巧求最值问题八种方法
求函数最值问题常用的10种方法
较大小,确定最值.
解析 因为f′(x)=3x2-3,所以令f′(x)=0,得x=
-1(舍正).又f(-3)=-17,f(-1)=3,f(0)=1,
比较得,f(x)的最大值为3,最小值为-17.故填3, -17. 点评 (1)利用导数法求函数最值的三个步骤:第一, 求函数在(a,b)内的极值;第二,求函数在端点的函 数值f(a)、f(b);第三,比较上述极值与端点函数值 的大小,即得函数的最值.(2)函数的最大值及最小 值点必在以下各点中取得:导数为零的点,导数不存 在的点及其端点.
三、换元法 换元法是指通过引入一个或几个新的变量,来替换 原来的某些变量(或代数式),以便使问题得以解决 的一种数学方法.在学习中,常常使用的换元法有 两类,即代数换元和三角换元,我们可以根据具体 问题及题目形式去灵活选择换元的方法,以便将复 杂的函数最值问题转化为简单函数的最值问题,从 而求出原函数的最值.如可用三角代换解决形如a2 +b2=1及部分根式函数形式的最值问题.
【例 4】设 x,y,z 为正实数,x-2y+3z=0,则 y 2 xz
的最小值为________. 分析 先利用条件将三元函数化为二元函数,再利用基 本不等式求得最值.
解析 因为x-2y+3z=0,
x+3z
y2 x2+9z2+6xz
所以y=
2
,所以 = xz
4xz
.
y2 6xz+6xz
又x,z为正实数,所以由基本不等式,得 ≥
∴Δ=(3y+3)2-4(y-1)(4y4)≥0,11
解得7≤y≤7(y≠1).综上得ymax=7,ymin=7.
点评 判别式法的应用,对转化的(y-1)x2+(3y+3)x +4y-4=0来说,应该满足二次项系数不为0,对二次 项系数为0时,要另行讨论,对本题若y-1=0,即 y=1,有(3+3)x+4-4=0,所以x=0.一般来说, 利用判别式法求函数的最值,即根据g(y)x2+h(y)x+
三角函数的最值求法
三角函数的最值求法掌握三角函数的单调性和有界性,能够利用三角函数的单调性及有界性来求得一些三角函数的最大值和最小值,是近年高考的热点内容之一.三角函数的最值问题,其本质上是对含有三角函数的复合函数求最值,因此,求函数最值得方法都能适用.当然还其他特殊的方法.三角函数的最值都是在限定区间上取得的,因而要特别注意题设中所给的区间.求三角函数最值时,一般要进行一些代数变换和三角变换,要注意函数有意义的条件、弦函数的有界性及变换的等价性.选择适当的方法是解题的关键.下面就例谈几种解决三角函数最值的方法.题型一:用换元法求函数的最值例1:若,求函数的最小值.思路:注意到函数的特征,若用万能公式,能将它化为关于的有理函数,从而不难用判别式方法求解.解析:令=t,,,则,当t=-1时,y=0;当y 0时,由于t为实数,从而有或.由于,故函数的最小值为.点评:展开函数式,得到一个含有、的对称式,运用变换“”同样可解得上一题.题型二:用均值不等式法求函数的最值例2:已知,且,求的最大值.思路:在三角函数关系的条件下,要求得角的最值,一般应设法转化为求该角的某一三角函数的最值.依题意,本题可以优先求y的正切的最值.解析:,且,当且仅当,即时,,又函数在上单调递增,.点评:选函数来求的角的最值时,必须注意选定函数的单调性,若选定的函数与角的最值取得时刻相同时,解题较为方便.题型三:利用三角函数的有界性来求函数的最值例3:求函数的最小值,并求出取得最小值时x的值.思路:先化简函数,再由正、余弦函数的有界性来思考,同时应注意角度的限定范围.解析:由降幂公式和倍角公式,得== .的最小值是,此时.点评:形如(a、b、c、d为常数)的式子,都能仿照上例变形为形如的式子,从而有关问题可在变形式的基础上求解.另外,求最值时不能忽视对定义域的思考.例4:已知圆的半径为R,其内接三角形ABC有成立,求的面积S的最大值.解析:由已知式可得,.==当时,点评:利用三角函数的性质来求三角函数的最值问题,是最常见的基本方法.因此,在解题时要认真解题,看该题结构特点是否能化为一个三角函数式,若能,要充分利用所有三角函数公式化为一个三角函数式,从而利用三角函数性质,求出最值.望大家在解题时注意.题型四:转化为二次函数求函数的最值例5:是否存在实数,使得函数在闭区间上的最大值是1?若存在,求出对应的a值,若不存在,试说明理由.解析:=当时,若,即,则当时,(舍去)若即,则当时,即或(舍去),若,即,则当时,(舍去)综上所述,存在符合题设.点评:求包含参数的三角函数最值时,应根据三角函数或本身的取值范围来进行分类讨论.题型五:轮换对偶求函数的最值例6:已知、、为锐角,且,求函数的最小值.解析:由= ,令,结合,得+ -得,所以当且仅当时,等号成立.故.题型六:利用判别式法求函数的最值例7:求函数的最值.解析:原式化为即当时,得到当时,代入原方程综上.点评:求分式形式的含正、余切三角函数的最值时,应考虑到用判别式法来求得.题型七:利用斜率求函数的最值例8:求函数的最值.解析:设平面上两点的坐标为,,则AB的斜率为.又A为定点,B在单位圆上,故直线AB:是圆的切线时得k值为函数y的最值,此时点评:求分式形式含正、余弦的三角函数的最值时,应考虑巧用斜率来求得.求三角函数最值的方法有:配方法、化为一个角的三角函数、换元法、基本不等式法等.三角函数的最值都是在给定区间上取得的,因而要加更注意题设中所给出的区间.求三角函数的最值时,一般要进行一些三角变换以及代数换元,须注意函数有意义的条件和弦函数的有界性.在求包含参数函数的最值时,解题要注意参数的作用和影响.(陕西洋县城关中学)。
数学最值题 巧解显神奇
第40卷第2期 2021年3月数学教学研究43数学最值题巧解显神奇王晖(安徽省灵璧县黄湾中学234213)摘要:结合高考等实际数学案例,归纳总结了 14种求数学最值问题的方法,以求更好地掌握和理解最值问题的巧妙解法.关键词:解法归类;最值;解法例析大家在学习数学知识的过程中,经常会遇到有关求最值的问题,对于此类问题只要开拓思维,活用 方法,常常可以巧妙、简捷获解.下面举例分析,希望 读者从中能够受到有益的启示.1利用一次函数的增减性求最值一次函数>;=々了+6(6夫0)的自变量T的取值范围是全体实数,图像是一条直线,因此没有最大(小)值;不过,当w时.此时的一次函数的图像变成了一条线段,根据一次函数的增减性,就有最大(小)值了.例1某工程队要招聘甲、乙两个工种的个工人150人,甲、乙工种的工人的月工资分别是1600 元和2000元.现要求乙工种的人数不少于甲工种人数的2倍.问甲、乙工种各招聘多少人时可使得每月所付的工资最少?解析设招聘甲工种的工人为x人,则乙工种的工人为(150 —x)人.由题意可得150 —j:>2_r,所以0<_r<50.设所招聘的工人共需付月工资^元,则有:y=1600+2000 (150—j)=—400jt+300000 (0<x<50).因为y随x的增大而减小,所以当x=50时.y m i…=100000(元).2利用二次函数最值公式求最值二次函数^二“:^+^+以“^“为常数且“夫0)性质中有:①若a〉0,当:r=_厂时,;y有最小值,l a'—4ac— b2②若a<0,当J:=一 f时,31有最大值,ia_ia c~b2^m»x_4a•利用二次函数的上述性质,将具有二次函数关系的两个变量建立二次函数,再利用二次函数性质进行计算,从而达到解决问题的目的.例2在测量某物理量的过程中,因仪器和观察的误差,使得〃次测量分别得到a,,a2共 »个数据.我们规定所测得物理量的“最佳近似值”a 是这样一个量:与其它近似值比较,a与各数据的差的平方和最小,依此规定从U l,a2,…,a,,推出《 =解析由题意A = (a 一a , )'+ (a—a2)2 +•.. +(〇 —a…)~=ncT_2(u i+a2+…十a…)aa\~\~a\~\~•m•^a2,, »于是由二次函数性质,当------1时,An有最小值.即应填广+a2+,"+夂n例3 某玩具厂计划生产一种玩具熊猫,每曰 最高产量为40只,且每日产出的产品全部售出,已知生产1只玩具熊猫的成本为R(元),售价每只P (元),且尺,P与J的关系式分别为i? =500 +30j:,P=170-2jt.(1)当日产量为多少时,每日获得的利润为收稿日期:2020-08-2444数学教学研究第40卷第2期 2021年3月1750 元;(2)当日产量为多少时,可获得最大利润?最大利润是多少?解析(1)根据题意有1750 =R r—i?,B P(170 — 2x)x— (500 +30j:)=1750,整理得•r2— 70 :r+1125 =0,解得■r1=25,:r2=45(不合题意,舍去).(2)由题意知,利润为P x-i? =—2x2+140x-500=-2(x-35)2+1950.所以当_r=35时,最大利润为1950元.3利用判别式求最值利用判别式求最值是一种较为常用的方法,过程简捷,易于理解.例4求丨的最大值与最小值.x~\~x~r1解析本题要直接求最大值与最小值可谓困难重重.若能够根据题意构造一个关于未知数i的一元二次方程,再根据x是实数,推得A>0,进而求出>的取值范围,并由此得出 > 的最值.设:-J- +1+7T TP整理得一x+1=y x2+yx+y,即 (1—y)x2_(1+3;)x+1一3;=0.因为i是实数,所以即(l+:y)2—4 (1—_y)2>0,解得所以~r:=-r|l的最大值是3,最小值是JT十JT十1 〇4利用圆锥曲线定义求最值当最值问题与圆锥曲线有关时,利用圆锥曲线定义求解最值,不仅直观简便.而且快捷明了.22例5 已知椭圆k+^=l,定点A(2,0), B(—1,1),M为椭圆上任一点,求2|iW A | +丨的最小值.解析由椭圆定义.注意到离心率为可求出]^(-^—,1),2|从4| +丨]^6|的最小值为9,如图1所示.5构造函数求最值最值问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数.例6求代数式1^/1^的最大值与最小值.解析y =x y1— x1,一再令:r=sin a,一贝lj有y=x v1—*r2 =sin a VT—sin“a=sin a •cos a=—sin2a.所以 > 的最大值为I,最小值为一|.即的最大值为I,最小值为一6利用非负数的性质求最值在实数范围内,显然有厂+々>々,当且仅当^=6==0时,等号成立,即y+M+z i:的最小值为k.例7设a,6为实数,那么a2+a6+62—a—2b 的最小值为______.解析 a2+a6+62—a—2/;=a l J r i b-l)a Jr b2-2b=(a+¥)2++62-吾卜+=(a H—)~+— (/;—l)2—— 1.Z4当a+’’2 1 =0,/)—1=0,即《=〇,/)=1 时,上式等号成立.故a2+a/?+//—“一2/;的最小值为一1.7利用讨论法求最值通过讨论然后进行比较判断是求最值常用的一种方法.例8求函数—11 —U+4I—5的最大第40卷第2期 2021年3月数学教学研究45值.解析先用零区间讨论法消去函数^中的绝对值符号,然后求出^在各个区间上的最大值,再加以 比较,从中确定出整个定义域上的最大值.易知该函数有两个零点x=l,:r=—4.当 _r<—4 时,3;=— (jr— l)+(x+4) —5 =0;当一4<:c<l 时,:y=—(:r—1) —U+4)—5 =—2x—8,得一10<;y=— 2x— 8^0;当 _r>l 时,:y=(_r—1)—(:r+4)—5=—10.综上所述,当x<— 4时有最大值,y m a x=0.例9 (2015年湖北卷)设R,[x]表示不超过x的最大正整数.若存在实数h使得[f]=l,[/2] =2,_",[/"]=,;同时成立,则正整数n的最大值是().(A)3 (B)4 (05(D)6解析由[f] =l,得 l<z<2;由[f2] =2,得 2<,<3;由[«4] =4,得 4<广<5;所以d•由|>3] =3,得 3<;3<4,所以 6<^<4V5■.由|>5] =5, 得5々5<6,这与6<f5<4A矛盾,故正整数》的 最大值是4.应选B.例10(2014年辽宁卷)已知定义在[0,1]上的函数/(•r)满足:①/(0)=/(1)=0;②对所有X d 6[0,1],且 _r关:y,有 |/(:1.)—/(:y) |<I.综上,l/h )—/(>)|<+,所以应选 B.8利用不等式与判别式求最值在不等式中,:r=a是最大值,在不等式x中,是最小值.例11已知:r,3>为实数,且满足x+y+w= 5,_r:y+:y w+/H x = 3,求实数w的最大值与最小值.解析由题意可得X + y= b — m,■sxy = 3 — r w(x+3^)= 3 — w(5 — m )=m z—5w+3.所以:r,:y是关于/的方程纟2— (5 —w)r+ (m2— 5爪 + 3)=0的两个实数根.所以A=[-(5-//i)]2-4(w2-5m+3)>0,即3w2—10m—13^0,解得一所以,《的最大值是的最小值是一i.例12(2014年辽宁卷)对于(•>0,当非零实数a,/)满足4a - — 2a6+ 4/厂一c=0 且使|2a+6|最大时,一 一 —H的最小值为.a b c解析设2a+ 6 =/,则2a =〖一 /?,因为4““_ 2ab-\~i b~—c=0,所以将2a=/—代人整理可得6心2—3"出2—c=0(1)若对所有:r,3;6[0,l],l/(:r)_/(:y;)|<a 恒成立,则々的最小值为()•(A)j(B)t(C)^(d)I由A>0解得一当 |2“+M 取最大值时,z=,代人(1)式得6解析不妨令当+时,|/(_r)—/(3〇|<去丨.厂_y丨<+;当了<1—时,=l[/(x)-/(l)]-[/(^)-/(〇)]l<|/(_r)—/(l)I+1/(3;)—/(0)|<Y |x — l l+y l^;—〇|=j(l-_r) + }广+ +}(厂 x)<|.再由2a=〖一6,得,所以3 4 , 5 ZyiO4/10" ,5-----—---------------------1---u b c f f c5 2/1〇 _V5c VF v r-V2)2-2^—2,当且仅当r=|■时等号成立.9数形结合求最值在解决问题的过程中,将数量关系与图形性质结合起来考虑,以“形”助数.可使问题变得简单、直46数学教学研究第40卷第2期 2021年3月观,降低解题难度,从而易于求解.例13求满足k+ 3 — 3i|的辐角主值最小的复数.解析满足条件的复数是以(一#,■#)为圆 心、半径为W的圆上的点,如图2所示.于是问题转化为求过原点与圆相切的直线的切点坐标.法,使用时需要一定的技巧变形,使之达到:和或积为常数;能取到等号.例16母线长为1的圆锥体积最大时,其侧面展开图圆心角p为().(A)^,(0^2"7r(D)解析设圆锥底面半径为r、高为/z,则有r^-\~h z=l,V=— • 7rr2/z,V = j i,2r A h22:=3(cos120°+isin120°)3V3 .—r—1例14已知l d=2,则|z— i|的最大值为().(A)l(B)2 (05(D)3解析如图3所7K,显见|z—i|max为圆心到点(0,1)的距离与半径的和.故应选D.10利用夹逼法求最值在求解某些数学问题时.通过转化、变形和估值,将有关量限制在某一数值范围内.再通过解不等式获取问题的答案,这一方法称为夹逼法.例15不等边A A B C的两边上的高分别为 4 和12,且第三边上的高为整数,那么此高的最大值可能为________.解析设^2,/:),£'3边上高分别为4,12,/;.因为2S aabc=,所以“=36.又因为r<a+/,=4/,,代人126 = 4,得12/>< 4M,所以/;>3.又因为r>a—6 = 26,代人12/) = t'/!,得126> 2M,所以/i<6.所以3</;<6,故整数A的最大值为 5.11利用基本不等式求最值利用基本不等式求最值是求解此类问题常用方2221 ^273^* 27^^当且仅当7=时取等号,/!V3 V6.此时$丌■应选D.例 17 设复数2:=3cos (9+2isin <9,求函数_y= (9一a rg z的最大值以及对应的(9值.解析根据题意、2tan 沒、^7:tan(arg z)=—-—>0(0*<(9<—),tan3;=tan(d— arg z)=tan0—tan(arg2)1 +tan d •tan(arg z)tan63 +2tan6tan d■h2tan62^6V612此时由^= 2 —=f,得V6_V60=arg tan例18 圆柱轴截面的周长为定值Z,那么圆柱第40卷第2期 2021年3月数学教学研究47的体积的最大值是().(A)(4-):,7r(B)^-(4-)37t〇9 2所以 /i+A=y+l+l—^ =2—.y+y.根据圆的方程可得(C)( +)3t t(D)2(y)37T解析设圆柱底面半径为/•,高为/i,则由轴截面周长为/,可得4r+2/2 =/,即2r+/! =体积V=Jrr2/i<;r(^±i)3=(|)37rjO D当且仅当/•=/! 时取等号.故应选A.6例19要建造一个容积为8立方米、深为2米 的长方体无盖水池,如果池底与池壁的造价每平方米分别为120元和80元,则水池的最低造价为______元.解析水池底长为《米、宽为6米,则由题意知a6=4,总造价:y=120c/6 +320(u +6)=480+320 (a+/))>480+640V^"=1760 元,当且仅当u=6 =2时取等号.12利用三角函数的恒等变换根据题意,利用三角恒等变换,再结合三角函数的有界性,常常可以顺利求解一类问题的最值.例20 (2017年全国卷H1 )在矩形A B C D中,x=—sin d:y=—cos d»V5 V5所以21.u+A=2----cos---sin6V5 V5=2----Vicos d—sin6)V5=2— sin(.9—<p),显然(/u+A)m a x= 3.故应选A.点评本题主要考査平面向量的基本定理以及三角函数恒等变换求最值问题.考查推理能力和计算能力.平面向量既有数的特征也有形的特征,利用 平面向量的数的特征.通过建立坐标系可以巧妙地解决具有平面几何特征的平面向量问题.13利用导数和函数的单调性求最值例21 (2014年北京卷)已知函数/(x)=:rcos:r.r r丌i—sin :r,x6(1)求证:/(■!)<0;(2)若 a---■</•> 对 >r€■ [0,-^]恒成立,求 ax LA B=1,AD=2,动点P在以点C为圆心且与BD 相切的圆上.若=+,则A的最大值为().(A)3 (B)2V2 (C)V5 (D)2解析根据已知条件.以C为圆心.B C为x 轴.C D为y轴建立平面直角坐标系.设圆的半径是r.由题意知=|,利用等面积法可得S A/JC D=r XV^=2,解得r=g.所以圆的方程是5由题意得《(—2,0),4(一2,1),0(0,1).设尸(■r,:y),因为 =所以(_r +2,_y— 1)=A(0.一1)+/乂(2,0),|j+2=2« .即丨l:y—1=—A.的最大值与的最小值.思路分析(1)首先观察函数式,求出其导函数,根据导函数判断其单调性,从而进一步判断/(•r)与0的大小关系.(2)根据不等关系,可以构造含参数u 4的不等式.根据区间范围.利用导函数即可求出参数的范围或取值.解析(1)由/(jt)=x c o s_r—sin j•,得/(x)=cos x—xsin x— cos x=—xsin j:.因为在区间(0,f)上/"(O')=—:r sin:r 0,所以/(■r)在区间[0,|]上单调递减.从而/(x)</(0)=0.si n t(2)当:时,~_>a”等价于“sinXsin r>0”;“:—<6”等价于“sin _r—/«•<0”.X48数学教学研究第40卷第2期 2021年3月令 g(:r)=sin:r—c r,贝lj g '(:r)=c o s:r—c.当时,^■(:?:)〉0对任意:r6(0,y)恒成立•当时,因为对任意c o s x—r<0,所以g(:r)在区间[0,音]上单调递减.从而^'(jt)<#(0)=0对任意了 6(0,|)恒成立•当0<f<l时,存在唯一的_1-。
巧用柯西不等式求函数的最值
中等号成立的条件. (作者单位:齐齐哈尔大学理学院) 39
Copyright©博看网 . All Rights Reserved.
( ) 根据柯西不等式可得 1 ×
-6 + x + 1 ×
12 - x
2
≤
( ) ( ) ( ) 12 + 12
é
ê
-6 + x
2
+
ë
12 - x
2ù
ú
û
,
即 f 2(x) ≤ 2 × 6 = 12 ,所以 | f (x)| ≤ 2 3 ,
当且仅当 -6 + x = 12 - x 时,即 x = 9 时,等号成立, 综上,函数的最大值为 2 3 .
西不等式,通过将已知关系式变形,或者将已知条件
和结论相互关联起来,构造出 n 个数的和或积,使其和
或积为定值,然后便可直接运用柯西不等式求得最值.
例
1.求函数
y
=
sin sin x
x +
+ 2
3 cos cos x
x +
1
的值域.
解:将原式变形可得 y = (1 - y)sin x + (3 - 2y)cos x ,
根据柯西不等式可得
[ ] y2 ≤ (1 - y)2 + (3 - 2y)2 (sin2 x +cos2 x),
例 4. 求 函 数 u = (y - 1)2 + (x + y - 3)2 + (2x + y - 6)
的最小值.
即
2y2
-
7y
+
5
≥
0
巧用数形结合思想求函数最值
巧用数形结合思想求函数最值六招破解函数最值及巧用数形结合求参数问题一、六招破解函数最值问题函数最值问题一直是高考的一个重要的热点问题,在高考中占有极其重要的地位.为了让大家能够更加系统、全面地掌握函数最值问题的解决方法,下面就其问题的常用解法,分类浅析如下:1.配方法配方法是求二次函数最值的基本方法,如函数F(x)=6z/(x)2+/7/(x)+c(qHO)的最值问题,可以考虑用配方法.[例 1]已知函数 =(eA—a)2+(e A—tz)2(tzeR, aHO),求函数 y 的最小值.2.换元法换元法是指通过引入一个或几个新的变量,来替换原来的某些变量(或代数式),以便使问题得以解决的一种数学方法.在学习中,常常使用的换元法有两类,即代数换元和-:角换元,我们可以根据具体问题及题目形式灵活选择换元的方法,以便将复杂的函数最值问题转化为简单的函数最值问题.如可用三角换元解决形如/+/=1及部分根式函数形式的最值问题.3・不等式法利用不等式法求解函数最值,主要是指运用基本不等式及其变形公式來解决函数最值问题的一-种方法.常常使用的基本不等式有以下几种:aIb#a|b。
er2ab(a, b 为实数),° ^y[ab(a0, b20), abW。
J 些艺(a, b为实数).14[例3]函数fix) =-+t^(O<x< 1)的最小值为・兀1X4.函数单调性法先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种方法在高考屮是必考的,多在解答题中的某一问出现.[例4]已知函数»=xln x,则函数心)在也r+2](r>0)上的最小值为.5.导数法设函数兀Q在区间[a, b]上连续,在区间(a, b)内可导,则的在[a, b]上的最大值和最小值应为兀0在(d, b)内的各极值与», fib) 中的最大值和最小值.利用这种方法求函数最值的方法就是导数法.[例5]函数»=x3-3x+l在闭区间[—3,0]上的最大值,最小值分别是,•6.数形结合法数形结合法是指利用函数所表示的几何意义,借助几何方法及函数的图象求函数最值的…种常用的方法.这种方法借助儿何意义,以形助数,不仅可以简捷地解决问题,还可以避免诸多失误,是我们开阔思路、正确解题、提高能力的-种重要途径.[a,[例 6]对 a, bWR,记 max|d, b\=\i1 函数=max||x+l|, |x—2||(x£R)的最小值是.二、巧用数形结合妙解3类求参数问题通过以下三个方面体会数形结合思想的运用.1.通过基本函数模型及变式的图象求参数的取值范围或值|lg x|, OvxWlO,若a,b,c互不相等,[例1]已知函数fix)=<1—2^+6,兀>10,_!»=»=»,则abc的取值范围是(2•通过函数的零点与方程的解的相互关系求函数零点和方程的解及参数的范围[例2]已知mGR,函数/(x)=x2+2(m2+l)x+7,g(x)=-(2m2—m+2)x+m.(1)设函数p(x)=/U)+g(x)・如果p(x)=0在区间(1,5)内有解但无重根,求实数加的取值范围;d,总存在唯一非零实数b(bHa),使得/2(d)=/z(b)成立?若存在,求加的值;若不存在,请说明理由.3.通过圆或圆锥曲线的部分图形与函数图象的关系来求参数的范围[例3]如果函数y=l+p4—F(|x|W2)的图象与函数2)。
巧用数形结合思想求函数最值
巧用数形结合思想求函数最值
1.利用函数图像:函数的图像能够直观地表示出函数的性质和变化规律。
通过观察函数图像的形状和趋势,可以得到函数的最值。
例如,对于一个连续递增函数,其最小值一定在定义域的最左边,最大值一定在定义域的最右边。
对于一个连续递减函数,则相反。
因此,可以通过观察函数图像的趋势来确定函数的最值。
2.利用导数和极值:当函数存在导数时,可以通过导数和极值的关系来求函数的最值。
根据导数的定义,函数的极值点对应着导数为0的点。
因此,求函数的最值可以转化为求函数导数的零点。
利用微积分的知识,可以求得函数的导数,然后找出导数为0的点,通过比较这些点的函数值来确定函数的最值。
3.利用平均值不等式:平均值不等式是数学中的一个重要定理,它可以用来求函数的最值。
平均值不等式的基本内容是:对于一组非负数的平均值,其最大值等于这组数中的最大值,最小值等于这组数中的最小值。
利用这个定理,可以将函数的求最值问题转化为一组非负数的最值问题,进而求得函数的最值。
除了以上几种常见的数形结合思想,还有其他一些方法,如利用等式和不等式的性质,利用对称性等。
这些方法在不同的问题中都有所应用。
最后,需要注意的是,求函数的最值并不总是一件容易的事情,它涉及到数学的各个方面,需要灵活运用各种方法。
在解决问题的过程中,除了观察图形和利用数学定理外,还需要深入理解问题的背景和条件,灵活运用数学知识,才能得出准确的结果。
因此,在求函数最值时,需要注意综合运用各种数学思想和方法,以取得较好的效果。
均值不等式解题方法和技巧总结
利用均值不等式求最值的方法和技巧几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立;③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。
一、 配凑(8种技巧)1.拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。
例1 已知01x <<,求函数321y x x x =--++的最大值。
解:()()()()()()222111111y x x x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=∙∙∙-≤=⎪ ⎪⎝⎭。
当且仅当112x x +=-,即13x =时,上式取“=”。
故max 3227y =。
评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。
例2求函数)01y x x =<<的最大值。
解:y ==因()()32222221122122327x x x x x x ⎛⎫++-⎪∙∙-≤=⎪ ⎪ ⎪⎝⎭, 当且仅当()2212x x =-,即x =时,上式取“=”。
巧用均值不等式及其条件求最值
巧用均值不等式及其条件求最值(南京师范大学数学与计算机科学学院 张逸洁)均值不等式是高中阶段初等数学中最重要的基本不等式之一,在许多问题的解决中往往能发挥出它的独特功能,对于它及它各种变式的掌握和熟练运用也是求解很多与不等式有关的最值问题的重要方法。
本文将归纳介绍均值不等式在最值问题中的一些巧妙运用,希望能够开拓学生的思维,对高中生不等式的学习有所帮助。
一、均值不等式1.22,2,a b R ab ab ∈+≥、(当且仅当a=b 时取“=”)。
推论:,a b R a b +∈+≥、,(当且仅当a=b 时取“=”)。
2.变形,对a b R ∈、积向平方和转化:222a b a b +⋅≤。
对a b R ∈、积向和转化:2()2a b a b +⋅≤。
注:这里有“最值定理”: 若,,,x y R x y s xy p +⋅∈+==2()2x y xy +≥⇔≤则x+y 运用此定理求最值时必须具备“一正,二定,三相等”这三个条件。
3.333,3a b c Ra b c abc +∈++≥、、,(当且仅当a=b=c 时取“=”)推论:,a b c R a b c +∈++≥、、,(当且仅当a=b=c 时取“=”)4.变形:对3,()3a b c a b c R abc +++∈≤、、 方法小结:在运用均值不等式求正数和的最小值时,凑积为定值;求正数积的最大值时,凑和为定值。
二、巧用均值不等式求解最值问题在求解函数最值问题的过程中,我们通常运用不等式,函数单调性,数形结合等方法分析解答。
本文着重介绍均值不等式在求解此类问题中的妙用,旨在帮助读者系统归纳,拓展思维,灵活解题。
1. 连用例1:已知3222160,a b a b a b ab b-+>>-求的最小值。
解:32222222222161616166416()2a b a b a a a a b a b ab b ab b b a b a -+=+=+≥+=+≥+----()216.64a b a ⎧⎧=⎪⎪∴⎨⎨==⎪⎪⎩⎩2b=a-b 当且仅当即a分析:有时利用均值不等式求最值时只用一次并不能解决问题,通常需要连用来巧求最值。
初中线段最值问题的常用解法
初中线段最值问题的常用解法初中线段最值问题可以通过几种常用解法来解决,其中包括暴力法、排序法、差分法、前缀和法和优先队列法等。
下面将逐一介绍这些常用解法。
一、暴力法:暴力法是最简单直接的解法,通过计算所有可能的情况,找到线段的最大最小值。
具体步骤如下:1.遍历线段的所有可能点对,计算它们之间的长度,并根据需求记录最大值或最小值。
2.对于含有n个点的线段,总共有C(n, 2) = n(n-1)/2个点对,因此时间复杂度为O(n^2)。
二、排序法:排序法首先将线段的所有点按照坐标大小进行排序,然后在有序的序列中找到最大最小值。
具体步骤如下:1.将线段的所有点按照坐标大小进行排序,可使用快速排序或归并排序等算法。
2.排序后的序列中,最小值为第一个点的坐标,最大值为最后一个点的坐标。
3.时间复杂度主要花在排序过程上,一般为O(nlogn)。
三、差分法:差分法是一种巧妙的解法,通过对坐标进行映射,将求最大最小值的问题转化为求差分数组的最大最小值。
具体步骤如下:1.首先对坐标进行离散化处理,将所有的线段点映射到一个连续段上,每个点的映射值对应它在离散化后的序列中的位置。
2.创建一个差分数组,将映射后的位置上的数值标记为1,其他位置上的值为0。
3.对差分数组进行前缀和处理,得到一个前缀和数组。
4.判断差分数组的最小值和最大值所对应的位置,即为原线段的最小值和最大值在映射后的序列中的位置。
5.根据离散化的映射关系,可将得到的位置映射回原线段上。
6.时间复杂度为O(n)。
四、前缀和法:前缀和法是一种相对简单高效的解法,通过对坐标进行前缀和处理,快速计算出每个位置的前缀和值,从而得到最值。
具体步骤如下:1.先计算出原始线段上每个点的前缀和,得到一个前缀和数组。
2.通过计算前缀和数组的差分,得到一个差分数组。
3.对差分数组求前缀和,得到一个二次前缀和数组。
4.遍历二次前缀和数组,记录最大最小值所对应的位置。
5.时间复杂度为O(n)。
巧用数形结合求函数的最值
设 u t) ( + 1 < O对 某 个 t∈{ , , (。 “ t o ) 。 O 1 丁) 立. 失一 般 性 , 设 (。 ) 成 不 假 t+1 >0
“ f+ 2 (0 ) 一 ( + 6 t+ 1 ) (o 1 一 u t) 2 (0 ) “ t+ ) (0 > ( + b t + 1 ) (o 1 2 (。 ) u t十 ) ( 4 1)
\
在 轴上 的 截距 ( 图 3 . 为直 线 与 椭 圆 如 )因 部分 有公 共 点 , 以 当且 仅 当直 线 与椭 圆 部 所 分相切 时, Y最 大 .由 判 别 式 法 求 得 +: 的 离 平 专如 ) x y 1 距 的 方1 图1 = = ( ・
例
 ̄
的最 大值 是 3 当且仅 当 ;
+ Y 过 点 ( 3, ) , √ 0 时 Y=  ̄ / +1+
2
设
Y =  ̄ z 1x 2 + / - 0+ 6 — x —
/ 2 —+5 xER , Y的最小 值. — -2 x x ( )求 解
=
 ̄ —2 / x的最小值 是√ . 4 3
在 () , £ 。 , 7 中 令 一t+2 利用 ( 4 可得 1)
u(o 3 t+ )
一
设存在 t∈V, 0 使得 U ) , U t一 ( 一0 则 (o 1 u t+1 <O 不失一 般性 , )( 。 ) . 假定
“ t十 1 > “ t) (o ) (0 . () 8
( + b t+ 2 ) ( + 2 - u t+ 1 2 (o )“ ) (o )
小值 为 I ABf . 一5
收 稿 日期 :0 9 1 —0 20 - 0 1
5 6
巧求最值问题八种方法
巧求最值问题八种方法如何求“最值"问题求最大值与最小值是中学数学常见的一种题型,在数学竞赛中作为一个靓点大量存在,解这类题有一定的难度和技巧,所以不少同学为之感叹,这里向大家介绍一些求最值问题的方法与技巧。
一、利用配方求最值例1 :若X,y是实数,则x2 xy y2 3x 3y 1999的最小值是____________ 。
分析:由于是二次多项式,难以直接用完全平方公式,所以用配方法来解更为简捷。
原^式=1(x22xy y2) 1(x26x 9) 1 (y26y 9) 1990=2(x y)21(x 3)21(y 3)21990显然有(x-y) 2> 0, (x-3) 2> 0, (y-3) 2> 0,所以当x-y=0,x-3=0,y-3=0 时,得x=y=3 时, 代数式的值最小,最小是1990;例2,设x为实数,求y=x2x丄3的最小值。
x分析:由于此函数只有一个未知数,容易想到配方法,但要注意只有一个完全平方式完不成,因此要考虑用两个平方完全平方式,并使两个完个平方式中的 x 取值相同。
由于y=x 22x i x - 2 i=(x i )2(依斗)2i ,要求 y 的最小x J x '值,必须有X-仁0,且眉士 0,解得x=1,Vx于是当x=1时,y=x 2x - 3的最小值是-1。
x二、利用重要不等式求最值例3 :若xy=1,那么代数式 丄 二的最小值 x 4y分析:已知两数积为定值,求两数平方和的最 小值,可考虑用不等式的性质来解此题,所以:4角的最小值是1x 4y三、构造方程求最值例 4:已知实数 a 、b 、c 满足:a+b+c=2, abc=4. 求a 、b 、c 中的最大者的最小值.分析:此例字母较多,由已知可联想到用根与 系数的关系,构造方程来解。
解:设c 为最大者,由已知可知,c>0,得:a+b=2-c, ab=4,则 a 、b 可以看作 x 2(2 c )x 40 的两c c1 (xy )2=11 ~4 x1 4y 4(27)2根,因为 a 、b 是实数,所以(2 c )24^ 0,即 c 7c 3 4c 2 4c 16 0, (c 2)( c 2)(c 4) 0,得 c 2 或 c 4,因为 C 是 最大者,所以c的最小值是4.四、构造图形求最值例5:使x 24 (8—x )2—16取最小值的实数X 的值 为______ 」分析:用一般方法很难求出代数式的最值 ,由于 X 24(8一XL16=心―0厂(0一2)28厂(0一4)2,于是可构造图形,转化 为:在x 轴上求一点c (x,0),使它到 『 两点A (0,2)和B (8, 4)的距离 * 和CA+CB 最小,利用对称可求出 C 点坐标,这样,通过构造图形使问 题迎刃而解。
数列构造巧解最值问题-2022公务员联考行测解题技巧
数列构造巧解最值问题-2022公务员联考行测解题技巧最值问题是公职类考试中常见的问题,此类题型难度一般较低,解题方法也比较固定,所以是我们做题时应当优先考虑的题型。
国考和近些年的联考当中此类题型均有消失,信任大家在看完本篇内容后,今后再遇到此类问题就会迎刃而解,快速拿分。
一、如何识别数列构造类的最值问题:数列构造类的最值问题一般是描述总数肯定的元素,分成若干组,求其中一组的最值状况。
比如:“将20个苹果分给5个人,每人得到的苹果数量各不相同,那么得到苹果数量最多的人至少能得到多少个苹果?”就是一道典型的数列构造类的最值问题。
二、如何来进行解题:数列构造类最值问题的解题方法分为三步:排序定位:将各个组根据大小挨次排列好,求哪一组的数值,就设哪一组的元素个数为x。
比如上面那个例子,我们应当设得到苹果数量最多的人至少能得到x个苹果。
反向构造:非所求的其他组的数量我们需要对其进行构造,构造时需要进行最值分析。
以刚才的例子为例,总数20个苹果是肯定的,问最多的人“至少”得到多少个苹果,那么其他人就需要尽可能多地得到苹果。
因每个人得到的苹果数量不同,则其次多的人最多可以得到x-1个苹果;第三多的比其次多的还要少,最多可得x-2个苹果;以此类推,第四多的最多可得x-3个苹果,得苹果数最少的人最多可以得到x-4个苹果。
加和求解:上述构造完成后,将各组元素加和等于总数,可以得到一个方程,进行求解即可。
以上题为例,可列出方程20=x+(x-1)+(x-2)+(x-3)+(x-4),解出x=6得出答案。
三、例题讲解:例1:(2022年内蒙古)从某物流园区开出6辆货车,这6辆货车的平均装货量为62吨,已知每辆货车载重量各不相同且均为整数,最重的装载了71吨,最轻的装载了54吨。
问这6辆货车中装货第三重的卡车至少装载了多少吨【思路点拨】本题的正确答案为B选项。
本题的总量为6×62=372吨,分成了6组,问其中第三多的那组至少装载了多少吨。
巧求“最值”问题八种方法
Байду номын сангаас
4 + 4 一 1 ≥ O,( 4 2 ( 一 2 ( 一 4 9 0, O f c 6 f )f )f ) - 得 < ≤
2或 c 4 因 为 C 最 大 者 , 以 c 最 小 值 是 4 ≥ , 是 所 的 .
4 构 造 图 形 求 最 值
例 5 使  ̄z +4  ̄( 一 41 取最 小值 的 实 / 4 / 8 ) - 6 -
・
一
正
1
、
,
2
( 1 +( 一 ) 2 的 小 必 有z ) — 一, 一 。 1 要求 最 值,须
、 Z 1
—
所 以 一 — z一 2 令 Y 0 得 o , 一 ,
8
1 , / 一亡 一0 解 得 z , —0 且 ̄ z , 一1 于是 当 z 一1时 , 一
C
一
1 利 用 配 方 求 最 值
例 1 若 z Y是 实 数 , - 一x 4 Y 一 3 , 则 z y - 。 x一 3 + y 19 9 9的 最 小 值 是 ( 98年 数 学 新 蕾 竞 赛 题 ) 19 . 分 析 与 解 :由 于 是 二 次 多 项 式 , 以直 接 用 完 全 平 难 方公 式 , 以用 配 方 法 来 解 更 为 简 捷 . 所
数 z的 值 为 ( 0 6年 全 国初 中数 学 竞 赛 试 题 ) 20 . 分 析 与解 :用 一 般 方 法 很 难 求 出 代数 式 的 最 值 , 由
原式一÷ ( x Y) ÷ ( x 9 4 z 一2y 4 - 4 - z 一6 ) - 4 -
1 1 1
1
于 是 构 造 如 图 所 示 . A( , 作 0 2 关 于 z轴 的 对 称 点 A ( , 2 , ) 0 一 ) 令 直 线 A B 的 解 析 式 为 y— k 4 x -
最值问题的几种解法
最值问题的几种解法舞钢市二中 贾彩霞 邮编 462500初中数学中,不论是中考还是竞赛,"最值"问题都是每年必考的内容.纵观近几年的数学竞赛,"最值"问题不仅出现在解答题中,而且在填空、选择题中也多有涉及,可以说成为了每年竞赛的热点内容.反观近几年的中考,也几乎每年必考.下面笔者就十多年数学教学中所遇到的"最值"问题的常见类型和方法介绍如下:一、 构造函数法“最值”问题中一般都存在某些变量变化的过程,因此它们的解决往往离不开函数。
【例1】已知:x、y、z为实数,且满足⎩⎨⎧=+-=-+3262z y x z y x 那么x2+y2+z2的最小值是多少?解:设w=x2+y2+z2由已知:⎩⎨⎧-=-=x y x z 54 代入w中得: w=3x2-18x+41=3(x-3)2+14故当x=3时,w取最小值14。
二、构造三角形法【例4】函数106422+-++=x x x y 的最小值为 ( ) A .102+ B .113+ C .23 D .62解:答案选C 分析:将原函数式化为22221)3(2+-++=x x y 可见y可以看作是两个直角三角形的斜边的和,于是构造Rt △OAM, Rt △BCM,使OA=2,OM=x,BC=1,BM=3-x (如图),则 ∣AM∣=222+x ,∣CM∣=221)3(+-x A ∴y=∣AM∣+∣CM∣≥∣AC∣ 2=223)12(++=23 O M , M ′ B所以,当AMC三点共线时,有x x -=312得x=2时y最小=23 C二、构造二次方程法:【例3】已知x、y为实数,且满足x+y+m=5,xy+ym+mx=3,求实数m的最大值。
解:由条件等式得:x+y=5-m,x·y=3-m(x+y)=3-m(5-m)=m2-5m+3∴x、y是方程z2-(5-m)z+(m2-5m+3)=0的两个实数根,∴△=〔-(5-m)〕2-4(m2-5m+3)≥0, 即3m2-10m-13≤0解得:-1≤m≤313∴m的最大值是313三、构造方差法【例4】已知:正实数a、b、c、d、e满足等式a+b+c+d+e=8和a2+b2+c2+d2+e2=16,求实数e的最大值。
解“最值问题”的几种方法
综合理论课程教育研究286 学法教法研究最值问题是我们所熟悉的问题,如今,经历了中学乃至大学的知识学习,我们接触到了各种各类的最值问题,同时我们也相应学习了求解各类最值问题的方法,而这些方法也有助于我们解决生活中各式各样的最值问题,下面我就为大家归纳下求解最值问题的几种方法.一、配方法对于可以转换成“一元二次函数型”的函数,我们都可以利用配方法对其最值进行求解.例1 求在区间内的最值.分析 本题看上去较为复杂,包括不同类型指数的运算,但稍加观察的话,你就会发现,此中的函数是可以转化为“一元二次型的函数”又,有取得最大值为;当时,.二、判别式法对于一元二次方程,我们可以利用来判断其是否存在实根,那么对于一个一元二次函数,若其值域不为空集的话,那么我们就可以认为方程的判别式,由此求得原一元二次函数的值域,进而就可以求得该一元二次函数在某定义域内的最值情况.例2 求函数的最值.分析 本题可以利用配方法进行求解,但过程较为繁琐.观察原题,可以发现函数的值域不会为空集,因此可以考虑到利用判别式法进行求解.解法如下:原等式可化为:()可以得到若,则有若,则有于是,则;若,则.会成立,还需要进行一项后续工作,将等号的值代入原方程,观察原方程是否有实数解,即是否有相应的值与对应.若存在,我们就可以直接确定最值了.三、换元法对于一些特殊的函数,我们可以利用换元法对其进行最值求解,基本思想是将某一部分当做一个整体或者用一个新的变量来代替某一整体,达到化繁为简,化陌生为熟悉,从而帮助我们更加便利的解决问题.换元法通常有三角代换和三角代换两种.例3 求函数.分析 对于这类含根号的函数,为了化繁为简,换元法是比较大众的方法.求解如下:,则所隐含的定义域为,于是,我则即时,取得最小值为不等式法求解最值问题主要是利用以下几个重要的不等式及其变形来处理最值问题的.不等式(),其中注意:当且仅当时等号成立.在用不等式求函数的最值时,经常需要配合某些变形技巧,结合已知条件进而进行求解.例4 设,,记中最大数为,则的最小值为多少?分析 本题的计算涉及到对数,准确应用对数的运算性质,认真观察,发现其中的技巧.由已知条件可得所求为中最大的数,不妨设中最大的数为A,则.由于,所以,当且仅当时等号成立,此时为最小,那么A 能否取到最小值2呢?容易知道,当时,,即A 可以取得最小值2,从而的最小值为.五、单调性法求解函数在指定区间的最值的时候,我们应该考查该函数在该指定区间内的单调性情况.如果函数在该区间内是单调的,则该函数的最值在区间的端点上取得.若函数在该区间上并不是单调的,则我们就可以考虑把该区间分割成若干个小的区间,目的是使得该函数在分割的每一个小区间上是单调的,再求出各个小区间上的最值情况,通过比较,得到整个区间上的最值.例5 设函数是奇函数,对于任意均有关系,若时,且.求在上的最大值和最小值.解“最值问题”的几种方法陈 龙(福建省晋江市内坑中学 福建 晋江 362200)【中图分类号】G634.6【文献标识码】A【文章编号】2095-3089(2018) 11-0286-02综合理论课程教育研究学法教法研究 287分析 本题若能确定在上的单调性,其最值也就可以相继求得.下面来考察在上的单调性:设任意且,则.由题设可知,为奇函数,且,,则,则在上单调递减,即在两端点处取得最值.因为,则,进而.又故在上的最大值为,最小值为六、导数法对于基本初等函数以及某些复合函数,我们可以利用导数这一工具有效的对其进行最值求解.设在上是连续,在上是可导,则在上的最大值和最小值就是在内的每个极值与中的最大值与最小值.利用导数的方法进行最值的求解适用性广,在解题例.分析 令由于方差恒大于或者等于0的特征,我们也可以利用方差解决某些的最值问题.例7 确定最大的实数Z,使得实数满足: ,.分析 按照常规的思路,本题不容易攻克,可以巧妙的,构造的方差得,Z .八、三角函数最值的常见求法1.巧用定义域求解三角函数的最值问题,在大多数的题目中,我们必.例8,求值和最小值.分析 此类三角函数可以视作为或的形式,求解其最值值为.2.大多数的数学题型中,题干中所给出的条件都有其特殊的作用和功能,所以,在解题的过程中,我们不能忽视任意一个条件.例求的最小值.分析 个,我们要做的是如何正确的去用好这个已知条件.当然,我们也不能盲目地瞎猜,根据题目要我们求的东西去巧妙地利用好这个已知条件.现最小值.又,即对于一些较为复杂的三角函数,为了求解的方便,我们可以去寻找题干的特点,化繁为简,换元法一般是首选.例10 已知,求的最大值和最小值.分析 对于三角函数,我们应该清楚,其存在着这么一种转化关系:此中就启发我们可以运用换元法快捷简便地解决相应三角函数的最值问题.4.巧引辅助角三角函数是一个特殊的函数,自然也有其独门的“法宝”——辅助角公式,能否巧妙地运用辅助角公式也是能否成功解题的关键.例11 求函数的最值.分析 直观地来看,这是一个分式代数式,分子、分母中均含有三角函数,这无疑给解题增添不少难度,但如果我们对其做一个稍微的变形,情况可能就不一样了:原函数可变为:,观察这个等式的。
高中求最值的方法总结
高中求最值的方法总结三角函数的最值或相关量的取值范围的确定始终是三角函数中的热点问题之一。
以下是小编整理的高中求最值的方法总结,欢迎大家前来查阅。
高中求最值的方法总结篇1方法一:利用单调性求最值学习导数以后,为讨论函数的性质开发了前所未有的前景,这不只局限于基本初等函数,凡是由几个或多个基本初等函数加减乘除而得到的新函数都可以用导数作为工具讨论函数单调性,这需要熟练掌握求导公式及求导法则,以及函数单调性与导函数符号之间的关系,还有利用导数如何求得函数的极值与最值。
例1 已知函数,当x∈[-2,2]时,函数f(x)的图象总在直线y=a-e2的上方,求实数a的取值范围。
分析:此题属于恒成立问题,恒成立问题大都转化为最值问题。
解:原问题等价于f(x)>a-e2恒成立,即x2+ex-xex>a-e2在[-2,2]上恒成立,即x2+ex-xex+e2>a在[-2,2]上恒成立。
令g(x)=x2+ex-xex+e2>a-e2,x∈[-2,2],原问题等价于a 下面利用导数讨论g(x)的最小值,求导可得g'(x)=x(1-ex)。
当x∈[-2,0]时,g'(x)≤0,从而g(x)在[-2,0]上单调递减;当x∈(0,2]时,g'(x)<0可知g(x)在(0,2]上也单调递减。
所以g(x)在[-2,2]上单调递减,从而g(x)min=g(2)=2即a∈(-∞,2)评注:本题是求参数的取值范围问题,利用等价转化的思想可化为不等式恒成立问题,进而化为最值问题,再借助于导数讨论函数的单调性求出的最值。
其实高中阶段接触到的最值问题大都可以运用单调性法求得最值。
方法二:利用不等式求最值掌握和灵活运用,│a│+│b│≥│a±b│≥││a│-│b││这一类型的基本不等式,在求一些函数最值问题时通常十分便捷,在解题时务必注意考虑利用不等式求最值的条件限制。
例2 若x∈R,且0 分析:本题可以运用单调性法求最值,但是较麻烦,下面介绍一种新的方法。
求极值与最值的方法
求极值与最值的方法1 引言在当前的数学教育中,求初等函数的极值与最值占有比较重要的位置,由于其解法灵活,综合性强,能力要求高,故而解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法。
下面我们将要介绍多种求初等函数的极值和最值的方法。
2 求函数极值的方法极值定义:设函数()f x 在0x 的某邻域内有定义,且对此邻域内任一点x 0()x x ≠,均有0()()f x f x <,则称0()f x 是函数错误!未找到引用源。
的一个极大值;同样如果对此邻域内任一点x 0()x x ≠,均有错误!未找到引用源。
,则称0()f x 是函数错误!未找到引用源。
的一个极小值。
函数的极大值与极小值统称为函数的极值。
使函数取得极值的点0x ,称为极值点。
2.1 求导法判别方法一:设()f x 在点0x 连续,在点错误!未找到引用源。
的某一空心邻域内可导。
当 x 由小增大经过错误!未找到引用源。
时,如果:(1)'()f x 由正变负,那么0x 是极大值点;(2)错误!未找到引用源。
由负变正,那么0x 是极小值点; (3)错误!未找到引用源。
不变号,那么0x 不是极值点。
判别方法二:设()f x 在点0x 处具有二阶导数,且'()0f x =,''()0f x =。
(1)如果''()0f x <,则()f x 在点0x 取得极大值;(2)如果''()0f x >,则()f x 在点0x 取得极小值。
判别方法三:设()f x 在点0x 有n 阶导数,且0)()()(0)1(00===''='-x f x f x f n0)(0)(≠x fn ,则:(1)当为偶数时,)(x f 在0x 取极值,有0)(0)(<x f n 时,)(x f 在0x 取极大值,若0)(0)(>x fn 时,)(x f 在0x 取极小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何求“最值”问题
求最大值与最小值是中学数学常见的一种题型,在数学竞赛中作为一个靓点大量存在,解这类题有一定的难度和技巧,所以不少同学为之感叹,这里向大家介绍一些求最值问题的方法与技巧。
一、 利用配方求最值
例1:若x,y 是实数,则19993322+--+-y x y xy x 的最小值是 。
分析:由于是二次多项式,难以直接用完全平方公式,所以用配方法来解更为简捷。
原式=
1990)96(2
1)96(21)2(212222++-++-++-y y x x y xy x =1990)3(21)3(21)(21222+-+-+-y x y x 显然有 (x-y)2≥0, (x-3)2≥0, (y-3)2≥0,
所以 当x -y =0,x-3=0,y-3=0时 ,得x=y=3时, 代数式的值最小,最小是1990; 例2,设x为实数,求y =312-+-x
x x 的最小值。
分析:由于此函数只有一个未知数,容易想到配方法,但要注意只有一个完全平方式完不成,因此要考虑用两个平方完全平方式,并使两个完个平方式中的x取值相同。
由于y=121122--+++-x x x x =1)1()1(22--+-x
x x ,要求y 的最小值,必须有x -1=0,且01
=-x x ,解得x =1,
于是当x =1时,y=312-+
-x x x 的最小值是-1。
二、 利用重要不等式求最值
例3:若xy =1,那么代数式4
4411y x +的最小值是 。
分析:已知两数积为定值,求两数平方和的最小值,可考虑用不等式的性质来解此题,44411y x +=2
222222)(121·1·2)21()1(xy y x y x =≥+=1 所以:4
4411y x +的最小值是1 三、 构造方程求最值
例4:已知实数a 、b 、c 满足:a+b+c =2, abc =4.求a 、b、c 中的最大者的最小值. 分析:此例字母较多,由已知可联想到用根与系数的关系,构造方程来解。
解:设c 为最大者,由已知可知,c>0, 得:a+b=2-c, ab =c 4,则a 、b 可以看作04)2(2=+--c x c x 的两根,因为 a 、b 是实数,所以04·4)2(2≥--c c ,即0164423≥-+-c c c , 0)4)(2)(2(≥--+c c c ,得,42≥≤c c 或因为c 是最大者,所以c 的最小值是4.
四、 构造图形求最值
例5:使16)8(422+-++x x 取最小值的实数x 的值为 .
分析:用一般方法很难求出代数式的最值,由于16)8(422+-++x x
=2
222)40()8()20()0(-+-+-+-x x ,于是可构造图形,转化为:在x 轴上求一点c(x,0),使它到两点A(0,2)和B (8,4)的距离和C A+CB最小,利用对称可求出C 点坐标,这样,通过构造图形使问题迎刃而解。
解:16)8(422+-++x x
=2222)40()8()20()0(-+-+-+-x x .
于是构造如图所示。
作A (0,2)关于x轴的
对称点A′(0,-2),,令直线A′B 的解析式为y=kx+b, 则⎩⎨⎧=+-=+8820b k b k 解得⎪⎩⎪⎨⎧-==2
43b k
所以24
3-=x y ,令y=0,得38=x . 即C 点的坐标是,x x , x 有最小值时所以当16)8(43
8),0,38(22+-++= 五、利用判别式求最值
例6::求y =1
556322++++x x x x 的最小值 解:去分母可以整理出关于x 的一元二次方程,
0)102()122()6(2=-+---y x y x y ,因为x 为实数,所以△≥0
得:4≤x ≤6,解得,故y的最小值是4
六、消元思想求最值
例7:已知a 、b 、c 为整数,且a+b=2006,c -a=2005,a<b ,则a+b +c 的最大值为———(2006年全国初中数学竞赛试题)
分析由题:由于是求三个未知数的最大值,设法将其转化成一个未知数的形式,由题设可得b=2006-a,c=2005+a ,将其代入原式得:
a+b +c=a +2006-a+2005+a=4011+a
又a+b=2006,a、b 均为整数,a<b,所以a ≤1002,
所以当a=1002时,a +b +c 的最大值是4011+1002=5013.
七、利用数的整除性求最值
例8:已知a 、b 为正整数,关于x 的方程022
=+-b ax x 的两个实数根 21、x x ,关于y 的方程022=++b ay y 两个实数根为21、y y ,且满足,20082211=-y x 、y x 求b 的最小值。
(《数学周报》杯2008年全国初中数学竞试题)
分析与解:因为方程022=+-b ax x 与022
=++b ay y 有实根,所以有: 04)2(2≥-b a ,即b a ≥2,由根与系数的关系,得:
b x x
a x x ==+2121,2;
b y y a y y ==+2121,2 即⎩⎨⎧--=-+-=+-=-=+)
)(()()()(22121212121x x y y x x x x a y y
解得:11122221
y x y x y x y x =-=-⎧⎧⎨⎨=-=-⎩⎩或 把12,y y 的值分别代入,20082221=-y x y x 得
2008)()(2211=---x x x x ,或2008)()(1221=---x x x x (不成立) 即22212008x x -=,2121()()2008x x x x +-=
因为0,022121>=>=+b x x a x x 所以0,021>> x x
于是有 20084422=-b a a 即251250212⨯=⨯=-b a a 因为a,b都是正整数,所以
2222221505225150212514
a a a a a
b a b a b a b ====⎧⎧⎧⎧⎨⎨⎨⎨-=-=-=-=⎩⎩⎩⎩或或或 分别解得:2222150222511502502122512514a a a a b b b b ====⎧⎧⎧⎧⎨⎨⎨⎨=-=-=-=-⎩⎩⎩⎩或或或 经检验只有:22502
25150212514a a b b ==⎧⎧⎨⎨=-=-⎩⎩, 符合题意. 所以b的最小值为:2251462997b =-最小值=
八、利用函数的增减性求最值
例9:设21、x x 是方程0232422
2=-++-m m mx x 的两个实根,当m 为何值时,
2
221x x + 有最小值,并求这个最小值。
解:因为方程02324222=-++-m m mx x 有实根,所以 △=0)232{8)4(22≥-+-m m m ,解得3
2≤m 由根与系数的关系得:2
232,222121-+==+m m x x m x x , 于是)232(42)(22212212221-+-=-+=+m m m x x x x x x =8
7)43
(22+-m 因为函数y=8
7)41(22
+-m 在43 m ≤时的值y随m 的增大而减少,即m取最大值时y取最小值,由于方程有实数根的条件是32≤m ,所以当3
2=m 时,2221x x + 有最小值,最小值为:2221x x + =87)43(22+-m =9887)4332(22=+-.。