模型中的特殊解释变量(虚拟变量)08经济

合集下载

8-3、模型中的特殊解释变量:虚拟变量

8-3、模型中的特殊解释变量:虚拟变量
第8章 模型中的特殊解释变量 ——虚拟变量
2016/3/29
1
8.3、 虚拟变量(Dummy variables)
8.3.1、.虚拟变量的概念
在回归分析中,常常碰到这样一种情况,即因变量 的波动不仅依赖于那种能够很容易按某种尺度定量化的 变量(如收入、产出、价格、身高、体重等),而且依 赖于某些定性的变量(如性别、地区、季节等)。 在经济系统中,许多变动是不能定量的。如政府的更 迭(工党 - 保守党)、经济体制的改革、固定汇率变为 浮动汇率、从战时经济转为和平时期经济等。 这样一些变动都可以用 0-1 变量来表示,用 1 表示具有 某一“品质”或属性,用0表示不具有该“品质”或属 性。这种变量在计量经济学中称为“虚拟变量”。虚拟 变量使得我们可以将那些无法定量化的变量引入回归模 型中。
2016/3/29 2
下面给出几个可以引入虚拟变量的例子。 例1:你在研究学历和收入之间的关系,在你的样 本中,既有女性又有男性,你打算研究在此关系中, 性别是否会导致差别。 例2:你在研究某省家庭收入和支出的关系,采集 的样本中既包括农村家庭,又包括城镇家庭,你打 算研究二者的差别。 例3:你在研究通货膨胀的决定因素,在你的观测 期中,有些年份政府实行了一项收入政策。你想检 验该政策是 否对通货膨胀产生影响。 上述各例都可以用两种方法来解决,一种解决方 法是分别进行两类情况的回归,然后检验参数是否 不同。另一种方法是用全部观测值作单一回归,将 定性因素的影响用虚拟变量引入模型。
女1 0 女2 0 男2 1 女3 0 男3 1 男4 1 女4 0 女5 0
21.2
男5 1
试建立模型研究之。
2016/3/29
9
4、虚拟变量在分段回归中的应用
2016/3/29

虚拟变量在金融和经济中的作用

虚拟变量在金融和经济中的作用

虚拟变量在金融和经济中的作用摘要在现代经济计量分析中,利用模型进行回归分析是应用比较广泛的一种数量分析技术。

一般回归分析中变量都是定量变量,这是因为模拟回归需要样本数据。

但实际中有时模型仅考虑定量变量是不够的。

因为经济现象不仅受一些定量因素的影响,还可能受到一些定性因素的影响。

比如,不同时期的不同政策、战争、自然灾害等非常时期,人的不同性别、文化程度、婚姻状况等。

如果某一应变量的确存在这种定性影响,那么仅用定量变量对被解释变量进行解释显然是不够的,利用虚拟变量技术可以解决此类问题。

所谓虚拟变量技术就是把定性变量虚拟化,并把它作为解释变量或者是自变量纳入回归模型的一种方法。

在这里,定性变量就是虚拟化的变量,即虚拟变量。

一般可根据定性因素的二分特性进行人工赋值,即0和1,其中“1”表示具备某种属性或受到某种因素影响,而“0”则表示不受某种因素影响或不具备某种属性。

定性变量虚拟化后就可以纳入回归模型,从而进行模拟分析或预测。

一.虚拟变量模型的性质与方法1. 为了区分两个类别,只引入一个虚拟变量Di。

一般规则是:如果一个定性变量有m个属性值,则仅引入m-1个虚拟变量。

2. 虚拟变量0,1值的分配可以是任意的,但解释模型时一定注意1,0是怎样分配的。

3. 被分配0的类别或级别通常被用于比较的基础。

4. 虚拟变量的系数可以称为级差截距系数,表明取值1的类别截距项与基底类的截距项的差距虚拟的通常使用方法是,对一些通常表明“品质”或“属性”是否存在的属性变量,将其量化,给其赋值为“1”或“0”来表示虚拟变量出现某种属性和未出现某种属性。

设某个回归模型含有p个数量变量和一个品质变量,该品质变量可以有k+1个(k≥1)水平,据此,可建立以下回归模型:其中x i,p+1 ,…x i,p+k为k个引入的虚拟变量,并且需要拟合的回归方程为通常情况下,该方程能较好地通过线性性检验,弥补仅用数量变量拟合的不足。

二.虚拟变量的其他使用方法除此之外,虚拟变量也有一些其他的使用方法,例如将虚拟变量出现某种属性赋值为任意常数“a”,未出现某种属性赋值为“0”,并验证这种赋值方式,所得到的参数估计值是赋值“1”或“0”时的1/a,预测结果相一致。

计量经济学第5章 虚拟变量模型

计量经济学第5章 虚拟变量模型
第五章 虚拟变量模型
在经济计量模型中除了有量的因素外还有质的因 素,质的因素包括被解释变量为质的因素和解释变量 为质的因素。如果被解释变量为质的因素,主要是逻 辑回归要涉及的内容。本章就解释变量和被解释变量 为质的因素也就是存在虚拟解释变量和虚拟被解释变 量时如何进行参数估计等一系列问题进行讨论。
1
为基础类型截距项。
12
三、虚拟变量的作用 ⑴ 可以描述和测量定性因素的影响。
⑵ 能够正确反映经济变量之间的相互关系,提 高模型的精度。
⑶ 便于处理异常数据。
即将异常数据作为一个特殊的定性因素
1 , 异常时期
D
0
,
正常时期
13
第二节 虚拟解释变量模型
一 、截距变动模型(加法模型)
虚拟变量与其它变量相加,以加法形式引入模
Y i 0 1 D 1 i 2 D 2 i 3 X i u i
Y i ------年支出医疗保健费用支出 X i ------居民年可支配收入
18
1 , 高中
D 1i
0
,
其他
1 , 大学
D 2i
0
,
其他
于是:小学教育程度:
E (Y i X i,D 1 i 0 ,D 2 i 0 )03 X i
7
二、虚拟变量的设置规则
虚拟解释变量模型的设定因为质的因素的多少 和这些因素特征的多少而引入的虚拟变量也会不同。
以一个最简单的虚拟变量模型为例,如果只包 含一个质的因素,而且这个因素仅有两个特征,则 回归模型中只需引入一个虚拟变量。如果是含有多 个质的因素, 自然要引入多个虚拟变量。
8
如果只有一个质的因素,且该质的因素具有 m 个 相互排斥的特征(或类型、属性),那么在含有截距 项的模型中,只能引入 m-1 个虚拟变量,否则会陷入 所谓“虚拟变量陷阱”(dummy variable trap),产 生 完全的多重共线性,会使最小二乘法无解;在不含有 截距项的模型中, 引入 m 个虚拟变量不会导致完全 的多重共线性,不过这时虚拟变量参数的估计结果, 实际上是 D = 1 时的样本均值。

模型中的特殊解释变量虚拟变量经济

模型中的特殊解释变量虚拟变量经济

由于D2,D3的系数没有显著性,说明第二、三季度可以归并入基础类别 第一季度。于是只考虑加入一个虚拟变量D1,把季节因素分为第四季度 和第一、二、三季度两类。从上式中剔除虚拟变量D2,D3,得煤销售量 (Yi)模型如下:
Yˆi = 2515.86 + 49.73 t + 1290.91 D1
(32.03
以时间 t 为解释变量(1982年1季度取t = 1)的煤销售量(Yi)模型估计结 果如下:
Yˆi = 2431.20 + 49.00 t + 1388.09 D1 + 201.84 D2 + 85.00 D3
(26.04) (10.81) (13.43)
(1.96)
(0.83)
R2 = 0.95, DW = 1.2, F=100.4, T=28, t0.05 (28-5) = 2.07
1990~2019年香港季度GDP呈线性增长。2019年由于遭受东南亚金融危机
的影响,经济发展处于停滞状态,2019~2019年底GDP总量几乎没有增长
(见上图)。对这样一种先增长后停滞,且含有季节性周期变化的过程简
单地用一条直线去拟合显然是不恰当的。为区别不同季节,和不同时期,
定义季节虚拟变量D2、D3、D4和区别不同时期的虚拟变量DT如下,
欢迎
文末有福利
8.3 虚拟变量(重点掌握)
许多经济变量是可以定量度量的,如:商品需求量、 价格、收入、产量等。但也有一些影响经济变量的 因素无法定量度量,如:职业、性别对收入的影响; 战争、自然灾害对GDP的影响;季节对某些产品 (如冷饮)销售的影响等等。
为了在模型中能够反映这些因素的影响,并提高模 型的精度,需要将它们“量化”。

计量经济学课后习题答案第八章_答案

计量经济学课后习题答案第八章_答案

第八章虚拟变量模型1. 回归模型中引入虚拟变量的作用是什么?答:在模型中引入虚拟变量,主要是为了寻找某(些)定性因素对解释变量的影响。

加法方式与乘法方式是最主要的引入方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。

除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

2. 虚拟变量有哪几种基本的引入方式? 它们各适用于什么情况?答:在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。

除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

3.什么是虚拟变量陷阱?答:根据虚拟变量的设置原则,一般情况下,如果定性变量有m个类别,则需在模型中引入m-1个变量。

如果引入了m个变量,就会导致模型解释变量出现完全的共线性问题,从而导致模型无法估计。

这种由于引入虚拟变量个数与类别个数相等导致的模型无法估计的问题,称为“虚拟变量陷阱”。

4.在一项对北京某大学学生月消费支出的研究中,认为学生的消费支出除受其家庭的每月收入水平外,还受在学校中是否得到奖学金,来自农村还是城市,是经济发达地区还是欠发达地区,以及性别等因素的影响。

试设定适当的模型,并导出如下情形下学生消费支出的平均水平:(1) 来自欠发达农村地区的女生,未得到奖学金;(2) 来自欠发达城市地区的男生,得到奖学金;(3) 来自发达地区的农村女生,得到奖学金;(4) 来自发达地区的城市男生,未得到奖学金。

解答: 记学生月消费支出为Y,其家庭月收入水平为X,则在不考虑其他因素的影响时,有如下基本回归模型:Y i=β0+β1X i+μi有奖学金1 来自城市无奖学金0 来自农村来自发达地区 1 男性0 来自欠发达地区0 女性Y i=β0+β1X i+α1D1i+α2D2i+α3D3i+α4D4i+μi由此回归模型,可得如下各种情形下学生的平均消费支出:(1) 来自欠发达农村地区的女生,未得到奖学金时的月消费支出:E(Y i|= X i, D1i=D2i=D3i=D4i=0)=β0+β1X i(2) 来自欠发达城市地区的男生,得到奖学金时的月消费支出:E(Y i|= X i, D1i=D4i=1,D2i=D3i=0)=(β0+α1+α4)+β1X i(3) 来自发达地区的农村女生,得到奖学金时的月消费支出:E(Y i |= X i , D 1i =D 3i =1,D 2i =D 4i =0)=(β0+α1+α3)+β1X i (4) 来自发达地区的城市男生,未得到奖学金时的月消费支出: E(Y i |= X i ,D 2i =D 3i =D 4i =1, D 1i =0)= (β0+α2+α3+α4)+β1X i5. 研究进口消费品的数量Y 与国民收入X 的模型关系时,由数据散点图显示1979年前后Y 对X 的回归关系明显不同,进口消费函数发生了结构性变化:基本消费部分下降了,而边际消费倾向变大了。

第五章虚拟变量-第八章虚拟变量

第五章虚拟变量-第八章虚拟变量
D1 D2 D3 D4 1,
说明虚拟解释变量 D1,D2,D3,D4 存在完全的多重共线性 从而无法用普通最小二乘法进行估计。 反映季节因素的商品需求模型为:
Yt 0 1 X 1t 2 X 2t 3 D1t 4 D2t 5 D3t t
例3、由经济实际得知,出口消费品数量Y 主要取决于国民支出X,我国革新开放前 后出口消费品的数量发作清楚变化,以 1979年为转机期,树立出口消费品需求 模型,并反映这种变化。
Yt 0 1 X i i
式中,Y 是职工工资收入;X 是工龄 考虑职工收入受教育程度的影响而引入合适的虚拟 变量,对上述模型加以改进。
解:教育程度一般分为:高中以下,高中,大学及以上(包括大专) 这样教育程度有三个特征,故引入两个虚拟变量,并设教育程度的 改变,只影响截距的变动。
D1=
1, 0,
Yt 0 1 X t t
1979 年以后,Dt 为 1, 模型为
Yt
0
2X
* t
1 2 X t t
第5章习题
一、单项选择题 1、假设一个回归模型中不包括截距项,对一个
具有m个特征的质的要素需求引入的虚拟变量 的个数为: A、m B、m-1 C、m-2 D、m+1
2、设团体消费函数Yi=c0+c1Xi+ui中,消费支出Y不只 与支出X有关,而且与消费者的性别、年龄构成有关, 年龄构成可分为青年、中年和老年三个层次,假定边 沿消费倾向不变,那么思索上述要素的影响,该函数 引入虚拟变量的个数为:
的需求模型为: Yt 0 1 X 1t 2 X 2t t
式中,Y 是商品的需求量,X1 是价格,X2 时收入, 为了反映四个季节对商品需求量的影响,假定引入四个虚拟变量:

第8章 虚拟变量模型

第8章 虚拟变量模型
设,则可以得出结论,上海股票市场不存在周内
效应。
8.1.3 虚拟变量作为因变量的情况
1、因变量为虚拟变量的回归模型
• 虚拟变量作为因变量的模型也称定性响应模型,既可 以包括二值变量模型(也称二分选择模型),也包括 多分选择模型。我们重点讨论二值变量模型。
• 模型举例: 一个大学毕业生是否会被一个不错的MBA项目录取, 取决于其学习成绩、GMAT分数和其它因素。 一位成年男子是否就业取决于总体失业率、平均工资 率、受教育程度和家庭收入等因素。
其中:
1
yi
{ 0
已购买汽车 未购买汽车
且假定E(ui ) 0
1.2 Y
1.0
0.8
0.6
0.4
0.2
0.0 X
-0.2 280 300 320 340 360 380 400 420
对于给定的xi ,E(yi / xi ) 0 1xi
设pi表示yi 1的概率,则1 pi表示yi 0的概率 E(yi / xi ) pi 1 (1 pi) 0 pi 可见,该模型描述了随着收入的变动, 第i个家庭 购买汽车的概率变动情况。
b0 + b1xt + ut , (D = 0)
Y
yt =
b0 + (b1 + b2) xt + ut , (D = 1)


t
0
3、一般方式
直接以加法和乘法方式引入虚拟变量。 可建立如下模型:
yt = b0 + b1 xt + b2 D + b3 xt D + ut ,
其中 xt 为定量变量;D 为定性变量。当 D = 0 或 1 时,上述模
yt =

第八章 虚拟变量模型

第八章  虚拟变量模型

• 例如,以1978-2009年的数据为样本,以GDP 作为解释变量,建立居民消费函数。根据分析, 1992年前后,自发消费和消费率都可能发生变 化。
1 Dt 0 92年前 92年及以后
Ct 0 1GDP t 2 Dt 3 ( Dt GDP t ) t t 1978 ,,2009
1 Di 0 农村居民 城镇居民
Ci 0 1 X i 2 Di X i i
E(Ci | X i , Di 1) 0 (1 2 ) X i E(Ci | X i , Di 0) 0 1 X i
农村居民: 城镇居民:
• 例如,根据消费理论,收入决定消费。但是, 在自然灾害、战争等反常年份,消费倾向往往 发生变化。这种消费倾向的变化可通过在消费 函数中引入虚拟变量来考察。
Yi 0 1 X i 3 Di 4 ( Di X i ) i
1 农村居民 Di 0 城镇居民
• 估计得到
ˆ 450.33 0.6920X 271.14D 0.0275 Y Di X i i i i
由变量显著性检验得到:2007年农村居民与城 镇居民的边际消费倾向并无显著差异,他们有 着共同的消费函数。
如果设置第4个虚变量,则出现“虚拟变量陷井” (Dummy Variable Trap),为什么?
• 包含季节变量的正确模型:
Yt 0 1 X 1t k X kt 1 D1t 2 D2t 3 D3t t Yt 0 1 X 1t k X kt 1 D1t 2 D2t 3 D3t 4 D4t t
通过统计检验,判断两个时期中消费函数的截 距和斜率是否发生变化。

计量经济学第八章 虚拟变量

计量经济学第八章 虚拟变量

Yi X i Di X i i
如果该模型设定正确,此时有:
E(Yi
)



(
X
)
i
X
i
D 1 D0
可见,城镇ቤተ መጻሕፍቲ ባይዱ民的边际消费倾向为 ( ) ,农
村居民的边际消费倾向为 。
如果不同属性类别对应的截距项和斜率项都 是有差异的,可在回归模型中同时引入虚拟 变量的加法方式和乘法方式,结果如下:
1 东部 D1 0 其他
1 中部 D2 0 其他
若考虑不同区域居民对应回归模型截距的不同 ,可构建模型如下:
Yi 1D1i 2 D2i X i i
则有:
E (Yi
)

( (

2) 1)

X i X i

Xi
Yi Di X i Di X i i
对于城镇居民和农村居民这两个类别,有总 体回归函数如下:
E(Yi
)

(


)

( X i

)X
i
D 1 D0
可见, 和 分别表示城镇居民与农村居民
的消费函数在截距和斜率上的差异。
注:
对于包含多个类别(M个)的属性变量,构 建M-1个虚拟变量,如在消费模型中,考虑 区域因素(东部,中部,西部)影响,可构 建2个虚拟变量:
Yi 1D1i 2 D2i (D1i D2i ) X i i
• 则有: ( 1 2 ) Xi

E
(Yi
)



( 1) Xi ( 2 ) Xi

计量经济学 第四章:计量经济模型中特殊变量

计量经济学 第四章:计量经济模型中特殊变量

TC 0 1D1 2 D2 3TY
◇注意如下问题: 模型中虚拟变量的显著性说明什么? 参数经济意思是什么? D1与D2有四种组合,分别反映什么?
2.一个定性因素有多个属性特征的模型 一个定性因素多属性特征指具有两种以上的属性特 征。如文化程度、年龄阶段、季节因素 ◇一个定性因素有多个属性特征需引入多个虚拟变 量
j 0 j 0 j 0
k
k
k
Yt 0 Z 0t 1Z1t r Z rt t
Z rt j r X t j
j 0 k
◇估计原模型参数转变为估计辅助模型参数
Yt 0 X t 1 X t 1 k X t k t Yt 0 Z 0t 1Z1t r Z rt t
Yt Yt 1 (Yt* Yt 1 )
◆适应性预期模型与部分调整模型经过变化也形成 自回归模型
三、自回归模型的参数估计 1.自回归模型的一般形式及特征 Yt 0 1 X t 2Yt 1 t 自回归模型若不存在自相关,可直接估计参数; 自回归模型若存在自相关,滞后被解释变量与随机 误差项高度相关! t ~ t 1 ~ Yt 1 2.自回归模型的检验——H检验(一阶序列相关)
例4-2,季节性因素影响基础利润水平问题 假设模型设定为:
PF 0 1SL 2 D1 3 D2 4 D3 5 D4
则必然出现虚拟变量的陷阱问题,即解释变量的样 本矩阵是奇异的! 因而需减少一个虚拟变量,则回归模型为:
ˆ 688 18.47 D 114.43D 40.21D 0.038SL PF t 1 2 3 t
虚拟变量多少个呢?若考虑调整基础水平变化: 一个定性若有 m个属性特征,在有常数时,模型应 引入 m-1 个虚拟变量;在无常数时,模型应引入 m 个 虚拟变量。 ◇虚拟变量的数量描述 每一个虚拟变量仍用0或者1表示

计量经济学——虚拟解释变量模型PPT课件

计量经济学——虚拟解释变量模型PPT课件

编辑版pppt
8
以一个最简单的虚拟变量模型为例,如 果只包含一个质的因素,而且这个因素 仅有两个特征,则回归模型中只需引入 一个虚拟变量。如果是含有多个质的因 素, 自然要引入多个虚拟变量。
编辑版pppt
9Байду номын сангаас
如果只有一个质的因素,且具有m个特 征,那么如果是含有截距项的,就要引入 m-1个虚拟变量;不含有截距项的, 应该 引入m个虚拟变量,这就是虚拟变量的设 定原则。
编辑版pppt
10
一 、截距变动模型和斜率变动模型
(一)包含一个虚拟变量的截距变动模型 首先从最简单的例子入手,假设只有一
个定性因素影响被解释变量的变化,而且这 个因素仅有两种特征,这时候只需要引入一 个虚拟变量。
编辑版pppt
11
【例8.1】假设有一个包括正常年份和
非正常年份(亚洲金融危机或SARS的影
17
D 0时 正常E 年 ( Y ) i 份 02 X i D 1时 非正E 常 ( Y I) 年 01份 2 X i
如果我们绘制图形,得到的结果仍然
是一样的。此时,β1<0,非正常年份的
线低于正常年份的线,代表非正常年份的 消费水平低于正常年份的消费水平。
编辑版pppt
18
2.虚拟变量D=0所代表的特性或
编辑版pppt
6
需要指出的是,虚拟变量主要是用来 代表质的因素,但是有些情况下也可以 用来代表数量因素。例如在建立储蓄函 数时,“收入”显然是一个重要解释变 量,虽然是“数量”因素,但是为了方 便也可以用虚拟变量表示。
编辑版pppt
7
第二节 虚拟解释变量的设定
虚拟解释变量模型的设定因为质的 因素的多少和这些因素特征的多少而引 入的虚拟变量也会不同。

计量经济学第8章

计量经济学第8章

6443.33 8631.94 1
最高收入户
7593.95 10962.1 0
8262.42 12083.79 1
表 回归结果
这表明1998年、1999年我国城镇居民消费函数并没有显著差 异。因此,可以将两年的样本数据合并成一个样本,估计城镇居 民的消费函数,结果如下:
回归结果
虚拟变量的特殊应用
0
1
0
1988.1
3929.8 25 0
0
0
1984.4
4270.6 12
1
0
0
1988.2
4126.2 26 0
0
1
1985.1
3044.1 13
0
0
0
1988.3
4015.1 27 0
1
0
1985.2
3078.8 14 0
0
1
1988.4
4904.2 28 1
0
0
由于受取暖用煤的影响,每年第四季度的销售量大大高于其
设根据同一总体两个样本估计的回归模型分别为
为“相异回归”(Dissimilar regressions)。 上述情况中,只有第(1)种情况模型结构是稳定的,其余情况都表明模 型结构不稳定。
3.分段回归
回归系数反映了奖金的提高程度。使用虚拟变量既能如实描述不同阶段 的经济关系,又未减少估计模型时的样本容量,保证了模型的估计精度。
后期变动一个单位对Y的影响,即x的滞后影响。 如果 b = bi 存在,i=0,1,2…,k
b 称为长期分布或总分布乘数。表示X 变动一个单
位时,由于滞后效应而形成的对Y值的总的影响。
分布滞后模型的参数估计
对分布滞后模型直接采用OLS不适宜 • 没有先验准则确定滞后期长度;

第8章特殊解释变量优秀课件

第8章特殊解释变量优秀课件

5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2
第 8 章 特殊解释变量
例 8-1 农业产值与耕地面积关系研究(file:5break5)
上式说明,在 1993 和 1998 年农业产值对耕地面积的弹性系数
没有发生明显的变化,当耕地面积增加 1%时,农业产值增加
0
1996.4
1
x8
0
0
0
1
1997.1
1
x9
1
0
0
0







D1
1, 0,
1季度 2,3,4季度

D2
1, 0,
2季度 1,3,4季度

D3
1, 0,
3季度 1,2,4季度

D4
1, 0,
4季度 1,2,3季度

则必有 D4 = 1 – (D1 + D2 + D3),即 D1, D2, D3, D4 存在函数关系,当把 D1 D4 同时引入回归 模型中,D1 + D2 + D3+ D4 =1 与解释变量数据矩阵 X 的第 1 列(单位列向量)完全相同, 从而导致 X 降秩,无法用最小二乘法估计回归系数。
之上。不同年份的观测值呈两组特征。可以考虑用虚拟变量区别两个不同年度的产值并建
立模型。定义若数据属于 1993 年,虚拟变量 D 等于 0;若数据属于 1998 年,虚拟变量 D
等于
1,即
D
0, 1,
1993。建立模型 1998
Lnyt
=
0
+
1
D

天津财经大学计量经济学题库及答案

天津财经大学计量经济学题库及答案

第一章绪论一、填空题:1.计量经济学是以揭示经济活动中客观存在的__________为内容的分支学科,挪威经济学家弗里希,将计量经济学定义为__________、__________、__________三者的结合。

数量关系、经济理论、统计学、数学2.数理经济模型揭示经济活动中各个因素之间的__________关系,用__________性的数学方程加以描述,计量经济模型揭示经济活动中各因素之间的__________关系,用__________性的数学方程加以描述。

理论、确定、定量、随机3.经济数学模型是用__________描述经济活动。

数学方法4.计量经济学根据研究对象和内容侧重面不同,可以分为__________计量经济学和__________计量经济学。

理论、应用5.计量经济学模型包括__________和__________两大类。

单方程模型、联立方程模型6.建模过程中理论模型的设计主要包括三部分工作,即__________、____________________、____________________。

选择变量,确定变量之间的数学关系,拟定模型中待估计参数的数值范围7.确定理论模型中所包含的变量,主要指确定__________。

解释变量8.可以作为解释变量的几类变量有__________变量、__________变量、__________变量和__________变量。

外生经济,外生条件,外生政策,滞后被解释9.选择模型数学形式的主要依据是__________。

经济行为理论10.研究经济问题时,一般要处理三种类型的数据:__________数据、__________数据和__________数据。

时间序列,横截面,虚变量11.样本数据的质量包括四个方面__________、__________、__________、__________。

完整性,准确性,可比性,一致性12.模型参数的估计包括__________、__________和软件的应用等内容。

计量经济学-期末考试-名词解释

计量经济学-期末考试-名词解释

第一章导论1、截面数据:截面数据是许多不同的观察对象在同一时间点上的取值的统计数据集合,可理解为对一个随机变量重复抽样获得的数据。

2、时间序列数据:时间序列数据是同一观察对象在不同时间点上的取值的统计序列,可理解为随时间变化而生成的数据。

3、虚变量数据:虚拟变量数据是人为设定的虚拟变量的取值。

是表征政策、条件等影响研究对象的定性因素的人工变量,其取值一般只取“0”或“1”。

4、内生变量与外生变量:。

内生变量是由模型系统决定同时可能也对模型系统产生影响的变量,是具有某种概率分布的随机变量,外生变量是不由模型系统决定但对模型系统产生影响的变量,是确定性的变量。

第二章一元线性回归模型1、总体回归函数:是指在给定X i下Y分布的总体均值与X i所形成的函数关系(或者说将总体被解释变量的条件期望表示为解释变量的某种函数)2、最大似然估计法(ML): 又叫最大或然法,指用产生该样本概率最大的原则去确定样本回归函数的方法。

3、OLS估计法:指根据使估计的剩余平方和最小的原则来确定样本回归函数的方法。

4、残差平方和:用RSS表示,用以度量实际值与拟合值之间的差异,是由除解释变量之外的其他因素引起的被解释变量变化的部分。

5、拟合优度检验:指检验模型对样本观测值的拟合程度,用表示,该值越接近1表示拟合程度越好。

第三章多元线性回归模型1、多元线性回归模型:在现实经济活动中往往存在一个变量受到其他多个变量影响的现象,表现在线性回归模型中有多个解释变量,这样的模型被称做多元线性回归模型,多元是指多个解释变量2、调整的可决系数:又叫调整的决定系数,是一个用于描述多个解释变量对被解释变量的联合影响程度的统计量,克服了随解释变量的增加而增大的缺陷,与的关系为。

3、偏回归系数:在多元回归模型中,每一个解释变量前的参数即为偏回归系数,它测度了当其他解释变量保持不变时,该变量增加1单位对被解释变量带来的平均影响程度。

4、正规方程组:采用OLS方法估计线性回归模型时,对残差平方和关于各参数求偏导,并令偏导数为0后得到的方程组,其矩阵形式为。

第8章虚拟变量模型-精品文档

第8章虚拟变量模型-精品文档

当第i种属性类型出现时,第i个虚拟变量取1,其它 虚拟变量皆取0,而当所有 D i 都取0时,则表示出现第 m种属性类型。
例:虚拟变量反映季节变动的影响
已知冷饮的销售量 Y除受 k种定量变量 Xk 的影响 外,还受春、夏、秋、冬四季变化的影响,要考 察该四季的影响,只需引入三个虚拟变量即可:
1 春季 D 1t 0 其他
Y i 和居民可支配收入 X i 之间的

各自在住房消费支出
D1i = 0 为农村,则模型为
Y = + X + D + u 2 ) i 0 1 i 1 1 i(
(模型有截距,“居民属性”定性变量只有两个相互排斥
的属性状态( m 2 ),故只设定一个虚拟变量。)

Y i 上的差异,设

二、虚拟变量的设置原则
虚拟变量的个数须按以下原则确定:
每一定性变量所需的虚拟变量个数要比该定性变 i 量的类别数少1,即如果定性变量有 m个类型,只在 i 模型中引入m-1个虚拟变量 。
每个虚拟变量定义为:
1 第 i个属性 类型 ( i 1 , 2 , , m 1 ) D i 0 非第 i个属性类型
D1i = 1 为城镇;
虚拟变量陷阱
若对两个相互排斥的属性 “居民属性” ,仍然 引入 m 2 个虚拟变量,则有
1城 镇 居 民 D 1 i= 0 农 村 居 民
1农 村 居 民 D 2 i= 0 城 镇 居 民
则模型(1)为 Y X D D u ( 3 ) i 0 1 i 1 1 2 2 i 则对任一家庭都有: , D D+ D1=0 1 +D 2 =1 1 2 即产生完全共线,陷入了“虚拟变量陷阱”。 “虚拟变量陷阱”的实质是:完全多重共线性。

第八章 模型中的特殊解释变量

第八章  模型中的特殊解释变量
第八章 模型中的特殊解释变量
一、随机解释变量 二、滞后变量问题 三、虚拟变量问题 四、时间变量
第一节
随机解释变量问题
一、估计量的渐近特征
1.渐进无偏性(P202) 所谓渐进分布是指,当样本容量N→∞时, 随机变量序列将收敛到某个特定的分布。 所谓渐进无偏性是指,如果当N→∞时, 参数估计量的数学期望值将趋向于总体参数 的真实值。这时,将参数估计量称为总体参 数的渐近无偏估计。
第三节 虚拟变量
一、虚拟变量的基本含义 许多经济变量(定量变量)是可以定量度量 的,如:商品需求量、价格、收入、产量等; 但是,经济中有一些影响经济变量的因素无 法定量度量(定性变量),如:职业、性别对收 入的影响,战争、自然灾害对GDP的影响,季节 对某些产品(如冷饮)销售的影响等等。 为了在模型中能够反映这些因素的影响,并 提高模型的精度,需要将它们“量化”,这种 “量化”通常是通过引入“虚拟变量”来完成的。
一元回归中,工具变量法估计量为
1
~ z ( x ) z z x z x
i 1 i i i i 1 i i i
i
两边取概率极限得:
P lim(1 ) 1
~
P lim 1 n zi i P lim 1 n z i xi
如果工具变量Z选取恰当,即有
根据定性变量的属性类型,构造只取“0”或 “1”的人工变量,这些人工变量通常称为虚拟变量 (dummy variables),记为D。 • 例如,反映文程度的虚拟变量可取为: • 1, 本科学历 • D= • 0, 非本科学历 一般地,在虚拟变量的设置中: • 基础类型、肯定类型取值为1;
• 比较类型、否定类型取值为0。
四、工具变量法
模型中出现随机解释变量且它(们) 与随机误差项相关时,OLS估计量是有偏的。 此时,为了得到参数的无偏估计量,最常 用的估计方法是工具变量法(Instrument variables)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档