:·输⼊信号:0.5~50mVrms;·输出信号:0.5~1.5Vrms;·信号带宽:100~5KHz。
2)设计该电路的电源电路(不要求实际搭建),⽤PROTEL软件绘制完整的电路原理图及印制电路版图。
2.提⾼要求:设计⼀种采⽤其他⽅式的AGC电路。
五.设计思路和总体结构框图1.设计思路AGC电路的实现有反馈控制、前馈控制和混合控制等三种,典型的反馈控制AGC由可变增益放⼤器(VGA)以及检波整流控制组成,本实验中电路采⽤了短路双极晶体管直接进⾏⼩信号控制的⽅法,从⽽简单⽽有效的实现AGC功能,如图1。
图1-反馈式AGC如图2,可变分压器由⼀个固定电阻R1和⼀个可变电阻构成,控制信号的交流振幅。
可变电阻由采⽤基极—集电极短路⽅式的双极晶体管微分电阻实现,为改变Q1的电阻,可从⼀个有电压源V2和⼤阻值电阻R2组成的电流源直接向短路晶体管注⼊电流。
接收机中频自动增益控制放大电路的实现
![接收机中频自动增益控制放大电路的实现](https://img.taocdn.com/s3/m/a4c9df03f78a6529647d533e.png)
接收机 中频 自动增 益控 制放大 电路 的实现
周 惠 忠
( 州工 业职 业技 术 学 院 , 苏 扬 州 自动增 益控制 电路 , 接 可以实现在输入 电平动态变化 时输 出电平稳定 : 输入 电平大 时降低增益 , 输 入 电平小时提高增益。 文章在 自动控制 电路作用和原理分析 的基础上 , 给出了一种利用误 差电压信号控制放大器增益以实 现 自动增益控制的电路 。 关键词 : 自动增益控制 ; 收机 接
薛 亚 平
( 州工 业职 业技 术 学院 , 苏 扬 州 2 52 ) 扬 江 2 17
摘 要: 单片机是 一门实践性较强 的课程。传统单片机 实验 一般都基于硬件实验箱和硬件仿真器 , 投入较大 而且 通用 性较 差 ,rt u 软件很好地解决 了这一 问题。本文主要介绍 了 Poe s软件在单 片机仿真方面 的一些功能, Poe s rt u 并且通过一个实例 说 明了 Po es 单片机 实验教 学过程 中的应用。 rtu 在 关键词 :rt u; Po e s软件仿真 ; 单片机实验教 学
单片机是一 门实践性较强的课程 。在传统 的单 片机 实验教 学 中, 常采用仿真器 、 通 实验 箱或实验板 。 需采 购大量 的、 昂贵的 硬件设备 , 最为关键 的是实验箱 、 实验板 的通用性很差 。在实 验
过程 中学生的一些想法通过实验箱根本没有办法实现 。本文介 绍的 Po u 软件就可 以解决 以上问题。 rt s e
测出输出信号振 幅电平 , 除不需要的较高频率分量 , 行适 当 滤 进
放大后与恒定的参考 电平 u 比较 , , 产生一个误差信号 。这 个
误差信 号 U 通过控 制信号发 生器去控制 可控增益放 大器 的增 益 。当 t减小而使输 出 u减小时 , / 0 环路产生的控制信号 t 将使 / . . 增益 增加 ,从而使 / 趋于增大 ;当 u增大而使输 出 u 增大 / 。
自动增益控制AGC
![自动增益控制AGC](https://img.taocdn.com/s3/m/f9aac968dc36a32d7375a417866fb84ae45cc30f.png)
跟踪性能:自动 增益控制AGC应 具有良好的跟踪 性能,以确保系 统能够快速跟踪 输入信号的变化。
抗干扰能力
信号质量:在存在噪声和干扰的情 况下,AGC能够有效地提高信号质 量。
鲁棒性:AGC具有较好的鲁棒性, 能够抵抗外部干扰和内部故障的影 响。
添加标题
添加标题
添加标题
添加标题
动态范围:AGC具有较宽的动态范 围,可以在不同的信号强度下保持 稳定的增益。
基于数字信号处理DSP的实现方式
信号采集:将模拟信号转换为数字信号 数字滤波:对信号进行预处理,去除噪声和干扰 特征提取:提取信号中的特征信息,如幅度、频率等 决策判决:根据特征信息进行决策,调整增益控制参数
基于可编程逻辑器件FPGA的实现方式
FPGA简介:FPGA是一种可编程逻辑器件,通过编程实现各种数字逻辑功能。
收机的需求。
目的:保持信号 的恒定功率,防 止信号过强或过 弱,从而提高通 信系统的性能和
稳定性。
工作原理:通过监 测接收信号的强度, 自动增益控制AGC 系统可以自动调整 发送机的输出功率, 以保证接收信号的
恒定功率。
应用领域:自动 增益控制AGC广 泛应用于通信、 雷达、声呐、广 播、电视等领域。
自动增益控制AGC在卫星通信中还可以抑制噪声干扰,提高通信的可靠性。
自动增益控制AGC的应用,使得卫星通信系统更加稳定、可靠,提高了通信质量。
自动增益控制 AGC的性能指标
跟踪速度
定义:自动增益控制AGC对输入信号变化的响应速度 重要性:决定了自动增益控制AGC对信号变化的适应性 影响因素:系统带宽、滤波器类型、算法优化等 优化方法:采用快速响应算法、调整系统参数等
AGC实现原理:利用FPGA的高速并行处理能力,对输入信号进行实时处理,实现自动增益控制功 能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子电路综合设计实验7.5 自动增益控制电路的设计
实验报告
学院:信息与通信工程学院
班级:
姓名:
学号:
班内序号:
一.课题名称:自动增益控制电路的设计
二.摘要
在处理输入模拟信号时,经常会遇到通信信道或传感器衰减强度大幅变化的情况。
针对此问题,可以采用自动增益控制(AGC)的自适应前置放大器,使增益能够随信号强弱而自动调整,以保持输出相对稳定。
AGC电路实现有反馈控制、前馈控制和混合控制三种,本实验采用了短路双极晶体管直接进行小信号控制的方法,控制输入信号在0.5mV~50Vrms范围(40dB范围内),使输出信号在0.5~1.5Vrms,即输出电压变化不超过5dB,信号带宽100~5KHz,从而简单有效地实现了AGC的功能。
关键词:自动增益控制、直流耦合互补级
三.设计任务要求
1.基本要求:
设计一个AGC电路,要求设计指标以及给定条件如下:
(1)电源电压:9V
(2)输入信号电压:0.5~50mVrms;
(3)输出信号:0.5~1.5Vrms;
(4)信号带宽:100~5KHz。
(5)设计该电路的电源电路(不要求实际搭建)
2.提高要求:
设计一种采用其他方式的AGC电路。
四.设计思路、总体结构框图
1.设计思路
AGC电路的实现有反馈控制、前馈控制和混合控制等三种,典型的反馈控制AGC由可变增益放大器(VGA)以及检波整流控制组成,本实验中电路采用了短路双极晶体管直接进行小信号控制的方法,从而简单而有效的实现AGC功能,如图1。
图1-反馈式AGC
如图2,可变分压器由一个固定电阻R
1
和一个可变电阻构成,控制信号的交流振幅。
可变电阻由采用基极—集电极短路方式的双极晶体管微分电阻实现,为
改变Q
1的电阻,可从一个有电压源V
2
和大阻值电阻R
2
组成的电流源直接向短路
晶体管注入电流。
为防止R
2影响电路的交流电压传输特性,R
2
的阻值必须远大于
R
1。
图 2 由短路三极管构成的衰减器电路
对于输入Q1集电极的正电流的所有可用值,Q1的集电极-发射极饱和电压小于它的基极-发射极阈值电压,于是晶体管工作在有效状态,其VI特性曲线如图2所示。
可以看出,短路晶体管的微分电阻与流过的直流电流成反比,即器件的微分电导直接与电流成正比。
在工作状态下,共射极连接的双极型晶体管的电流放大系数一般在100或100以上,在相当大的电流范围内,微分电阻都正确地遵守这一规则。
图中所示的晶体管至少可以在五个十倍程范围内控制微分电阻,即控制幅度超过100dB。
2.电路结构框图
自动增益控制电路主要由驱动缓冲电路、级联放大电路、输出跟随电路和增益反馈电路4个部分组成,如图3.
驱动缓冲电路级联放大电路输出跟随电路
增益反馈电路
图3
五.分块电路和总体电路的设计(含电路图)
1.分块电路
1)驱动缓冲级
其设计电路图如图4所示,当输入信号V IN驱动缓冲极Q1时,组成基极集电极输出的共射电路,它的非旁路射极电阻R3有四个作用:
①它将Q1的微分输出电阻提高到接近公式(1)所示的值。
该电路中
的阻值几乎可以唯一地确定这个输出电的微分输出电阻增加很多,使R
4
阻。
R D1≈r be+(1+βr ce/r be)(R3//r be) (1)
②由于R3未旁路,使Q1电压增益降低至:
A Q1=-βR4/〔r be+(1+β)R3〕≈-R4/ R3 (2)
有助于Q1集电极电流-电压驱动的线性
③如公式(2)所示,未旁路的R
3
响应。
④Q1的基极微分输入电阻升至R dBASE=r be+(1+β)R3,与只有r be相比,它
远远大于Q1的瞬时工作点,并且对其依赖性较低。
实验测试得晶体管Q1放大倍数很小,起到稳定输入的缓冲作用。
图 4 驱动缓冲级电路
2)直流耦合互补级联放大部分
电路图如图5所示;
图中晶体管Q2为NPN管,Q3为PNP管,将Q2的集电极与Q3的基极相连,两个管子实现共射—共射放大,利用直流耦合构成互补放大器,为电路提供大部分电压增益。
图 5 直流耦合互补级联放大电路
3)自动增益控制部分电路(AGC)
电路图如图6所示,其中R4构成可变衰减器的固定电阻,类似于图2中的电阻R1,而Q6构成衰减器的可变电阻部分, Q5为Q6提供集电极驱动电流,Q5的共射极结构只需要很少的基极电流,而射极电流流入Q6集电极,由于可变电阻的阻值与其流过的电流成反比,可改变电阻值。
因为电阻R17与C6并联,由于有二极管D1、D2单向导通作用,C6只能通过R17放电,故R17决定了AGC的释放时间。
在实际中,R17阻值可以选得大一的,延长AGC释放时间,方便观察。
电阻R19用于限制通过Q5和Q6的最大直流控制电流。
D1和D2构成一个倍压整流器,从输出级Q4提取信号的一部分,为Q5生成控制电压。
这种构置可以容纳非对称信号波形的两极性的大峰值振幅。
电阻R15决定了AGC的开始时间。
若与C6组合的R15过小,则使反馈传输函数产生极点,导致不稳定。
反馈原理:反馈电路在Q4发射极进行电压取样,另一端接C3后面,在输入中电路进行电流相加,由瞬时极性法可判断该反馈类型为电压并联负反馈。
即当输入信号增大时,输出电流也增大,Q6的微分电阻就会跟这变小,由于负反馈的作用,输入信号就会变小,导致输出减小,最终实现了输出信号基本稳定。
反之亦然,从而实现自动增益控制功能。
图 6 自动增益控制电路
2.总体电路
总体电路图如下:
当输入信号为0.5~50mVrms(40dB动态范围),信号带宽为100Hz~5KHz,使输出信号在0.5~1.5Vrms(变化不超过5dB)内。
并且,正弦输入信号从0.5至50mVrms的步长变化时的AGC开始时间约为0.3s,从50mVrms到0.5mVrms的AGC释放时间约为100s。
图7 总体电路图
六.实现功能说明
1)自动增益控制功能的实现
实验方法:先保持恒定的信号频率,将输入信号的有效值从0.5mV逐渐提高到50mV,用示波器记录输入输出波形,用交流毫伏表测量输入输出有效值。
再改变信号频率,使信号频率在100HZ至5000HZ之间变化。
可以从示波器波形和测试数据得出:在实验要求的频段内,当输入信号从0.5mVrms变化到50mVrms时,输出大约只是从685mVrms变化到840mVrms,输入变化了100倍,而输出仅增大了1.2倍,符合设计的要求。
图9 采用其他方式的AGC电路
如图所示为由VCA610与运放OPA680构成的AGC电路,即自动增益控制电路。
该电路用运放OPA680来反馈输出电压Vo。
二极管、电容C H及电阻R3构成峰值检波器,对输出信号的正峰值进行检波,在C H上产生反映输出电压峰值的控制电压送到增益控制端Vc,当输出电压Vo的正峰值高于参考电压V R时,VCA610的增益下降,从而保证输出电压在一定的线性范围内,即为常数1000:1。
R1、R2的分压值影响二极管的导通,配合R3、C H的时间常数,决定了正确的AGC起控点,自动增益控制范围为60dB。
R4、Cc用于OPA680反馈回路的相位补偿。
七.故障及问题分析
本实验的AGC电路较为复杂,在搭建电路时必须细心耐心,第一次搭建完成后,没有波形输出,排线也较为凌乱,第二次开始搭建电路时,我先采用逐级搭建的方法,即按照驱动缓冲电路、级联放大电路、AGC反馈电路的顺序进行,发现了第一次搭建时用错了电容。
并逐级测试Q1、Q2、Q3、Q4的输出波形,在坐标纸上记录下波形。
然而联调时仍没有正确的波形输出,遂逐一检查电路,发现是将各个部分联合时,未对加了Vcc之后的电阻位置进行调整所导致的。
经过三次调整,终于输出了合理的波形。
八.总结和结论
在此次实验中,我初步了解了AGC自动增益的原理,在设计、搭建电路的同时也巩固了我以前学过的知识,提高了综合运用能力和动手能力。
在实验中,进一步熟悉了multisim仿真软件的使用,熟悉了实验室中各种仪器的使用和调试,也学会了检查和分析电路中出现问题的原因,并且通过自己的思考找到了解决方法。
最重要的是这次实验是对我的耐心和细心程度的一次考验,使我受益匪浅。
九.所用元件及测试仪表清单
名称数量名称数量
数字万用表1台NPN三极管(8050)5个
稳压电源1台二极管(1N4148)2个
十二、参考文献
[1]《电子电路综合设计实验教程》北京邮电大学电路实验中心
[2]《电子电路基础》刘宝玲主编高等教育出版社。