边缘计算参考架构

边缘计算参考架构
边缘计算参考架构

边缘计算参考架构文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

边缘计算参考架构2.0边缘计算产业联盟

工业互联网产业联盟

联合发布

2017年11月

目录

一、迎接行业智能时代

(一)行业智能时代已来

全球已经掀起行业数字化转型的浪潮,数字化是基础,网络化是支撑,智能化是目标。通过对人、物、环境、过程等对象进行数字化产生数据,通过网络化实现数据的价值流动,以数据为生产要素,通过智能化为各行业创造经济和社会价值。智能化是以数据的智能分析为基础,从而实现智能决策和智能操作,并通过闭环实现业务流程的持续智能优化。

以大数据、机器学习、深度学习为代表的智能技术已经在语音识别、图像识别、用户画像等方面得到应用,在算法、模型、架构等方面取得了较大的进展。智能技术已经率先在制造、电力、交通、医疗、农业等行业开始应用,对智能技术提出了新的需求与挑战。行业智能时代已经来临。

行业智能分为1.0和2.0两个发展阶段:

1)行业智能1.0

行业智能1.0是面向市场线索、营销、采购、物流、售后等商业过程,将用户、应用和商业流程的行为和状态数字化,基于多维度数据分析和场景感知,建立行业的信息图谱,为行业用户提供个性化的资源配置和服务。

行业智能1.0的快速发展得到了ICT创新技术的支撑,包括:

泛在网络联接使能数据的快速流动;

云计算按需提供低成本的基础设施服务应对业务负载变化;

大数据挖掘、分析和管理海量数据,提升企业的商业决策能力;

算法+数据+算力,释放了行业智能的潜在价值。

2)行业智能2.0

面向产品规划、设计、制造、运营等生产过程,产品、生产装备、工艺流程等已经逐步数字化和网络化,行业智能2.0已经具备了基础条件。这里所指的产品、装备具有广义的概念,既包括制造业所生产的产品和制造产线等,也包括能源、交通、农业、公共事业等行业提供服务时所依赖的资产,如电表、交通工具、农业机械、环境监测仪器等。

行业智能2.0需要达成如下目标:

提升生产与服务过程敏捷性和协作性

提升资源共享和减少能耗

降低生产运行和运营不确定性

与行业智能1.0协作,建立生产、销售和服务的端到端行业智能。

行业智能2.0时代需要行业发生四个关键转变:

物理世界与数字世界从割裂转变为协作融合;

运营决策从模糊的经验化转变为基于数字化、模型化的科学化;

流程从割裂转变基于数据的全流程协同;

从企业单边创新转变为基于产业生态的多边开放创新。

(二)行业智能2.0面临的挑战

从DIKW模型视角看,行业智能2.0面临了四大挑战:

OT和ICT跨界协作挑战

OT(OperationTechnology)与ICT (InformationandCommunicationTechnology)关注重点不同,OT关注物理和商业约束、人身安全,ICT关注商业约束、信息安全;OT与ICT在行业语言、知识背景、文化背景存在较大差异,相互理解困难;OT技术体系碎片化、专用化与标准化、开放性的ICT技术体系集成协作存在挑战困难;OT与ICT的融合协作也将带来安全方面的挑战。

OT与ICT的跨界协作需要建立物理世界和数字世界的联接与融合。

信息难以有效流动与集成

目前业界有超过6种以上的工业实时以太网技术,超过40种工业总线,缺少统一的信息与服务定义模型。烟囱化的系统导致数据孤岛,使信息难以有效流动与交互。

信息有效流动与集成是支持数据创新、服务创新的基础,需要建立数据全生命周期管理。

知识模型化是巨大挑战

知识模型(KnowledgeModel)主要解决知识的表示、组织与交互关系,知识的有序化以及知识处理模型,是将知识进行形式化和结构化的抽象。知识模型不是知识,是知识的抽象,以便于计算机理解与处理。

知识模型输入存在信息不完整、不准确和不充分的挑战;知识模型处理的算法与建模还需持续改进与优化;知识模型输出的应用场景有限需要持续积累。

知识模型化是高效、低成本实现行业智能的关键要素。

产业链变长,增加了端到端协作集成挑战

需要物理世界和数字世界的产业链的协作,需要产品全生命周期的数据集成,需要价值链上的各产业角色建立起协作生态。这种多链条的协作与整合对数据端到端流动和全生命周期管理提出了更高的要求。

(三)边缘计算使能行业智能2.0

面向行业智能2.0的挑战,边缘计算需要提供四个关键能力:

1)建立物理世界和数字世界的联接与互动

通过数字孪生,在数字世界建立起对多样协议、海量设备和跨系统的物理资产的实时映像,了解事物或系统的状态,应对变化,改进操作和增加价值。

在过去十年里,网络、计算和存储领域作为ICT产业的三大支柱,在技术可行性和经济可行性发生了指数性提升。

网络领域变化:带宽提升千倍,而成本下降40倍;

计算领域变化:计算芯片的成本下降60倍;

存储领域变化:单硬盘容量增长万倍,而成本下降17倍。

正是联接成本的下降、计算力的提升、海量的数据,使得数字孪生可以在行业智能2.0时代发挥重要作用。

2)模型驱动的智能分布式架构与平台

在网络边缘侧的智能分布式架构与平台上,通过知识模型驱动智能化能力,实现了物自主化和物协作。

智能分布式架构需要把智能分布到如下要素中:

智能资产:通过融合网络、计算、存储等ICT能力,具有自主化和协作化能力。

智能网关:通过网络联接、协议转换等功能联接物理和数字世界,提供轻量化的联接管理、实时数据分析及应用管理功能。

智能系统:基于多个分布式智能网关或服务器的协同构成智能系统,提供弹性扩展的网络、计算、存储能力。

智能服务:基于模型驱动的统一服务框架,面向系统运维人员、业务决策者、系统集成商、应用开发人员等多种角色,提供开发服务框架和部署运营服务框架。

3)提供开发与部署运营的服务框架

开发服务框架主要包括方案的开发、集成、验证和发布;部署运营服务框架主要包括方案的业务编排、应用部署和应用市场。开发服务框架和部署运营服务框架需要紧密协同、无缝运作,支持方案快速高效开发、自动部署和集中运营。

4)边缘计算与云计算的协同

边缘侧需要支持多种网络接口、协议与拓扑,业务实时处理与确定性时延,数据处理与分析,分布式智能和安全与隐私保护。云端难以满足上述要求,需要边缘计算与云计算在网络、业务、应用和智能方面进行协同。

(四)边缘计算产业化当前进展

2015年边缘计算进入到Gartner的HypeCycle(技术成熟曲线)。

边缘计算已经掀起产业化的热潮,各类产业组织、商业组织在积极发起和推进边缘计算的研究、标准、产业化活动。具有代表性的活动包括:

学术研究

2016年10月,由IEEE和ACM正式成立了

IEEE/ACMSymposiumonEdgeComputing,组成了由学术界、产业界、政府(美国国

家基金会)共同认可的学术论坛,对边缘计算的应用价值,研究方向开展了研究与讨论。

标准化

2017年IEC发布了VEI(VerticalEdgeIntelligence)白皮书,介绍了边缘计算对于制造业等垂直行业的重要价值。

ISO/IECJTC1SC41成立了边缘计算研究小组,以推动边缘计算标准化工作。

产业联盟

2016年11月华为技术有限公司、中国科学院沈阳自动化研究所、中国信息通信研究院、英特尔公司、ARM和软通动力信息技术(集团)有限公司联合倡议发起边缘计算产业联盟(EdgeComputingConsortium,缩写为ECC)。

全球性产业组织工业互联网联盟IIC在2017年成立EdgeComputingTG,也将定义边缘计算参考架构。

二、边缘计算

(一)边缘计算概念

边缘计算是在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的分布式开放平台,就近提供边缘智能服务,满足行业数字化在敏捷联接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求。它可以作为联接物理和数字世界的桥梁,使能智能资产、智能网关、智能系统和智能服务。

(二)基本特点和属性

联接性

联接性是边缘计算的基础。所联接物理对象的多样性及应用场景的多样性,需要边缘计算具备丰富的联接功能,如各种网络接口、网络协议、网络拓扑、网络部署与配置、网络管理与维护。联接性需要充分借鉴吸收网络领域先进研究成果,如TSN、SDN、NFV、NetworkasaService、WLAN、NB-IoT、5G等,同时还要考虑与现有各种工业总线的互联互通。

数据第一入口

边缘计算作为物理世界到数字世界的桥梁,是数据的第一入口,拥有大量、实时、完整的数据,可基于数据全生命周期进行管理与价值创造,将更好的支撑预测性维护、资产效率与管理等创新应用;同时,作为数据第一入口,边缘计算也面临数据实时性、确定性、多样性等挑战。

约束性

边缘计算产品需适配工业现场相对恶劣的工作条件与运行环境,如防电磁、防尘、防爆、抗振动、抗电流/电压波动等。在工业互联场景下,对边缘计算设备的功耗、成本、空间也有较高的要求。

边缘计算产品需要考虑通过软硬件集成与优化,以适配各种条件约束,支撑行业数字化多样性场景。

分布性

边缘计算实际部署天然具备分布式特征。这要求边缘计算支持分布式计算与存储、实现分布式资源的动态调度与统一管理、支撑分布式智能、具备分布式安全等能力。

融合性

OT与ICT的融合是行业数字化转型的重要基础。边缘计算作为“OICT”融合与协同的关键承载,需要支持在联接、数据、管理、控制、应用、安全等方面的协同。

(三)边缘计算CROSS价值

联接的海量与异构(Connection)

网络是系统互联与数据聚合传输的基石。伴随联接设备数量的剧增,网络运维管理、灵活扩展和可靠性保障面临巨大挑战。同时,工业现场长期以来存在大量异构的总线联接,多种制式的工业以太网并存,如何兼容多种联接并且确保联接的实时可靠是必须要解决的现实问题。

业务的实时性(Real-time)

工业系统检测、控制、执行的实时性高,部分场景实时性要求在10ms以内。如果数据分析和控制逻辑全部在云端实现,难以满足业务的实时性要求。

数据的优化(Optimization)

当前工业现场存在大量的多样化异构数据,需要通过数据优化实现数据的聚合、数据的统一呈现与开放,以灵活高效地服务于边缘应用的智能。

应用的智能性(Smart)

业务流程优化、运维自动化与业务创新驱动应用走向智能,边缘侧智能能够带来显着的效率与成本优势。以预测性维护为代表的智能化应用场景正推动行业向新的服务模式与商业模式转型。

安全与隐私保护(Security)

安全跨越云计算和边缘计算之间的纵深,需要实施端到端防护。网络边缘侧由于更贴近万物互联的设备,访问控制与威胁防护的广度和难度因此大幅提升。边

缘侧安全主要包含设备安全、网络安全、数据安全与应用安全。此外,关键数据的完整性、保密性,大量生产或人身隐私数据的保护也是安全领域需要重点关注的内容。

(四)边缘计算与云计算协同

云计算适用于非实时、长周期数据、业务决策场景,而边缘计算在实时性、短周期数据、本地决策等场景方面有不可替代的作用。

边缘计算与云计算是行业数字化转型的两大重要支撑,两者在网络、业务、应用、智能等方面的协同将有助于支撑行业数字化转型更广泛的场景与更大的价值创造。

三、边缘计算参考架构

(一)模型驱动的参考架构

参考架构基于模型驱动的工程方法(Model-DrivenEngineeringMDE)进行设计。基于模型可以将物理和数字世界的知识模型化,从而实现:

物理世界和数字世界的协作

对物理世界建立实时、系统的认知模型。在数字世界预测物理世界的状态、仿真物理世界的运行、简化物理世界的重构,然后驱动物理世界优化运行。能够将物理世界的全生命周期数据与商业过程数据建立协同,实现商业过程和生产过程的协作。

跨产业的生态协作

基于模型化的方法,ICT和各垂直行业可以建立和复用本领域的知识模型体系。ICT行业通过水平化的边缘计算领域模型和参考架构屏蔽ICT技术复杂性,各

垂直行业将行业Know-How进行模型化封装,实现ICT行业与垂直行业的有效协作。

减少系统异构性,简化跨平台移植

系统与系统之间、子系统与子系统之间、服务与服务之间、新系统与旧系统之间等基于模型化的接口进行交互,简化集成。基于模型,可以实现软件接口与开发语言、平台、工具、协议等解耦,从而简化跨平台的移植。

有效支撑系统的全生命周期活动

包括应用开发服务的全生命周期、部署运营服务的全生命周期、数据处理服务的全生命周期、安全服务的全生命周期等。

ICT行业在网络、计算、存储等领域面临着架构极简、业务智能、降低CapEx 和OpEx等挑战,正在通过虚拟化、SDN、模型驱动的业务编排、微服务等技术创新应对这些挑战。边缘计算作为OT和ICT融合的产业,其参考架构设计需要借鉴这些新技术和新理念。同时,边缘计算与云计算存在协同与差异,面临独特挑战,需要独特的创新技术。

基于上述理念,ECC提出了如下的边缘计算参考架构2.0:

从架构的横向层次来看,具有如下特点:

智能服务基于模型驱动的统一服务框架,通过开发服务框架和部署运营服务框架实现开发与部署智能协同,能够实现软件开发接口一致和部署运营自

动化;

智能业务编排通过业务Fabric定义端到端业务流,实现业务敏捷;

联接计算CCF(ConnectivityandComputingFabric)实现架构极简,对业务屏蔽边缘智能分布式架构的复杂性;实现OICT基础设施部署运营自动化和可视化,支撑边缘计算资源服务与行业业务需求的智能协同;

智能ECN(EdgeComputingNode)兼容多种异构联接、支持实时处理与响应、

提供软硬一体化安全等;

边缘计算参考架构在每层提供了模型化的开放接口,实现了架构的全层次开放;边缘计算参考架构通过纵向管理服务、数据全生命周期服务、安全服务,实现业务的全流程、全生命周期的智能服务。

(二)多视图呈现

以ISO/IEC/IEEE42010:2011架构定义国际标准为指导,将产业对边缘计算的关注点进行系统性的分析,并提出了解决措施和框架,通过如下三类视图来展示边缘计算参考架构:

概念视图

阐述边缘计算的领域模型和关键概念。

功能设计视图

阐述横向的开发服务框架、部署运营框架业务Fabric、联接计算Fabric和ECN,纵向的跨层次开放服务、管理服务、数据全生命周期服务、安全服务的功能与设计思路。

部署视图

阐述系统的部署过程和典型的部署场景。

同时,架构需要满足跨行业的典型非功能性需求,包括实时性、确定性、可靠性等。为此,在功能视图、部署视图给出了相关技术方案推荐。

(三)概念视图

1、边缘计算节点、开发框架与产品实现

智能资产、智能系统、智能网关具有数字化、网络化、智能化的共性特点,都提供网络、计算、存储等ICT资源,可以在逻辑上统一抽向为边缘计算节点(EdgeComputingNodeECN)。

根据ECN节点的典型应用场景,系统定义了四类ECN开发框架。每类开发框架提供了匹配场景的操作系统、功能模块、集成开发环境等。

基于四类ECN开发框架,结合ECN节点所需要的特定硬件平台,可以构建六类产品实现。

下图对上述过程做了概括总结。

ECN节点典型功能包括:

总线协议适配

实时联接

实时流式数据分析

时序数据存取

策略执行

设备即插即用

资源管理

ECN四类开发框架包括:

实时计算系统框架

面向数字化的物理资产,满足应用实时性等需求;

轻量计算系统框架

面向资源受限的感知终端,满足低功耗等需求;

智能网关系统框架

支持多种网络接口、总线协议与网络拓扑,实现边缘本地系统互联并提供本地计算和存储能力,能够和云端系统协同;

智能分布式系统框架

基于分布式架构,能够在边缘侧弹性扩展网络、计算和存储等能力,支持资源面向业务的动态管理和调度,能够和云端系统协同。

2、边缘计算领域模型

边缘计算领域模型是从边缘计算的ICT视角进行模型定义,包括:设计阶段模型

定义ECN节点的标识、属性、功能、性能、派生继承关系等,为部署与运行阶段提供价值信息。

部署阶段模型

主要包括业务策略、物理拓扑等模型。其中,业务策略模型是用业务语言,而不是机器语言来描述业务规则与约束,实现业务驱动边缘计算基础设施。业务策略模型可描述,可灵活复用和变更,使能业务敏捷。

运行阶段模型

主要包括联接计算Fabric模型、运行负载模型等。基于这些模型可以监视和优化系统运行状态,实现负载在边缘分布式架构上的部署优化等。

通过模型驱动的统一服务框架能够实现边缘计算领域模型和垂直行业领域模型的相互映射和统一管理,从而复用垂直行业的领域模型(如OPCUA及其生态),实现边缘计算参考架构和行业平台、行业应用的易集成。

(四)功能设计视图

1、E CN

1)基础资源层

包括网络、计算和存储三个基础模块。

网络

SDN(Software-DefinedNetworking)逐步成为网络技术发展的主流,其设计理念是将网络的控制平面与数据转发平面进行分离,并实现可编程化控制。将SDN 应用于边缘计算,可支持百万级海量网络设备的接入与灵活扩展,提供高效低成本的自动化运维管理,实现网络与安全的策略协同与融合。

网络联接需要满足传输时间确定性与数据完整性。国际标准组织IEEE制订了TSN(Time-SensitiveNetworking)系列标准,针对实时优先级、时钟等关键服务定义了统一的技术标准,是工业以太联接未来的发展方向。

计算

异构计算HC(HeterogeneousComputing)是边缘侧关键的计算硬件架构。近年来,虽然摩尔定律仍然推动芯片技术不断取得突破,但物联网应用的普及带来了信息量爆炸式增长,而AI技术应用增加了计算的复杂度,这些对计算能力都提出了更高的要求。计算要处理的数据种类也日趋多样化,边缘设备既要处理结构化数据,同时也要处理非结构化的数据。同时,随着ECN节点包含了更多种类和数量的计算单元,成本成为了关注点。

为此,业界提出将不同类型指令集和不同体系架构的计算单元协同起来的新计算架构,即异构计算,以充分发挥各种计算单元的优势,实现性能、成本、功耗、可移植性等方面的均衡。

同时,以深度学习为代表的新一代AI在边缘侧应用还需要新的技术优化。当前,即使在推理阶段对一副图片的处理也往往需要超过10亿次的计算量,标准的深度学习算法显然是不适合边缘侧的嵌入式计算环境。业界正在进行的优化方向包括自顶向下的优化,即把训练完的深度学习模型进行压缩来降低推理阶段的计算负载;同时,也在尝试自底向上的优化,即重新定义一套面向边缘侧嵌入系统环境的算法架构。

存储

数字世界需要实时跟踪物理世界动态变化,并按照时间序列存储完整的历史数据。新一代时序数据库TSDB(TimeSeriesDatabase)是存放时序数据(包含数据的时间戳等信息)的数据库,并且需要支持时序数据的快速写入、持久化、多纬度的聚合查询等基本功能。为了确保数据的准确和完整性,时序数据库需要不断插入新的时序数据,而不是更新原有数据。面临了如下的典型挑战:时序数据写入:支持每秒钟上千万上亿数据点的写入。

时序数据读取:支持在秒级对上亿数据的分组聚合运算。

成本敏感:由海量数据存储带来的是成本问题。如何更低成本地存储这些数据是时序数据库需要解决的重中之重。

2)虚拟化层

虚拟化技术降低了系统开发和部署成本,已经开始从服务器应用场景向嵌入式系统应用场景渗透。典型的虚拟化技术包括裸金属(BareMetal)架构和主机(Host)架构,前者是虚拟化层的虚拟机管理器(Hypervisor)等功能直接运行在系统硬件平台上,然后再运行操作系统和虚拟化功能。后者是虚拟化层功能运

行在主机操作系统上。前者有更好的实时性,智能资产和智能网关一般采用该方式。

3)EVF(EdgeVirtualizationFunction)层

EVF是将功能软件化和服务化,并且与专有的硬件平台解耦。基于虚拟化技术,在同一个硬件平台上,可以纵向将硬件、系统和特定的EVF等按照业务进行组合,虚拟化出多个独立的业务区间并彼此隔离。ECN的业务可扩展性能够降低CapEx并延长系统的生命周期。

EVF可以灵活组合与编排,能够在不同硬件平台、不同设备上灵活迁移和弹性扩展,实现资源的动态调度和业务敏捷。

EVF层提供如下可裁剪的多个基础服务:

分布式的联接计算Fabric服务;

OPCUA服务;

实时流式数据分析服务;

时序数据库服务;

策略执行服务;

安全服务。

ECN关键技术:

1)软件定义网络(SDN)

SDN采用与传统网络截然不同的控制架构,将网络控制平面和转发平面分离,采用集中控制替代原有分布式控制,并通过开放和可编程接口实现“软件定义”。SDN不仅是新技术,而且变革了网络建设和运营的方式:从应用的角度构建网络,用IT的手段运营网络。

SDN架构包括控制器、南/北向接口、以及应用层的各类应用和基础设施层的各种网元。其中最重要的是SDN控制器,它实现对基础设施层的转发策略的配置和管理,支持基于多种流表的转发控制。

SDN对边缘计算的独特价值:

支持海量联接

支持百万级海量网络设备的接入与灵活扩展,能够集成和适配多厂商网络设备的管理。

模型驱动的策略自动化

提供灵活的网络自动化与管理框架,能够将基础设施和业务发放功能服务化,实现智能资产、智能网关、智能系统的即插即用,大大降低对网络管理人员的技能要求。

端到端的服务保障

对端到端的GRE、L2TP、IPSec、Vxlan等隧道服务进行业务发放,优化Qos调度,满足端到端带宽、时延等关键需求,实现边缘与云的业务协同。

架构开放

将集中的网络控制以及网络状态信息开放给智能应用,应用可以灵活快速地驱动网络资源的调度。

当前,边缘计算SDN技术已经成功应用于智能楼宇、智慧电梯等多个行业场景。

2)低时延网络(TSN)

标准以太网技术已经广泛应用,具有传输速率高、拓扑灵活、传输距离远、成本有效等优点。同时,以太网技术由于传统Qos机制约束、CSMA/CD冲突检测机制

约束等无法保证实时性、确定性等行业关键需求。业界对标准以太网技术进行了优化,并提出了多种工业实时以太网技术的商业实现,多种商业实现并存的格局给互联互操作带来了障碍和挑战。

近年,IEEE802.1定义了TSN(TimeSensitiveNetwork)技术标准,旨在推动实时以太网的标准化和互通,最终实现OT和ICT采用“一张网”,并带来如下价值:

确定性:μs级时延、低于500ns级抖动;

接口带宽大于1Gbps,满足工业机器视觉等场景的大带宽需求;

通过多路径或冗余路径实现可靠的数据传输;

与SDN技术相结合,实现对TSN网络和非TSN网络的统一调度管理。

TSN设计理念是在标准的以太网物理层之上,在MAC层提供统一的低时延队列调度机制、资源预留机制、时钟同步机制、路径控制机制、配置管理模型等,能实现与标准以太网的互联互通。

当前,TSN已经建立起良好的产业协作生态,包括:IEEE负责标准制定,AvnuAlliance负责互通认证,以ECC和IIC为代表的产业组织正在通过Testbed 等活动进行产业示范和推广。

3)异构计算(HC)

异构计算架构旨在协同和发挥各种计算单元的独特优势:CPU擅长对系统进行控制、任务分解、调度;GPU具有强大的浮点和向量计算能力,擅长矩阵和矢量运算等并行计算;FPGA具有硬件可编程和低延时等优势;ASIC具有功耗低、性能高,成本有效等优势。

边缘计算综述

1.什么是边缘计算? 在IIoT的背景下,“边缘”是指靠近数据源的计算基础设施,例如工业机器(例如风力涡轮机,磁共振(MR)扫描仪,海底防喷器)),工业控制器如SCADA系统和时间序列数据库汇总来自各种设备和传感器的数据。这些设备通常远离云中可用的集中式计算。 边缘计算是在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的开放平台。边缘计算与云计算互相协同,共同助力各行各业的数字化转型。它就近提供智能互联服务,满足行业在数字化变革过程中对实时业务、业务智能、数据聚合与互操作、安全与隐私保护等方面的关键需求。 到目前为止,边缘计算的作用主要用于摄取,存储,过滤和发送数据到云系统。然而,我们正处于一个时间点,这些计算系统正在包装更多的计算,存储和分析功能,以消耗并对机器位置的数据采取行动。这种能力对于工业组织来说将是非常有价值的 - 这是不可或缺的。 2.这对工业带来的价值 行业权威人士已经计算出,数以千计的连接事物会从不同的来源产生大量的数据。根据国际电信联盟电信标准分局ITU-T的研究报告,到2020年,每个人每秒将产生的数据,IoT可穿戴设备的出货量将达到亿。IDC也发布了相关预测,到2018年,50%的物联网网络将面临网络带宽的限制,40%的数据需要在网络边缘侧分析、处理与储存,到2025年,这一数字将超过50%。管理咨询公司麦肯锡公司估计,到2025年,工业物联网(IIoT)将创造价值万亿的市场规模。工业物联网将思想和机器结合在一起,将人们与加速数字产业转型的机器数据相结合。 通过将大数据,高级分析和机器学习应用于运营,工业可以减少计划外停机时间,提高资产性能,降低维护成本,并为从机床数据中获取未开发价值的新业务模式开拓潜力。 过去几年来,工业组织已经开始将云计算融入业务,从大量数据中获取洞察力,帮助实现关键业务成果,包括减少意外停机,提高生产效率,降低能耗等。云计算仍然通过工业物联网来实现新的性能水平发挥关键作用,因为它需要大量的计算能力来有效地管理来自机器的庞大数据量。 但是随着更多的计算,存储和分析能力被捆绑到更靠近数据源的较小设备中,即工业机器 - 边缘计算将有助于边缘处理实现工业物联网的承诺。 虽然这个概念不是新的,但是有几个关键的驱动力使它成为今天更可行的现实:·计算和传感器的成本继续下滑, ·在较小尺寸的设备(如网关或传感器集线器)中执行的更多计算能力, ·来自机器和/或环境的日益增长的数据(例如天气或市场定价), ·现代机器学习与分析。 这些因素有助于公司将大量数据转化为具有洞察力和智慧的行动。 对于工业组织来说,这种技术在以下用例中将变得至关重要: ·低/间歇连接(如远程位置) o将数据传输到云的带宽和相关的高成本 o低延迟,例如机器洞察和启动之间的闭环相互作用(即在机器上采取动作)

雾计算工作组发布雾计算参考架构

雾计算工作组发布雾计算参考架构 OpenFog ConsorTIum发布了其OpenFog参考架构,OpenFog的成员正在雾计算(fog compuTIng)领域工作,雾计算是使用最终用户终端设备或连接最终用户设备的边缘设备,以分布式协作架构进行数据存储(相较于将数据集中存储在云数据中心),或进行分布式网络数据包传输通信(相较于通过互联网骨干路由),或相关分布式控制或管理。 雾计算是由思科(Cisco)在2014年所提出的概念,为云计算的延伸,这个架构可以将计算需求分层次、分区域处理,以化解可能出现的网络堵塞现象。雾计算的应用和物联网(IOT)及智能联网(M2M)有密不可分的关系。在物联网中,我们日常使用中的大多数设备将被彼此连接,例子包括我们的手机,可穿戴式健康监测设备,连网汽车和增强现实的设备,如Google眼镜。 OpenFog参考架构创建雾计算标准,以实现物联网(IoT)、5G和人工智能(AI)应用的数据密集型需求。OpenFog ConsorTIum成立于1年多以前,它是一个独立的非营利性组织,在其董事会指导下运行,其委员会以及相关的工作组由其成员管理。 雾计算与移动边缘计算(Mobile Edge CompuTIng,

MEC)在很多方面有很大的相似性,它将数据中心的功能带到网络边缘。OpenFog Consortium执行董事Lynne Canavan 描述了雾计算和MEC之间的以下主要区别: 雾计算包括了无线和有线 雾计算覆盖边缘网络,但也涵盖了边缘和云之间的访问以及可穿戴设备以及中间层 雾计算处理移动/服务提供商之外的垂直行业 MEC标准主要是面向计算的,OpenFog Consortium的参考架构还包括存储和深度数据包网络 MEC关注RAN或基站收发器(BTS)中的单层节点,而雾计算可以更加深入,且更加安全/隐私。 雾计算包括了云,但边缘计算排除云 Canavan说:“一般而言,雾计算和边缘计算的差别是:雾计算更具有层次性和平坦的架构,其中几个层次形成网络,而边缘计算依赖于不构成网络的单独节点。雾计算在节点之间具有广泛的对等互连能力,边缘计算在孤岛中运行其节点,需要通过云实现对等流量传输。”

无服务与边缘计算架构介绍

无服务与边缘计算架构介绍

Serverless是一个比较新的概念,2017年开始在行业内兴起,边缘计算则是一个更新的技术。那么Serverless在边缘计算中能产生怎样的效果、产品以及形态?今天来为大家分享一下。 什么是Serverless? 首先讲讲Serverless,从下面这张图可清晰地看到,Serverless从架构上可以分成两部分。 一是Backend as a Service,后端即服务,腾讯云上目前已经提供很多这类产品,例如COS对象存储、CMQ消息队列、CDN内容分发、CDB云数据库、API网关,这些产品更多的是承载数据的存储。

二是Function as a Service,函数即服务,也是Serverless比较核心的技术点,腾讯云云函数就属于这种。 从Serverless或者云函数来看,更多是对用户的计算进行托管。用户将代码和配置提交到云函数平台上,此处的代码是指用户的一份代码或者代码包、配置,一个是指本身对于函数运行环境的配置,使用的是哪种环境、所需的内存、超时时间等;另一个是触发器的配置。因为整个函数即服务的运行方式是触发式运行,触发就需要有一个事件来源,而事件来源是和我们其它产品进行关联后而产生。 例如COS对象存储产品,它的关联就在COS的存储桶中,当用户上传一张图片或者删除一张图片时,就会产生一个事件,这个事件会触发云函数的运行;例如和API网关的对接,也可以作为事件来源,在用户的HTTP请求到达网关之后,API网关会把该请求作为事件转发给云函数,触发云函数的运行,云函数拿到请求之后进行处理,生成响应给到用户。 函数计算的特点

边缘计算

1 边缘计算 边缘计算是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。其应用程序在边缘侧发起,产生更快的网络服务响应,满足行业在实时业务、应用智能、安全与隐私保护等方面的基本需求。边缘计算处于物理实体和工业连接之间,或处于物理实体的顶端。而云端计算,仍然可以访问边缘计算的历史数据。 1.1 从分布式数计算开始 对物联网而言,边缘计算技术取得突破,意味着许多控制将通过本地设备实现而无需交由云端,处理过程将在本地边缘计算层完成。这无疑将大大提升处理效率,减轻云端的负荷。由于更加靠近用户,还可为用户提供更快的响应,将需求在边缘端解决。 1.2 边缘计算vs云计算 无论是云、雾还是边缘计算,本身只是实现物联网、智能制造等所需要计算技术的一种方法或者模式。严格讲,雾计算和边缘计算本身并没有本质的区别,都是在接近于现场应用端提供的计算。就其本质而言,都是相对于云计算而言的。 边缘计算的范式,从二者的计算范式可以看出来,边缘侧的数据计算,一下

子变得丰富起来。这里产生了全新的想象空间。 1.3 物联网应用催生 全球智能手机的快速发展,推动了移动终端和“边缘计算”的发展。而万物互联、万物感知的智能社会,则是跟物联网发展相伴而生,边缘计算系统也因此应声而出。 事实上,物联网的概念已经提出有超过15年的历史,然而,物联网却并未成为一个火热的应用。一个概念到真正的应用有一个较长的过程,与之匹配的技术、产品设备的成本、接受程度、试错过程都是漫长的,因此往往不能很快形成大量使用的市场。 边缘计算在整个计算中的位置:根据Gartner的技术成熟曲线理论来说,在2015年IoT从概念上而言,已经到达顶峰位置。因此,物联网的大规模应用也开始加速。因此未来5-10年内IoT会进入一个应用爆发期,边缘计算也随之被预期将得到更多的应用。

中国移动边缘计算技术白皮书

中国移动边缘计算技术白皮书

目录 1.中国移动边缘计算的发展背景 __________________________________________________ 1 1.1.需求与场景 ____________________________________________________________________ 1 1. 2.边缘计算与5G的相互促进 _______________________________________________________ 2 1.3.边缘电信云的发展 ______________________________________________________________ 2 2.中国移动对边缘计算的思考 ____________________________________________________ 3 2.1.边缘计算的部署位置 ____________________________________________________________ 3 2.2.面向全连接的算力平面 __________________________________________________________ 3 2. 3.边缘计算技术体系视图 __________________________________________________________ 4 2.4.安全是边缘计算的关键要素 ______________________________________________________ 4 3.边缘计算PaaS技术 ___________________________________________________________ 6 3.1.PaaS平台总体设计思路__________________________________________________________ 6 3.2.边缘计算能力开放 ______________________________________________________________ 7 3.3.边缘计算应用/能力引入_________________________________________________________ 9 4.边缘计算IaaS技术__________________________________________________________ 10 4.1.边缘计算IaaS的设计理念_______________________________________________________ 10 4.2.边缘计算IaaS的多种形态_______________________________________________________ 11 4.3.边缘计算IaaS关键技术_________________________________________________________ 13 5.边缘计算硬件体系 ___________________________________________________________ 16 5.1.面向边缘的服务器深度定制方案——OTII服务器___________________________________ 16 5.2.边缘一体化设备 _______________________________________________________________ 17 5.3.边缘计算网关 _________________________________________________________________ 18 6.构建产业生态 _______________________________________________________________ 20 6.1.中国移动边缘计算开放实验室的成立 _____________________________________________ 20 6.2.实验室产品体系 _______________________________________________________________ 20 6.3.实验室资源与能力 _____________________________________________________________ 20 6.4.应用与试验床 _________________________________________________________________ 20 7.倡议和愿景 _________________________________________________________________ 22

5G边缘计算技术详解与应用分析

龙源期刊网 https://www.360docs.net/doc/892673526.html, 5G边缘计算技术详解与应用分析 作者:马晓凯 来源:《中国新技术新产品》2019年第16期 摘; 要:4G时代的智能终端技术全面促进了传统PC互联网同移动网络的深度融合,而在5G时代,移动边缘计算技术将会推动云计算平台同移动网络的融合,这将减少移动业务交付的端到端时延,发掘无线网络的内在能力,从而提升用户体验,给电信运营商的运作模式带来全新变革,并建立新型的产业链及网络生态圈。该文首先分析了移动边缘计算产生的原因以及5G网络与移动边缘计算的关系,然后从用户维度分析了移动边缘计算的四大应用场景,最后说明移动边缘计算的社会价值。 关键词:5G技术;边缘计算;云计算 中图分类号:TN929; ; ; ; ; ; 文献标志码:A 1 5G边缘计算技术分析 4G时代的智能终端技术全面促进了传统PC互联网同移动网络的深度融合,而在5G时代,移动边缘计算技术将会推动云计算平台同移动网络的融合,并可能在技术及商业生态上带来新一轮的变革和颠覆。 1.1 移动边缘计算的提出 5G是4G网络的强大升级版本,4G LTE服务仅提供75 Mbps的传输速率,而5G网络已成功实现28 GHz频段的1 024 Mbps吞吐量。同时,在5G时代,连接设备的数量将急剧增加,网络边缘将产生大量的数据。如果这些数据全部由主管理平台处理,则数据的敏感性、安全性和机密性以及数据处理的时效性将会受到影响。然而,通过引入先进技术进行计算处理,根据接近原理处理这样的一组数据,并且大量后台设备同时工作以实现有效的协同处理,可以解决大流量和集中处理的难题。移动边缘计算正是这样一种技术,可以解决5G网络的延迟、拥塞和容量等问题。 1.2 移动边缘计算是5G的核心技术之一 根据国际电信联盟(ITU)5G的要求,5G标准包括增强型移动宽带(eMBB)、海量机 器类通信(mMTC)、超可靠低延迟通信(URLLC)的3种应用场景,主要指标包括提供峰 值10 Gbps以上的速率、毫秒级时延和超高密度连接,移动性达500 km/h、时延低至1 ms,用户体验数据率达到100 Mbps、实现网络性能新的跃升。

移动边缘计算的系统架构和关键技术分析

无线互联科技 Wireless Internet Technology No.13 July,2019 第13期 2019年7月 移动边缘计算的系统架构和关键技术分析 董春利",王莉1 (1.南京交通职业技术学院电子信息工程学院,江苏南京211188;2.上海剑曦信息科技有限公司,上海200051) 摘要:随着移动互联网和物联网应用的快速发展,传统的集中式云计算遇到了严峻的挑战,例如高延迟、低频谱效率和非自适应机器类型的通信。为了解决这些挑战,新技术正在推动将集中式云计算功能转移到网络边缘设备。移动边缘计算被认为是物联网和任务关键型、垂直解决方案的关键推动因素,被公认为是一种关键的架构概念和技术之一。文章讨论分析了移动边缘计算的系统架构和关键技术。 关键词:移动边缘计算;虚拟机;计算卸载;VM迁移 移动边缘计算(Mobile Edge Computing,MEC)被欧洲电信标准化协会(European Telecommunications Standards Institute,ETSI)定义为一种新技术,在移动网络边缘、无线接入网络内以及移动用户附近,提供IT服务环境和云计算能力ETSI发布了一份关于移动边缘计算的白皮书,移动边缘计算被认为是一种重要的新兴技术,成为下一代网络的重要组成部分。由于具有低延迟、近距离和高带宽等先进特性,以及实时洞察无线网络信息和位置感知功能,移动边缘计算为多个行业(如消费者、企业)提供了大量新的应用和服务。特别地,MEC被认为是智能城市中处理视频流服务有前景的解决方案。 来自监视设备的视频流在MEC服务器上进行本地处理和分析,从视频流中提取有意义的数据。可以将有价值的数据传输到应用服务器,以减少核心网络流量。增强现实(Augmented Reality,AR)移动应用在上行链路中的数据收集、边缘计算和下行链路中的数据传递方面,具有固有的协作属性。增强现实数据需要低延迟和髙速率的数据处理,以便根据用户的位置提供正确的信息。数据处理可以在本地MEC服务器上执行,而不是在集中式服务器上执行,以提供良好的用户体验。物联网在电信网络上生成额外的消息,要求网关聚合消息并确保低延迟和安全性。引入利用MEC收集,分类和分析物联网数据流的新架构,MEC服务器负责管理各种协议、消息分发和分析处理。MEC环境创造了一个新的价值链和充满活力的生态系统,从而为移动运营商、应用和内容提供商创造了新的机会。 1MEC的系统架构 ETSI描述的MEC参考架构使MEC应用程序能够实现为在MEC主机上运行的纯软件实体⑵。移动边缘平台提供运行MEC应用程序所需的基本环境和功能。MEC应用程序在虚拟化基础架构之上作为虚拟机(Virtual Machine,VM)运行,并且可以与移动边缘平台交互以执行与应用程序的生命周期相关的某些支持过程。此外,虚拟化基础设施包括一个执行由移动边缘平台接收的流量规则的数据平面,并路由在应用本地网络和外部网络之间的流量。MEC主机级管理包括移动边缘平台管理器和虚拟化基础架构管理器。前者管理应用程序的生命周期以及应用程序规则和要求,包括服务授权、流量规则、域名系统(Domain Name System, DNS)配置和解决冲突。后者负责分配、管理和发布虚拟化基础架构的可视化(计算、存储和网络)资源。 操作支持系统通过生命周期管理代理商或运营商的第三方客户,通过面向客户的服务门户接收用户应用程序的请求,操作支持系统决定是否授予请求。授权请求将转发给MEC协调器进行下一步处理。MEC协调器是核心功能,因为它根据部署的MEC主机、可用资源、可用MEC服务和拓扑,维护一个整体视图。出于性能、成本、可扩展性、运营商首选部署的原因,MEC支持不同的部署方案叫例如在蜂窝宏基站演进型Node B站点(Evolved Node B,eNodeB)、在3G无线网络控制器(Radio Network Controller,RNC)站点、在多个无线电接入技术小区聚合站点,和聚合点(其也可以位于核心网络的边缘,例如在分布式数据中心中),探讨了一个网络规划问题,该讨论决定了在可用站点中安装MEC 服务器的最佳位置,以便在安装成本和服务质量(Quality of Service,QoS)之间进行权衡。 2MEC的关键技术 MEC的关键技术包括计算卸载和移动性管理。 计算卸载是一个将资源密集型计算从移动设备迁移到资源丰富的附近基础设施的过程画。虽然移动设备受到计算能力、电池寿命和散热的限制,但是通过将能量消耗的应用程序计算卸载到MEC服务器,MEC可以在用户设备(User Equipment,UE)上运行新的复杂应用程序。计算卸载的一个重要部分是决定是否卸载、是否适用全部或部分卸载、卸载什么以及如何卸载。卸载决策取决于根据3个标准分类的应用程序模型。第1个标准是应用程序是否包含不能卸载的用户等不可卸载部分(例如用户输入、摄像或需要在UEs处 基金项目:南京交通职业技术学院高层次人才科研基金项目;项目编号:440105001o 作者简介:董春利(1964—),男,山东青岛人,教授,博士;研究方向:认知无线电网络,下一代无线泛在网络。 -131_

边缘计算参考架构白皮书

边缘计算参考架构白皮书

目录 01迎接行业智能时代 (01) 1.1行业智能时代已来 (02) 1.2行业智能2.0 面临的挑战 (03) 1.3边缘计算使能行业智能2.0 (04) 1.4边缘计算产业化当前进展 (06) 02边缘计算 (08) 2.1边缘计算概念 (09) 2.2基本特点和属性 (09) 2.3边缘计算CROSS价值 (09) 2.4边缘计算与云计算协同 (10) 03 边缘计算参考架构 (11) 3.1模型驱动的参考架构 (12) 3.2多视图呈现 (13) 3.3概念视图 (14) 3.3.1边缘计算节点、开发框架与产品实现 (14) 3.3.2边缘计算领域模型 (16) 3.4功能设计视图 (17) 3.4.1ECN (17) 3.4.2业务Fabric (22)

3.4.3联接计算Fabric (22) 3.4.4开发服务框架(智能服务) (24) 3.4.5部署运营服务框架(智能服务) (25) 3.4.6管理服务 (27) 3.4.7数据全生命周期服务 (27) 3.4.8安全服务 (29) 3.5部署视图 (31) 04 ECC产业发展与商业实践 (33) 4.1ECC产业发展总体概况 (34) 4.1.1ECC产业组织合作 (34) 4.1.2ECC标准组织合作 (34) 4.2边缘计算的商业实践 (35) 4.2.1从理论到实践 (35) 4.2.2从水平到垂直 (35) 4.2.3从需求到实践,从实践到需求 (39) 05 附录 (41) 术语表 (42) 缩略语表 (43)

01 迎接行业智能时代 边缘计算参考架构2.0 1

边缘计算参考架构

边缘计算参考架构2.0 边缘计算产业联盟 工业互联网产业联盟 联合发布 2017年11月

目录 目录2 一、迎接行业智能时代3 (一)行业智能时代已来3 (二)行业智能2.0面临的挑战4 (三)边缘计算使能行业智能2.05 (四)边缘计算产业化当前进展6 二、边缘计算6 (一)边缘计算概念7 (二)基本特点和属性7 (三)边缘计算CROSS价值7 (四)边缘计算与云计算协同8 三、边缘计算参考架构8 (一)模型驱动的参考架构8 (二)多视图呈现9 (三)概念视图10 1、边缘计算节点、开发框架与产品实现10 2、边缘计算领域模型11 (四)功能设计视图12 1、ECN12 2、业务Fabric16 3、联接计算Fabric16 4、开发服务框架(智能服务)18 5、部署运营服务框架(智能服务)19 6、管理服务20 7、数据全生命周期服务20 8、安全服务21 (五)部署视图23 四、ECC产业发展与商业实践24 (一)ECC产业发展总体概况24 1、ECC产业组织合作24 2、ECC标准组织合作24 (二)边缘计算的商业实践25 1、从理论到实践25 2、从水平到垂直25 3、从需求到实践,从实践到需求29

一、迎接行业智能时代 (一)行业智能时代已来 全球已经掀起行业数字化转型的浪潮,数字化是基础,网络化是支撑,智能化是目标。通过对人、物、环境、过程等对象进行数字化产生数据,通过网络化实现数据的价值流动,以数据为生产要素,通过智能化为各行业创造经济和社会价值。智能化是以数据的智能分析为基础,从而实现智能决策和智能操作,并通过闭环实现业务流程的持续智能优化。 以大数据、机器学习、深度学习为代表的智能技术已经在语音识别、图像识别、用户画像等方面得到应用,在算法、模型、架构等方面取得了较大的进展。智能技术已经率先在制造、电力、交通、医疗、农业等行业开始应用,对智能技术提出了新的需求与挑战。行业智能时代已经来临。 行业智能分为1.0和2.0两个发展阶段: 1)行业智能1.0 行业智能1.0是面向市场线索、营销、采购、物流、售后等商业过程,将用户、应用和商业流程的行为和状态数字化,基于多维度数据分析和场景感知,建立行业的信息图谱,为行业用户提供个性化的资源配置和服务。 行业智能1.0的快速发展得到了ICT创新技术的支撑,包括: ●泛在网络联接使能数据的快速流动; ●云计算按需提供低成本的基础设施服务应对业务负载变化; ●大数据挖掘、分析和管理海量数据,提升企业的商业决策能力; ●算法+数据+算力,释放了行业智能的潜在价值。 2)行业智能2.0 面向产品规划、设计、制造、运营等生产过程,产品、生产装备、工艺流程等已经逐步数字化和网络化,行业智能2.0已经具备了基础条件。这里所指的产品、装备具有广义的概念,既包括制造业所生产的产品和制造产线等,也包括能源、交通、农业、公共事业等行业提供服务时所依赖的资产,如电表、交通工具、农业机械、环境监测仪器等。 行业智能2.0需要达成如下目标: ●提升生产与服务过程敏捷性和协作性 ●提升资源共享和减少能耗 ●降低生产运行和运营不确定性 ●与行业智能1.0协作,建立生产、销售和服务的端到端行业智能。 行业智能2.0时代需要行业发生四个关键转变:

移动边缘计算技术概述

第8卷第5期2019$9月 Vol.8No.5网络新媒体技术Sep.2019 ?经典评述- 移动边缘计算技术概述! 洪德坚王雷 (中国科学技术大学信息学院合肥230026) 摘要:移动边缘计算技术MEC是未来5G技术提高服务平台应用能力的重要技术手段#首先介绍了MEC发展历程、优势及基本架构,然后对MEC的三大关键技术进行总结分析,并描述了MEC的三大类应用场景,最后探讨了MEC的发展趋势# 关键词:移动边缘计算,5G未来网,移动互联网应用 Overview of Mobile Edge Computing Technology HONG Dejian,WANG Lal (Universty oS Sciencc and Technology oS China,Hefei,230026,China) AbstracC:Mobile edge ccmputing technology----MEC is an important technical means for improving the application capability oS sere-ice platforms in the future5G technology.This paper first introduccs the development histo-,advantages and basic structure oS MEC, then summarizes and analyzes the three key technologies oS MEC,describes the three major application sccnarios oS MEC,and finally discusses the development trend oS MEC. Keywordt:Mobile edge ccmputing,5G future network,mobile internet application 0引言 随着互联网、移动互联网的飞速发展,用户对网络对流量的需求越来越大,要求也越来越高,为此网络面临的压力越来越大,为更快处理网络中用户需求,移动边缘计算技术(Mobile Edga Computing,MEC)应运而生,目前,MEC已成业界热点话题# MEC由国际标准组织ETSID(European Telecammunications Standards Institute)(欧洲电信标准协会)提出,是基于5G演进架构、将基站与互联网业务深度融合的技术。经过几年的推进,目前关于MEC业界已经形成共识:MEC将是建设5G网络边缘云的普遍模式,或将成为5G业务发展的“试金石”&1]o 本文将对MEC进行相关探讨。主要包括4部分内容,第1部分MEC研究现状和基本架构,第2部分是对MEC主要3大关键技术进行研究,第3部分内容是MEC典型的应用场景研究,第4部分内容是MEC未来发展和展望。 1MEC发展历程、优势及基本架构 移动边缘计算MEC概念最初于2013年出现。HM与Nokia Siemens网络当时共同推出了一款计算平台,可在无线基站内部运行应用程序,向移动用户提供业务。欧洲电信标准协会ETSI于2014年成立移动边 本文于2018-08-01收到,2018-08-16收到修改稿。 *基金项目:工信部"新一代宽带无线移动通信网”重大专项子课题(2017ZX03001019-004)

边缘计算参考架构

边缘计算参考架构文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

边缘计算参考架构2.0边缘计算产业联盟 工业互联网产业联盟 联合发布 2017年11月 目录

一、迎接行业智能时代 (一)行业智能时代已来 全球已经掀起行业数字化转型的浪潮,数字化是基础,网络化是支撑,智能化是目标。通过对人、物、环境、过程等对象进行数字化产生数据,通过网络化实现数据的价值流动,以数据为生产要素,通过智能化为各行业创造经济和社会价值。智能化是以数据的智能分析为基础,从而实现智能决策和智能操作,并通过闭环实现业务流程的持续智能优化。 以大数据、机器学习、深度学习为代表的智能技术已经在语音识别、图像识别、用户画像等方面得到应用,在算法、模型、架构等方面取得了较大的进展。智能技术已经率先在制造、电力、交通、医疗、农业等行业开始应用,对智能技术提出了新的需求与挑战。行业智能时代已经来临。 行业智能分为1.0和2.0两个发展阶段: 1)行业智能1.0 行业智能1.0是面向市场线索、营销、采购、物流、售后等商业过程,将用户、应用和商业流程的行为和状态数字化,基于多维度数据分析和场景感知,建立行业的信息图谱,为行业用户提供个性化的资源配置和服务。 行业智能1.0的快速发展得到了ICT创新技术的支撑,包括: 泛在网络联接使能数据的快速流动; 云计算按需提供低成本的基础设施服务应对业务负载变化;

大数据挖掘、分析和管理海量数据,提升企业的商业决策能力; 算法+数据+算力,释放了行业智能的潜在价值。 2)行业智能2.0 面向产品规划、设计、制造、运营等生产过程,产品、生产装备、工艺流程等已经逐步数字化和网络化,行业智能2.0已经具备了基础条件。这里所指的产品、装备具有广义的概念,既包括制造业所生产的产品和制造产线等,也包括能源、交通、农业、公共事业等行业提供服务时所依赖的资产,如电表、交通工具、农业机械、环境监测仪器等。 行业智能2.0需要达成如下目标: 提升生产与服务过程敏捷性和协作性 提升资源共享和减少能耗 降低生产运行和运营不确定性 与行业智能1.0协作,建立生产、销售和服务的端到端行业智能。 行业智能2.0时代需要行业发生四个关键转变: 物理世界与数字世界从割裂转变为协作融合; 运营决策从模糊的经验化转变为基于数字化、模型化的科学化; 流程从割裂转变基于数据的全流程协同; 从企业单边创新转变为基于产业生态的多边开放创新。 (二)行业智能2.0面临的挑战 从DIKW模型视角看,行业智能2.0面临了四大挑战: OT和ICT跨界协作挑战

中国联通边缘计算技术白皮书

word格式编辑

目录 1概述 (1) 1.1 白皮书愿景及目标 (1) 1.2 白皮书状态 (2) 2MEC驱动力及挑战分析 (3) 2.1 行业及市场发展需求 (3) 2.1.1业务及技术驱动 (3) 2.1.2商业及产业驱动 (5) 2.2 电信运营商网络挑战分析 (6) 2.2.1竖井式网络架构难以满足业务发展需求 (6) 2.2.2ICT融合驱动运营商改变“哑管道运营”格局 (7) 3中国联通MEC平台能力和应用需求 (8) 3.1 MEC平台能力需求 (8) 3.1.1业务域 (8) 3.1.2管理域 (9) 3.2 MEC典型应用需求 (10) 4中国联通LTE网络MEC部署策略 (14) 4.1 LTE网络MEC组网架构 (14) 4.2 中国联通LTE网络MEC部署方案 (14) 4.2.1部署位置 (14) 4.2.2计费方案 (16) 4.3 MEC部署存在的问题分析 (16) 5MEC技术演进路线及规划 (17) 5.1 面向5G网络的MEC关键技术演进 (17) 5.1.1流量疏导方案 (17) 5.1.2业务连续性方案 (18) 5.1.3智能感知与优化方案 (18) 5.2 中国联通MEC组网架构演进 (19) 5.3 中国联通5G网络MEC部署规划 (21) 6总结和展望 (23) word格式编辑

中国联通边缘计算技术白皮书 1 概述 1.1 白皮书愿景及目标 当前,信息通信技术向各行各业融合渗透,数字化信息已成为关键生产要素,经济社会各领域向数字化转型升级的趋势愈发明显。5G网络与云计算、大数据、虚拟增强现实、人工智能等技术深度融合,将连接人和万物,成为各行业数字化转型的关键基础设施。5G包括三大应用场景:eMBB(增强移动宽带)、mMTC (海量机器类通信)和uRLLC(超可靠低时延通信)。其中,eMBB聚焦对带宽有极高需求的业务,例如高清视频、VR(虚拟现实)和AR(增强现实)等,满足人们对于数字化生活的需求;mMTC聚焦对连接密度要求较高的业务,例如智慧城市、智慧农业、智能家居等,满足人们对于数字化社会的需求;uRLLC 聚焦对时延极其敏感的业务,例如自动驾驶、工业控制、远程医疗等,满足人们对于数字化工业的需求。IDC最新统计报告显示,到2020年将有超过500亿的终端与设备联网,而到2018年,就将有50%的物联网网络将面临网络带宽的限制,40%的数据需要在网络边缘侧分析、处理与储存。 多接入边缘计算(Multi-Acess Edge Computing,MEC)是在靠近人、物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的开放平台,就近提供边缘智能服务,满足行业数字化在敏捷联接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求。在3GPP R15中,基于服务化架构,5G协议模块可以根据业务需求灵活调用,为构建边缘网络提供了技术标准,从而使得MEC可以按需、分场景灵活部署在无线接入云、边缘云或者汇聚云。MEC 可为移动运营商提供以下价值: ?通过对4K/8K、VR/AR等高带宽业务的本地分流,降低对核心网络及骨干传输网络的占用,有效提升运营商网络的利用率; ?通过内容与计算能力的下沉,运营商网络将有效支撑未来时延敏感型业务(车联网、远程控制等)以及大计算和高处理能力需求的业务(视频监控与分析等),助力运营商实现从连接管道向信息化服务使能平台的转型; ?MEC作为边缘云计算环境和网络能力开放平台,将为运营商构建网络边缘生态奠定基础。

离散制造业边缘计算解决方案白皮书(征求意见稿)

目录 一、离散制造业发展面临的挑战及边缘计算的应用价值 (1) (一)离散制造业迎来新的发展机遇 (1) (二)离散制造业转型发展对边缘计算能力的需求分析 . 2 1.制约离散制造业转型发展的关键因素 (2) 2.边缘计算带来的工业现场价值 (4) (三)离散制造业边缘计算应用基本情况 (8) 1.边缘控制器层 (8) 2.边缘网关层 (10) 3.边缘云层 (10) 二、离散制造业边缘计算实施架构及技术体系 (11) (一)离散制造业边缘计算实施架构 (11) (二)离散制造业边缘计算关键技术 (12) 1. 边缘智能 (12) 2. 异构计算 (13) 3. 互联互通技术 (14) 4. 微服务 (14) 5. 计算迁移 (15) 三、离散制造业边缘计算解决方案实践 (15) (一)汽车生产制造领域边缘计算解决方案实践 (16) 1. 面临问题和挑战 (16) 2. 边缘计算解决方案实践 (18)

3. 实践效果 (19) (二)电子制造领域边缘计算解决方案实践 (20) 1. 面临问题和挑战 (20) 2. 边缘计算解决方案实践 (21) 3. 实践效果 (23) (三)工程机械领域边缘计算解决方案实践 (24) 1. 面临问题和挑战 (24) 2. 边缘计算解决方案实践 (25) 3. 实践效果 (26) (四)船舶制造领域边缘计算解决方案实践 (26) 1. 面临问题和挑战 (26) 2. 边缘计算解决方案实践 (29) 3. 实践效果 (31) (五)定制家具领域边缘计算解决方案实践 (31) 1. 面临问题和挑战 (31) 2. 边缘计算解决方案实践 (32) 3. 实践效果 (33) 四、离散制造业边缘计算发展趋势及建议 (34) (一)离散制造业边缘计算未来展望 (34) (二)离散制造业边缘计算技术和产业化发展建议 (35) 1.产业化发展建议 (35) 2.技术及标准发展建议 (36)

边缘计算

思科在2016—2021 年的全球云指数中指出:接入互联网的设备数量将从2016 的171 亿增加到271 亿。每天产生的数据量也在激增,全球的设备产生的数据量从2016 年的218 ZB 增长到2021 年的847 ZB。传统的云计算模型是将所有数据通过网络上传至云计算中心,利用云计算中心的超强计算能力来集中解决应用的计算需求问题。然而,云计算的集中处理模式在万物互联的背景下有3 点不足。 (1)万物互联实时性需求。万物互联环境下,随着边缘设备数量的增加,这些设备产生的数据量也在激增,导致网络带宽逐渐成为了云计算的一个瓶颈。例如波音787 每秒产生的数据量超过5 GB,但飞机与卫星之间的带宽不足以支持实时数据传输。 (2)数据安全与隐私。随着智能家居的普及,许多家庭在屋内安装网络摄像头,直接将摄像头收集的视频数据上传至云计算中心会增加泄露用户隐私数据的风险。 (3)能耗较大。随着在云服务器运行的用户应用程序越来越多,未来大规模数据中心对能耗的需求将难以满足。现有的关于云计算中心的能耗研究主要集中在如何提高能耗使用效率方面。然而,仅提高能耗使用效率,仍不能解决数据中心巨大的能耗问题,这在万物互联环境下将更加突出。 针对于此,万物互联应用需求的发展催生了边缘计算模型。边缘计算模型是指在网络边缘执行计算的一种新型计算模型。边缘计算模型中边缘设备具有执行计算和数据分析的处理能力,将原有云计算模型执行的部分或全部计算任务迁移到网络边缘设备上,降低云服务器的计算负载,减缓网络带宽的压力,提高万物互联时代数据的处理效率。边缘计算并不是为了取代云,而是对云的补充,为移动计算、物

联网等提供更好的计算平台。 边缘计算模型成为新兴万物互联应用的支撑平台,目前已是大势所趋。本文中,我们从概念、关键技术、典型应用、现状趋势和挑战等方面对边缘计算模型展开介绍,旨在为边缘计算研究者提供参考。 01 边缘计算概念 对于边缘计算,不同组织给出了不同的定义。美国韦恩州立大学计算机科学系施巍松等人把边缘计算定义为:“边缘计算是指在网络边缘执行计算的一种新型计算模式,边缘计算中边缘的下行数据表示云服务,上行数据表示万物互联服务”。边缘计算产业联盟把边缘计算定义为:“边缘计算是在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的开发平台,就近提供边缘智能服务,满足行业数字在敏捷联接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求”。 因此,边缘计算是一种新型计算模式,通过在靠近物或数据源头的网络边缘侧,为应用提供融合计算、存储和网络等资源,同时边缘计算也是一种使能技术,通过在网络边缘侧提供这些资源,满足行业在敏捷联接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求。 1.1 边缘计算体系架构 边缘计算通过在终端设备和云之间引入边缘设备,将云服务扩展到网络边缘。边缘计算架构包括终端层、边缘层和云层。图1 展示了边缘计算的体系架构。接下来我们简要介绍边缘计算体系架构中每层的组成和功能。

中国联通边缘计算技术白皮书

I 版权所有?中国联通网络技术研究院,2017

目录 1概述 (1) 1.1 白皮书愿景及目标 (1) 1.2 白皮书状态 (2) 2MEC驱动力及挑战分析 (3) 2.1 行业及市场发展需求 (3) 2.1.1业务及技术驱动 (3) 2.1.2商业及产业驱动 (5) 2.2 电信运营商网络挑战分析 (6) 2.2.1竖井式网络架构难以满足业务发展需求 (6) 2.2.2ICT融合驱动运营商改变“哑管道运营”格局 (7) 3中国联通MEC平台能力和应用需求 (8) 3.1 MEC平台能力需求 (8) 3.1.1业务域 (8) 3.1.2管理域 (9) 3.2 MEC典型应用需求 (10) 4中国联通LTE网络MEC部署策略 (14) 4.1 LTE网络MEC组网架构 (14) 4.2 中国联通LTE网络MEC部署方案 (14) 4.2.1部署位置 (14) 4.2.2计费方案 (16) 4.3 MEC部署存在的问题分析 (16) 5MEC技术演进路线及规划 (17) 5.1 面向5G网络的MEC关键技术演进 (17) 5.1.1流量疏导方案 (17) 5.1.2业务连续性方案 (18) 5.1.3智能感知与优化方案 (18) 5.2 中国联通MEC组网架构演进 (19) 5.3 中国联通5G网络MEC部署规划 (21) 6总结和展望 (23)

中国联通边缘计算技术白皮书 1 概述 1.1 白皮书愿景及目标 当前,信息通信技术向各行各业融合渗透,数字化信息已成为关键生产要素,经济社会各领域向数字化转型升级的趋势愈发明显。5G网络与云计算、大数据、虚拟增强现实、人工智能等技术深度融合,将连接人和万物,成为各行业数字化转型的关键基础设施。5G包括三大应用场景:eMBB(增强移动宽带)、mMTC (海量机器类通信)和uRLLC(超可靠低时延通信)。其中,eMBB聚焦对带宽有极高需求的业务,例如高清视频、VR(虚拟现实)和AR(增强现实)等,满足人们对于数字化生活的需求;mMTC聚焦对连接密度要求较高的业务,例如智慧城市、智慧农业、智能家居等,满足人们对于数字化社会的需求;uRLLC 聚焦对时延极其敏感的业务,例如自动驾驶、工业控制、远程医疗等,满足人们对于数字化工业的需求。IDC最新统计报告显示,到2020年将有超过500亿的终端与设备联网,而到2018年,就将有50%的物联网网络将面临网络带宽的限制,40%的数据需要在网络边缘侧分析、处理与储存。 多接入边缘计算(Multi-Acess Edge Computing,MEC)是在靠近人、物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的开放平台,就近提供边缘智能服务,满足行业数字化在敏捷联接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求。在3GPP R15中,基于服务化架构,5G协议模块可以根据业务需求灵活调用,为构建边缘网络提供了技术标准,从而使得MEC可以按需、分场景灵活部署在无线接入云、边缘云或者汇聚云。MEC 可为移动运营商提供以下价值: ?通过对4K/8K、VR/AR等高带宽业务的本地分流,降低对核心网络及骨干传输网络的占用,有效提升运营商网络的利用率; ?通过内容与计算能力的下沉,运营商网络将有效支撑未来时延敏感型业务(车联网、远程控制等)以及大计算和高处理能力需求的业务(视频监控与分析等),助力运营商实现从连接管道向信息化服务使能平台的转型; ?MEC作为边缘云计算环境和网络能力开放平台,将为运营商构建网络边缘生态奠定基础。

相关文档
最新文档