CRH2型动车组车体强度设计

合集下载

CHR2车体结构简介

CHR2车体结构简介

4、端墙
• 头车车体一端设置端墙, 中间车两端均设置有端 墙。 • 端墙根据车辆卫生间和洗脸间的布置主要分为分 体式和整体式2种结构形式。 • 车端有盥洗室和厕所的端墙采用分体式结构。用 t4 的外板,骨架较少,设有开口为便于搬入整体 玻璃钢( FRP )厕所。待整体厕所搬入后用螺栓 将由 t2.5 的铝外板和骨架焊接构成的封板与端墙 紧固并进行密封材充填保证气密。 • 车端无盥洗室和厕所的端墙采用整体式结构,为 t2.5的外板和型材骨架构成的焊接结构。
铝合金分类
铝合金按加工工艺分为形变铝合金和铸造 铝合金。 动车组车体常用的形变铝合金有: • 非热处理强化:Al-Mg合金(5000系) • 热处理强化:
– Al-Mg-Si合金(6000系)、 – 高强度的Al-Zn-Mn合金(7000系)
5083:强度一般,适合焊接,但挤压加工性差。 6N01:中等强度,挤压性好,但焊接接头软化,且疲劳强度较低。
8.司机操纵台
1) 仪表盘 仪亳盘采用一体化设计理念,外形简洁,线条流畅。司机前 方仪表盘设置:MON车辆信息显示器1、ATP速度显示器、 MON车辆信息显示器2。在台面上集中布置操纵开关及按 钮。为了司机观察及操作方便,所有仪表安装面板与台面 均呈一定角度。 2) 司机室侧面布置 侧面布置MON车辆信息显示器2、广播控制话筒、头灯及 暖风机开关、无线打印机等。
5 、车头
• 车头部车体的横向骨架(t6mm铝板)为环 状结构,以纵向骨架连接,外板为铝合金 板(t2.5mm)拼接的焊接结构。
• 骨架外焊接铝制外板。对需要更高强度的部位,采 取增加板厚、 缩小骨架间距、 增加加强材等措施。 整个头部结构焊接严格要求气密性,结构上适应配 线、配管及内装需要。
门区部分根据门口与外端距离的大小分成板梁式结构和板 梁加中空型材两种形式。

CRH_2型200km_h动车组转向架

CRH_2型200km_h动车组转向架
表 1 CRH2 型动车组转向架主要技术参数
最高运行速度 / k m·h - 1
250
运营速度 /k m·h - 1
200
定员时轴重(100% 定员)/kN
137.2
满员时最大轴重(200% 定员)/kN
156.8
编组通过的最小曲线半径 /m
180
单车调车通过的最小曲线半径 /m
130
轴距 /mm
2 500
② 零 部 件 数 量 少 ,简 化 结 构 ,方 便 分 解 或 组 装 作 业,无需选配(参见表 3);
③无磨耗,提高可靠性,实现免维护。
表 3 双拉板式和转臂式一系定位方式比较
双拉板式
零部件数量 / 个 组装作业时间
组装条件
综合质量比较 /kg
24 长 需要组装工装,定位 刚度参数需选配 W0+85(每转向架)
现轻量化; ③规范的焊接设计和严格的焊缝处理工艺; ④ 取 消 铸 造 件 ,代 之 以 焊 接 结 构 或 锻 造 件 ,消 除
铸造质量缺陷隐患。 转向架构架强度设计依据JIS E4207《铁道车辆—
转向架—构架设计通则》与JIS E4208《铁道车辆—转向 架—载荷试验方法》,以强调车辆轻量化目标为特征的 新 干 线 转 向 架 设 计 ,保 证 承 载 结 构 的 强 度 。日 本 新 干 线高速铁路积累了近 40 年的成功应用经验,同时也制 定并不断完善了其铁道车辆转向架构架强度设计标准 体 系 。现 有 标 准 规 范 的 建 立 来 源 于 长 期 的 、完 整 的 实 际线路运用一线的经验总结,已建立了完备的铁道车 辆构架用材料疲劳强度评价方法,这些基础性研究工 作贯穿于新干线铁道车辆的整个发展历程中,正是通 过多年的基础材料试验研究的积累,建立起了一套通 过静态应力水平评价疲劳强度的方法。

CRH2动车组车轴的CAD-CAE分析

CRH2动车组车轴的CAD-CAE分析

CRH2动车组车轴的CAD/CAE分析引言:我国的CRH2型动车组是对日本新干线动车组E2-1000引进-消化-吸收-再创新的产品。

本文以solidworks2010为工具,对CRH2型动车组拖车车轴进行CAD/CAE建模并进行仿真分析,然后按照相关标准,校核其刚度及强度。

一:CRH2拖车车轴CAD建模与 CAE分析1.1 CRH2动车组车轴基本参数CRH2 型动车组非动力车轴按JIS-E 4501和JIS-E 4502标准进行设计和制造,为了提高车轴的疲劳可靠性,采用高频淬火热处理和滚压强化工艺。

为了在保证强度的同时减轻质量,轮对的车轴采用空心车轴,孔径60mm,轴颈直径130mm。

其他参数为:m1=12400kg, h1=1055mmm,b=1000mm,s=747mm,R=430mmm,y1=393mm,y2=1093mm.1.2 CRH2拖车车轴CAD建模过程拉伸凸台(车轴毛坯)-拉伸切除(防尘板座、轮座、制动盘座、轴身)-镜像特征-拉伸切除(镗铣空心轴)—倒角圆角特征.1.3CRH2拖车车轴的计算载荷及工况依据JIS E 4501 铁道车辆车轴强度设计方法和JIS E 4501 铁道车辆车轴品质要求,对动车组非动力轴进行疲劳强度计算,计算中考虑了车体振动引起的垂向和横向加速度对弯曲应力的影响。

CRH2动车组拖车车轴受载情况如图1.3示:图1.3车轴设计载荷图轮座部位车轴的弯曲应力按照以下各式计算:对车轴进行以上受力分析,求得车轴轴颈两端所受载荷分别为:F1=73.6kN, F2=48kN.则CRH2动车组拖车车轴载荷计算结果如表1.3.1示。

1.4车轴CAE分析1.4.1CRH2動车组拖车车轴刚性约束下强度计算分析(1)前处理:定类型:在simulation中新建“车轴刚性约束强度分析静态算例”;画模型设属性:设置材料为“合金钢”;分网格:单元总数9591,节点数15971(2)求解:添约束:在车轴轮座下表面添加“固定几何体”约束;加载荷:在车轴轴颈一端添加垂直向下的载荷73.6kN,另一端添加垂直向下的载荷48kN;求结果:车轴应力,合位移变化探测出车轮上不同节点的应力与位移.(3)强度评价在我国,动车组实际运行线路既有改造线路又有高速线路,在速度选择时分别要考虑160km/h和200km/h.在该文档中,只取200km/h进行分析计算。

国产化CRH2型200km_h动车组铝合金车体及技术创新

国产化CRH2型200km_h动车组铝合金车体及技术创新

— 1—和谐号专栏国产化 CRH2型 200km/h动车组铝合金车体及技术创新陈文宾,丁叁叁 (南车四方机车车辆股份有限公司技术中心, 山东青岛266111收稿日期:2008-02-04摘要 :介绍了国产化 CRH2型 200km/h动车组铝合金车体结构, 阐述了其主要技术特点以及相关的技术创新工作。

关键词:CRH2型动车组;铝合金车体;国产化;技术创新中图分类号:U266.2;U260.32 文献标识码:A 文章编号 :1000-128X(200802-0001-04机车电传动 ELECTRIC DRIVE FOR LOCOMOTIVES№ 2, 2008Mar. 10, 20082008年第 2期 2008年 3月 10日Aluminum Alloy Carbody of Localized CRH2 200 km/h EMUsand Its Technical InnovationsCHEN Wen-bin, DING San-san(Technical Center, CSR Sifang Locomotive and Rolling Stock Co., Ltd., Qingdao, Shandong 266111, ChinaAbstract:The aluminum alloy carbody of localized CRH2 200km/h EMUs are introduced. Its main technical characteristics are putforward as well as relative localization content and technical innovations.Key words:CRH2 type EMUs; aluminum alloy carbody; localization; technical innovation0引言CRH2型 200km/h动车组铝合金车体结构是在引进技术的基础上实现国产化的。

CRH2C和CRH3C有实质的区别吗?

CRH2C和CRH3C有实质的区别吗?

CRH2C和CRH3C有实质的区别吗?展开全文CRH2C和CRH3C有实质的区别吗?CRH2型动车组,全称为和谐号CRH2型电动车组(简称CRH2)。

是中华人民共和国铁道部为中国铁路第六次大提速,向日本的川崎重工业和中国南车集团的四方机车车辆股份有限公司订购的高速电动车组。

CRH2型动车组技术引进自日本川崎重工业的新干线列车车型,以日本川崎重工业的E2系1000型为基础,动力配置从E2-1000的6M2T变为4M4T。

中国南车四方机车车辆股份有限公司(联合日本川崎重工)引进技术负责国内生产,并以引进国外技术并吸收的方式逐步国产化。

CRH2C为8节车编组,时速350公里级别.CRH3动车组为4动4拖8辆编组,采用电力牵引交流传动方式,由2个牵引单元组成,每个牵引单元按两动一拖构成。

动车组具有良好的气动外形,其载客速度为350KM\H,最高试验速度为404KM\H。

两端为司机室,列车正常运行时由前端司机室操纵。

两列动车组可以联挂运行,自动解编。

CRH3动车组设置一等座车一辆、二等座车6辆和一辆带厨房的二等座车。

一等车厢座席采取2+2布置,二等车车厢座席采取2+3布置,除带厨房的二等座车采用固定座椅外,其余车型均采用了可旋转座椅,全车定员557人。

CRH2,南车四方联合日本川崎重工生产,引进技术,逐步国产化,原型日本新干线E2-1000,但动力配置从E2-1000的6M2T变为4M4T编组型式:8辆编组,可两编组连挂运行(重联运行)动力配置:4M+4T车种:一等座车、二等座车、二等座车餐车。

定员(人):610客室布置:一等车2+2、二等车2+3最高运营速度(km/h):250(具备提速到300km/h的条件,6M2T编组)最高试验速度(km/h):250适应轨距(mm):1435适应站台高度(mm):1200传动方式:交直交牵引功率(kW):4800编组重量及长度:204.9m,345t车体型式:大型中空型材铝合金车体气密性:车内压力从4kPa降到1kPa时间大于50s头车车辆长度(mm):25700中间车辆长度(mm):25000车辆宽度(mm):3380车辆高度(mm):3700空调系统:准集中式空调系统转向架类型:DT206/TR7004B无摇枕转向架转向架一系悬挂:单组钢弹簧单侧拉板定位+液压减振器转向架二系悬挂:空气弹簧+橡胶堆转向架轴重(t):≤14转向架轮径(mm):860/790转向架固定轴距(mm):2500受流电压:AC25kV,50Hz牵引变流器:IGBT水冷VVVF牵引电动机:300kW启动加速度(m/s2):0.406制动方式:直通式电空制动紧急制动距离(m)(制动初速度200km/h):≤1800辅助供电制式:DC100V,三相AC100V AC220V、AC400V4月18日大提速起,本车运行于京广,京沪,浙赣,胶济线上。

CRH2型高速动车组车辆车体结构总体设计

CRH2型高速动车组车辆车体结构总体设计




2007年,中国铁路第六次成功实施大面积提速,标志着中国和谐号CRH动车组的首次出现,我国铁路技术进入世界先进行列。
所谓高速动车组,即指中国新一代高速动车组,其中CRH2动车组列车运行时速为200km/h,最高运营速度250km/h,是世界上运营速度较快,科技含量较高,系统匹配较优的动车组。但是,作为高新技术体现的高速动车组面临很多新技术问题。
[5]姜燕清.高铁地铁列车动车车体建模分析与优化[D].[硕士学位论文].南京:东南大学,2006
[6]陈文宾.国产化CRH2型200km/h动车组铝合金车体及技术创新[Z].山东:四方机车车辆股份有限公司,2008
[7]刘志明.动车组设备[M],北京:中国风铁道出版社,2010
[8]Li Changxian,Sun Yannan,Li Chunying.Construction and Simulation on Traction Converter and Control System of EMU[Z].Dalian:Dalian Jiaotong University,2009
4.降噪技术。采用双壳结构并在中空腔中注入泡沫材料或粘接橡胶片,阻断噪声向车内传播。
指导教师
意见
指导教师签名:
年月日
教研室意见主任签名: Nhomakorabea年月日系部意见
教学主任签名:
年月日
车辆工程系本科毕业设计(论文)材料清单
题目:高速动车组车辆车体结构总体设计
序号
本科毕业设计(论文)材料清单内容
份数
备注
1
毕业设计(论文)选题、审题表
1份
2
毕业设计(论文)任务书
1份
3

CRH2A_EMU车辆概述

CRH2A_EMU车辆概述

CRH2A_EMU车辆概述CRH2A_EMU(城际动车组)是中国铁路总公司下属中国铁路总公司动车运用部CRH车辆段研制生产的一种高速列车。

它经过多年的技术研发和不断改进,在中国铁路网络中扮演着重要的角色。

本文将对CRH2A_EMU车辆的技术特点、运营情况以及未来发展进行概述。

一、技术特点CRH2A_EMU车辆采用了先进的动力系统和车辆结构设计,具有以下技术特点:1.1 动力系统CRH2A_EMU搭载了由中国铁路总公司自主研发的高速动力装置,包括电力机车、牵引变流器以及辅助供电系统。

这些系统能够有效提供动力,使得列车能够以更高的速度行驶,并具备更好的加速度和牵引力。

1.2 车辆结构设计CRH2A_EMU采用了铝合金车体材料,使得车身更轻便、强度更高。

同时,车内采用了空调系统,能够为乘客提供舒适的乘坐环境。

车辆的座椅布局以及动车组内的设施布置也经过精心设计,以提供更好的乘坐体验。

二、运营情况CRH2A_EMU车辆在中国高速铁路网络中得到了广泛应用,担负着较长的运营线路。

其运营情况如下:2.1 运营线路CRH2A_EMU车辆目前主要在中国各地的高速铁路线路上运行,覆盖了许多核心城市之间的重要交通枢纽。

例如,北京至上海、广州至深圳等线路都采用了CRH2A_EMU车辆。

2.2 运营性能CRH2A_EMU车辆的最高设计时速可达350公里/小时,平均运营时速在高速铁路上维持在约250公里/小时。

车辆的稳定性和舒适性得到了乘客的广泛认可,成为国内长途高速铁路出行的主要选择。

三、未来发展随着中国高速铁路的不断发展和完善,CRH2A_EMU车辆也将迎来新的发展机遇。

3.1 技术升级为了进一步提升CRH2A_EMU车辆的性能,中国铁路总公司将不断进行技术升级,并在列车的动力系统、车辆结构设计以及安全控制系统等方面进行改进。

这样不仅能够提高列车的运营效率,同时也能够提供更好的乘坐体验。

3.2 车辆数量增加随着高速铁路线网的扩大和客流量的增加,CRH2A_EMU车辆的数量也将逐渐增加。

CRH2型动车组轮轨接触计算及车轮强度CAE分析

CRH2型动车组轮轨接触计算及车轮强度CAE分析

CRH2型动车组轮轨接触计算及车轮强度CAE分析谢红太【摘要】为了分析计算CRH2型动车组在垂向静载荷作用下的车轮最大计算载荷,并确定轮轨接触斑的几何形状参数,利用SolidWorks软件模拟出车轮及静载下的轮轨接触有限元模型,并于Simulation中通过提取分割几何线的方法进行有限元图解分析.结果表明,垂向静载条件下车轮一周踏面横向位移呈三角函数曲线变化趋势,计算模拟仿真结果可用于横向稳定性计算、车轮动态横向响应曲线计算等,还可用于轨道几何参数和轮轨外形的合理选择.【期刊名称】《宁夏工程技术》【年(卷),期】2017(016)004【总页数】4页(P344-347)【关键词】SolidWorks;CRH2型动车组;轮轨接触;椭圆接触斑;有限元分析【作者】谢红太【作者单位】兰州交通大学机电工程学院,甘肃兰州 730070;中国铁路西安局集团有限公司西安动车段,陕西西安 710016【正文语种】中文【中图分类】U266轮轨关系是轨道交通领域中一个最复杂、最棘手的问题,可定义为摩擦滚动接触相关问题,国内外学者在轮轨关系的研究实验上投入大量的资金与人力,但未有明确的定论,这与轮轨接触应力分析及车轮结构强度模拟仿真条件苛刻以及外界影响因素复杂繁多有关[1—3]。

随着有限元技术的兴起,很多现实中投入资金量大、计算复杂的问题可利用有限元技术加以解决。

SolidWorks Simulation有限元技术被广泛用于计算机辅助制造中。

目前轨道交通领域中对重载下车轮辐板、踏面、轮缘表面应力变化情况及分布规律普遍采用寻找粘贴应变斑的方法来讨论[4—5],整个实验分析过程极为复杂,同时也得不出定性结论,只是限定大范围内的描述性推测。

鉴于此,本文利用SolidWorks公司推出的有限元分析模块Simulation对车轮的受力情况给出一种简化分析模型与应力分布表述。

1 轮轨接触分析1.1CRH2型动车组LMA型踏面随着高速动车组的投运,对车轮轮型和精度都有了更高的要求,只有通过数控改造才能更好地满足高速动车组车轮加工的需要,其中最为困难和重要的是与钢轨接触的踏面形状控制。

CRH2型动车组车体结构概述

CRH2型动车组车体结构概述

CRH2型动车组车体结构概述高速动车组比传统机车车辆的运营速度有大幅度增加,这要求动车组车体结构的设计需考虑:(1)为了减小空气阻力,车体外形需设计成流线型;(2)为了提高乘坐舒适度,车体需采用气密结构;(3)为了降低能耗,车体需采用轻量化设计。

由于铝合金材料的密度低(只有钢材的l/3左右),质量较轻,具有强度大、刚度好的特点,所以在高速动车组车体上得到了广泛应用。

3.1.1车体承载结构特点由于车体需要承受旅客的质量和各种设备的质量,以及动车组在运行过程中的纵向、横向、垂向和扭转等载荷,所以车体需有足够的强度和刚度。

高速动车组车体采用铝合金筒形整体承载结构,能够达到足够的强度和刚度,同时实现结构轻量化。

筒形铝合金车体结构的最大优点是工艺性好、减轻车辆自重、降低能耗、减少运行成本和维护成本。

近年来车体大量采用大型、中空、薄壁的铝合金挤压型材,实现了纵向大幅度自动焊接工艺,提高了质量和生产效率。

3.1.2车体用铝合金材料高速动车组铝合金车体材料主要有5000系、6000系和7000系。

5000系铝合金是变形铝一镁系合金;6000系铝合金是变形铝一镁一硅系合金;7000系铝合金是变形铝一锌系合金。

CRH2型动车组车体用铝合金材料需具有强度高、焊接性好、挤压加工性能优、耐腐蚀性强等特性,主要采用了5000系的5083、6000系的6N01、7000系的7N01等。

这些合金的主要机械性能如表3.1所示。

表3.1CRH2型动车组车体用主要铝合金材料主要机械性能各种铝合金材料的具体技术特征如下:(1)5083是非热处理合金中强度最大的高耐腐蚀性合金,适合于焊接结构。

但其挤压加工性较差,难以得到薄壁及中空型材。

(2)6N01是中等强度的耐腐蚀性铝合金,挤压加工性、加压淬火性均比较优良,能制造出复杂形状的大型薄壁型材,且耐腐蚀性、焊接性较好。

(3)7N01也是焊接结构用铝合金,其强度高,并且通过常温时效处理,焊接部分的强度能够恢复到接近于母材的强度,且耐腐蚀性非常好。

CRH2型时速300公里动车组总体介绍

CRH2型时速300公里动车组总体介绍

1.11 车辆定位
1位角
车辆的定位、转向架、车轴及车轮的编号按下图进行定义。
1位侧 3位
<1> 前位 (1号车侧)
<3>
<5>
<7>
(1)
{1}
(2)
(3)
{2}
(4)
后位 (8号车侧)
<2>
<4>位 2位侧
4位
{x}:转向架编号 (x):车轴编号 <x>:车轮编号 图 1.11-1车辆定位、转向架、车轴及车轮编号的定义
1.1
EMU编组 EMU编组
1.1.1 动力配置 时速300公里速度级动车组(简称300km/h EMU)为动力分散 交流传动动车组,最高运行速度275km/h,可在中国新建 300km/h速度级客运专线(300线)上运营,并能在新建 200km/h速度级客运专线上以200km/h速度正常运行。 动车组以CRH2型时速200公里动车组为基础,通过速度提升 和优化设计,完成自主研制。动车组由6辆动车2辆拖共8辆 车构成编组,编组配置如图1.1-1所示。另外,两列动车组 可联挂运行。
附图4 时速300公里动车组编组图(车顶设备布置图) 公里动车组编组图( 附图 时速 公里动车组编组图 车顶设备布置图)
车下悬吊设备
每辆车下设单元式空调机组、制动控制装置。在2、3、4、5、 6和7号车下设牵引变流器, 在2号、4号和6号车下设牵引变 压器,在4、6号车下设过分相装置。在单号车下设污物箱及 水箱。在3、5、7号车设主空压机;2、4、6号车下设辅助 空压机;在2、、3、4、6和7号车下设蓄电池箱;在两头车 下设辅助电源装置,另外,在5号车下还设一小型辅助电源 装置。

CRH2列车的技术文档

CRH2列车的技术文档

目录1.1 前言 (2)1.2 E2-1000动车组概况 (2)1.2.1 E2-1000动车组发展和运用 (2)1.2.2 E2-1000型动车组主要技术参数 (3)1.3 E2-1000引进技术适应性研究 (4)1.3.1轮对的适应性 (4)1.3.2 受电弓适应性 (5)1.3.3 动力配置和编组的适应性 (6)1.3.4 转向架结构的适应性 (7)1.3.5 其它适应性 (7)1.4 丛书的主要内容 (8)1.1前言1825年9月27日,世界上第一条现代意义的铁路在英国斯托克顿(Stockton)和达灵顿(Darlington)之间开通,速度仅为 4.5km/h。

1830年,英国利巴普尔至曼彻斯特间首次开行了客运列车。

1964年,日本铁路开创了铁路发展的新纪元,世界上第一条高速铁路——东海道新干线建成通车,运行时速达到210公里,高速铁路实现了从无到有。

以后,法国、德国、英国、意大利等国家争相开行了高速列车,高速列车技术得到了快速发展。

其中,日本高速铁路在高速化、轻量化和安全正点方面成绩卓著,成为世界上最成功的高速铁路,其动车组独特的动力分散技术,已成为世界高速列车未来发展趋势。

根据国务院批准的《铁路中长期发展规划》,铁道部按照“引进先进技术、联合设计生产、打造中国品牌”的总体要求和“先进、成熟、经济、适用、可靠”的技术方针,全面组织实施了时速200公里动车组技术引进和国产化项目。

CRH2型动车组以日本新干线E2-1000型动车组为原型车,通过全面技术引进和消化吸收,实现国内制造。

1.2 E2-1000动车组概况1.2.1 E2-1000动车组发展和运用新干线E2系动车组有E2-0型和E2-1000型两种,E2-0型通常称为E2系,是E2系的第一代产品。

E2系是JR东日本公司为同时适应东北新干线(东京至盛冈)和北陆新干线(高崎至长野)等多条线路运用而开发的新型电动车组。

2002年12月1日日本东北新干线盛冈-八户96.6公里延长新线开通。

CRH2动车组拖车转向架构架的强度分析

CRH2动车组拖车转向架构架的强度分析

CRH2动车组拖车转向架构架的强度分析CRH2动车组拖车转向架构架的强度分析引言:现代高速铁路系统在运营中对列车的安全性和运行效率要求越来越高。

作为其中重要组成部分的动车组拖车转向架结构架的设计和强度分析对于保障列车的安全运行至关重要。

本文将对CRH2动车组拖车转向架结构架的强度进行分析,并探讨其对列车运行的影响。

一、CRH2动车组拖车转向架的结构CRH2动车组拖车转向架结构由构架、悬挂装置、附属装置和附件组成。

其中,构架是支撑整个转向架的关键部分,其强度对转向架的安全运行起着重要作用。

二、转向架结构的强度分析1. 载荷计算:在分析转向架结构强度之前,需要先对其所承受的载荷进行计算。

载荷主要包括静载荷(车辆重量)、动载荷(列车在运行中的振动和冲击)以及侧向力等。

通过对各种载荷进行计算和模拟,可以获得转向架结构所承受的力学应力。

2. 强度分析:利用有限元分析方法,对转向架结构进行强度分析。

将转向架的结构分解为有限个小单元,通过建立数学模型对其进行计算和分析。

通过分析,可以了解不同部位的强度情况,进而进行必要的优化措施。

3. 疲劳分析:转向架在长期运行过程中会受到循环荷载的作用,容易出现疲劳破坏。

因此,疲劳分析也是转向架结构强度分析的重点之一。

通过对转向架在实际运行条件下的循环荷载进行模拟和计算,可以得到转向架结构的疲劳寿命并提出相应的改进措施。

三、强度分析对列车运行的影响1. 安全性保障:通过对转向架结构的强度分析,可以评估其在不同载荷情况下的安全性能,从而保障列车在高速运行时的安全性。

2. 运行效率提升:强度分析结果可以为CRH2动车组的设计和制造提供依据,优化结构,减少材料用量,提高组装效率,从而降低成本和提高生产效率。

3. 降低维修成本:通过对转向架结构的强度分析,可以提前发现可能出现的疲劳破坏部位,采取相应的维修措施,减少维修成本和维修时间,提高列车的可用性和可靠性。

结论:对于CRH2动车组拖车转向架结构架的强度分析是确保列车安全运行的重要环节。

CRH2型动车组车体强度设计

CRH2型动车组车体强度设计

CRH2型动车组车体强度设计3.4.1车体强度设计依据CRH2型动车组车体结构强度按照JISE7105《铁道车辆车体结构的载荷试验方法》进行设计,同时考虑了我国车辆的实际运用情况,每定员载荷为80kg。

针对各载荷工况:车体以下部位存在较高应力:(1)垂直载荷工况:集中在枕梁上部的侧窗开口角部。

(2)车端压缩载荷工况:在牵引梁车钩的安装部周围、牵引梁与枕梁的结合部位、端部底架与中央底架的结合部位。

(3)扭转载荷工况:在枕梁上部的侧窗开口角部。

(4)三点支持工况:在顶车位、顶车位上部的侧墙的下墙部及侧窗开口角部。

(5)气密载荷工况:在侧窗开口角部与窗间部位、侧墙的车檐部、侧墙的下墙与侧梁结合部、单壳车体结构的侧墙支柱上下端部。

3.4.2车体结构强度计算分析车体结构的强度分为承受垂直载荷、车端压缩载荷等的静态强度以及承受垂向振动、气密交变载荷等的动态强度。

静强度计算以材料弹性极限为标准值,动态强度以材料的疲劳强度为标准值。

在工程实际中,评估动态强度时的应力是加载交变载荷的最大应力。

为此,动态强度也可以参照静态强度的评估方法,可以将发生附加载荷的应力与标准值相比较,由此来进行评估,即采用“动化静”的方法。

CRH2型动车组选择了1号车(T1c)、6号车(M2)和7号车(Mls)3个车种进行强度验证分析。

Tlc车车体有限元分析模型如图3.23。

通过分析计算,CRH2型动车组车体结构满足强度、刚度要求。

3.4.3车体静强度试验结果车体结构载荷试验目的是确认车体结构是否具有足够的强度及刚度。

CRH2型动车组车体结构强度试验参照JISE7105《铁路车辆车体结构的载荷试验方法》执行。

试验时应力测点布置应着重注意在应力集中部位、设计改进部位和常规部位。

即主要考察车体结构开口部位、车头安装部位、顶车部位以及通过有限元分析显示高应力部位。

以Tlc车车体静强度试验结果为例进行说明。

垂直载荷试验测得应力最大点在靠近2位端枕梁内侧左上角窗口部。

CRH2型动车组总体技术

CRH2型动车组总体技术

CRH2型动车组总体技术2.1动车组总体技术CRH2型动车组为动力分散、交流传动电动车组。

动车组具有“先进、成熟、经济、适用、可靠”的技术特点。

先进:动车组采用铝合金空心型材车体,采用了先进的IGBT功率元件以及VVVF牵引控制方式。

成熟:动车组的原型车为日本新干线动车组,其主要系统和部件均有长时间的运营业绩。

经济:动车组采用了流线型设计,各车辆的最大轴重仅14t,牵引和制动能耗低。

另外,列车采用再生制动方式,在节能、环保以及减少机械损耗等方面具有独特的优越性。

适用:动车组具有速度提升能力,通过调整动车、拖车的比例,动车组能够灵活适应200~300km/h各速度等级的运行。

另外,动车组还可以通过两列联挂来满足大运量的需求。

可靠:动车组采用了先进的防滑、防空转控制系统和自动列车保护系统,为列车在各种运行环境下的准时性提供了可靠的保障。

2.1.1列车组成和主要参数2.1.1.1编组CRH2型动车组最高运营速度为250km/h,可在中国铁路既有线路(指定区间)和客运专线上运行。

动车组采用8辆编组,4动4拖,由两个动力单元组成,每个动力单元由2个动车和2个拖车(T-M-M-T)组成。

CRH2型动车组编组见图2.1,动车组编组代号意义参见表2.1。

动车组前后两端均设驾驶室,列车通常运行时在前端的驾驶室内进行操作。

受电弓设在4号和6号车上,动车组运行时采用单弓受流,另一受电弓处于折叠状态。

两列动车组可联挂运行,联挂时受电弓采取双弓受流。

表2.1动车组编组代号含义表注:数字1,2表示不同型号。

2.1.1.2轴重配置动车组各车的质量如表2.2所示,列车定员610人,最大轴重为14t,最小轴重11.7t。

表2.2CRH2型动车组各车辆的质量2.1.1.3车辆定位车辆的定位、转向架、车轴及车轮的编号按图2.2进行定义。

2.1.1.4车内主要设备配置CRH2型动车组具体编组结构参见图2.3,各车辆的车内主要设备如表2.3所示。

CRH2型动车组主要技木辅点

CRH2型动车组主要技木辅点

CRH2型动车组主要技木辅点2.2.1铝合金中空型材车体结构CRH2型动车组车体采用大型中空铝合金挤压型材双面焊接结构,也就是双壳结构,上下是整体铝板壳,采用交叉斜筋板支撑,形成中空状。

图2.16是车顶正上方的1块铝合金型材图示,型材宽约400mm,厚50mm.型材的上层铝材厚2.6mm,下层厚2.4mm,斜筋板厚1.5mm。

动车组各型车体的主要结构组成包括底架组成、侧墙组成、车顶组成、端墙组成和车下设备舱等。

车体强度满足JISE7105《车体强度及载荷规范》。

车身底架包括牵引梁、枕梁、侧梁(边梁)、端梁、横梁和波纹地板等组成。

侧梁(边梁)位于底架地板下左右两侧的纵向梁,是底架与侧墙连接形成筒体的关键部件,采用通长铝合金挤压型材拼焊而成。

牵引梁主要由铝合金挤压型材和铝合金板焊接而成,连接车体底架的端梁和枕梁,并为车钩缓冲装置设置相应的附加结构。

枕梁由铝合金挤压型材和铝板焊接而成,支撑车体负荷。

枕梁为转向架安装提供相应结构,保证与转向架悬挂系统的正常连结。

侧墙联结底架与车顶,形成车体结构的两个侧面。

车体侧墙采用大型中空框架结构的挤压型材,不设车内侧立柱。

车顶结构主要由9块通长型材拼焊而成,并在车顶端部根据受电弓、避雷器及车顶电缆的安装形式设置低平顶和低平顶盖。

端墙根据车辆厕所和洗面室的布置主要分为两种结构形式,即整体式和分体式两种结构。

整体式为两端角柱、两门立柱、门上横梁、门槛及端顶弯梁拼焊成框架外面铺墙板构成;分体式是为了厕所及洗面室的整体盒子间可以从外端放进而设计的,采用部分活动结构,活动部分采用螺栓连接。

由于采用双壳结构和铝合金材料,使车体具有以下特点:(1)整体通长铝型材,大幅减少零件数量,提高自动化焊接程度,降低制造成本,提高质量。

(2)车体质量轻,从而降低轴重,降低运营成本。

(3)隔音效果好,从而提高车内的乘车舒适度。

(4)双壳结构,提高车体的整体刚性。

(5)维护小,寿命周期成本低。

(6)防腐性好,可以实现无涂装设计。

CRH2型动车组车体结构

CRH2型动车组车体结构

CRH2型动车组车体结构3.2.1车体结构及主要技术参数CRH2型动车组采用4动4拖共8辆车编组形式,车体结构主要分为头车车体和中间车车体两种。

头车车体由底架、侧墙、车顶、端墙、车体附件及司机室头部结构组成,中间车车体由底架、侧墙、车顶、端墙及车体附件组成。

车体质量见表3.2,车体的主要技术参数见表3.3。

23.2.2车体结构特点CRH2型动车组车体结构主要是以中空型材为主构成的车体结构称为双壳结构。

双壳结构相对于单壳结构,车体质量稍重。

但中空型材具有截面刚度高的特性,可以去掉在单壳结构中必须使用的加强材,从而减少零件数量,降低成本。

但过度追求高速动车组的轻量化将对乘坐舒适性和列车空气动力学性能有不利影响。

近年来,由于更加重视乘坐舒适性,车体结构也不单纯追求轻量化,而是合理控制车体结构的质量。

因此,高速动车组的车顶及侧墙部车体结构均开始使用双壳结构,适当增加车体质量以改善车辆的舒适性。

2双壳结构型材带有中空腔,典型结构参见图3.1所示的侧墙顶部型材。

地板采用单壳结构型材,如图3.2所示。

CRH2型动车组车体结构如图3.3所不。

CRH2型动车组车体结构具有以下特点:(1)车体断面:宽幅车体,车体横断面最大宽度为3380mm,高3700mm,地板面距离轨面为1300mm,设备舱底板距离轨面为200mm。

车体横断面如图3.4所示。

(2)车体结构采用双壳结构,大幅减少零件数量,虽相对于单壳结构较重,但其刚性高,降噪效果好,乘坐舒适性高。

(3)质量比钢制车体轻,大幅降低轴重,从而降低运营成本。

(4)车体使用铝合金材料,可回收,对环境损害低,寿命周期成本低。

(5)防腐性好,可以实现无涂装设计。

(6)采用不燃性材料,防火性能好。

(7)自动化焊接范围大,生产效率高。

(8)在部分中空铝型材的中空空腔内部贴有防振材料以达到隔音减振的目的。

3.2.3车体组成CRH2型动车组车体主要由底架、侧墙、车顶、端墙、车体附件(车下设备舱、前罩开闭装置和前头排障装置)等组成(头车还包括司机室头部结构)。

CRH2型高速动车组车辆车体结构总体设计

CRH2型高速动车组车辆车体结构总体设计

XX工程学院车辆工程系本科毕业设计(论文)题目:C R H2型高速动车组车辆车体结构总体设计专业:机械设计制造及其自动化(城市轨道车辆)班级:城轨081学号:215080301学生姓名:指导教师:副教授起迄日期:2012.3~2012.6设计地点:车辆工程实验中心摘要随着科技和生活水平的提高,城市之间的距离越来越小,高速动车作为一种新的交通工具,正逐步代替原有的交通。

本文对CRH2型200km/h的高速动车组车体结构进行了总体设计。

根据国内外高速动车的发展概况和最新研究成果,以及为实现列车车体气密性和轻量化为目的,完成了CRH2型动车组的车体结构总体设计。

基本编组方案采用2动2拖,整车由8辆车组成,主要对头车车体进行了详细研究。

首先,是对车体的材料选择,经过对耐候钢,不锈钢和铝合金的比较可以看得出,采用铝合金是最合适的。

它可以降低车重,提高车辆加速度,降低运能消耗、牵引及制动能耗,减轻了对线路的磨耗及冲击,扩大了运输能力。

其次是对车体的结构进行选择,主要以双壳结构为主,并引入了模块化的概念,把铝合金车体分成若干模块,包块底架模块,侧墙模块,车顶模块,端部模块和车体附件等五大部分,每一种模块单独加工,互不影响。

最后把所有模块整合在一起,组成铝合金车体。

关键词:车辆工程;高速动车组;车体;铝合金ABSTRACTWith the technology and the improvement of living standards, the distance between the cities getting shorter and shorter. High-speed EMU as a new means of transport is replacing the existing traffic gradually. This paper introduces the design of overall body structure for 200 km/h of CRH2 EMU. According to the development overview and the latest research results of domestic and foreign high-speed EMUs, as well as to achieve the air tightness and weight of train for purpose, completing the design of overall body structure for the 200km /h EMU. 2M2T is selected as the basic formation program and it’s made up of eight vehicles, mainly taking some study on the rival car body. First of all, the choice of body material, compared with weathering steel, stainless steel and aluminum alloy, aluminum alloy is the most suitable. It can reduce the vehicle weight and improve vehicle acceleration. It also can reduce consumption of transport capacity, traction and braking, and even can reduce wear on the line and the impact, expand the transport capacity. Secondly, choose the structure of the body, mainly double-shell structure. It introduces the modular concept, the aluminum alloy body is to be divided into several modules, including block chassis modules, side-wall modules, roof modules, the end modules and annex to the bottom of vehicle, each module processes separately. Finally, form the aluminum alloy body with all modules together.Keywords: Vehicle Engineering; High-speed EMU; Body structure; Aluminum alloy目录第一章绪论 (1)1.1 选题背景与意义 (1)1.2 世界各国高速铁路发展概况 (1)1.3模块化铝合金车体发展现状 (3)1.3.1 动车车体模块化概念 (3)1.3.2 车体材料的选用 (3)1.4 主要研究内容及本文结构 (5)1.4.1 主要研究内容 (5)1.4.2 本文结构 (5)第二章CRH2动车组介绍 (7)2.1 编组 (7)2.2 主要技术参数 (7)2.3 其余参数 (8)2.3.1车门 (8)2.3.2座椅 (9)2.3.3车窗 (9)2.4 设计标准 (9)第三章高速动车车体结构设计 (10)3.1 概述 (10)3.1.1车体承载结构特点 (10)3.1.2车体用铝合金材料 (10)3.2 车体轻量化 (11)3.2.1 轻量化的目的 (11)3.2.2 车体轻量化的主要措施 (11)3.3 动车组车体结构 (12)3.3.1 国外典型的铝合金车体结构 (12)3.3.2单壳车体和双壳车体的比较 (15)3.3.3 断面结构的选择 (17)3.4动车组车体的结构组成 (18)3.4.1底架 (19)3.4.2 侧墙 (20)3.4.3 车顶 (21)3.4.4 端墙 (21)3.4.5 司机室头部结构 (22)3.4.6 车下设备舱 (25)3.4.7 前罩开闭装置 (25)3.4.8前头排障装置 (25)第四章车体气密性与校核 (26)4.1 车体气密性要求 (26)4.1.1 压力波对旅客舒适性的影响 (26)4.1.2 气密性要求 (27)4.1.3气密性处理 (27)4.2 车体气密性的意义 (27)4.3 车体垂向静载荷校核 (28)4.3.1 作用在车体上的垂向静载荷P st (28)4.3.2 校核 (29)第五章结论 (30)5.1 论文总结 (30)5.2 感想 (30)致谢 (32)参考文献 (33)附录A:英文资料 (34)附录B:英文资料翻译 (41)附件: 1.高速动车组头车车体图和司机室图2.毕业论文光盘资料第一章绪论1.1 选题背景与意义社会的进步和生产力的发展,推动着现代交通运输业的飞速发展。

CRH2型时速300公里动车组总体介绍

CRH2型时速300公里动车组总体介绍

❖ 附图3 时速300公里动车组编组图(车下设备布置图)
第十八页,编辑于星期五:九点 二十一分。
❖ 附图4 时速300公里动车组编组图(车顶设备布置图)
第十九页,编辑于星期五:九点 二十一分。
车下悬吊设备
❖ 每辆车下设单元式空调机组、制动控制装置。在2、3、4、5、6和 7号车下设牵引变流器, 在2号、4号和6号车下设牵引变压器,在 4、6号车下设过分相装置。在单号车下设污物箱及水箱。在3、5、 7号车设主空压机;2、4、6号车下设辅助空压机;在2、、3、4、 6和7号车下设蓄电池箱;在两头车下设辅助电源装置,另外,在5 号车下还设一小型辅助电源装置。
CRH2型时速300公里动车组总体
1.1 EMU编组 1.2 牵引方式 1.3 轴重 1.4 制动
1.5 运行速度
1.6 最小通过曲线半径
1.7 车体主要尺寸
1.8 牵引电路
1.9 车体(车体结构) 1.10 转向架 1.11 车辆定位 附图
目录
武昌客车车辆段
2009.6.23
第一页,编辑于星期五:九点 二十一分。
❖ 车体最大高度: 3,700 mm
❖ 车门处地板面高度: 1,300 mm
❖ 车厢天花板高度: 2,277 mm
❖ 轨距:
1,435 mm
❖ 转向架中心距:
17,500 mm
❖ 固定轴距:
2,500 mm
❖ 车轮径:
860 mm
❖ 车钩高度:
1,000 mm
第十页,编辑于星期五:九点 二十一分。
1.8 牵引电路
❖ 图 1.11-1车辆定位、转向架、车轴及车轮编号的定义
第十五页,编辑于星期五:九点 二十一分。
❖ 附图 时速300公里动车组编组图

CRH2动车的结构参数

CRH2动车的结构参数
180
m
77
轮对内侧距
1353
mm
19.6
kN.s/m
71
二系空气弹簧提供的垂向阻尼(单个)
9.8
kN.s/m
72
二系横向减振器的阻尼(单个、每转向架两个)
58.5
kN.s/m
73
二系抗蛇行减振器的阻尼(单个、每转向架两个)
2450
(0.003,7360)
kN.s/m
74
轮径
860 (新轮)
mm
75
最大运用速度
200
km/h
76
通过的最小曲线半径
128304
kg.m2
49
车体绕y轴的转动惯量(相对于车体质心点头)
1940400
kg.m2
50
车体绕z轴的转动惯量(相对于车体质心摇头)
1831104
kg.m2
51
一系轴箱弹簧的纵向刚度(每轴箱)
980000
N/m
52
一系轴箱弹簧的横向刚度(每轴箱)
980000
N/m
53
一系轴箱弹簧的垂向刚度(每轴箱)

N.m/rad
65
牵引杆橡胶关节绕z轴的转动刚度(每轴箱)

N.m/rad
66
二系空气弹簧的纵向刚度(单个)
189100
N/m
67
二系空气弹簧的横向刚度(单个)
189100
N/m
68
二系空气弹簧的垂向刚度(单个)
220500
N/m
69
二系横向止挡橡胶元件的横向刚度
630150
N/m
70
一系垂向减振器的阻尼(单个)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CRH2型动车组车体强度设计
3.4.1车体强度设计依据
CRH2型动车组车体结构强度按照JISE7105《铁道车辆车体结构的载荷试验方法》进行设计,同时考虑了我国车辆的实际运用情况,每定员载荷为80kg。

针对各载荷工况:车体以下部位存在较高应力:
(1)垂直载荷工况:集中在枕梁上部的侧窗开口角部。

(2)车端压缩载荷工况:在牵引梁车钩的安装部周围、牵引梁与枕梁的结合部位、端部底架与中央底架的结合部位。

(3)扭转载荷工况:在枕梁上部的侧窗开口角部。

(4)三点支持工况:在顶车位、顶车位上部的侧墙的下墙部及侧窗开口角部。

(5)气密载荷工况:在侧窗开口角部与窗间部位、侧墙的车檐部、侧墙的下墙与侧梁结合部、单壳车体结构的侧墙支柱上下端部。

3.4.2车体结构强度计算分析
车体结构的强度分为承受垂直载荷、车端压缩载荷等的静态强度以及承受垂向振动、气密交变载荷等的动态强度。

静强度计算以材料弹性极限为标准值,动态强度以材料的疲劳强度为标准值。

在工程实际中,评估动态强度时的应力是加载交变载荷的最大应力。

为此,动态强度也可以参照静态
强度的评估方法,可以将发生附加载荷的应力与标准值相比较,由此来进行评估,即采用“动化静”的方法。

CRH2型动车组选择了1号车(T1c)、6号车(M2)和7号车(Mls)3个车种进行强度验证分析。

Tlc车车体有限元分析模型如图3.23。

通过分析计算,CRH2型动车组车体结构满足强度、刚度要求。

3.4.3车体静强度试验结果
车体结构载荷试验目的是确认车体结构是否具有足够的强度及刚度。

CRH2型动车组车体结构强度试验参照JISE7105《铁路车辆车体结构的载荷试验方法》执行。

试验时应力测点布置应着重注意在应力集中部位、设计改进部位和常规部位。

即主要考察车体结构开口部位、车头安装部位、顶车部位以及通过有限元分析显示高应力部位。

以Tlc车车体静强度试验结果为例进行说明。

垂直载荷试验测得应力最大点在靠近2位端枕梁内侧左上角窗口部。

这说明在垂直力的作用下,靠近枕梁附近的窗口角部容易产
生应力集中,因而窗口部应该是车体结构设计重点考虑的部位。

车端压缩载荷试验测得应力最大点在牵引梁截面变化部位且靠近车钩从板座附近。

这说明车体纵向的载荷引起的最大应力部位在缓冲梁附近。

牵引梁也是结构强度校核的重要部位。

扭转载荷试验测得应力最大点在车体纵向中心附近的窗口角部。

3点支撑试验测得应力最大点也在枕梁内侧附近的窗角部。

各种试验刚性也满足JISE7105要求。

综上所述,试验是评价、检验、指导设计的重要依据,高速车项目更要重视试验,使试验结果更好地反馈到设计当中,让试验更贴近现实。

相关文档
最新文档