2009年辽宁省本溪市中考数学试题及答案
本溪市2008~2009学年(下)初中质量检测七年级数学试卷答案
七年数学答案 第 1 页 (共 2 页) 本溪市2008~2009学年(下)初中质量检测七年级数学试卷答案一、选择题(每题2分,共8题,满分16分)1.D ;2.A ;3.D ;4.B ;5.C ;6.C ;7.C ;8.C .二、填空题(每题2分,共8题,满分16分)9.9.60×106; 10.4,9; 11.22x 2-24x ; 12.-4,16; 13.2; 14.48°;15.∠B=∠DCE ,∠BAC=∠ACD ,∠B+∠BCD=180°,∠D+∠BAD=180°; 16.4(n -1).三、(每题4分,共2题,满分8分)17.(1)3x -4y (2)2y 2-2xy四、(每题6分,共2题,满分12分)18.(1)14x 2-5x ,9 (2)8+10y ,3五、(19题7分,20题6分,共2题,满分13分)19.110°20.(1)2192.4元 (2)6.542元六、(每题6分,共2题,满分12分)21.图略 --------------------------------------------------------------- 4′理由:内错角相等,两直线平行,得出AB ∥CD --------------------------------------------- 6′22.(1)4a ·4b -2a ·2b -b ·a =16ab -4ab -ab=11ab∴至少需铺11abm 2地砖 ----------------------------------------------------------------------- 4′(2)11ab ·m =11abm (元)∴需花11abm 元钱 ------------------------------------------------------------------------------ 6′七、(每题7分,共2题,满分14分)23.∵AB ∥DE ∴∠B+∠DCB=180°且∠B=80°∴∠DCB=180°-80°=100° ---------------------------------------------------------------------- 2′∵CM 平分∠BCD ∴∠DCM=21∠BCD=21×100°=50° ---------------------------- 4′ ∵CM ⊥CN ∴∠MCN=90° -------------------------------------------------------------------- 6′ ∴∠ECN=180°-90°-50°=40° ---------------------------------------------------------------- 7′24.∵∠1+∠2=180° ∴AD ∥BC ------------------------------------------------------------------ 2′∴∠ADC+∠C=180° -------------------------------------------------------------------------------- 4′ ∵∠A=∠C ∴∠A+∠ADC=180° ---------------------------------------------------------- 6′ ∴AB ∥CD----------------------------------------------------------------------------------------------- 7′八、(满分9分)25.(1)过F 作FM ∥AB过E 作EN ∥AB ∵AB ∥CD七年数学答案 第 2 页 (共 2 页) ∴FM ∥AB ∥CDEN ∥AB ∥CD --------------------------------------------------------------------------------- 1′ ∴∠5=∠1,∠2=∠6且∠ABE=∠3,∠DCE=∠4 ----------------------------------------------------------------- 2′ 又∵BF 平分∠ABE ,CF 平分∠DCE∴∠5=21∠ABE ,∠6=21∠DCE ----------------------------------------------------------- 3′ ∴∠1=21∠3,∠2=21∠4 ∵∠1+∠2=∠BFC=30°∴∠BEC=∠3+∠4=60° ---------------------------------------------------------------------- 4′(2)β=2α ---------------------------------------------------------------------------------------------- 5′(3)不成立, β=360°-2α ----------------------------------------------------------------------- 6′由(1)同理可证:∠1=∠5=21∠ABE ∠2=∠6=21∠DCE ∵AB ∥EN ∥CD ∴∠ABE+∠3=180°∠DCE+∠4=180° --------------------------------------------------------------------------- 7′ ∴∠3=180°-2∠5∠4=180°-2∠4∴∠BEC=β=∠3+∠4=360°-2(∠1+∠2)=360°-2α∴β=360°-2α ---------------------------------------------------------------------------------- 9′。
辽宁省本溪市中考数学试卷及答案
辽宁省本溪市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题 3 分,共 30 分)1、一次数学考题考生约 12 万名,从中抽取 5000 名考生的数学成绩进行解析,在这个问题中样本指的是( )A5000 B5000 名考生的数学成绩 C12 万考生的数学成绩 D5000 名考生2、用配方法解一元二次方程 x 2-4x-1=0,配方后得到的方程是( )A(x―2) 2 =1 B(x―2) 2 =4 C(x―2) 2 =5 D(x―2) 2 =33、已知⊙O l与⊙O2的半径分别为 3cm和 4cm,圆心距为 8cm,则两圆的位置关系是( )A内含 B内切 C相交 D外离4、用下列同一种正多边形不能作平面镶嵌的是( )A正三角形 B正四边形 C正六边形 D正七边形6、如图,在⊙O 中,∠B=37º,则劣弧 AB 的度数为( )A106º B126º C74º D53º7、函数中自变量 x 的取值范围是( )8、如图,AB 是⊙O 的直径,C、D 是 AB 的三等分点,如果⊙O的半径为l,P 是线段 AB 上的任意—点,则图中阴影部分的面积为( )9、式子有意义,则点 P(a,b)在( )A第一象限 B第二象限 C第三象限 D第四象限10、如图,PA 切⊙O于点A,割线 PBC 经过圆心O,OB=PB=1,OA绕点O逆时针方向转60º到 OD,则 PD 的长为( )二、填空题(每小题 3 分共 24 分)11、如果―4 是关于 x 的一元二次方程 2x2+7x―k=0 的一个根,则 k 的值为______。
12、已知⊙O 的弦 AB 的长为 6cm,圆心 O 到 AB 的距离为 3cm,则⊙O 的半径为___cm。
13、用换元法解方程那么原方程可变形为_________。
14、已知正六边形的半径为 20cm,则它的外接圆与内切圆组成的圆环的面积是______cm 2。
辽宁省本溪市中考数学试卷及答案
辽宁省本溪市中考数学试卷及答案一、选择题(共10小题,每小题2分,满分20分)1.(2分)方程x2﹣2x=0的根是()A.x=0 B.x=2 C.x=0或x=2 D.x=0或x=﹣22.(2分)已知sina=,且a是锐角,则a=()A.75° B.60° C.45° D.30°3.(2分)下列方程中,有实数根的是()4.(2分)已知变量y和x成反比例,当x=3时,y=﹣6,那么当y=3时,x的值是()A.6 B.﹣6 C.9 D.﹣95.(2分)在半径为6cm的圆中,长为2πcm的弧所对的圆周角的度数是()A.30° B.45° C.60° D.90°6.(2分)在同一直角坐标系中,正比例函数y=﹣3x与反比例函数的图象的交点个数()A.3 B.2 C.1 D.07.(2分)如图,⊙O的直径为12cm,弦AB垂直平分半径OC,那么弦AB的长为()8.(2分)样本8,8,9,10,12,12,12,13的中位数和众数分别是()A.11,3 B.10,12 C.12,12 D.11,129.(2分)已知两圆的半径分别是2、3,圆心距是d,若两圆有公共点,则下列结论正确的是()A.d=1 B.d=5 C.1≤d≤5 D.1<d<510.(2分)李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出自行车行进路程y千米与行进时间t的函数图象的示意图,同学们画出的示意图如下,你认为正确的是()二、填空题(共10小题,每小题2分,满分20分)11.(2分)函数的自变量x的取值范围是_____________.12.(2分)已知x≤1,化简=_____________.13.(2分)设x1,x2是方程2x2﹣4x﹣3=0的两个根,则=_____________.14.(2分)方程的解是___________.15.(2分)已知a<0,那么点P(﹣a2﹣2,2﹣a)关于x轴的对称点P′在第___________象限.16.(2分)已知:如图,⊙O的弦AB平分弦CD,AB=10,CD=8.且PA<PB,则PB﹣PA =__________.17.(2分)半径分别为3cm和4cm的圆,一条内公切线长为7cm,则这条内公切线与连心线所夹的锐角的度数是__________度.18.(2分)小华用一张直径为20cm的圆形纸片,剪出一个面积最大的正六边形,这个正六边形的面积是__________cm2.19.(2分)为了考察一个养鸡场里鸡的生长情况,从中抽取5只,称得它们的重量如下(单位:千克):3.0,3.4,3.1,3.3,3.2,在这个问题中,样本方差是__________.20.(2分)矩形ABCD中,AB=3,AD=2,则以该矩形的一边为轴旋转一周而所得到的圆柱的表面积为__________.三、解答题(共10小题,满分80分)21.(5分)已知,求a3b+ab3的值.22.(5分)已知:如图,P是⊙O外一点,PA切⊙O于A,AB是⊙O的直径,PB交⊙O于C,若PA=2cm,PC=1cm,怎样求出图中阴影部分的面积S?写出你的探求过程.23.(6分)解方程:24.(8分)为增强学生的身体素质,某校坚持长年的全员体育锻炼,井定期进行体能测试.下面是将某班学生的立定跳远成绩(精确到0.01米)进行整理后,分成三组,画出的频率分布直方图的一部分.已知从左到右4个小组的频率分别是0.05,0.15,0.30,0.35,第5小组的频数是9.(1)请将频率分布直方图补充完整;(2)该班参加这次测试的学生有多少人?(3)若成绩在2.00米以上(含2.00米)的为合格,问该班成绩的合格率是多少?(4)这次测试中,你能肯定该班学生成绩的众数和中位数各落在哪一个组内吗?(只需写出能或不能,不必说明理由)25.(8分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段达到节约用水的目的.某市规定如下用水收费标准:每户每月的用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费.该市某户今年3,4月份的用水量和水费如下表所示:设某户该月用水量为x(立方米),应交水费y(元).(1)求a,c的值,并写出用水不超过6立方米和超过6立方米时,y与x之间的关系式;(2)若该户5月份的用水量为8立方米,求该户5月份的水费是多少元?26.(8分)为了农田灌溉的需要,某乡利用一土堤修筑条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的上堆在两旁,使土堤高度比原来增加0.6米.(如图所示)求:(1)渠面宽EF;(2)修200米长的渠道需挖的土方数.27.(8分)某县位于沙漠边缘地带,治理沙漠、绿化家乡是全县人民的共同愿望,到1998年底,全县沙漠的绿化率已达30%,此后政府计划在近几年内,每年将当年年初未被绿化的沙漠面积的m%进行绿化,到底,全县沙漠的绿化率已达43.3%,求m值.(注:沙漠绿化率=)28.(10分)已知如图,抛物线y=ax2+bx+c过点A(﹣1,0),且经过直线y=x﹣3与坐标轴的两个交点B、C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标;(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标.29.(10分)已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合).连接BD,过C作BD的平行线交⊙O1于点E,连接BE.(1)求证:BE是⊙O2的切线;(2)如图(2),若两圆圆心在公共弦AB的同侧,其它条件不变,判断BE和⊙O2的位置关系;(不要求证明)(3)若点C为劣弧AB的中点,其它条件不变,连接AB、AE,AB与CE交于点F,如图(3),写出图中所有的相似三角形.(不另外连线,不要求证明)30.(12分)已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x 轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.(1)求证:PC⊥OA;(2)若△APO为等边三角形,求直线AB的解析式;(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,解析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.。
辽宁省本溪市中考数学试卷及答案
辽宁省本溪市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题2 分,共20 分)1.下列二次根式中与是同类二次根式的是()2.若∠ A 是锐角,有sin A =cos A ,则∠ A 的度数是()A.30°B.45°C.60°D.90°3.函数中,自变量x 的取值范围是()A.x ≥-1 B.x >-1 且x ≠2C.x ≠2 D.x ≥-1 且x ≠24.在Rt△ ABC 中,C =90°,∠ A =30°,b=,则此三角形外接圆半径为()5.半径分别为1 cm 和5 cm 的两个圆相交,则圆心距d 的取值范围是()A.d <6 B.4<d <6 C.4≤ d <6 D.1<d <56.面积为2 的△ ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是()7.已知关于x 的方程x2-2 x +k =0 有实数根,则k 的取值范围是()A.k <1 B.k ≤1 C.k ≤-1 D.k ≥18.如图,PA 切⊙ O 于点A ,PBC 是⊙ O 的割线且过圆心,PA =4,PB =2,则⊙ O 的半径等于()A.3 B.4 C.6 D.89.两个物体A 、B 所受压强分别为P A(帕)与P B(帕)(P A、P B为常数),它们所受压力F (牛)与受力面积S(米2)的函数关系图象分别是射线l A、l B,如图所示,则()A.P A<P B B.P A=P B C.P A>P B D.P A≤ P B10.若x1,x 2是方程2x2-4x+1=0 的两个根,则的值为()A.6 B.4 C.3 D.二、填空题(每小题 2 分,共20 分)11.看图,描出点A 关于原点的对称点A′ ,并标出坐标.12.解方程时,设y=,则原方程化成整式方程是__________.13.计算=__________.14.如图,在Rt△ABC中,∠ C=90°,以AC 所在直线为轴旋转一周所得到的几何体是__________.15.一组数据6,2,4,2,3,5,2,3 的众数是__________.16.已知圆的半径为6.5 cm ,圆心到直线l 的距离为4 cm,那么这条直线l 和这个圆的公共点的个数有_____个.17.要用圆形铁片截出边长为4 cm的正方形铁片,则选用的圆形铁片的直径最小要_____cm.18.圆内两条弦AB和CD 相交于P 点,AB 把CD分成两部分的线段长分别为2和6,那么AP =__________ .19.△ ABC 是半径为2 cm的圆内接三角形,若BC =,则∠A 的度数为_______.20.如图,已知OA、OB 是⊙ O的半径,且OA =5,∠ AOB =15°,AC ⊥ OB 于C ,则图中阴影部分的面积(结果保留π )S =__________.三、(第21 小题6 分,第22、23 小题各10 分,共26 分)21.对于题目“化简并求值:甲.乙两人的解答不同.甲的解答是:乙的解答是:谁的解答是错误的?为什么?22.看图,解答下列问题.(1)求经过A 、B 、C 三点的抛物线解析式;(2)通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.23.初中生的视力状况受到全社会的广泛关注,某市有关部门对全市3 万名初中生视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图(长方形的高表示该组人数),根据图中提供的信息回答下列问题:(1)本次调查共抽测了解多少名学生;(2)在这个问题中的样本指什么;(3)如果视力在4.9∽5.1(含4.9、 5.1)均属正常,那么全市有多少初中生的视力正常?四、(8 分)24.如图,在小山的东侧A 处有一热气球,以每分钟28 米的速度沿着与垂直方向夹角为30°的方向飞行,半小时后到达C 处,这时气球上的人发现,在A 处的正西方向有一处着火点B ,5 分钟后,在D 处测得着火点B 的俯角是15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参照数据:sin15°=,cos15°=,)五、(10 分)25.已知:如图,AB 是⊙ O 的半径,C 是⊙ O 上一点,连结AC ,过点C 作直线CD ⊥ AB 于D(AD<DB ),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙ O 于点 F ,连结AF 与直线CD 交于点G .(1)求证:AC2=AG · AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.六、(10 分)26.随着我国人口增加速度的减慢,小学入学儿童数量有所减少,下表中的数据近似地呈现了某地区入学儿童的变化趋势.试用你所学的函数知识解决下列问题:(1)求入学儿童人数y (人)与年份x (年)的函数关系试;(2)利用所求函数关系式,预测试地区从哪一年起入学儿童的人数不超过1000 人?七、(12 分)27.某书店老板去批发市场购买某种图书,第一次购用100 元,按该书定价2.8 元现售,并快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5 元,用去了150 元,所购数量比第一次多10 本.当这批书售出4/5时,出现滞销,便以定价的5 折售完剩余的图书,试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?八、(14 分)28.已知:如图,⊙ P 与x 轴相切于坐标原点O ,点A (0,2)是⊙ P 与x 轴的交点,点B (,0)在x 轴上,连结BP 交⊙ P 于点C ,连结AC 并延长交际x 轴于点D .(1)求线段BC 的长;(2)求直线AC 的函数解析式;(3)当点B 在x 轴上移动时,是否存在点B,使△BOP 相似于△AOD?若存在,求出符合条件的点的坐标;若不存在,说明理由.参照答案及评分标准一、选择题(每题2 分,共20 分)二、填空题(每题2 分,共20 分)11.A ′ (3,-2)(图略)12.2 y2-5y+2=013.114.圆锥15.216.217.18.3 或419.60°或120°20.注:两个答案的,答出一个给1 分.三、(26 分)21.(6 分)解:乙的解答是错误的.23.(10 分)解:(1)本次调查共抽测了240 名学生(2)样本是指240 名学生的视力(3)全市有7500 名初中生的视力正常四、(8 分)24.解:由解可知AD=(30+5)×28=980 过D 作DH ⊥ BA 于H在Rt△ DAH 中,DH =AD · sin 60°=五、(10 分)25.(1)证明:六、(10 分)(1)解法一:设y =kx+b由于直线y =kx + b 过(2000,2520),(2001,2330)两点∴ y =-190x +382520又因为y =190 x+382520 过点(2002,2140),所以y =-190 x +382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.解法二:设y =ax2+bx +c由于y =ax2+bx +c 过(2000,2520),(2001,2330),(2002,2140)三点,解得a =0,b=-190,c =382520,∴y=-190 x +382520因为y =-190 x +382520 过(2000,2520),(2001,2330),(2002,2140)三点,所以y =-190 x+382520 较好的描述了这一变化趋势.故所求函数关系式为y =-190x +382520.(2)设x年时,入学人数为1000 人,由题意得:-190 x +382520=1000 人,解得x =2008答:从2008 年起入学儿童的人数不超过1000 人.七、(12 分)27.。
辽宁省本溪市中考数学试卷(含答案)
22本溪市初中毕业生学业考试数学试卷(考试时间120分钟 试卷满分150分)一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中相应题号下的空格内.每小题3分,共24分) A .-8 B.8 C.±8 D.-812.在平面直角坐标系中点A (-2,3)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限 3. 不等式2x-4≥0的解集在数轴上表示为A. B. C. D.4.一个正方体的平面展开图如图所示,将它折成正方体后“保”字的对面是 A. 碳 B.低 C.环 D.色(第4题图)5.八边形的内角和是A.360°B. 720°C.1080°D. 1440°6. 一个不透明的布袋中装着只有颜色不同的红、黄、白色三种小球,其中红色小球有8个,黄、白色小球的数目相同.为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,然后放回袋中,再次搅匀……多次试验发现摸到红球的频率是61,则估计黄色小球的数目是A.2个B.20个C.40个D.48个7.如图所示,已知圆锥的母线长6cm ,底面圆的半径为3cm ,则此圆锥侧面展开图的圆心角是 A.30° B.60° C.90° D.180°8.如图所示,若菱形OABC 的顶点O 为坐标原点,点C 在x 轴上,直线y=x 经过点A ,菱形面积是2,则经过点B 的反比例函数表达式为个图形中共有 个三角形三、解答题(17题6分、18题8分,共14分) 17.8 +3³(-31)-2-(2010-π)0-4sin45°18.化简求值:当a=2,求代数式169622-++a a a ÷823-+a a -42+a a 的值.四、解答题(每题10分,共20分)19. 如图所示,在边长为1的小正方形组成的网格中,△ABC 的顶点均在格点上,请按要求完成下列各题:(1)将△ABC 沿着BC 边所在的直线翻折180°,得到△A 1BC ,再将△A 1BC 绕着点B 逆时针旋转90°,得到△A 2BC 1.请依次画出△A 1BC 、△A 2BC 1.(2)求△A 1BC 旋转到△A 2BC 1过程中所扫过的面积(计算结果用π表示)(第20题图)20. 甲、乙二人玩抽牌游戏,甲手中的牌是2、2、3、4,乙手中的牌是3、4、5、5,两人分别从对方牌中任意抽取一张(彼此看不到对方的牌面),然后将牌上的数字相加,若和为奇数则甲赢,否则乙赢.(1)请用“列表法”或“树状图法”求出甲赢的概率.(2)这个游戏公平吗?若公平,请说明理由;若不公平,请在甲、乙手中各选择一张牌进行交换使游戏公平,写出一种方案即可(不必说明理由).五、解答题(每题10分,共20分)21. 为了解某地区20万读者对工具书、小说、诗歌、漫画四类图书的喜爱情况,根据老年人、成年人、青少年各年龄段的实际人口比例3:5:2,随机抽取一定数量的读者进行调查(每人只选一类图书),统计结果如下(所绘统计图不完整):(1)本次调查了名读者,其中青少年有名.(2)补全两幅统计图.(3)请估计该地区成年人中喜爱小说的读者大约有多少人?C22. 已知:如图所示,在△ABC 中,∠A=45°,以AB 为直径的⊙O 交AC 于点D ,且AD=DC ,CO 的延长线交⊙O 于点E ,过点E 作弦EF ⊥AB ,垂足为G. (1)求证:BC 是⊙O 的切线.(2)若AB=2,求EF 的长.(第22题图)六、解答题(23题10分,24题12分,共22分)23. 如图所示,一轮船向正东方向航行,在A 处测得灯塔P 在北偏东60°方向,航行40海里后到达B 处,此时测得灯塔P 在北偏东15°方向. (1)求灯塔P 到轮船的航线(直线AB )的距离PD 是多少?(2)当轮船在B 处继续向东航行时,一艘快艇从灯塔P 处 前往D 处,已知快艇的速度是轮船速度的2倍,但轮船比 快艇早15分钟到达D 处,求轮船的速度.(3≈1.73,结果精确到0.1海里/时) (第23题图)A24. 自6月1日起我省开始实施家电以旧换新政策,政府对以旧换新的家电给予补贴,具体要点如下表:100台.这批货的进价和售价如下表:y元,商场所获利润为w元(利润=售价-进价)。
辽宁省本溪中考数学试题及答案()
辽宁省本溪市中考数学试卷一、选择题(每题3分,共24分)1、2-的相反数是( )A 、12-B 、12C 、2D 、±22、如图是某几何体得三视图,则这个几何体是( )A 、球B 、圆锥C 、圆柱D 、三棱体315 )A 、2B 、4C 、15D 、164、一元二次方程2104x x -+=的根( ) A 、121122x x ==-, , B 、1222x x ==-, C 、1212x x ==- D 、1212x x == 5、在一次数学竞赛中,某小组6名同学的成绩(单位:分)分别是69、75、86、92、95、88.这组数据的中位数是( )A 、79B 、86C 、92D 、876、如图,在Rt △ABC 中,∠C=90°,AB=10,BC=8,DE 是△ABC 的中位线,则DE 的长度是( )A 、3B 、4C 、4.8D 、57、反比例函数(0)k y k x=≠的图象如图所示,若点A (11x y ,)、B (22x y ,)、C (33x y ,)是这个函数图象上的三点,且1230x x x >>>,则123y y y 、、的大小关系( )A 、312y y y <<B 、213y y y <<C 、321y y y <<D 、123y y y <<8、如图,正方形ABCD 的边长是4,∠DAC 的平分线交DC 于点E ,若点P 、Q 分别是AD 和AE 上的动点,则DQ+PQ 的最小值( )A 、2B 、4C 、22D 、42 二、填空题(每题3分,共24分)9、函数14y x =-中的自变量x 的取值范围__________。
10、掷一枚质地均匀的正方体骰子,骰子的六个面上分别有1至6的点数,则向上一面的点数是偶数的概率__________。
11、如图:AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,EG 平分∠AEF .EG ⊥FG于点G ,若∠BEM=50°,则∠CFG= __________。
辽宁省本溪市实验中学2009—2010学年九年级第一次数学质量测试(含答案)
2009—2010学年度九年级第一次质量测试数学试卷考试时间:90分钟 试卷满分:100分一、选择题:(下列各题的备选答案中,只有一个是正确的,请将正确的答案选项填在下表中相应题号下的空格内,每小题2分,共16分)1、已知等腰三角形一腰上的高与另一腰的夹角为30。
,则此等腰三角形顶角的度数为( )A 、60︒B 、120︒C 、70︒D 、60︒或120︒2、关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,那么a 的值为( )A 、1B 、1-C 、1或1-D 、12 3、如图1,已知点123A A A 表示三个城镇,现要建一个货物中转站,要求它到三个城镇的距离都相等,则可供选择的有( )A .一处B .二处C .三处D .四处4、如图2,△ABC 的三边AB ,BC ,CA 的长分别为20,30,40,其三条解平分线将△ABC 分为三个三角形,则::ABO BCO CAO S S S 等( )A .1:1:1B .1:2:3C .2:3:4D .3:4:55、根椐下面表格的对应值判断方程20(0,..ax bx c a a b c ++=≠为常数)一个解x 的范围是( )A .3 3.23x <<B .3.23 3.24x <<C .3.24 3.25x <<D .3.25 3.26x <<6、如图3,在等边△ABC 中,D 、E 分别在BC 、AC 上,且BD=CE ,AD与BE 相交于点P ,则∠APE 的度数是( )A .45︒B .55︒C .60︒D .75︒7、已知点A 和点B ,以点A 和点B 为两个顶点,作位置不同的等腰直角三角形,一共可作 出( )A 、2个B 、4个C 、6个D 、8个8、在△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长是( )A 、42B 、32C 、42或32D 、37或33二、填空题:(每小题2分,共16分)9、已知等腰三角形的一个角为75︒,则其顶角是________________10、如图4,△ABE 和△ADC 是△ABC 分别沿着AB 、AC 边翻转180︒成的,若∠1:∠2:∠3=28:5:3,则α=_________________11、用换元法解方程2223(15)2(151)2x x x x ++++=时,设215x x y +=,原方程 为关于y 的一元二次方程的一般形式为________________12、将一根长为24cm 的筷子置于底边直径为5cm ,高为12cm 的圆柱水杯中,(如图5),设筷子露在杯子外面的长为hcm ,则h 的取值围是________________13、写出命题“直角三角形的两个锐角互余”的逆命题________________________________,该命题是_________________命题(填“真”或“假”)14、如图6,C 为线段AE 上的一动点(不与点A 、E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点0,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,以下五个结论:①KD=BE ; ②PQ//AE ; ③AP=BQ ;④DE=DP ; ⑤∠AOB=60︒恒成立的结论有_________________ (把你认为正确的序号都填上)15、三角形的三边长分别为a ,b ,c ,且222a b c ab bc ac ++=++则△ABC 的形状一定是_________________三角形16、如图7,在△ABC 中,AB=AC ,∠B=15︒,AB=2a , ABC S =_________________三、解答题:(17题每小题3分。
辽宁本溪实验中学2009—2010学年九年级下学期期中考试试卷(数学)
本溪市2009——2010学年(下)毕业练习(一)数学试题试题满分150分,考试时间120分钟.注意事项:1.答题前,考生须用0.5mm 黑色字迹的签字笔在本试题卷规定位置填写自己的姓名、 准考证号;2.考生须在答题卡上作答,不能在本试题卷上作答,答在本试题卷上无效:3.考试结束,将本试题卷和答题卡一并交回;4.本试题卷包括八道大题,26道小题,共6页.如缺页、印刷不清,考生须声明,否 则后果自负.一.选择题(下列各题的备选答案中,只有一个答案是正确的.每小题3分,共24分)1.下列运算中正确的是A 、23525a a a +=B 、326a a a ⋅=C 、632a a a ÷=D 、23246()a b a b -=2.如图1-2,12//,1120,2100l l ∠=∠=,则∠3等于A 、20°B 、40°C 、50°D 、60°3.有5张写有数字的卡片(如图1-3-1),它们背面都相同,现将它们背面朝上(如图1-3-2)则它们任意一张为数字2的概率是A 、25B 、15C 、23D 、124.如图1-4,ABCD 的周长是28cm ,ABC 的周长是22cm ,则AC 的长为是A 、6㎝B 、8㎝C 、4㎝D 、12㎝5.若分式2242x x x ---的值为零,则x 的值是 A 、2或—2 B 、2 C 、—2 D 、46.如图1-6,将矩形沿对称轴折叠,在对称轴处剪下一块,余下部分的展开图为7.函数2y x bx c =++的图象所示1.7所示,那么函数y=bx+c 的大致图象是8.下列说法正确的有(1)如图1-8(a ),可以利用刻度尺和三角板测量圆形工件的直径;(2)如图1-8(b ),可以利用直角曲尺检查工件是否为半圆形;(3)如图1-8(c ),两次使用丁字尺(CD 所在直线垂直平分线段AB )可以找到圆形工件的圆心;(4)如图1-8(d ),测倾器零刻度线和铅垂线的夹角,就是从P 点看A 点时仰角的度数。
2009中考数学题及答案
2009年大连市中考数学试题与参考答案注意事项:1.请将答案写在答题卡上,写在试卷上无效. 2.本试卷满分150分,考试时间120分钟.一、选择题(在每小题给出的四个选项中,只有一个正确答案.本大题共有8小题,每小题3分,共24分) 1.|-3|等于 ( )A .3B .-3C .31D .-31 2.下列运算正确的是 ( )A .523x x x =+ B .x x x =-23C .623x x x =⋅ D .x x x =÷233.函数2-=x y 中,自变量x 的取值范围是 ( )A .x < 2B .x ≤2C .x > 2D .x ≥24.将一张等边三角形纸片按图1-①所示的方式对折,再按图1-②所示 的虚线剪去一个小三角形,将余下纸片展开得到的图案是 ( )5.下列的调查中,选取的样本具有代表性的有 ( )A .为了解某地区居民的防火意识,对该地区的初中生进行调查B .为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查C .为了解某商场的平均晶营业额,选在周末进行调查D .为了解全校学生课外小组的活动情况,对该校的男生进行调查6.如图,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,∠AEB =60°, AB = AD = 2cm ,则梯形ABCD 的周长为 ( ) A .6cm B .8cm C .10cm D .12cm 7.下列四个点中,有三个点在同一反比例函数xky =的图象上,则不在这个函数图象上的点是 ( ) A .(5,1) B .(-1,5) C .(35,3) D .(-3,35-)8.图3是一个几何体的三视图,其中主视图、左视图都是腰为13cm ,底为10cm 的等腰三角形,则这个几何的侧面积是 ( )A .60πcm 2B .65πcm 2C .70πcm 2D .75πcm 2图1②①DCBA 图2俯视图左视图主视图图3DC BA二、填空题(本题共有9小题,每小题3分,共27分)9.某天最低气温是-5℃,最高气温比最低气温高8℃,则这天的最高气温是_________℃. 10.计算)13)(13(-+=___________.11.如图4,直线a ∥b ,∠1 = 70°,则∠2 = __________.12.如图5,某游乐场内滑梯的滑板与地面所成的角∠A = 35°,滑梯的高度BC = 2米,则滑板AB 的长约为_________米(精确到0.1).13.在某智力竞赛中,小明对一道四选一的选择题所涉及的知识完全不懂,只能靠猜测得出结果,则他答对这道题的概率是_______________.14.若⊙O 1和⊙O 2外切,O 1O 2 = 10cm ,⊙O 1半径为3cm ,则⊙O 2半径为___________cm .15.图6是某班为贫困地区捐书情况的条形统计图,则这个班平均每名学生捐书_____________册. 16.图7是一次函数b kx y +=的图象,则关于x 的不等式0>+b kx 的解集为_________________.17.如图8,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A (1,0)与点A ′(-2,0)是对应点,△ABC 的面积是23,则△A ′B ′C ′的面积是________________. 三、解答题(本题共有3小题,18题、19题、20题各12分,共36分) 18.如图9,在△ABC 和△DEF 中,AB = DE ,BE = CF ,∠B =∠1. 求证:AC = DF (要求:写出证明过程中的重要依据)21c b a 图 4CBA 图 5 491017201510554320人数册数图 6 O y x -24图 7 A C B A′123-1-2-3-4-3-2-14321O y x 图 8 1F E DCBA19.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图10所示的统计表,根据统计图提供的信息解决下列问题:⑴这种树苗成活的频率稳定在_________,成活的概率估计值为_______________. ⑵该地区已经移植这种树苗5万棵. ①估计这种树苗成活___________万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?20.甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时间相等,设甲车间平均每小时生产x 个零件,请按要求解决下列问题: ⑴根据题意,填写下表: 车间 零件总个数平均每小时生产零件个数所用时间甲车间 600xx600乙车间900________⑵甲、乙两车间平均每小时各生产多少个零件?四、解答题(本题3小题,其中21、22题各9分,23题10分,共28分) 21.如图11,在⊙O 中,AB 是直径,AD 是弦,∠ADE = 60°, ∠C = 30°.⑴判断直线CD 是否是⊙O 的切线,并说明理由; ⑵若CD = 33 ,求BC 的长.图 10 0成活的概率移植数量/千棵10.90.8108642E DCBA O图 1122.如图12,直线2--=x y 交x 轴于点A ,交y 轴于点B ,抛物线c bx ax y ++=2的顶点为A ,且经过点B . ⑴求该抛物线的解析式; ⑵若点C(m ,29-)在抛物线上,求m 的值.23.A 、B 两地的路程为16千米,往返于两地的公交车单程运行40分钟.某日甲车比乙车早20分钟从A 地出发,到达B 地后立即返回,乙车出发20分钟后因故停车10分钟,随后按原速继续行驶,并与返回途中的甲车相遇.图13是乙车距A 地的路程y (千米)与所用时间x (分)的函数图象的一部分(假设两车都匀速行驶). ⑴请在图13中画出甲车在这次往返中,距A 地的路程y (千米)与时间x (分)的函数图象; ⑵乙车出发多长时间两车相遇?五、解答题(本题共有3小题,其中24题11分,25、26题各12分,共25分)24.如图14,矩形ABCD 中,AB = 6cm ,AD = 3cm ,点E 在边DC 上,且DE = 4cm .动点P 从点A 开始沿着A →B →C →E 的路线以2cm/s 的速度移动,动点Q 从点A 开始沿着AE 以1cm/s 的速度移动,当点Q 移动到点E 时,点P 停止移动.若点P 、Q 同时从点A 同时出发,设点Q 移动时间为t (s),P 、Q 两点运动路线与线段PQ 围成的图形面积为S (cm2),求S 与t 的函数关系式.25.如图15,在△ABC 和△PQD 中,AC = k BC ,DP = k DQ ,∠C =∠PDQ ,D 、E 分别是AB 、AC 的中点,点P 在直线BC 上,连结EQ 交PC 于点H .PQE D CB A 图 14 y/千米16O -2080604020x/分图 13 yx O B A 图 12猜想线段EH 与AC 的数量关系,并证明你的猜想.26.如图18,抛物线F :c bx ax y ++=2的顶点为P ,抛物线:与y 轴交于点A ,与直线OP 交于点B .过点P 作PD ⊥x 轴于点D ,平移抛物线F 使其经过点A 、D 得到抛物线F ′:'+'+'=c x b x a y 2,抛物线F ′与x 轴的另一个交点为C .⑴当a = 1,b =-2,c = 3时,求点C 的坐标(直接写出答案); ⑵若a 、b 、c 满足了ac b 22=①求b :b ′的值;②探究四边形OABC 的形状,并说明理由.Q(H)EDCQAB CDEPH H Q P ED CB A B(P)A图 15 图 16图 17yxO P DC BA图 18大连市2009年初中升学考试评分标准与参考答案一、选择题1. A 2.D 3.D 4.A 5.B 6.C 7.B 8.B 二、填空题9.3 10.2 11.110° 12.3.5 13.4114.7 15.3 16.2->x 17.6 三、解答题18.证明:∵BE=CF , ∴BE+EC=CF+EC ,即 B C =E F . ………………………………………………………………………………2分 在△ABC 和△DEF 中,314AB DE B BC EF =⎧⎪∠=∠⎨⎪=⎩,分,分. ∴△A B C ≌△D E F …………………………………………………………………………6分 (S A S ) . ……………………………………………………………………………………8分 ∴A C =D F …………………………………………………………………………………10分 (全等三角形对应边相等) . ……………………………………………………………12分 19.解:(1)0.9,……………………………………………………………………………2分 0.9; ………………………………………………………………………………………5分 (2) ①4.5;…………………………………………………………………………………8分 ②方法1:18÷0.9-5 …………………………………………………………………………………10分 =15.…………………………………………………………………………………………11分方法2:设还需移植这种树苗x 万棵.根据题意,得189.0)5(=⨯+x ,…………………………………………………………10分 解得15=x . ………………………………………………………………………………11分 答:该地区需移植这种树苗约15万棵. ………………………………………………12分 20. 解:(1) 30+x , ……………………………………………………………………2分 3900+x ;………………………………………………………………………………………4分 (2)根据题意,得30900600+=x x ,..................................................................7分 解得 60=x . (9)分 9030=+x . …………………………………………………………………10分 经检验60=x 是原方程的解,且都符合题意.………………………………………11分 答:甲车间每小时生产60个零件,乙车间每小时生产90个零件.…………………12分 21.(1)C D 是⊙O 的切线. …………………………………………………………………1分 证明:连接OD .∵∠A D E =60°,∠C =30°,∴∠A =30°. ............................................................2分 ∵O A =O D ,∴∠O D A =∠A =30°. (3)分∴∠O D E =∠O D A +∠A D E =30°+60°=90°,∴O D ⊥C D .…………………………………4分 ∴C D 是⊙O 的切线. ……………………………………………………………………5分 (2)解:在Rt △ODC 中,∠ODC =90°, ∠C =30°, CD =33.∵t a n C =CDOD, …………………………………………………………………………6分 ∴O D =C D ·t a n C =33×33=3. (7)分 ∴O C =2O D =6.…………………………………………………………………………8分 ∵O B =O D =3,∴B C =O C -O B =6-3=3.………………………………………………9分22. 解:(1)直线2--=x y .令2,0-==y x 则,∴点B 坐标为(0,-2).………………………………………………1分 令2,0-==x y 则 ∴点A 坐标为(-2,0). ………………………………………………2分 设抛物线解析式为k h x a y +-=2)(. ∵抛物线顶点为A ,且经过点B ,∴2)2(+=x a y ,………………………………………………………………………4分∴-2=4a ,∴21-=a .…………………………………………………………………5分 ∴抛物线解析式为2)2(21+-=x y ,…………………………………………………5分∴22212---=x x y .………………………………………………………………6分(2)方法1:∵点C (m ,29-)在抛物线2)2(21+-=x y 上,∴29)2(212-=+-m ,9)2(2=+m ,………………………………………………7分解得11=m ,52-=m .……………………………………………………………9分 方法2:∵点C (m ,29-)在抛物线22212---=x x y 上,∴22212---m m 29-=,∴,0542=-+m m (7)分解得11=m ,52-=m .……………………………………………………………9分 23.解:(1)画出点P 、M 、N (每点得1分)……………………………………3分 (2)方法1.设直线EF 的解析式为11b x k y +=. 根据题意知,E (30,8),F (50,16),⎪⎩⎪⎨⎧+=+=分分5.1150164,11308 b k b k 解得⎪⎩⎪⎨⎧-==.4,5211b k ∴452-=x y .①……………………………………………………………6分设直线MN 的解析式为22b x k y +=. 根据题意知,M (20,16),N (60,0),∴⎩⎨⎧+=+=分分8.6007,20162222 b k b k 解得⎪⎩⎪⎨⎧=-=.24,5222b k ∴2452+-=x y .②………………………………………………………9分由①、②得方程452-x 2452+-=x ,解得x =35. ……………………………………(10分) 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法2.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得32)20(52)10(52=++-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法3.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得16)20(52)10(52=-+-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法4.由题意知:M (20,16),F (50,16),C (10,0),∵△DMF ∽△DNC ,∴DHDICN MF =∴DHDH -=165030,∴DH =10; ∵△CDH ∽△CFG ,∴CGCH FG DH =,∴25164010=⨯=CH ; ∴OH =OC +CH =10+25=35.答:乙车出发35分钟两车相遇. …………………………………………………………10分24.解:在R t △A D E 中,.5432222=+=+=DE AD AE …………………………1分当0<t ≤3时,如图1. ……………………………………………………………………2分过点Q 作QM ⊥AB 于M ,连接QP . ∵AB ∥CD , ∴∠QAM =∠DEA ,又∵∠AMQ =∠D =90°, ∴△AQM ∽△EAD .∴AEAQAD QM =,∴t AE AQ AD QM 53=⋅=.……………………………………………………3分 .5353221212t t t QM AP S =⨯⨯=⋅= (4)分 当3<t ≤29时,如图2. (5)分方法1 :在Rt △ADE 中,.5432222=+=+=DE AD AE过点Q 作QM ⊥AB 于M , QN ⊥BC 于N , 连接QB . ∵AB ∥CD , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°, ∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴QAB S ∆,595362121t t QM AB =⨯⨯=⋅=QBP S ∆.1854254)546)(62(21212-+-=--=⋅=t t t t QN BP∴QBP QAB S S S ∆∆+=t 59=+(18542542-+-t t ).18551542-+-=t t ……………………8分方法2 :过点Q 作QM ⊥AB 于M , QN ⊥BC 于N ,连接QB . ∵AB ∥BC , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°,∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴.256535421212t t t QM AM S AMQ =⨯⨯=⋅=∆.185512526)546)(5362(21)(212-+-=-+-=⋅+=t t t t t BM QM BP S BPQM 梯∴BPQM AMQ S S S 梯+=∆2256t =+(1855125262-+-t t ).18551542-+-=t t ……………8分 当29<t ≤5时. 方法1 :过点Q 作QH ⊥CD 于H . 如图3.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH = ∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分 ∴,123)62(21)(21=⨯+=⋅+=BC AB EC S ABCE 梯,233106353)5(53)211(21212+-=-⨯-=⋅=∆t t t t QH EP S EQP∴EQP ABCE S S S ∆-=梯12=2331063532-+-t t .291063532-+-=t t ………………………11分方法2:连接QB 、QC ,过点Q 分别作QH ⊥DC 于H ,QM ⊥AB 于M ,QN ⊥BC 于N . 如图4.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH =∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分∴.595362121t t QN AB S QAB =⨯⨯=⋅=∆.569)546(32121t t QN BC S QBC -=-⨯=⋅=∆.227105753)533)(92(21212-+-=--=⋅=∆t t t t QH PC S QCP∴QCP QBC QAB S S S S ∆∆∆++=t 59=)569(t -+)227105753(2-+-+t t .291063532-+-=t t ………………………………11分 25.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点.∴DE ∥BC 且DE =21BC ,D F ∥A C 且D F =21A C , (4)分EC =21AC ∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E .…………………………6分又∵AC=kBC ,∴DF=kDE . ∵D P =k D Q ,∴k DEDFDQ DP ==.……………………………………………………………7分 ∴△PDF ∽△QDE . …………………………………………………………………………8分∴∠D E Q =∠D F P . ……………………………………………………………………………9分 又∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C . ……………………………………………………………………………10分∴E H =E C . (11)分 ∴E H =21A C . (12)分 选图16.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点,∴D E ∥B C 且D E =21B C , D F ∥A C 且D F =21A C , (4)分EC=21AC ,∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E . ……………………………6分 又∵A C =B C , ∴D E =D F ,∵P D =Q D ,∴△P D F ≌△Q D E . ……………………………7分∴∠DEQ=∠DFP .∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C .............................................................................................8分 ∴E H =E C . (9)分 ∴E H =21A C . (10)分 选图17. 结论: E H =21A C . (1)分证明:连接A H . ………………………………………………………………………………2分 ∵D 是AB 中点,∴DA=DB .又∵DB=DQ ,∴DQ=DP=AD .∴∠DBQ=∠DQB ,.∵∠DBQ+∠DQB+∠DQA+∠DAQ ,=180°,∴∠AQB=90°,∴AH ⊥BC .……………………………………………………………………………………4分又∵E 是A C 中点,∴H E =21A C . ……………………………………………………6分 26.解:(1) C (3,0);……………………………………………………………………3分(2)①抛物线c bx ax y ++=2,令x =0,则y =c , ∴A 点坐标(0,c ).∵ac b 22=,∴ 242424442ca ac a ac ac ab ac ==-=-,∴点P 的坐标为(2,2ca b -). ……………………………………………………4分∵P D ⊥x 轴于D ,∴点D 的坐标为(0,2ab-). ……………………………………5分根据题意,得a=a ′,c= c ′,∴抛物线F ′的解析式为c x b ax y ++='2.又∵抛物线F ′经过点D (0,2a b-),∴c a b b ab a +-+⨯=)2('4022.……………6分∴ac bb b 4'202+-=.又∵ac b 22=,∴'2302bb b -=.∴b :b ′=32.…………………………………………………………………………………7分 ②由①得,抛物线F ′为c bx ax y ++=232.令y =0,则0232=++c bx ax .………………………………………………………………8分∴abx a b x -=-=21,2.∵点D 的横坐标为,2a b -∴点C 的坐标为(0,ab-). ……………………………………9分设直线OP 的解析式为kx y =.∵点P 的坐标为(2,2ca b -), ∴k a b c 22-=,∴22222b b b b ac b ac k -=-=-=-=,∴x b y 2-=.………………………10分 ∵点B 是抛物线F 与直线OP 的交点,∴x bc bx ax 22-=++.∴abx a b x -=-=21,2.∵点P 的横坐标为a b 2-,∴点B 的横坐标为ab-.把a b x -=代入x b y 2-=,得c a aca b a b b y ===--=222)(22.∴点B 的坐标为),(c ab-.…………………………………………………………………11分∴BC ∥OA ,AB ∥OC .(或BC ∥OA ,BC =OA ), ∴四边形OABC 是平行四边形. 又∵∠AOC =90°,∴四边形OABC 是矩形. ………………………………………………12分。
辽宁省本溪市2009年中考数学试题(含答案)
1
2
B.
14
C.1
D.
34
6.下列图案中,既是轴对称图形又是中心对称图形的是()
B.1.02×108
C.0.102×108
)
D.−1
)
D.1.02×109
2.如果a与1互为相反数,则|a+2|等于(A.2
B.−2
C.1
3.反比例函数y=
k
3),则该反比例函数图象在((k≠0)的图象经过点(−2,
x
A.第一、三象限B.第二、四象限C.第二、三象限D.第一、二象限
)
B.3和
4
之间
第1页共12页
2009年本溪市初中毕业生学业考试
数
学
试
卷
考试时间120分钟试卷满分150分
一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中相应题号下的空格内,每小题3分,共24分)
1.2009年6月,全国参加高等院校统一招生考试的学生约10200000人,其中10200000用科学记数法表示应为()A.10.2×106
A.B.C.
7.某男子排球队20名队员的身高如下表:
身高(cm)人数(个)
1804
1866
1885
D.1923
)
2082
则此男子排球队20名队员的身高的众数和中位数分别是(A.186cm,186cmB.186cm,187cmC.208cm,188cmD.188cm,187cm8+1的值在(A.2和3之间
2009年辽宁本溪初中毕业生学业考试
2009年辽宁省本溪市初中毕业生学业考试语文试卷考试时间150分钟试卷满分150分一、积累与运用(满分30分)1•阅读下面的语录段,回答(1)―― (4)题。
(5分)友情是人生的一笔储蓄,能让你受益匪浅。
这储蓄,是患难中的倾囊相助,是迷途上的逆耳忠言,是跌到时的真诚搀扶,是痛苦时抹去泪水的一缕春风。
真正的友情,是不可能单向收取的,而是要通过彼此的积累加重其分.量。
任何功利性的友情储蓄,不仅得不到利息, 连本钱都会丧失殆尽。
(1 )请将语段开头的句子抄写在田字格中,要求规范、工整。
(2分)友情是人生的一笔储蓄(2)请给语段中加点的字注音。
(1分)储蓄 ________________ 分量_____________________(3)语段中有一个错别字,请找出来并改正。
(1分)_____________ 应改为_________________(4 )请结合语境解释语段中画线的词语。
(1分)受益匪浅:________________________________________________________________________ 2•在下面语段的横线上依次填入词语最准确的一项是()(2分) _________ 人生有许多事情要做,__________ 就不要为一时的失去而伤心,因为一时的失去并不意味着永远的失败;_______________________ 你拥有了这种健康的心态,你成功了一半。
A .虽然但是只要就B .既然那么只有才C •因为所以只有才D •既然那么只要就3.下面两个句子各有一处语录病,请在原句上修改。
(2分)(1 )各国政府采取紧急措施,阻止H1N1病毒不再蔓延。
(2 )各级各类学校正在深入开展“我爱我的祖国”主题教育。
4•结合语境仿写画线的句子,使前后语意连贯。
(2分)牛命是那园圃中的花,在争奇斗艳中绽放光彩;牛命是那草原上的马,在纵横驰骋中彰显英姿; _________________________,___________________________________ 。
本溪市中考数学 有理数解答题(含答案)
本溪市中考数学有理数解答题(含答案)一、解答题1.如图,点O为原点,A、B为数轴上两点,点A表示的数a,点B表示的数是b,且.(1)a=________,b=________;(2)在数轴上是否存在一点P,使,若有,请求出点P表示的数,若没有,请说明理由?(3)点M从点A出发,沿的路径运动,在路径的速度是每秒2个单位,在路径上的速度是每秒4个单位,同时点N从点B出发以每秒3个单位长向终点A运动,当点M第一次回到点A时整个运动停止.几秒后MN=1?2.在数轴上,点A,点B分别表示数,则线段AB的长度可以用表示.例如:在数轴上点A表示5,点B表示2,则线段AB的长表示为 .(1)若线段AB的长表示为6, ,则ab的值等于________;(2)已知数轴上的任意一点P表示的数是x,且的最小值是4,若,则b=________;(3)已知点A在点B的右边,且,若,,试判断的符号,说明理由.3.已知数轴上,一动点Q从原点O出发,沿数轴以每秒2个单位长度的速度来回移动,其移动的方式是:先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度…,(1)动点Q运动3秒时,求此时Q在数轴上表示的数?(2)当动点Q第一次运动到数轴上对应的数为10时,求Q运动的时间t;(3)若5秒时,动点Q激活所在位置P点,P点立即以0.1个单位长度/秒的速度沿数轴运动,试求点P激活后第一次与继续运动的点Q相遇时所在的位置.4.如图,已知数轴上点A表示的数为﹣3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.(1)数轴上点B表示的数为________;点P表示的数为________(用含t的代数式表示). (2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P返回到达A点时,P、Q停止运动.设运动时间为t秒.①当点P返回到达A点时,求t的值,并求出此时点Q表示的数.②当点P是线段AQ的三等分点时,求t的值.5.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒(1)数轴上点B表示的数是________;点P表示的数是________(用含t的代数式表示) (2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长。
辽宁省本溪市中考数学真题试题(含解析)
辽宁省本溪市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数是正数的是()A.0 B.5 C.﹣D.﹣2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)下列计算正确的是()A.x7÷x=x7B.(﹣3x2)2=﹣9x4C.x3•x3=2x6D.(x3)2=x64.(3分)6月8日,全国铁路发送旅客约9560000次,将数据9560000科学记数法表示为()A.9.56×106B.95.6×105C.0.956×107D.956×1045.(3分)下表是我市七个县(区)今年某日最高气温(℃)的统计结果:县(区)平山区明山区溪湖区南芬区高新区本溪县恒仁县气温(℃)26 26 25 25 25 23 22 则该日最高气温(℃)的众数和中位数分别是()A.25,25 B.25,26 C.25,23 D.24,256.(3分)不等式组的解集是()A.x>3 B.x≤4 C.x<3 D.3<x≤47.(3分)如图所示,该几何体的左视图是()A.B.C.D.8.(3分)下列事件属于必然事件的是()A.打开电视,正在播出系列专题片“航拍中国”B.若原命题成立,则它的逆命题一定成立C.一组数据的方差越小,则这组数据的波动越小D.在数轴上任取一点,则该点表示的数一定是有理数9.(3分)为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()A.=B.=C.+=140 D.﹣140=10.(3分)如图,点P是以AB为直径的半圆上的动点,CA⊥AB,PD⊥AC于点D,连接AP,设AP=x,PA﹣PD=y,则下列函数图象能反映y与x之间关系的是()A.B.C.D.二、填空题(本題共8小题,每小题3分,共24分)11.(3分)若在实数范围内有意义,则x的取值范围为.12.(3分)函数y=5x的图象经过的象限是.13.(3分)如果关于x的一元二次方程x2﹣4x+k=0有实数根,那么k的取值范围是.14.(3分)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相们比为,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为.15.(3分)如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG 交AD于点P,若AP=3,则点P到BD的距离为.16.(3分)如图所示的点阵中,相邻的四个点构成正方形,小球只在点阵中的小正方形ABCD 内自由滚动时,则小球停留在阴影区域的概率为.17.(3分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.18.(3分)如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥1,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n的横坐标为(结果用含正整数n的代数式表示)三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值(﹣)÷,其中a满足a2+3a﹣2=0.20.(12分)某中学为了提高学生的综合素质,成立了以下社团:A.机器人,B.围棋,C.羽毛球,D.电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团;(4)在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.四、解答题(第21题12分,第22题12分,共24分)21.(12分)如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.22.(12分)小李要外出参加“建国70周年”庆祝活动,需网购一个拉杆箱,图①,②分别是她上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°,请根据以上信息,解决下列向题.(1)求AC的长度(结果保留根号);(2)求拉杆端点A到水平滑杆ED的距离(结果保留根号).五、解答题(满分12分)23.(12分)某工厂生产一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.(1)直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;(2)若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?六、解答题(满分12分)24.(12分)如图,点P为正方形ABCD的对角线AC上的一点,连接BP并延长交CD于点E,交AD的延长线于点F,⊙O是△DEF的外接圆,连接DP.(1)求证:DP是⊙O的切线;(2)若tan∠PDC=,正方形ABCD的边长为4,求⊙O的半径和线段OP的长.七、解答题(满分12分)25.(12分)在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC边上一点,且DA=DB,O 是AB的中点,CE是△BCD的中线.(1)如图a,连接OC,请直接写出∠OCE和∠OAC的数量关系:;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使∠MON=∠ADB,ON与射线CA交于点N.①如图b,猜想并证明线段OM和线段ON之间的数量关系;②若∠BAC=30°,BC=m,当∠AON=15°时,请直接写出线段ME的长度(用含m的代数式表示).八、解答题(满分14分)26.(14分)抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.辽宁省本溪市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:0既不是正数,也不是负数;5是正数;和都是负数.故选:B.2.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项符合题意;C、是中心对称图形,不是轴对称图形,故本选项不符合题意;D、不是中心对称图形,是轴对称图形,故本选项不符合题意.故选:B.3.【解答】解:A、x7÷x=x6,故此选项错误;B、(﹣3x2)2=9x4,故此选项错误;C、x3•x3=x6,故此选项错误;D、(x3)2=x6,故此选项正确;故选:D.4.【解答】解:将数据9560000科学记数法表示为9.56×106.故选:A.5.【解答】解:∵在这7个数中,25(℃)出现了3次,出现的次数最多,∴该日最高气温(℃)的众数是25;把这组数据按照从小到大的顺序排列位于中间位置的数是25,则中位数为:25;故选:A.6.【解答】解:,由①得:x>3,由②得:x≤4,则不等式组的解集为3<x≤4,故选:D.7.【解答】解:从左边看是一个矩形,中间有两条水平的虚线,故选:B.8.【解答】解:A、打开电视,正在播出系列专题片“航拍中国”,是随机事件,不合题意;B、若原命题成立,则它的逆命题一定成立,是随机事件,不合题意;C、一组数据的方差越小,则这组数据的波动越小,是必然事件,符合题意;D、在数轴上任取一点,则该点表示的数一定是有理数,是随机事件,不合题意;故选:C.9.【解答】解:设甲型机器人每台x万元,根据题意,可得:,故选:A.10.【解答】设:圆的半径为R,连接PB,则sin∠ABP=,∵CA⊥AB,即AC是圆的切线,则∠PDA=∠PBA=α,则PD=AP sinα=x×=x2,则y=PA﹣PD=﹣x2+x,图象为开口向下的抛物线,故选:C.二、填空题(本題共8小题,每小题3分,共24分)11.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.12.【解答】解:函数y=5x的图象经过一三象限,故答案为:一、三13.【解答】解:根据题意得:△=16﹣4k≥0,解得:k≤4.故答案为:k≤4.14.【解答】解:以点O为位似中心,相们比为,把△ABO缩小,点A的坐标是A(4,2),则点A的对应点A1的坐标为(4×,2×)或(﹣4×,﹣2×),即(2,1)或(﹣2,﹣1),故答案为:(2,1)或(﹣2,﹣1).15.【解答】解:结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.16.【解答】解:如图所示,AD与直线的交点为E,AB与直线的交点为F,根据题意可知,AF=,∴=,∴小球停留在阴影区域的概率为:1﹣.故答案为:17.【解答】解:连接OD,∵△OAB是等边三角形,∴∠AOB=60°,∵四边形OCDE是菱形,∴DE∥OB,∴∠DEO=∠AOB=60°,∴△DEO是等边三角形,∴∠DOE=∠BAO=60°,∴OD∥AB,∴S△BDO=S△AOD,∵S四边形ABDO=S△ADO+S△ABD=S△BDO+S△AOB,∴S△AOB=S△ABD=,过B作BH⊥OA于H,∴OH=AH,∴S△OBH=,∵反比例函数y=(x>0)的图象经过点B,∴k的值为,故答案为:.18.【解答】解:过点B1、C1、C2、C3、C4分别作B1D⊥x轴,C1D1⊥x轴,C2D2⊥x轴,C3D3⊥x 轴,C4D4⊥x轴,……垂足分别为D、D1、D2、D3、D4……∵点B1在直线l:y=x上,点B1的横坐标为2,∴点B1的纵坐标为1,即:OD=2,B1D=1,图中所有的直角三角形都相似,两条直角边的比都是1:2,∴点C1的横坐标为:2++()0,点C2的横坐标为:2++()0+()0×+()1=+()0×+()1点C3的横坐标为:2++()0+()0×+()1+()1×+()2=+()0×+()1×++()2点C4的横坐标为:=+()0×+()1×+()2×+()3……点∁n的横坐标为:=+()0×+()1×+()2×+()3×+()4×……+()n﹣1=+[()0+()1×+()2+()3+()4……]+()n﹣1=故答案为:三、解答题(第19题10分,第20题12分,共22分)19.【解答】解:(﹣)÷=[]=()===,∵a2+3a﹣2=0,∴a2+3a=2,∴原式==1.20.【解答】解:(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷=200(人);故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.(3)1000×=300(人)答:这1000名学生中有300人参加了羽毛球社团;(4)画树状图得:∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)==.四、解答题(第21题12分,第22题12分,共24分)21.【解答】证明:(1)∵AB∥CD,∠B=45°∴∠C+∠B=180°∴∠C=135°∵DE=DA,AD⊥CD∴∠E=45°∵∠E+∠C=180°∴AE∥BC,且AB∥CD∴四边形ABCE是平行四边形∴AE=BC(2)∵四边形ABCE是平行四边形∴AB=CE=3∴AD=DE=AB﹣CD=2∴四边形ABCE的面积=3×2=622.【解答】解:(1)过F作FH⊥DE于H,∴∠FHC=∠FHD=90°,∵∠FDC=30°,DF=30,∴FH=DF=15,DH=DF=15,∵∠FCH=45°,∴CH=FH=15,∴,∵CE:CD=1:3,∴DE=CD=20+20,∵AB=BC=DE,∴AC=(40+40)cm;(2)过A作AG⊥ED交ED的延长线于G,∵∠ACG=45°,∴AG=AC=20+20,答:拉杆端点A到水平滑杆ED的距离为(20+20)cm.五、解答题(满分12分)23.【解答】解:(1)当0<x≤20且x为整数时,y=40;当20<x≤60且x为整数时,y=﹣x+50;当x>60且x为整数时,y=20;(2)设所获利润w(元),当0<x≤20且x为整数时,y=40,∴w=(40﹣16)×20=480元,当0<x≤20且x为整数时,y=40,∴当20<x≤60且x为整数时,y=﹣x+50,∴w=(y﹣16)x=(﹣x+50﹣16)x,∴w=﹣x2+34x,∴w=﹣(x﹣34)2+578,∵﹣<0,∴当x=34时,w最大,最大值为578元.答:一次批发34件时所获利润最大,最大利润是578元.六、解答题(满分12分)24.【解答】(1)连接OD,∵正方形ABCD中,CD=BC,CP=CP,∠DCP=∠BCP=45°,∴△CDP≌△CBP(SAS),∴∠CDP=∠CBP,∵∠BCD=90°,∴∠CBP+∠BEC=90°,∵OD=OE,∴∠ODE=∠OED,∠OED=∠BEC,∴∠BEC=∠OED=∠ODE,∴∠CDP+∠ODE=90°,∴∠ODP=90°,∴DP是⊙O的切线;(2)∵∠CDP=∠CBE,∴tan,∴CE=,∴DE=2,∵∠EDF=90°,∴EF是⊙O的直径,∴∠F+∠DEF=90°,∴∠F=∠CDP,在Rt△DEF中,,∴DF=4,∴==2,∴,∵∠F=∠PDE,∠DPE=∠FPD,∴△DPE∽△FPD,∴,设PE=x,则PD=2x,∴,解得x=,∴OP=OE+EP=.七、解答题(满分12分)25.【解答】解:(1)结论:∠ECO=∠OAC.理由:如图1中,连接OE.∵∠BCD=90°,BE=ED,BO=OA,∵CE=ED=EB=BD,CO=OA=OB,∴∠OCA=∠A,∵BE=ED,BO=OA,∴OE∥AD,OE=AD,∴CE=EO.∴∠EOC=∠OCA=∠ECO,∴∠ECO=∠OAC.故答案为:∠OCE=∠OAC.(2)如图2中,∵OC=OA,DA=DB,∴∠A=∠OCA=∠ABD,∴∠COA=∠ADB,∵∠MON=∠ADB,∴∠AOC=∠MON,∴∠COM=∠AON,∵∠ECO=∠OAC,∴∠MCO=∠NAO,∵OC=OA,∴△COM≌△AON(ASA),∴OM=ON.②如图3﹣1中,当点N在CA的延长线上时,∵∠CAB=30°=∠OAN+∠ANO,∠AON=15°,∴∠AON=∠ANO=15°,∴OA=AN=m,∵△OCM≌△OAN,∴CM=AN=m,在Rt△BCD中,∵BC=m,∠CDB=60°,∴BD=m,∵BE=ED,∴CE=BD=m,∴EM=CM+CE=m+m.如图3﹣2中,当点N在线段AC上时,作OH⊥AC于H.∵∠AON=15°,∠CAB=30°,∴∠ONH=15°+30°=45°,∴OH=HN=m,∵AH=m,∴CM=AN=m﹣m,∵EC=m,∴EM=EC﹣CM=m﹣(m﹣m)=m﹣m,综上所述,满足条件的EM的值为m+m或m﹣m.八、解答题(满分14分)26.【解答】解:(1)函数的表达式为:y=(x+1)(x﹣5)=﹣x2+x+;(2)抛物线的对称轴为x=1,则点C(2,2),设点P(2,m),将点P、B的坐标代入一次函数表达式:y=sx+t并解得:函数PB的表达式为:y=﹣mx+…①,∵CE⊥PE,故直线CE表达式中的k值为,将点C的坐标代入一次函数表达式,同理可得直线CE的表达式为:y=…②,联立①②并解得:x=2﹣,故点F(2﹣,0),S△PCF=×PC×DF=(2﹣m)(2﹣﹣2)=5,解得:m=5或﹣3(舍去5),故点P(2,﹣3);(3)由(2)确定的点F的坐标得:CP2=(2﹣m)2,CF2=()2+4,PF2=()2+m2,①当CP=CF时,即:(2﹣m )=()2+4,解得:m=0或(均舍去),②当CP=PF时,(2﹣m)2=()2+m2,解得:m =或3(舍去3),③当CF=PF时,同理可得:m=±2(舍去2),故点P(2,)或(2,﹣2).21 / 21。
2009年辽宁省辽阳市中考数学试卷
2009年辽宁省辽阳市中考数学试卷一、选择题(下列各题的备选答案中.只有一个是正确的,请将正确答案的序号填入下面表格内,每小题3分,共24分) 1.(3分)2-的倒数是( ) A .2B .2-C .12D .12-2.(3分)下列运算正确的是( ) A .224m m m +=B .842m m m ÷=C .555m n mn +=D .333()mn m n -=-3.(3分)如图,CBD ∠、ADE ∠为ABD ∆的两个外角,70CBD ∠=︒,149ADE ∠=︒,则A ∠的度数是( )A .28︒B .31︒C .39︒D .42︒4.(3分)如图,这是一个由几个完全相同的小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,则它的左视图是( )A .B .C .D .5.(3分)一组数据2-,0,2,5,a 的极差是8,那么a 的值是( ) A .6B .3-C .6或3-D .76.(3分)下列图形既是轴对称图形,又是中心对称图象的是( )A .B .C .D .7.(3分)如图,在Rt ABC ∆中,90BAC ∠=︒,D 、E 分别为BC 、AB 的中点,且6AC cm =,8AB cm =.则ADE ∆的周长为( )A .10cmB .12cmC .14cmD .16cm8.(3分)如图,用半径为10,圆心角为144︒的扇形纸片围成一个圆锥(接缝处忽略不计),则该圆锥的底面半径是( )A .3B .4C .5D .6二、填空题(每小题3分,共24分)9.(3分)今年6月6日,国家农业部和辽宁省政府联合举行了辽东湾海洋生物增殖放流活动仪式,当日辽东湾沿岸5市,共放流海蜇、中国对虾和牙鲆鱼幼体约34 000 000头(尾).这一数据用科学记数法表示为 头(尾). 10.(3分)分解因式:3222x x y xy -+= . 11.(3分)分式方程32122x x x =---的解为x = . 12.(3分)二次函数241y x x =--的最小值是 . 13.(3分)某次射击训练中,一小组的成绩如表所示:已知该小组的平均成绩为7.5环,那么成绩为6环的人数为 .14.(3分)如图,把平面直角坐标系中ABC ∆以点C 为旋转中心,顺时针旋转90︒,则点A 的对应点A '的坐标为 .15.(3分)小华准备给老师打电话时,却忘了老师手机号码的最后一位(手机号码11位),那么她一次就能拔通的概率为 .16.(3分)如图,在反比例函数2(0)y x x=>的图象上,有点1P ,2P ,⋯,n P ,它们的横坐标分别是1,2,⋯,n ,过这些点分别向x 轴作垂线,垂足分别为1A ,2A ,⋯,n A .连接1PO ,21P A ,⋯,1n n P A -.图中构成了n 个小三角形,其面积自左向右分别记为1S ,2S ,⋯,n S ,则n S = .三、(每小题8分,共16分)17.(80113|(2009)2()4-+-+÷-.18.(8分)“百年大计,教育为本”.某地区近几年教育投入逐年提高,2007年教育投入为1600万元,2009年政府预算教育投入为2500万元,若每年教育投入比上二年增长的百分率相同,求这个百分率? 四、(每小题10分,共20分)19.(10分)如图,已知AC 是O 的弦,AB 为O 的直径,点D 在AB 的延长线上,30A D ∠=∠=︒(1)求证:CD 是O 的切线; (2)当5BD =时,求O 的半径长.20.(10分)学习了统计知识后,某中学小光同学,为了解本校九年级学生晚间睡眠时间,进行了一次抽样调查,设睡眠时间为t 小时,所得数据按以下四个时间段进行统计:A .6t <B .67t <…C .78t <…D .8t …图1,图2是根据调查结果绘制的两幅不完整的统计图.请根据图中提供的信息,解答以下问题: (1)这次调查中,共抽查了 名学生;(2)在扇形统计图中,“D 时间段”部分所对应的圆心角是 度; (3)补全两幅统计图;(4)本校九年级共有800名学生.若睡眠时间不足8小时均为睡眠不足,估计本校九年级学生睡眠不足的人数? 五、(每小题10分,共20分)21.(10分)歼10战斗机是我国自主研制的第三代战斗机.在某次军事演习中,某飞行员驾驶一架歼10战斗机,沿水平方向向地面目标A 的正上方匀速飞行.如图所示,在空中B 点测得目标A 的俯角为15︒.经过5.5秒到达C 点,在C 点测得目标A 的俯角为45︒,已知歼10战斗机的飞行速度为600米/秒.求飞机距地面飞行的高度?(结果精确到0.1米)22.(10分)一个不透明的袋子装有4个小球,分别标有数字1,2,3,7.这些小球除所标数字不同外,完全相同.甲乙两人每次同时从袋中各随机摸出一个小球,记下球上的数字,并计算它们的和.(1)请用画树状图或列表的方法,求两数和是8的概率;(2)甲乙两入想用这种方式做游戏,他们规定:当两数之和是2的倍数时,甲得3分,当两数之和是3的倍数时,乙得2分,当两数之和是其它数值时,两人均不得分. 你认为这个游戏公平吗?请说明理由.若你认为不公平,请修改得分规则,使游戏公平. 六、(每小题10分.共20分)23.(10分)如图,ABC ∆为正三角形,D 为边BA 延长线上一点,连接CD ,以CD 为一边作正三角形CDE ,连接AE ,判断AE 与BC 的位置关系,并说明理由.24.(10分)某运动鞋专卖店,欲购进甲、乙两型号的运动鞋共100双,若购进5双甲型号运动鞋和3双乙型号运动鞋共需1350元,若购进4双甲型号运动鞋和2双乙型号运动鞋共需1020元.(1)求甲、乙两型号运动鞋的进价每双各是多少元?(2)甲型号运动鞋每双售价为260元,乙型号运动鞋每双售价为220元,要满足进鞋资金不超过17500元,当100双运动鞋全部售出后,利润不低于7800元,鞋店经理有几种进货方案? 七、(本题12分)25.(12分)如图1,在直角梯形ABCD 中,//CD AB ,CB AB ⊥,6BC cm =,6DC cm =,10AD cm =(1)求AB 的长.(2)操作:如图2,过点D 作DE AB ⊥于E .将直角梯形ABCD 沿DE 剪开,得到四边形DEBC 和ADE ∆.四边形DEBC 不动,将ADE ∆沿射线AD 的方向,以每秒1cm 的速度平移,当点A 平移到点D 时,停止平移.探究:设在平移过程中,ADE ∆与四边形DEBC 重叠部分的面积为2ycm ,平移时间为x 秒,求y 与x 的函数关系式,并直接写出自变量x 的取值范围?八、(本题14分)26.(14分)如图,矩形OABC 的两边OA 、OC 分别在x 轴和y 轴上,(3,0)A -,过点C 的直线24y x =-+与x 轴交于点D ,二次函数212y x bx c =-++的图象经过B 、C 两点.(1)求B 、C 两点的坐标; (2)求二次函数解析式;(3)若点P 是CD 的中点,求证:AP CD ⊥;(4)在二次函数图象上是否存在点M ,使以A 、P 、C 、M 为顶点的四边形为矩形?若存在,求出点M 的坐标;若不存在,请说明理由.2009年辽宁省辽阳市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中.只有一个是正确的,请将正确答案的序号填入下面表格内,每小题3分,共24分) 1.(3分)2-的倒数是( ) A .2B .2-C .12D .12-【解答】解:12()12-⨯-=,2∴-的倒数是12-.故选:D .2.(3分)下列运算正确的是( ) A .224m m m +=B .842m m m ÷=C .555m n mn +=D .333()mn m n -=-【解答】解:A ,2222m m m +=,故此选项错误;B .84m m m÷=844m -=,故此选项错误;C ,5m 与5n 不是同类项不能合并,故此选项错误;D ,33()(1)mn -=-3333m n m n =-,故此选项正确;故选:D .3.(3分)如图,CBD ∠、ADE ∠为ABD ∆的两个外角,70CBD ∠=︒,149ADE ∠=︒,则A ∠的度数是( )A .28︒B .31︒C .39︒D .42︒【解答】解:180ABD CBD ∠+∠=︒,70CBD ∠=︒, 110ABD ∴∠=︒,ADE ABD A ∠=∠+∠,149ADE ∠=︒,39A ∴∠=︒.故选:C.4.(3分)如图,这是一个由几个完全相同的小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,则它的左视图是()A.B.C.D.【解答】解:从左面看可得到从左到右分别是1,3个正方形.故选:A.5.(3分)一组数据2-,0,2,5,a的极差是8,那么a的值是()A.6B.3-D.7-C.6或3【解答】解:2-,0,2,5,a的极差是8,当a最大,a∴--=,(2)8a∴=,6当a最小58-=,a∴=-,a3故选:C.6.(3分)下列图形既是轴对称图形,又是中心对称图象的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故A错误;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D 、既是轴对称图形,又是中心对称图形,故D 正确.故选:D .7.(3分)如图,在Rt ABC ∆中,90BAC ∠=︒,D 、E 分别为BC 、AB 的中点,且6AC cm =,8AB cm =.则ADE ∆的周长为( )A .10cmB .12cmC .14cmD .16cm【解答】解:由题意D 、E 分别为BC 、AB 的中点,且6AC cm =,8AB cm =.3DE ∴=,4AE =,12AD BC =,10BC =, 5AD ∴=,ADE ∴∆的周长为12cm .故选:B .8.(3分)如图,用半径为10,圆心角为144︒的扇形纸片围成一个圆锥(接缝处忽略不计),则该圆锥的底面半径是( )A .3B .4C .5D .6【解答】解:弧长:144108180ππ⨯=, 圆锥底面圆的半径:842r ππ==. 故选:B .二、填空题(每小题3分,共24分)9.(3分)今年6月6日,国家农业部和辽宁省政府联合举行了辽东湾海洋生物增殖放流活动仪式,当日辽东湾沿岸5市,共放流海蜇、中国对虾和牙鲆鱼幼体约34 000 000头(尾).这一数据用科学记数法表示为 73.410⨯ 头(尾). 【解答】解:34 000 000头共有8位数,817n ∴=-=,34∴ 000 000头(尾)用科学记数法表示为73.410⨯头.故答案为:73.410⨯.10.(3分)分解因式:3222x x y xy -+= 2()x x y - . 【解答】解:3222x x y xy -+,22(2)x x xy y =-+, 2()x x y =-.故答案为:2()x x y -. 11.(3分)分式方程32122x x x =---的解为x = 2- . 【解答】解:去分母得:3(2)2x x =--, 去括号得:322x x =--, 移项得:322x x -=--, 合并同类项得:24x =-, 把x 的系数化为1:2x =-, 检验:当2x =-时,20x -≠,∴原分式方程的解为:2x =-.故答案为:2-.12.(3分)二次函数241y x x =--的最小值是 5- . 【解答】解:22241445(2)5y x x x x x =--=-+-=--, 可见二次函数241y x x =--的最小值是5-. 故答案为5-.13.(3分)某次射击训练中,一小组的成绩如表所示:已知该小组的平均成绩为7.5环,那么成绩为6环的人数为 3 . 【解答】解:假设成绩为6环的人数为x 人,由题意得:(6728293)(223)7.5x x+⨯+⨯+⨯÷+++=.∴解得:3x=.故答案为:3.14.(3分)如图,把平面直角坐标系中ABC∆以点C为旋转中心,顺时针旋转90︒,则点A的对应点A'的坐标为(3,4).【解答】解:由图中可得点A'的坐标为(3,4).故答案为(3,4).15.(3分)小华准备给老师打电话时,却忘了老师手机号码的最后一位(手机号码11位),那么她一次就能拔通的概率为110.【解答】解:最后一位有0,1,2,3,4,5,6,7,8,9十种可能,所以她一次能拔通外婆家电话的概率是110.故答案为110.16.(3分)如图,在反比例函数2(0)y x x=>的图象上,有点1P ,2P ,⋯,n P ,它们的横坐标分别是1,2,⋯,n ,过这些点分别向x 轴作垂线,垂足分别为1A ,2A ,⋯,n A .连接1PO ,21P A ,⋯,1n n P A -.图中构成了n 个小三角形,其面积自左向右分别记为1S ,2S ,⋯,n S ,则n S =1n.【解答】解:根据反比例函数2y x=的几何意义, 111OP A S=.连接2OP , 由于112OA A A =, 则2221111222OP A S S==⨯=, 以此类推,1Sn n=. 故答案为1n.三、(每小题8分,共16分)17.(80113|(2009)2()4-+-+÷-.【解答】解:原式131(4)2=+⨯-,42=-,2=故答案为:2+18.(8分)“百年大计,教育为本”.某地区近几年教育投入逐年提高,2007年教育投入为1600万元,2009年政府预算教育投入为2500万元,若每年教育投入比上二年增长的百分率相同,求这个百分率?【解答】解:设这个百分率为x,2+=x1600(1)2500x=-(舍去)x=或225%25%这个百分率为25%四、(每小题10分,共20分)19.(10分)如图,已知AC是O的弦,AB为O的直径,点D在AB的延长线上,30∠=∠=︒A D(1)求证:CD是O的切线;(2)当5BD=时,求O的半径长.【解答】(1)证明:连接OC,∠=︒,30ACOD A∴∠=∠=⨯︒=︒,223060∠=︒,D30OCD∴∠=︒-︒-︒=︒,180603090∴⊥,OC CDOC是〇O的半径.CD∴是O的切线;(2)解:由(1)得:90∠=︒,OCD在直角OCD∆中,∠=︒,30D∴=,OD OC2=,OC OB∴=,2OD OB5OB BD ∴==, O ∴的半径是5.20.(10分)学习了统计知识后,某中学小光同学,为了解本校九年级学生晚间睡眠时间,进行了一次抽样调查,设睡眠时间为t 小时,所得数据按以下四个时间段进行统计:A .6t <B .67t <…C .78t <…D .8t …图1,图2是根据调查结果绘制的两幅不完整的统计图.请根据图中提供的信息,解答以下问题: (1)这次调查中,共抽查了 80 名学生;(2)在扇形统计图中,“D 时间段”部分所对应的圆心角是 度; (3)补全两幅统计图;(4)本校九年级共有800名学生.若睡眠时间不足8小时均为睡眠不足,估计本校九年级学生睡眠不足的人数? 【解答】解:(1)45%80÷=人; (2)3605%18⨯=︒; (3)如图(4)800(35%40%20%)760⨯++=名.答:估计本校九年级学生睡眠不足的人数为760名. 五、(每小题10分,共20分)21.(10分)歼10战斗机是我国自主研制的第三代战斗机.在某次军事演习中,某飞行员驾驶一架歼10战斗机,沿水平方向向地面目标A 的正上方匀速飞行.如图所示,在空中B 点测得目标A 的俯角为15︒.经过5.5秒到达C 点,在C 点测得目标A 的俯角为45︒,已知歼10战斗机的飞行速度为600米/秒.求飞机距地面飞行的高度?(结果精确到0.1米)【解答】解:过点A 作AD BC ⊥,交BC 延长线于点D . 在直角ACD ∆中, 45DCA ∠=︒, 45CAD DCA ∴∠=∠=︒, AD CD ∴=,600 5.53300BC =⨯=,设AD x =米,在直角ABD ∆中,tan ADB BD=, (3300)tan15x x ∴+︒=,解得:1220.5x ≈米,答:飞机据地面的飞行高度约为1220.5米.22.(10分)一个不透明的袋子装有4个小球,分别标有数字1,2,3,7.这些小球除所标数字不同外,完全相同.甲乙两人每次同时从袋中各随机摸出一个小球,记下球上的数字,并计算它们的和.(1)请用画树状图或列表的方法,求两数和是8的概率;(2)甲乙两入想用这种方式做游戏,他们规定:当两数之和是2的倍数时,甲得3分,当两数之和是3的倍数时,乙得2分,当两数之和是其它数值时,两人均不得分. 你认为这个游戏公平吗?请说明理由.若你认为不公平,请修改得分规则,使游戏公平. 【解答】解:(1)画树状图得: 列表得:∴一共有12种等可能的结果,两数和是8的有2种情况, ∴两数和是8的概率为:21126=;(2)两数之和是2的倍数的有6种情况,两数之和是3的倍数的有4种情况,P ∴(两数之和是2的倍数)61122==,P (两数之和是3的倍数)41123==, 1132⨯≠⨯,∴游戏不公平.应该为:当两数之和是2的倍数时,甲得2分,当两数之和是3的倍数时,乙得3分,当两数之和是其它数值时,两人均不得分.六、(每小题10分.共20分)23.(10分)如图,ABC ∆为正三角形,D 为边BA 延长线上一点,连接CD ,以CD 为一边作正三角形CDE,连接AE,判断AE与BC的位置关系,并说明理由.【解答】解://AE BC.理由如下:ABC∆与CDE∆为正三角形,BC AC∴=,CD CE=,60ACB DCE∠=∠=︒,ACB ACD DCE ACD∴∠+∠=∠+∠,即BCD ACE∠=∠,BCD ACE∴∆≅∆,B EAC∴∠=∠,B ACB∠=∠,EAC ACB∴∠=∠,//AE BC∴.24.(10分)某运动鞋专卖店,欲购进甲、乙两型号的运动鞋共100双,若购进5双甲型号运动鞋和3双乙型号运动鞋共需1350元,若购进4双甲型号运动鞋和2双乙型号运动鞋共需1020元.(1)求甲、乙两型号运动鞋的进价每双各是多少元?(2)甲型号运动鞋每双售价为260元,乙型号运动鞋每双售价为220元,要满足进鞋资金不超过17500元,当100双运动鞋全部售出后,利润不低于7800元,鞋店经理有几种进货方案?【解答】解:(1)设每双甲型号运动鞋的进价为a元,每双乙型号运动鞋的进价为b元,由题意得531350 421020a ba b+=⎧⎨+=⎩,解得180150ab=⎧⎨=⎩,答:每双甲型号运动鞋的进价为180元,双每双乙型号运动鞋的进价为150元;(2)设鞋店购进甲型号运动鞋x 双,则购进乙型号运动鞋(100)x -, 根据题意得180150(100)17500(260180)(220150)(100)7800x x x x +-⎧⎨-+--⎩……,解得180833x 剟,x 为整数,x ∴取80、81、82、83.答:鞋店经理有4种进货方案. 七、(本题12分)25.(12分)如图1,在直角梯形ABCD 中,//CD AB ,CB AB ⊥,6BC cm =,6DC cm =,10AD cm =(1)求AB 的长.(2)操作:如图2,过点D 作DE AB ⊥于E .将直角梯形ABCD 沿DE 剪开,得到四边形DEBC 和ADE ∆.四边形DEBC 不动,将ADE ∆沿射线AD 的方向,以每秒1cm 的速度平移,当点A 平移到点D 时,停止平移.探究:设在平移过程中,ADE ∆与四边形DEBC 重叠部分的面积为2ycm ,平移时间为x 秒,求y 与x 的函数关系式,并直接写出自变量x 的取值范围?【解答】解:(1)如图,过点D 作DE AB ⊥于E , CB AB ⊥,//CD AB , 90C B DEB ∴∠=∠=∠=︒,∴四边形DEBC 为矩形,6DE CD ∴==,6DE BC ==,∴在Rt ADE ∆中,8AE =,8614AB ∴=+=;(2)如图,当010x 剟时, 由平移得,DD AA x '='=. //DF A E '',D DF DA M ∴∠'=∠',D FDE ∠'=∠'∴△D DF '∽△D A E ''', ∴D D D F DFD A DE A E ''==''''''48105x xDF ∴=⨯=36105x xD F '=⨯=365x E F ∴'=-, 34(6)55x xy ∴=-, 21224(07.5)255y x x x ∴=-+剟; 当ADE ∆平移到DE 与BC 在同一条直线之后, 3.636(7.510)y x x =-+剟.八、(本题14分)26.(14分)如图,矩形OABC 的两边OA 、OC 分别在x 轴和y 轴上,(3,0)A -,过点C 的直线24y x =-+与x 轴交于点D ,二次函数212y x bx c =-++的图象经过B 、C 两点.(1)求B 、C 两点的坐标; (2)求二次函数解析式;(3)若点P 是CD 的中点,求证:AP CD ⊥;(4)在二次函数图象上是否存在点M ,使以A 、P 、C 、M 为顶点的四边形为矩形?若存在,求出点M 的坐标;若不存在,请说明理由.【解答】(1)解:24y x =-+,当0x =时,4y =,(0,4)C ∴ 在矩形OABC 中,3BC OA ==,4AB OC ==. (3,4)B ∴-.(2)解:二次函数212y x bx c =-++的图象经过B 、C 两点,∴4149(3)2c b c =⎧⎪⎨=-⨯+⨯-+⎪⎩ ∴324b c ⎧=-⎪⎨⎪=⎩ 213422y x x ∴=--+.(3)证明:连接AC ,在Rt AOC ∆中,5AC == 24y x =-+,当0y =时,2x =. (2,0)D ∴325AD OA OD =+=+=. AD AC ∴=.P 是CD 的中点,AP CD ∴⊥.(4)解:存在,理由:假设四边形APCM 为矩形,过点M 作MN x ⊥轴于N 点, 在Rt COD ∆中,CD =12CP AM CD ∴==//MA CD ,MAN CDO ∴∠=∠. 90MNA COD ∠=∠=︒,第21页(共21页)MNA COD ∴∆∆∽. ∴MN NA MA CO OD CD ==42MN ∴==.21NA ==4ON OA AN =+= (4,2)M ∴-把4x =-代入213422y x x =--+中, 2y =∴点M 在抛物线上 ∴存在这样的点M ,使四边形APCM 为矩形.。
本溪市2008~2009学年(下)初中毕业练习(一)
本溪市2008~2009学年(下)初中毕业练习(一)九年级数学试卷参考答案一、选择题(每题3分,共8题,满分24分)1.C ;2.B ;3.A ;4.B ;5.D ;6.D ;7.C ;8.D . 二、填空题(每题3分,共8题,满分24分) 9.x ≥1且x ≠2; 10.x=3±11; 11.(2,3); 12.k >2;13.30元; 14.1500;15.⎩⎨⎧=+=+66y 3x 227y x ; 16.719ab ,(-1)n+1n2n 3ab-三、(每题8分,共2题,满分16分) 17.(1)-xy----------------------------------------------------------------------------------------------------- 3′52 ------------------------------------------------------------------------------------------------------ 4′(2)x 2+2x+1-4=x 2-1 ------------------------------------------------------------------------------------ 1′x=1 ---------------------------------------------------------------------------------------------------- 2′ 经检验,x=1是原方程的根 -------------------------------------------------------------------- 3′ ∴原方程无解 -------------------------------------------------------------------------------------- 4′18.△ACD ≌△CBE ----------------------------------------------------------------------------------------- 2′理由如下:∵△ABC 是等腰直角三角形∴AC=CB ,∠ACD+∠BCE=90° ------------------------------------------------------------------ 4′ ∵AD ⊥CE ,BE ⊥CE ∴∠ACD+∠CAD=90° ∠ADC=∠CEB=90° -------------------------------------------------------------------------------- 6′ ∴∠BCE=∠CAD∴△ACD ≌△CBE -------------------------------------------------------------------------------------- 8′ 四、(每题8分,共2题,满分16分) 19.(1)图 ------------------------------------------------------------------------------------------------------ 1′ (2)C :50% ---------------------------------------------------------------------------------------------- 2′ (3)B :108°,C :180° ---------------------------------------------------------------------------- 4′ (4)C 级中 ------------------------------------------------------------------------------------------------ 6′ (5)A :3000人,B :9000人,共12000人 ---------------------------------------------------- 8′ 20.小丽选择B 游戏获胜的可能性大 ------------------------------------------------------------------- 1′对游戏A :画树状图开始2343 (2,2)(2,3)(2,4) 2 34 (3,2)(3,3)(3,4)2 3 4(4,2)(4,3)(4,4)或用列表法′所有可能出现的结果共有9种,其中两数字之和为偶数的有5种,所以游戏A 小华获胜的概率为95,而小丽获胜的概率为94 ------------------------------------------------------------- 3′即游戏A 对小华有利,获胜的可能性大于小丽. --------------------------------------------- 4′ 对游戏B : 画树状图------------------------------- 5′ 或用列表法所有可能出现的结果共有12种,其中小华抽出的牌面上的数字比小丽大的有5种;根据游戏B 的规则,当小丽抽出的牌面上的数字与小华抽到的数字相同或比小华抽到的数字小时,则小丽获胜,所以游戏B 小华获胜的概率为125,而小丽获胜的概率为127 -- 7′即游戏B 对小丽有利,获胜的可能性大于小华. --------------------------------------------- 8′ ∴小丽可选择B 游戏 五、(每题10分,共2题,满分20分)21.(1)连OB 、OA ,证OCAB 为菱形 -------------------------------- 2′得到∠BOC=120° ------------------------------------------------- 3′ 得BC=32---------------------------------------------------------- 4′(2)S 菱形=21³2³32=32-------------------------------------- 5′S 扇形OBAC=36021202⋅π=π34 ------------------------------------------------------------------ 7′∴S 阴影=3234-π ------------------------------------------------------------------------------ 8′22.(1)y=2x ,y=x2 ----------------------------------------------------------------------------------------- 2′5 6 8 (8,5)(8,6)(8,8) 5 6 8 8 (5,6)(5,8)(5,8) 8 (6,5)(6,8)(6,8) 5 6 8 (8,5)(8,6)(8,8) 8 开始 小华小丽 结果(2)设P (a ,2a ),则M (0,2a ),E (21a ,2a ) ------------------------------------------- 3′∵E 在y=x2上 ∴21a ²2a=2 ∴a=2(负舍) ---------------------------------- 4′∴M (0,22) ---------------------------------------------------------------------------------- 5′(3)由(2)得P (2,22) -------------------------------------------------------------------- 6′∵PN ⊥x 轴 ∴x F =x P =2 ------------------------------------------------------------------ 7′ ∴y P =22=2∴F (2,2) NF=2----------------------------------------- 8′∵PN=y P =22∴NF=21PN ∴F 为PN 中点 --------------------------------------- 9′∴F (2,2) -------------------------------------------------------------------------------- 10′ 六、(每题12分,共2题,满分24分) 23.(1)根据题意得y=10x+20(2000-x) ∴y= -10x+40000 ------------------------------------- 3′⎩⎨⎧≤-+≤-+850)x 2000(2.0x 5.0900)x 2000(6.0x 3.0 ----------------------------------------------------------------------- 5′解得1000≤x ≤1500 ------------------------------------------------------------------------------ 6′ ∴自变量x 的取值范围是1000≤x ≤1500且x 是整数 --------------------------------- 7′ (2)由(1)y= -10x+40000∵k= -10<0 ∴y 随x 的增大而减小 ----------------------------------------------------- 9′ 又∵1000≤x ≤1500,且x 是整数∴当x=1000时,y 有最大值,最大值是-10³1000+40000=30000(元) ------- 11′ ∴生产甲种吉祥物1000个,乙种吉祥物1000个,所获利润最大,最大利润为30000元. --------------------------------------------------------------------------------- 12′24.(1)如图--------------------------------- 4′(2)解法一:分别过S 、B ′、C 作地面的垂线,垂足分别为H 、M 、N可得CN=B ′M=3-------------------------------------------------------------------- 6′AN=AM=1 ------------------------------------------------------------------------------ 8′ 设BH=y ,SH=x证△CND ∽△SHD △B ′MC ′∽△SHC ′ -------------------------------------- 9′∴⎪⎪⎩⎪⎪⎨⎧-++=+++=16y 263x 21y 223x ------------------------------------------------------------------ 10′∴⎪⎩⎪⎨⎧==2y 32x ---------------------------------------------------------------------------- 11′∴S 到地面高度为32------------------------------------------------------------- 12′解法二:过S 作SH ⊥AD 于H∵AB=AC ,且∠∴∠ABC=∠ACB=30∴∠AKC ′=90° ----------------------------------------------------------------------- 6′ ∴B ′K=C ′K=2²cos30°=3∴B′C′=32---------------------------------------------------------------------------- 7′又∠B ′AC=180°-∠BAB ′-∠C ′AB ′=60° 且AB ′=AC=2∴△A ′B ′C 为等边三角形,且B ′C=2,B ′C ∥AD ---------------------------- 8′ ∴△SB ′C ∽△SC ′D ------------------------------------------------------------------- 9′ 又C ′D=AD -AC ′=4 ∴2142C S B S =='' ------------------------------------------------------------------------ 10′∴SC ′=2²B ′C ′=34 ---------------------------------------------------------------- 11′∴SH=SC ′²sin30°=32--------------------------------------------------------- 12′七、(满分12分)25.(1)BQ ∶CQ=3∶1,证明略 ------------------------------------------------------------------------- 4′ (2)BQ ∶CQ=8∶1 ------------------------------------------------------------------------------------- 6′ (3)BQ ∶CQ=[(n -1)2-1]∶1,证明略 ------------------------------------------------------------ 10′ (4)成立 -------------------------------------------------------------------------------------------------- 12′ 八、(满分14分)26.(1)∵矩形ABCD ∴∠O=∠B=∠OAB=90° ----------------------------------------------- 1′由折叠得:BC=EC=10,OC=8 ∴OE=6 -------------------------------------------------- 3′ ∴E (6,0) ---------------------------------------------------------------------------------------- 4′ (2)设ED=BD=xcm ,AD=(8-x)cm由(1)得AE=10-6=4 ∴42+(8-x)2=x 2 ∴x=5 ∴ED=5,AD=3,AE=4∴S △AED =6 ------------------------------------------------- 6′ ∴当0<t <4时,如图① 可证△A 1QE ∽△ADE△EPE 1∽△DAE图①当4<t <425时,如图②△D 2MN ∽△EA 2N ∽△DAE ------------------------- 8′ ①当0≤t <4时,AA 1=EE 1=tcm ,A 1E=(4-t)cm ∴S EQA 1∆=S △AED ²24t 4⎪⎭⎫⎝⎛-=6²()16t 42-S1EPE∆=S △AED ²25t ⎪⎭⎫⎝⎛=25t62∴S=22t256)t t (836---=200123-t 2+3t=200123-241100t ⎪⎭⎫ ⎝⎛-+41150 ---------------------- 10′②当4≤t <425时,ADE A AEN A 22=∴A 2N=3)4t (4-∴D 2N=334-(t -4)=34-t+325∴S2MND∆=6²25325t 43⎪⎪⎪⎪⎭⎫ ⎝⎛+-=2)25t 4(752- ------------------------------------------------ 12′(3)当0<t <4时,t=41100时,S 最大=41150当4≤t <425时,t=4时,S 最大=2554 --------------------------------------------------------- 13′∵41150>2554 ∴t=41100时,S 最大=41150 ----------------------------------------------------- 14′图②。
辽宁省本溪市中考数学试卷及答案(Word解析版)
辽宁省本溪市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(•本溪)的绝对值是()A.3B.﹣3 C.D.考点:绝对值分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣|=.故﹣的绝对值是.故选:C.点评:此题考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(•本溪)如图放置的圆柱体的左视图为()A.B.C.D.考点:简单几何体的三视图分析:左视图是从左边看所得到的视图,根据左视图所看的位置找出答案即可.解答:解:圆柱的左视图是矩形.故选:A.点评:此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.3.(3分)(•本溪)下列运算正确的是()A.a3•a2=a6B.2a(3a﹣1)=6a3﹣1C.(3a2)2=6a4D.2a+3a=5a 考单项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方点:专题:计算题.分析:A、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;B、原式利用单项式乘多项式法则计算得到结果,即可作出判断;C、原式利用积的乘方与幂的乘方运算法则计算得到结果,即可作出判断;D、原式合并同类项得到结果,即可作出判断.解答:解:A、a3•a2=a5,本选项错误;B、2a(3a﹣1)=6a2﹣2a,本选项错误;C、(3a2)2=9a4,本选项错误;D、2a+3a=5a,本选项正确,故选D点评:此题考查了单项式乘多项式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4.(3分)(•本溪)如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A.15°B.30°C.45°D.60°考点:平行线的性质.分析:根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补解答.解答:解:如图,∠3=∠1=60°(对顶角相等),∵AB∥CD,EC⊥EF,∴∠3+90°+∠2=180°,即60°+90°+∠2=180°,解得∠2=30°.故选B.点评:本题考查了两直线平行,同旁内角互补的性质,对顶角相等的性质,以及垂直的定义,是基础题.5.(3分)(•本溪)下列说法中,正确的是()A.对载人航天器“神舟十号”的零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.第一枚硬币,正面朝上的概率为D.若甲组数据的方差=0.1,乙组数据的方差=0.01,则甲组数据比乙组数据稳定考点:方差;全面调查与抽样调查;概率的意义;概率公式分析:根据普查和抽样调查的意义可判断出A的正误;根据概率的意义可判断出B、C的正误;根据方差的意义,方差大则数据不稳定可判断出D的正误.解答:解:A、对载人航天器“神舟十号”的零部件的检查,因为意义重大,适合采用全面调查的方式,故此选项错误;B、某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的可能降水,故此选项错误;C、一枚硬币,正面朝上的概率为,故此选项正确;D、若甲组数据的方差=0.1,乙组数据的方差=0.01,则乙组数据比甲组数据稳定,故此选项错误;故选:C.点评:此题主要考查了方差、概率、全面调查和抽样调查,关键是掌握概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现;方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.6.(3分)(•本溪)甲、乙两盒中各放入分别写有数字1,2,3的三张卡片,每张卡片除数字外其他完全相同.从甲盒中随机抽出一张卡片,再从乙盒中随机摸出一张卡片,摸出的两张卡片上的数字之和是3的概率是()A.B.C.D.考点:列表法与树状图法分析:列表得出所有等可能的情况数,找出数字之和为3的情况数,求出所求的概率即可.解答:解:列表如下:1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)所有等可能的情况数有9种,其中数字之和为3的有2种,则P数字之和为3=.故选B.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)(•本溪)如图,在菱形ABCD中,∠BAD=2∠B,E,F分别为BC,CD的中点,连接AE、AC、AF,则图中与△ABE全等的三角形(△ABE除外)有()A.1个B.2个C.3个D.4个考点:菱形的性质;全等三角形的判定分析:先由菱形的性质得出AD∥BC,由平行线的性质得到∠BAD+∠B=180°,又∠BAD=2∠B,求出∠B=60°,则∠D=∠B=60°,△ABC与△ACD是全等的等边三角形,再根据E,F分别为BC,CD的中点,即可求出与△ABE全等的三角形(△ABE除外)有△ACE,△ACF,△ADF.解答:解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,∠D=∠B,AD∥BC,∴∠BAD+∠B=180°,∵∠BAD=2∠B,∴∠B=60°,∴∠D=∠B=60°,∴△ABC与△ACD是全等的等边三角形.∵E,F分别为BC,CD的中点,∴BE=CE=CF=DF=AB.在△ABE与△ACE中,,∴△ABE≌△ACE(SAS),同理,△ACF≌△ADF≌△ABE,∴图中与△ABE全等的三角形(△ABE除外)有3个.故选C.点评:本题考查了菱形的性质,全等三角形的判定,难度适中,根据菱形的性质求出∠D=∠B=60°是解题的关键.8.(3分)(•本溪)某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.考点:由实际问题抽象出分式方程专题:工程问题.分析:关键描述语为:“共用了18天完成任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18.解答:解:采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天.方程可表示为:,故选B.点评:列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意采用新技术前后工作量和工作效率的变化.9.(3分)(•本溪)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为()A.2B.C.2D.考点:垂径定理;含30度角的直角三角形;勾股定理分析:先过O作OC⊥AP,连结OB,根据OP=4,∠APO=30°,求出OC的值,在Rt△BCO中,根据勾股定理求出BC的值,即可求出AB的值.解答:解:过O作OC⊥AP于点C,连结OB,∵OP=4,∠APO=30°,∴OC=sin30°×4=2,∵OB=3,∴BC===,∴AB=2;故选A.点评:此题考查了垂经定理,用到的知识点是垂经定理、含30度角的直角三角形、勾股定理,解题的关键是作出辅助线,构造直角三角形.10.(3分)(•本溪)如图,在矩形OABC中,AB=2BC,点A在y轴的正半轴上,点C 在x轴的正半轴上,连接OB,反比例函数y=(k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,则k的值是()A.1B.2C.3D.4考点:待定系数法求反比例函数解析式分析:首先根据E点横坐标得出D点横坐标,再利用AB=2BC,得出D点纵坐标,进而得出k的值.解答:解:∵在矩形OABC中,AB=2BC,反比例函数y=(k≠0,x>0)的图象经过OB 的中点D,与BC边交于点E,点E的横坐标是4,∴D点横坐标为:2,AB=OC=4,BC=AB=2,∴D点纵坐标为:1,∴k=xy=1×2=2.故选:B.点评:此题主要考查了点的坐标性质以及k与点的坐标性质,得出D点坐标是解题关键.二、填空题(共8小题,每小题3分,满分24分)11.(3分)(•本溪)在函数y=中,自变量x的取值范围是x≥.考点:函数自变量的取值范围;二次根式有意义的条件分析:根据二次根式的性质,被开方数大于等于0可知:2x﹣1≥0,解得x的范围.解答:解:根据题意得:2x﹣1≥0,解得,x≥.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.(3分)(•本溪)一种花粉颗粒的直径约为0.0000065米,将0.0000065用科学记数法表示为 6.5×10﹣6.考点:科学记数法—表示较小的数专题:计算题.分析:根据科学记数法和负整数指数的意义求解.解答:解:0.0000065=6.6×10﹣6.故答案为6.5×10﹣6.点评:本题考查了科学记数法﹣表示较小的数:用a×10n(1≤a<10,n为负整数)表示较小的数.13.(3分)(•本溪)在平面直角坐标系中,点P(5,﹣3)关于原点对称的点的坐标是(﹣5,3).考点:关于原点对称的点的坐标分析:根据关于坐标原点对称的点的横坐标与纵坐标都互为相反数解答.解答:解:点P(5,﹣3)关于原点对称的点的坐标是(﹣5,3).故答案为:(﹣5,3).点评:本题考查了关于原点对称的点的坐标,熟记关于坐标原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.14.(3分)(•本溪)在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有6个.考点:利用频率估计概率分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:设袋中黄色球可能有x个.根据题意,任意摸出1个,摸到黄色乒乓球的概率是:15%=,解得:x=6.故答案为:6.点评:此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.15.(3分)(•本溪)在平面直角坐标系中,把抛物线y=﹣x2+1向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是y=﹣(x+1)2+4.考点:二次函数图象与几何变换分析:先求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后写出抛物线解析式即可.解答:解:∵抛物线y=﹣x2+1的顶点坐标为(0,1),∴向上平移3个单位,再向左平移1个单位后的抛物线的顶点坐标为(﹣1,4),∴所得抛物线的解析式为y=﹣(x+1)2+4.故答案为y=﹣(x+1)2+4.点评:本题主要考查的了二次函数图象与几何变换,利用顶点坐标的平移确定函数图象的平移可以使求解更简便,平移规律“左加右减,上加下减”.16.(3分)(•本溪)已知圆锥底面圆的半径为6cm,它的侧面积为60πcm2,则这个圆锥的高是8cm.考点:圆锥的计算专题:计算题.分析:设圆锥的母线长为l,由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,则l•2π•6=60π,然后利用勾股定理计算圆锥的高.解答:解:设圆锥的母线长为l,根据题意得l•2π•6=60π,解得l=10,所以圆锥的高==8(cm).故答案为8.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了勾股定理.17.(3分)(•本溪)如图,在矩形ABCD中,AB=10,AD=4,点P是边AB上一点,若△APD与△BPC相似,则满足条件的点P有3个.考点:相似三角形的判定专题:分类讨论.分析:设AP为x,表示出PB=10﹣x,然后分AD和PB是对应边,AD和BC是对应边两种情况,利用相似三角形对应边成比例列式求解即可.解答:解:设AP为x,∵AB=10,∴PB=10﹣x,①AD和PB是对应边时,∵△APD与△BPC相似,∴=,即=,整理得,x2﹣10x+16=0,解得x1=2,x2=8,②AD和BC是对应边时,∵△APD与△BPC相似,∴=,即=,解得x=5,所以,当AP=2、5、8时,△APD与△BPC相似,满足条件的点P有3个.故答案为:3.点评:本题考查了相似三角形的判定,主要利用了相似三角形对应边成比例,难点在于要分情况讨论.18.(3分)(•本溪)如图,点B1是面积为1的等边△OBA的两条中线的交点,以OB1为一边,构造等边△OB1A1(点O,B1,A1按逆时针方向排列),称为第一次构造;点B2是△OBA的两条中线的交点,再以OB2为一边,构造等边△OB2A2(点O,B2,A2按逆时针方向排列),称为第二次构造;以此类推,当第n次构造出的等边△OB n A n的边OA n 与等边△OBA的边OB第一次重合时,构造停止.则构造出的最后一个三角形的面积是.考点:等边三角形的性质.专题:规律型.分析:由于点B1是△OBA两条中线的交点,则点B1是△OBA的重心,而△OBA是等边三角形,所以点B1也是△OBA的内心,∠BOB1=30°,∠A1OB=90°,由于每构造一次三角形,OB i 边与OB边的夹角增加30°,所以还需要(360﹣90)÷30=9,即一共1+9=10次构造后等边△OB n A n的边OA n与等边△OBA的边OB第一次重合;又因为任意两个等边三角形都相似,根据相似三角形的面积比等于相似比的平方,由△OB1A1与△OBA的面积比为,求得构造出的最后一个三角形的面积.解答:解:∵点B1是面积为1的等边△OBA的两条中线的交点,∴点B1是△OBA的重心,也是内心,∴∠BOB1=30°,∵△OB1A1是等边三角形,∴∠A1OB=60°+30°=90°,∵每构造一次三角形,OB i 边与OB边的夹角增加30°,∴还需要(360﹣90)÷30=9,即一共1+9=10次构造后等边△OB n A n的边OA n与等边△OBA的边OB第一次重合,∴构造出的最后一个三角形为等边△OB10A10.如图,过点B1作B1M⊥OB于点M,∵cos∠B1OM=cos30°==,∴===,即=,∴=()2=,即S△OB1A1=S△OBA=,同理,可得=()2=,即S△OB2A2=S△OB1A1=()2=,…,∴S△OB10A10=S△OB9A9=()10=,即构造出的最后一个三角形的面积是.故答案为.点评:本题考查了等边三角形的性质,三角函数的定义,相似三角形的判定与性质等知识,有一定难度.根据条件判断构造出的最后一个三角形为等边△OB10A10及利用相似三角形的面积比等于相似比的平方,得出△OB1A1与△OBA的面积比为,进而总结出规律是解题的关键.三、解答题(共2小题,共22分)19.(10分)(•本溪)(1)计算:+(x﹣2)0﹣﹣2cos45°(2)先化简,再求值:(+)+(1+),其中m=﹣3.考点:分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值专题:计算题.分析:(1)原式第一项利用立方根的定义化简,第二先利用零指数幂法则计算,第三项利用负指数幂法则计算,最后一项利用特殊角的三角函数值化简,计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,将m的值代入计算即可求出值.解答:解:(1)原式=3+1﹣5+=﹣1;(2)原式=[+]÷=(+)÷=•=,当m=﹣3时,原式==.点评:此题考查了分式的化简求值,以及实数的运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.20.(12分)(•本溪)某校对九年级全体学生进行了一次学业水平测试,成绩评定分为A,B,C,D四个等级(A,B,C,D分别代表优秀、良好、合格、不合格)该校从九年级学生中随机抽取了一部分学生的成绩,绘制成以下不完整的统计图.请你根据统计图提供的信息解答下列问题;(1)本次调查中,一共抽取了50名学生的成绩;(2)将上面的条形统计图补充完整,写出扇形统计图中等级C的百分比30%.(3)若等级D的5名学生的成绩(单位:分)分别是55、48、57、51、55.则这5个数据的中位数是55分,众数是55分.(4)如果该校九年级共有500名学生,试估计在这次测试中成绩达到优秀的人数.考点:条形统计图;用样本估计总体;扇形统计图;中位数;众数分析:(1)根据等级B中男女人数之和除以所占的百分比即可得到调查的总学生数;(2)根据总学生数乘以A占的百分比求出等级A中男女的学生总数,进而求出等级A男生的人数,求出等级D占的百分比,确定出等级C占的百分比,乘以总人数求出等级C的男女之和人数,进而求出等级C的女生人数,补全条形统计图即可;(3)将等级D的五人成绩按照从小到大的顺序排列,找出最中间的数字即为中位数,找出出现次数最多的数字为众数;(4)用500乘以等级A所占的百分比,即可得到结果.解答:解:(1)根据题意得:(12+8)÷40%=50(人),则本次调查了50名学生的成绩;(2)等级A的学生数为50×20%=10(人),即等级A男生为4人;∵等级D占的百分比为×100%=10%;∴等级C占的百分比为1﹣(40%+20%+10%)=30%,∴等级C的学生数为50×30%=15(人),即女生为7人,补全条形统计图,如图所示:(3)根据题意得:500×20%=100(人),则在这次测试中成绩达到优秀的人数有100人.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.四、解答题(共6小题,满分74分)21.(12分)(•本溪)如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm(1)请判断DE与⊙O的位置关系,并说明理由;(2)求图中阴影部分的面积(结果用π表示).考点:切线的判定;扇形面积的计算专题:计算题.分析:(1)连结OD,根据圆周角定理得∠ABD=∠ACD=45°,∠ADB=90°,可判断△ADB为等腰直角三角形,所以OD⊥AB,而DE∥AB,则有OD⊥DE,然后根据切线的判定定理得到DE为⊙O的切线;(2)先由BE∥AD,DE∥AB得到四边形ABED为平行四边形,则DE=AB=8cm,然后根据梯形的面积公式和扇形的面积公式利用S阴影部分=S梯形BODE﹣S扇形OBD进行计算即可.解答:解:(1)DE与⊙O相切.理由如下:连结OD,则∠ABD=∠ACD=45°,∵AB是直径,∴∠ADB=90°,∴△ADB为等腰直角三角形,而点O为AB的中点,∴OD⊥AB,∵DE∥AB,∴OD⊥DE,∴DE为⊙O的切线;(2)∵BE∥AD,DE∥AB,∴四边形ABED为平行四边形,∴DE=AB=8cm,∴S阴影部分=S梯形BODE﹣S扇形OBD=(4+8)×4﹣=(24﹣4π)cm2.点评:本题考查了圆的切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查了圆周角定理和扇形的面积公式.22.(12分)(•本溪)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过600元,求这所中学最多可以购买多少个篮球?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,根据购买2个足球和3个篮球共需340元,4个排球和5个篮球共需600元,可得出方程组,解出即可;(2)设该中学购买篮球m个,根据购买三种球的总费用不超过600元,可得出不等式,解出即可.解答:解:(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y 元,由题意得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元;(2)设该中学购买篮球m个,由题意得:80m+50(100﹣m)≤600,解得:m≤33,∵m是整数,∴m最大可取33.答:这所中学最多可以购买篮球33个.点评:本题考查了一元一次不等式及二元一次方程组的知识,解答本题的关键是仔细审题,得到等量关系及不等关系,难度一般.23.(12分)(•本溪)校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载.某中学九年级数学活动小组进行了测试汽车速度的实验,如图,先在笔直的公路l 旁选取一点A,在公路l上确定点B、C,使得AC⊥l,∠BAC=60℃,再在AC上确定点D,使得∠BDC=75°,测得AD=40米,已知本路段对校车限速是50千米/时,若测得某校车从B到C匀速行驶用时10秒,问这辆车在本路段是否超速?请说明理由(参考数据:=1.41,=1.73)考点:勾股定理的应用分析:过点D作DE⊥AB于点E,证明△BCD≌△BED,在Rt△ADE中求出DE,继而得出CD,计算出AC的长度后,在Rt△ABC中求出BC,继而可判断是否超速.解答:解:过点D作DE⊥AB于点E,∵∠CDB=75°,∴∠CBD=15°,∠EBD=15°(外角的性质),在Rt△CBD和Rt△EBD中,∵,∴△CBD≌△EBD,∴CD=DE,在Rt△ADE中,∠A=60°,AD=40米,则DE=ADsin60°=20米,故AC=AD+CD=AD+DE=(40+20)米,在Rt△ABC中,BC=ACtan∠A=(40+60)米,则速度==4+6≈12.92米/秒,∵12.92米/秒=46.512千米/小时,∴该车没有超速.点评:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,求出BC的长度,需要多次解直角三角形,有一定难度.24.(12分)(•本溪)某蔬菜经销商到蔬菜种植基地采购一种蔬菜,经销商一次性采购蔬菜的采购单价y(元/千克)与采购量x(千克)之间的函数关系图象如图中折线AB﹣﹣BC﹣﹣CD所示(不包括端点A).(1)当100<x<200时,直接写y与x之间的函数关系式:y=﹣0.02x+8.(2)蔬菜的种植成本为2元/千克,某经销商一次性采购蔬菜的采购量不超过200千克,当采购量是多少时,蔬菜种植基地获利最大,最大利润是多少元?(3)在(2)的条件下,求经销商一次性采购的蔬菜是多少千克时,蔬菜种植基地能获得418元的利润?考点:二次函数的应用分析:(1)利用待定系数法求出当100<x<200时,y与x之间的函数关系式即可;(2)根据当0<x≤100时,当100<x≤200时,分别求出获利W与x的函数关系式,进而求出最值即可;(3)根据(2)中所求得出,﹣0.02(x﹣150)2+450=418求出即可.解答:解;(1)设当100<x<200时,y与x之间的函数关系式为:y=ax+b,,解得:∴y与x之间的函数关系式为:y=﹣0.02x+8;故答案为:y=﹣0.02x+8;(2)当采购量是x千克时,蔬菜种植基地获利W元,当0<x≤100时,W=(6﹣2)x=4x,当x=100时,W有最大值400元,当100<x≤200时,W=(y﹣2)x=(﹣0.02x+6)x=﹣0.02(x﹣150)2+450,∵当x=150时,W有最大值为450元,综上所述,一次性采购量为150千克时,蔬菜种植基地能获得最大利润为450元;(3)∵418<450,∴根据(2)可得,﹣0.02(x﹣150)2+450=418解得:x1=110,x 2=190,答:经销商一次性采购的蔬菜是110千克或190千克时,蔬菜种植基地能获得418元的利润.点评:此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及一元二次方程的解法等知识,利用数形结合以及分段讨论得出是解题关键.25.(12分)(•本溪)在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M.(1)如图1,当∠A=30°时,求证:MC2=AM2+BC2;(2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;(3)将三角形ODE绕点O旋转,若直线OD与直线AC相交于点M,直线OE与直线BC 相交于点N,连接MN,则MN2=AM2+BN2成立吗?答:不成立(填“成立”或“不成立”)考点:相似形综合题分析:(1)过A作AF⊥AC交CO延长线于F,连接MF,根据相似求出AF=BC,CO=OF,求出FM=CM,根据勾股定理求出即可;(2)过A作AF⊥AC交CO延长线于F,连接MF,根据相似求出AF=BC,CO=OF,求出FM=CM,根据勾股定理求出即可;(3)结论依然成立.解答:(1)证明:如图1,过A作AF⊥AC交CO延长线于F,连接MF,∵∠ACB=90°,∴BC∥AF,∴△BOC∽△AOF,∴==,∵O为AB中点,∴OA=OB,∴AF=BC,CO=OF,∵∠MOC=90°,∴OM是CF的垂直平分线,∴CM=MF,在Rt△AMF中,由勾股定理得:MF2=AM2+AF2=AM2+BC2,即MC2=AM2+BC2;(2)解:还成立,理由是:如图2,过A作AF⊥AC交CO延长线于F,连接MF,∵∠ACB=90°,∴BC∥AF,∴△BOC∽△AOF,∴==,∵OA=OB,∴AF=BC,CO=OF,∵∠MOC=90°,∴OM是CF的垂直平分线,∴CM=MF,在Rt△AMF中,由勾股定理得:MF2=AM2+AF2=AM2+BC2,即MC2=AM2+BC2;(3)成立.点评:本题考查了直角三角形,相似三角形的性质和判定,勾股定理的应用,主要考查学生综合运用性质和定理进行推理的能力,题目比较好,证明过程类似.26.(14分)(•本溪)如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A 在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线y=x2+bx+c经过A、C两点,与x轴的另一个交点是点D,连接BD.(1)求抛物线的解析式;(2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M 的坐标;(3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B 出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值.考点:二次函数综合题分析: (1)求出点A 、C 的坐标,利用待定系数法求出抛物线的解析式;(2)如答图1所示,关键是求出MG 的长度,利用面积公式解决;注意,符合条件的点M有2个,不要漏解;(3)△DPQ 为等腰三角形,可能有三种情形,需要分类讨论:①若PD=PQ ,如答图2所示;②若PD=DQ ,如答图3所示;③若PQ=DQ ,如答图4所示.解答: 解:(1)∵矩形ABCD ,B (5,3),∴A (5,0),C (0,3).∵点A (5,0),C (0,3)在抛物线y=x 2+bx+c 上, ∴,解得:b=,c=3.∴抛物线的解析式为:y=x 2x+3.(2)如答图1所示,∵y=x 2x+3=(x ﹣3)2﹣,∴抛物线的对称轴为直线x=3.如答图1所示,设对称轴与BD 交于点G ,与x 轴交于点H ,则H (3,0).令y=0,即x2x+3=0,解得x=1或x=5.∴D(1,0),∴DH=2,AH=2,AD=4.∵tan∠ADB==,∴GH=DH•tan∠ADB=2×=,∴G(3,).∵S△MBD=6,即S△MDG+S△MBG=6,∴MG•DH+MG•AH=6,即:MG×2+MG×2=6,解得:MG=3.∴点M的坐标为(3,)或(3,).(3)在Rt△ABD中,AB=3,AD=4,则BD=5,∴sinB=,cosB=.以D、P、Q为顶点的三角形是等腰三角形,则:①若PD=PQ,如答图2所示:此时有PD=PQ=BQ=t,过点Q作QE⊥BD于点E,则BE=PE,BE=BQ•cosB=t,QE=BQ•sinB=t,∴DE=t+t=t.由勾股定理得:DQ2=DE2+QE2=AD2+AQ2,即(t)2+(t)2=42+(3﹣t)2,整理得:11t2+6t﹣25=0,解得:t=或t=﹣5(舍去),∴t=;②若PD=DQ,如答图3所示:此时PD=t,DQ=AB+AD﹣t=7﹣t,∴t=7﹣t,∴t=;③若PQ=DQ,如答图4所示:∵PD=t,∴BP=5﹣t;∵DQ=7﹣t,∴PQ=7﹣t,AQ=4﹣(7﹣t)=t﹣3.过点P作PF⊥AB于点F,则PF=PB•sinB=(5﹣t)×=4﹣t,BF=PB•cosB=(5﹣t)21 / 21 ×=3﹣t .∴AF=AB ﹣BF=3﹣(3﹣t )=t .过点P 作PE ⊥AD 于点E ,则PEAF 为矩形,∴PE=AF=t ,AE=PF=4﹣t ,∴EQ=AQ ﹣AE=(t ﹣3)﹣(4﹣t )=t ﹣7.在Rt △PQE 中,由勾股定理得:EQ 2+PE 2=PQ 2, 即:(t ﹣7)2+(t )2=(7﹣t )2,整理得:13t 2﹣56t=0,解得:t=0(舍去)或t=. ∴t=.综上所述,当t=,t=或t=时,以D 、P 、Q 为顶点的三角形是等腰三角形. 点评: 本题是二次函数综合题型,考查了二次函数的图象与性质、待定系数法、图形面积、解直角三角形、勾股定理等知识点.分类讨论的数学思想是本题考查的重点,在第(2)(3)问中均有所体现,解题时注意全面分析、认真计算.。
2009年辽宁省十二市中考数学试卷
2009年辽宁省十二市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案前的字母填入相应表格内,每小题3分,共24分)1.(3分)(2009•辽宁)某天的最高气温是7C︒,最低气温是5C︒-,则这一天的最高气温与最低气温的差是()A.2C︒B.2C︒--C.12C︒D.12C︒2.(3分)(2009•辽宁)如图,已知直线AB、CD相交于点O,OA平分EOCEOC∠=︒,∠,110则BOD∠的度数是()A.25︒B.35︒C.45︒D.55︒3.(3分)(2013•桂林)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.4.(3分)(2009•辽宁)三根长度分别为:3cm,7cm,4cm的木棒能围成三角形的事件是()A.必然事件B.不可能事件C.不确定事件D.以上说法都不对5.(3分)(2009•辽宁)如图,直线m是一次函数y kx b=+的图象,则k的值是()A.1-B.2-C.1D.26.(3分)(2009•辽宁)受全球金融危机的影响,2008年某家电商城的销售额由第二季度的800万元下降到第四季度的648万元,则该商城第三、四季度的销售额平均下降的百分率为( )A .10%B .20%C .19%D .25%7.(3分)(2009•辽宁)用若干个小立方块搭一个几何体,使得它的左视图和俯视图如图所示,则所搭成的几何体中小立方块最多有( )A .15个B .14个C .13个D .12个8.(3分)(2009•辽宁)如图1,从矩形纸片AMEF 中剪去矩形BCDM 后,动点P 从点B 出发,沿BC 、CD 、DE 、EF 运动到点F 停止,设点P 运动的路程为x ,ABP ∆的面积为y ,如果y 关于x 的函数图象如图2所示,则图形ABCDEF 的面积是( )A .32B .34C .36D .48二、填空题(每小题3分,共24分)9.(3分)(2014•巴中)分解因式:2327m -= .10.(3分)(2009•辽宁)为了解初三学生的视力情况,某校随机抽取50名学生进行视力检查,结果如下: 视力4.6以下 4.6 4.7 4.8 4.95.0 5.0以上 人数(人) 6 15 5 10 3 4 7这组数据的中位数是 .11.(3分)(2009•辽宁)已知:平面直角坐标系中有一点(2,1)A ,若将点A 向左平移4个单位,再向下平移2个单位得到点1A ,则点1A 的坐标是 .12.(3分)(2009•辽宁)已知:扇形OAB 的半径为12厘米,150AOB ∠=︒,若由此扇形围成一个圆锥的侧面,则这个圆锥底面圆的半径是 厘米.13.(3分)(2009•辽宁)如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子 枚.14.(3分)(2009•辽宁)已知:如图,CD 是O 的直径,点A 在CD 的延长线上,AB 切O于点B ,若30A ∠=︒,10OA =,则AB = .15.(3分)(2009•辽宁)关于x 的方程12m x =+的解集是负数,则m 的取值范围是 . 16.(3分)(2009•辽宁)已知:点(,)A m m 在反比例函数1y x =的图象上,点B 与点A 关于坐标轴对称,以AB 为边作等边ABC ∆,则满足条件的点C 有 个.三、解答题(本大题共10小题,共102分)17.(8分)(2009•辽宁)计算:01132(1)4sin 45()3π--++︒+. 18.(8分)(2009•辽宁)如图,小芳家的落地窗(线段)DE 与公路(直线)PQ 互相平行,她每天做完作业后都会在点A 处向窗外的公路望去.(1)请在图中画出小芳能看到的那段公路并记为BC .(2)小芳很想知道点A 与公路之间的距离,于是她想到了一个办法.她测出了邻家小彬在公路BC 段上走过的时间为10秒,又测量了点A 到窗的距离是4米,且窗DE 的长为3米,若小彬步行的平均速度为1.2米/秒,请你帮助小芳计算出点A 到公路的距离.19.(10分)(2009•辽宁)在全运会射击比赛的选拔赛中,运动员甲10次射击成绩的统计表和扇形统计图如下:命中环数10 9 8 7 命中次数 3 2(1)根据统计表(图)中提供的信息,补全统计表及扇形统计图;(2)已知乙运动员10次射击的平均成绩为9环,方差为1.2,如果只能选一人参加比赛,你认为应该派谁去?并说明理由.(参考资料:2222121[()()()])n S x x x x x x n=-+-+⋯+-20.(10分)(2009•辽宁)奥运会期间,为了增进与各国的友谊,华联商厦决定将具有民族风情的中国结打8折销售,汤姆先生用160元钱买到的中国结比打折前花同样多的钱买到的中国结多2个,求每个中国结的原价是多少元?21.(10分)(2009•辽宁)法航客机失事引起全球高度关注,为调查失事原因,巴西军方派出侦察机和搜救船在失事海域同时沿同一方向配合搜寻飞机残骸(如图).在距海面900米的高空A 处,侦察机测得搜救船在俯角为30︒的海面C 处,当侦察机以1503米/分的速度平行海面飞行20分钟到达B 处后,测得搜救船在俯角为60︒的海面D 处,求搜救船搜寻的平均速度.(结果保留三个有效数字,参考数据:2 1.414≈,3 1.732)≈22.(10分)(2009•辽宁)“五-”期间,中国最美的边境城市丹东吸引了许多外地游客.小刚也随爸爸来丹游玩,由于仅有两天的时间,小刚不能游览所有风景区.于是爸爸让小刚第一天从A .青山沟风景区、B .凤凰山风景区中任意选择-处游玩;第二天从C .虎山长城、D .鸭绿江、E .大东港中任意选一处游玩.(1)请用树状图或列表法说明小刚所有可能选择的方式(用字母表示);(2)在(1)问的选择方式中,求小刚恰好选中A 和D 这两处的概率.23.(10分)(2009•辽宁)已知:如图,等腰梯形ABCD 中,//AD BC ,AB DC =,点P 是腰DC 上的一个动点(P 与D 、C 不重合),点E 、F 、G 分别是线段BC 、PC 、BP 的中点.(1)试探索四边形EFPG 的形状,并说明理由;(2)若120A ∠=︒,2AD =,4DC =,当PC 为何值时,四边形EFPG 是矩形并加以证明.24.(10分)(2009•辽宁)某校组织七年级学生到军营训练,为了喝水方便,要求每个学生各带一只水杯,几个学生可以合带一个水壶.可临出发前,带队老师发现有51名同学没带水壶和水杯,于是老师拿出260元钱并派两名同学去附近商店购买.该商店有大小不同的甲、乙两种水壶,并且水壶与水杯必须配套购买.每个甲种水壶配4只杯子,每套20元;每个乙种水壶配6只杯子,每套28元.若需购买水壶10个,设购买甲种水壶x 个,购买的总费用为y (元).(1)求出y 与x 之间的函数关系式(不必写出自变量x 的取值范围);(2)请你帮助设计所有可能的购买方案,并写出最省钱的购买方案及最少费用.25.(12分)(2009•辽宁)有两张完全重合的矩形纸片,小亮同学将其中一张绕点A 顺时针旋转90︒后得到矩形AMEF (如图1),连接BD 、MF ,若此时他测得8BD cm =,30ADB ∠=度.(1)试探究线段BD 与线段MF 的关系,并简要说明理由;(2)小红同学用剪刀将BCD ∆与MEF ∆剪去,与小亮同学继续探究.他们将ABD ∆绕点A 顺时针旋转得△11AB D ,1AD 交FM 于点K (如图2),设旋转角为(090)ββ︒<<︒,当AFK∆为等腰三角形时,请直接写出旋转角β的度数;(3)若将AFM ∆沿AB 方向平移得到△222A F M (如图3),22F M 与AD 交于点P ,22A M 与BD 交于点N ,当//NP AB 时,求平移的距离是多少?26.(14分)(2009•辽宁)已知:在平面直角坐标系中,抛物线23(0)y ax x a =-+≠交x 轴于A 、B 两点,交y 轴于点C ,且对称轴为直线2x =-.(1)求该抛物线的解析式及顶点D 的坐标;(2)若点(0,)P t 是y 轴上的一个动点,请进行如下探究:探究一:如图1,设PAD ∆的面积为S ,令W t S =,当04t <<时,W 是否有最大值?如果有,求出W 的最大值和此时t 的值;如果没有,说明理由;探究二:如图2,是否存在以P 、A 、D 为顶点的三角形与Rt AOC ∆相似?如果存在,求点P 的坐标;如果不存在,请说明理由.(参考资料:抛物线2(0)y ax bx c a =++≠对称轴是直线)2bx a =-2009年辽宁省十二市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案前的字母填入相应表格内,每小题3分,共24分)1.【分析】这天的温差就是最高气温与最低气温的差,列式计算.【解答】解:这天的温差就是最高气温与最低气温的差,即7(5)7512C ︒--=+=. 故选:C .【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.2.【分析】根据角平分线的定义求出AOC ∠的度数,再根据对顶角相等即可求解.【解答】解:OA 平分EOC ∠,110EOC ∠=︒,1552AOC COE ∴∠=∠=︒, 55BOD AOC ∴∠=∠=︒.故选:D .【点评】本题主要考查了角平分线的定义以及对顶角相等的性质,认准图形是解题的关键.3.【分析】根据轴对称图形与中心对称图形的概念和图形特点求解.【解答】解:A 、是轴对称图形,不是中心对称图形,不符合题意;B 、是轴对称图形,也是中心对称图形,符合题意;C 、是轴对称图形,不是中心对称图形,不符合题意;D 、不是轴对称图形,是中心对称图形,不符合题意.故选:B .【点评】掌握好中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.4.【分析】三角形的三条边必须满足:任意两边之和大于第三边.因而三条线段能构成三角形的边的条件是:任意两数的和大于第三个数.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【解答】解:347+=,∴根据三角形的三边关系,知三根木棒不能围成三角形,则是不可能事件.故选:B .【点评】用到的知识点为:组成三角形的两条较小的边的和应大于最大的边;一定不会发生的事件叫不可能事件.5.【分析】根据画图确定一次函数y kx b =+的图象过点(1,0),(0,2)-,然后代入解析式即可求得k 的值.【解答】解:一次函数y kx b =+的图象过点(1,0),(0,2)-,根据一次函数解析式y kx b =+的特点,可得出方程组02k b b +=⎧⎨=-⎩, 解得22b k =-⎧⎨=⎩,则k 的值是2. 故选:D .【点评】本题要注意利用一次函数的特点,来列出方程组,求出未知数.6.【分析】本题可设该商城第三、四季度的销售额平均下降的百分率为x ,则第三季度为800(1)x -万元,第四季度为800(1)(1)x x --万元,即2800(1)x -万元,由此可列出方程,进而求解.【解答】解:设该商城第三、四季度的销售额平均下降的百分率为x ,则第三季度为800(1)x -万元,第四季度为2800(1)x -万元,根据题意得2800(1)648x -=整理得2(1)0.81x -=解之得1 1.9x =,20.1x =因为 1.9x =不合题意,应舍去,所以0.1x =,即该商城第三、四季度的销售额平均下降的百分率为0.1,即10%.故选:A .【点评】此类题目旨在考查下降率,要注意下降的基础,另外还要注意解的合理性,从而确定取舍.找到关键描述语,找到等量关系准确地列出方程是解决问题的关键.7.【分析】根据三视图,该几何体底层最多有321++个,第2层最多有221++个,第3层最多有3个.分清物体的上下及左右的层数.【解答】解:综合左视图和俯视图,底层最多有3216++=个,第二层最多有2215++=个,第三层最多有1113++=个,因此所搭成的几何体中小立方体最多有65314++=个,故选B .【点评】本题中正视图应该按小立方体最多的情况摆,然后根据从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,来分析小立方体的个数.8.【分析】正确读图象是解决本题的关键.【解答】解:根据函数图象可以知道,从0到4,y 随x 的增大而增大,因而4BC =,P 在CD 段时,底边AB 不变,高不变,因而面积不变,由图象可知3CD =;同理:2ED =,1798EF =-=;则426AF BC DE =+=+=,则图形ABCDEF 的面积是:矩形AMEF 的面积-矩形BMDC 的面积864336=⨯-⨯=. 图形ABCDEF 的面积是36.故选:C .【点评】根据函数图象的增减性,把图象的特殊点,与实际图形中的点对应起来.二、填空题(每小题3分,共24分)9.【分析】应先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:2327m -,23(9)m =-,223(3)m =-,3(3)(3)m m =+-.故答案为:3(3)(3)m m +-.【点评】本题考查了提公因式法和平方差公式分解因式,需要进行二次分解因式,分解因式要彻底.10.【分析】根据中位数计算:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:由题意可得:一共有50个数据,最中间是第25,26个数据,第25,26个数据都是4.7,∴这组数据的中位数是:4.7.故答案为:4.7.【点评】本题考查了中位数的定义,解题的关键是牢记定义,此题比较简单,易于掌握.11.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点A 的横坐标是2,纵坐标是1,向左平移4个单位,再向下平移2个单位得到新点的横坐标是242-=-,纵坐标为121-=-,则点1A 的坐标是(2,1)--.故答案填:(2,1)--.【点评】本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.12.【分析】半径为12的扇形的弧长是1501210180ππ=,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是10π,设圆锥的底面半径是r ,则得到210r ππ=,解得:5r cm =.【解答】解:半径为12的扇形的弧长是1501210180ππ=, 圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是10π,设圆锥的底面半径是r ,则得到2π这个圆锥底面圆的半径是5厘米.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.13.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.【解答】解:根据图案可知规律如下:图2,232⨯+;图3,243⨯+⋯图n ,2(1)n n ⨯++;所以第100个图案需棋子2(1001)100302⨯++=.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.14.【分析】作辅助线,连接OA ,由切线性质可知OB OA ⊥,故根据三角函数公式和OA 的长,可将圆的半径求出,进而可将AB 的长求出.【解答】解:连接OB ,则OB OA ⊥,设O 的半径为R ,30A ∠=︒,2sin30OB OA R ∴==︒, 10OA =,210R ∴=,即5R =,故在Rt OAB ∆中,cot 3053AB OB =︒⨯=.【点评】本题主要考查切线的性质和三角函数的计算和运用.15.【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是负数”建立不等式求m 的取值范围.【解答】解:方程去分母得2m x =+即2x m =-分母20x +≠2x ∴≠-22m ∴-≠-0m ∴≠又0x <20m ∴-<解得2m <,则m 的取值范围是2m <且0m ≠.【点评】由于我们的目的是求m 的取值范围,根据方程的解列出关于m 的不等式,另外,解答本题时,易漏掉0m ≠,这是因为忽略了20x +≠这个隐含的条件而造成的,这应引起同学们的足够重视. 16.【分析】由点(,)A m m 在反比例函数1y x=的图象上可知(1,1)A 或(1,1)A --因为点B 与点A 关于坐标轴对称,所以线段AB 四条,从而确定以AB 为边作等边的个数.【解答】解:点(,)A m m 在反比例函数1y x=的图象上, (1,1)A ∴或(1,1)A --, 点B 与点A 关于坐标轴对称,∴线段AB 四条,而每条边有两个等边三角形,因此有8个.故填空答案:8个.故答案为:8.【点评】此题难度较大,主要考查反比例函数的性质、坐标对称特点和等边三角形作法.三、解答题(本大题共10小题,共102分)17.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式143=++13=+2=.【点评】本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简是根号下不能含有分母和能开方的数.18.【分析】因为窗DE和路PQ是平行的,所以ADE ABC∆∆∽,在作出高的情况下,DE ANBC AM=,BC的长度可根据小彬的速度和时间求出为12米,AN,DE题中已告知,因此求出16AM=【解答】解:(1)如图,线段BC就是小芳能看到的那段公路.(2)过点A作AM BC⊥,垂足为M,交DE于点N.//DE BC,34∴∠=∠,1290∠=∠=︒,AN DE∴⊥.又DAE BAC∠=∠,ADE ABC∴∆∆∽.∴DE AN BC AM=.根据题意得: 1.21012BC=⨯=(米).又4AN =米,3DE =米, ∴3412AM =, 16AM ∴=(米).【点评】此问题考查了两三角形相似,对应边成比例,解这道题关键是将实际问题转化为数学问题,本题中只要求出BC ,即可利用相似比,列方程解出AM .19.【分析】(1)由题意知,总共射击了10次,7环占10%,所以1次7环;9环占30%,则9环有3次;(2)计算两人的方差.然后比较方差,方差小的表示波动小,应由方差小的去.【解答】解:(1)补全统计表及扇形统计图:命中环数10 9 8 7 命中次数 4 3 2 1(2)应该派甲去.理由:()1104938271910x =⨯+⨯+⨯+⨯=甲(环). (222221[4(109)3(99)2(89)179)110S ⎤=⨯-+⨯-+⨯-+⨯-=⎦甲. 因为甲、乙两人的平均成绩相同,而22S S <乙甲,说明甲的成绩比乙稳定.所以应派甲去.【点评】本题考查了方差的概念和意义.20.【分析】求的是原单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:“用160元钱买到的中国结比打折前花同样多的钱买到的中国结多2个”;等量关系为:现在160元买的数量-原来160元买的数量2=.【解答】解:设每个中国结的原价为x 元.(1分) 根据题意得:16016020.8x x -=.(5分) 解得:20x =.(8分)经检验:20x =是原方程的根.(9分)答:每个中国结的原价为20元.(10分)【点评】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.【分析】首先分析图形,根据题意构造直角三角形Rt ACG ∆与Rt BDF ∆.利用CG DF=构造方程,进而可解.【解答】解:作CG AE ⊥,垂足为G ,作DF AE ⊥,垂足为F ,得四边形CDFG 为矩形, CD GF ∴=,900CG DF ==米,在Rt AGC ∆中,30A ∠=︒,60ACG ∴∠=︒,tan 609003AG CG ∴=︒=米,同理,在Rt BFD ∆中,tan303003BF DF =︒=米,150********AB =⨯=米,24003CD GF AB BF AG ∴==+-=米,∴搜寻的平均速度为24003201203208÷=≈米/分.答:搜救船搜寻的平均速度为208米/分.【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:(1)解法一:所有可能出现的结果(A ,)(C A ,)(D A ,)(E B ,)(C B ,)(D B ,)E∴小刚所有可能选择的方式有6种;解法二: 第二天第一天C D E A(,)A C (,)A D (,)A E B (,)B C(,)B D (,)B E ∴小刚所有可能选择的方式有6种;(2)一共有六种等可能的结果,而恰好选中A 、D 两处的可能性只有一种,∴小刚恰好选中A 和D 这两处的概率为16.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】根据中点的条件,可以利用.三角形的中位线定理证明四边形EFPG 的两组对边分别平行,得出这个四边形是平行四边形;在平行四边形的基础上要说明四边形是矩形,只要再说明一个角是直角就可以.【解答】解:(1)四边形EFPG 是平行四边形.(1分)理由:点E 、F 分别是BC 、PC 的中点,//EF BP ∴.(2分) 同理可证//EG PC .(3分)∴四边形EFPG 是平行四边形.(4分)(2)方法一:当3PC =时,四边形EFPG 是矩形.(5分)证明:延长BA 、CD 交于点M .//AD BC ,AB CD =,120BAD ∠=︒,60ABC C ∴∠=∠=︒.60M ∴∠=︒,BCM ∴∆是等边三角形.(7分) 18012060MAD ∠=︒-︒=︒,2AD DM ∴==.246CM DM CD ∴=+=+=.(8分) 3PC =,3MP ∴=,MP PC ∴=,BP CM ∴⊥即90BPC ∠=度.由(1)可知,四边形EFPG 是平行四边形,∴四边形EFPG 是矩形.(10分)方法二:当3PC =时,四边形EFPG 是矩形.(5分)证明:延长BA 、CD 交于点M .由(1)可知,四边形EFPG 是平行四边形.当四边形EFPG 是矩形时,90BPC ∠=度.//AD BC ,120BAD ∠=︒,60ABC ∴∠=度.AB CD =,60C ABC ∴∠=∠=度.30PBC ∴∠=︒且BCM ∆是等边三角形.(7分) 30ABP PBC ∴∠=∠=︒,12PC PM CM ∴==.(8分) 同方法一,可得246CM DM CD =+=+=,1632PC ∴=⨯=. 即当3PC =时,四边形EFPG 是矩形.(10分)【点评】本题主要考查学生对等腰梯形的性质,平行四边形的判定及矩形的判定的理解及运用.24.【分析】(1)根据题意得2028(10)y x x =+-,整理得解;(2)根据自变量的取值范围及实际意义求解.【解答】解:(1)2028(10)8280y x x x =+-=-+.y ∴与x 的函数关系式为8280y x =-+.(2)46(10)512028(10)260x x x x +-⎧⎨+-⎩ 解得2.5 4.5x . x 为非负整数,3x ∴=或4.∴有两种购买方案,第一种:买甲种水壶3个,乙种水壶7个;第二种:买甲种水壶4个,乙种水壶6个.8280y x =-+,80-<,y ∴随x 的增大而减小.∴当4x =时,84280248y =-⨯+=(元).答:有两种购买方案.第一种:买甲种水壶3个,乙种水壶7个;第二种:买甲种水壶4个,乙种水壶6个.其中最省钱的方案是第二种,最少费用是248元.【点评】本题重点考查了一次函数的图象及一次函数的应用,是一道难度中等的题目.25.【分析】(1)有两张完全重合的矩形纸片,小亮同学将其中一张绕点A 顺时针旋转90︒后得到矩形AMEF (如图1),得BD MF =,BAD MAF ∆≅∆,推出BD MF =,30ADB AFM ∠=∠=︒,进而可得DNM ∠的大小.(2)根据旋转的性质得出结论.(3)求平移的距离是2A A 的长度.在矩形2PNA A 中,2A A PN =,只要求出PN 的长度就行.用DPN DAB ∆∆∽得出:PN DP AB DA=,解得2A A 的大小. 【解答】解:(1)BD MF =,BD MF ⊥.延长FM 交BD 于点N ,由题意得:BAD MAF ∆≅∆.BD MF ∴=,ADB AFM ∠=∠.又DMN AMF ∠=∠,90ADB DMN AFM AMF ∴∠+∠=∠+∠=︒,90DNM ∴∠=︒,BD MF ∴⊥.(2)当AK FK =时,30KAF F ∠=∠=︒,则111180*********BAB B AD KAF ∠=︒-∠-∠=︒-︒-︒=︒,即60β=︒;②当AF FK =时,180752F FAK ︒-∠∠==︒, 19015BAB FAK ∴∠=︒-∠=︒,即15β=︒;β∴的度数为60︒或15︒(3)由题意得矩形2PNA A .设2A A x =,则PN x =(如图3),在Rt △222A M F 中,228F M FM ==,224A M ∴=,22A F =,2AF x ∴=.290PAF ∠=︒,230PF A ∠=︒,2tan304AP AF x ∴=︒=.4PD AD AP ∴=-=+. //NP AB ,DNP B ∴∠=∠.D D ∠=∠,DPN DAB ∴∆∆∽.∴PN DP AB DA =. ∴34343443x x -+=,解得623x =-.即2623A A =-.答:平移的距离是(623)cm -.【点评】考查旋转的性质,相似三角形的判定,全等三角形的判定,平移的性质.26.【分析】(1)由抛物线的对称轴求出a ,就得到抛物线的表达式了;(2)①下面探究问题一,由抛物线表达式找出A ,B ,C 三点的坐标,作DM y ⊥轴于M ,再由面积关系:PAD AOP DMP OADM S S S S =--梯形得到t 的表达式,从而W 用t 表示出来,转化为求最值问题. ②难度较大,运用分类讨论思想,可以分三种情况:(1)当190PDA ∠=︒时;(2)当290P AD ∠=︒时;(3)当390AP D =︒时;思路搞清晰问题就好解决了.【解答】解:(1)抛物线23(0)y ax x a =-+≠的对称轴为直线2x =-. ∴122a--=-, ∴14a =-, ∴2134y x x =--+.(2,4)D ∴-.(2)探究一:当04t <<时,W 有最大值. 抛物线2134y x x =--+交x 轴于A 、B 两点,交y 轴于点C , (6,0)A ∴-,(2,0)B ,(0,3)C ,6OA ∴=,3OC =.(4分) 当04t <<时,作DM y ⊥轴于M , 则2DM =,4OM =.(0,)P t ,OP t ∴=,4MP OM OP t =-=-. PAD OADM AOP DMP S S S S =--三角形梯形三角形三角形 111()222DM OA OM OA OP DM MP =+-- 111(26)462(4)222t t =+⨯-⨯⨯-⨯⨯- 122t =-(6分)2(122)2(3)18W t t t ∴=-=--+∴当3t =时,W 有最大值,18W =最大值. 探究二:存在.分三种情况:①当190PDA ∠=︒时,作DE x ⊥轴于E ,则2OE =,4DE =,90DEA ∠=︒, 624AE OA OE DE ∴=-=-==.45DAE ADE ∴∠=∠=︒,AD == 11904545PDE PDA ADE ∴∠=∠-∠=︒-︒=度. DM y ⊥轴,OA y ⊥轴,//DM OA ∴,90MDE DEA ∴∠=∠=︒,11904545MDP MDE PDE ∴∠=∠-∠=︒-︒=度.12PM DM ∴==,1PD ==此时1OC OA PD AD ==, 又因为190AOC PDA ∠=∠=︒, 1Rt ADP Rt AOC ∴∆∆∽,11422OP OM PM ∴=-=-=, 1(0,2)P ∴.∴当190PDA ∠=︒时,存在点1P ,使1Rt ADP Rt AOC ∆∆∽,此时1P 点的坐标为(0,2)②当290P AD ∠=︒时,则245P AO ∠=︒,∴2cos45OA P A ==︒∴26P A OA ==.AD OC = ∴2P A AD OCOA ≠. ∴△2P AD 与AOC ∆不相似,此时点2P 不存在.③当390AP D ∠=︒时,以AD 为直径作1O ,则1O的半径2AD r == 圆心1O 到y 轴的距离4d =.d r >,1O ∴与y 轴相离. 不存在点3P ,使390AP D ∠=度.∴综上所述,只存在一点(0,2)P 使Rt ADP ∆与Rt AOC ∆相似.【点评】此题综合性较强,考查函数基本性质,三角形相似的性质,辅助线的作法,探究性问题,还运用分类讨论思想,难度大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年本溪市初中毕业生学业考试数 学 试卷考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中相应题号下的空格内,每小题3分,共24分)1.2009年6月,全国参加高等院校统一招生考试的学生约10 200 000人,其中10 200 000用科学记数法表示应为( ) A .610.210⨯B .81.0210⨯C .80.10210⨯D .91.0210⨯2.如果a 与1互为相反数,则|2|a +等于( ) A .2B .2-C .1D .1-3.反比例函数(0)ky k x=≠的图象经过点(23)-,,则该反比例函数图象在( ) A .第一、三象限 B .第二、四象限 C .第二、三象限 D .第一、二象限4.有一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是( )5.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为( ) A .12B .14C .1D .346.下列图案中,既是轴对称图形又是中心对称图形的是( )7身高(cm) 180 186 188 192 208 人数(个)46532则此男子排球队20名队员的身高的众数和中位数分别是( )A .186cm,186cmB .186cm,187cmC .208cm,188cmD .188cm,187cm 8.估算171+的值在( ) A .2和3之间B .3和4之间A .B .C .D . A . B . C . D .C .4和5之间D .5和6之间 二、填空题(每小题3分,共24分) 9.函数y =x 的取值范围是 . 10.分解因式:29xy x -= .11.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 .12.如图所示,在ABCD 中,对角线AC BD 、相交于点O ,过点O 的直线分别交AD BC 、于点M N 、,若CON △的面积为2,DOM △的面积为4,则AOB △的面积为 . 13.如图所示,抛物线2y ax bx c =++(0a ≠)与x 轴的两个交点分别为(10)A -,和(20)B ,,当0y <时,x 的取值范围是 .14.如图所示,菱形ABCD 中,对角线AC BD 、相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .15.圆锥的高为4cm ,底面圆直径长6cm ,则该圆锥的侧面积等于 2cm (结果保留π).16.如图所示,已知:点(00)A ,,B ,(01)C ,在ABC △内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个11AA B △,第2个122B A B △,第3个233B A B △,…,则第n 个等边三角形的边长等于 .三、解答题(每题8分,共16分) 17.先化简,再求值:2113y xx y x ⎛⎫--÷ ⎪⎝⎭,其中23x y ==,.MDCN B A12题图13题图B AHC O 14题图16题图18.如图所示,正方形网格中,ABC △为格点三角形(即三角形的顶点都在格点上). (1)把ABC △沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到的11A B C 1△; (2)把11A B C 1△绕点1A 按逆时针方向旋转90°,在网格中画出旋转后的22A B C 1△; (3)如果网格中小正方形的边长为1,求点B 经过(1)、(2)变换的路径总长.四、解答题(每题10分,共20分) 19.“五·一”期间,九年一班同学从学校出发,去距学校6千米的本溪水洞游玩,同学们分为步行和骑自行车两组,在去水洞的全过程中,骑自行车的同学比步行的同学少用40分钟,已知骑自行车的速度是步行速度的3倍. (1)求步行同学每分钟...走多少千米? (2)右图是两组同学前往水洞时的路程y (千米) 与时间x (分钟)的函数图象. 完成下列填空: ①表示骑车同学的函数图象是线段 ;②已知A 点坐标(300),,则B 点的坐标为( ).20.甲、乙两同学只有一张乒乓球比赛的门票,谁都想去,最后商定通过转盘游戏决定.游戏规则是:转动下面平均分成三个扇形且标有不同颜色的转盘,转盘连续转动两次,若指针前后所指颜色相同,则甲去;否则乙去.(如果指针恰好停在分割线上,那么重转一次,直到指针指向一种颜色为止)(1)转盘连续转动两次,指针所指颜色共有几种情况?通过画树状图或列表法加以说明; (2)你认为这个游戏公平吗?请说明理由.五、解答题(每题10分,共20分) 21.初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共调查了 名学生; (2)将图①补充完整;(3)求出图②中C 级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标(达标包括A 级和B 级)?22.如图所示,AB 是O ⊙直径,OD ⊥弦BC 于点F ,且交O ⊙于点E ,若AEC ODB ∠=∠. (1)判断直线BD 和O ⊙的位置关系,并给出证明;(2)当108AB BC ==,时,求BD 的长.六、解答题(每题10分,共20分)23.为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元. (1)求购买每个笔记本和钢笔分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买(0)x x >支钢笔需要花y 元,请你求出y 与x 的函数关系式;(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.24.如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角23AEF ∠=°,量得树干倾斜角图① 图② D B OA CE F38BAC ∠=°,大树被折断部分和坡面所成的角604m ADC AD ∠==°,. (1)求CAE ∠的度数;(2)求这棵大树折断前的高度?(结果精确到个位,参考数据:2 1.4=,3 1.7=,6 2.4=).七、解答题(本题12分) 25.在ABC △中,AB AC =,点D 是直线BC 上一点(不与B C 、重合),以AD 为一边在AD 的右侧..作ADE △,使AD AE DAE BAC =∠=∠,,连接CE . (1)如图1,当点D 在线段BC 上,如果90BAC ∠=°,则BCE ∠= 度; (2)设BAC α∠=,BCE β∠=.①如图2,当点D 在线段BC 上移动,则αβ,之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则αβ,之间有怎样的数量关系?请直接写出你的结论.八、解答题(本题14分)C 60° 38°B DE 23° AF AEEAC CD D BB图1 图2 AA备用图B CB C 备用图26.如图所示,在平面直角坐标系中,抛物线2y ax bx c =++(0a ≠)经过(10)A -,,(30)B ,,(03)C ,三点,其顶点为D ,连接BD ,点P 是线段BD 上一个动点(不与B D 、重合),过点P 作y 轴的垂线,垂足为E ,连接BE .(1)求抛物线的解析式,并写出顶点D 的坐标;(2)如果P 点的坐标为()x y ,,PBE △的面积为s ,求s 与x 的函数关系式,写出自变量x 的取值范围,并求出s 的最大值;(3)在(2)的条件下,当s 取得最大值时,过点P 作x 的垂线,垂足为F ,连接EF ,把PEF △沿直线EF 折叠,点P 的对应点为P ',请直接写出P '点坐标,并判断点P '是否在该抛物线上.2009年本溪市初中毕业生学业考试数学试题参考答案及评分标准注:本参考答案只给出一种或两种解法(证法),若用其它方法解答正确,可参考此评分标准相应步骤赋分.9.1x > 10.(3)(3)x y y +- 11.216(1)9x -= 12.613.1x <-或2x > 14.3 15.15π 16.2n三、解答题(每题8分,共16分) 17.解:2113y x x y x ⎛⎫--÷⎪⎝⎭ 23y x y xxy x --=÷ ···················································································· 2分 23y x x xy y x-=- ······················································································ 4分3x y=·································································································· 6分 当23x y ==,时,原式3223⨯==.·································································· 8分 18.(1)画图正确. ······································ 2分 (2)画图正确. ············································ 5分(3)1BB ==···························· 6分 弧12B B 的长== ···················· 7分 点B 所走的路径总长2=. ············· 8分四、(每题10分,共20分)19.(1)解:设步行同学每分钟走x 千米,则骑自行车同学每分钟走3x 千米. ·················· 1分 根据题意,得:66403x x=+ ················································································· 3分110x =········································································································· 4分 经检验,110x =是原方程的解. ·········································································· 5分答:步行同学每分钟走110千米. ········································································· 6分(2)①AM ····································································································· 8分 ②(500),. ································································································· 10分 20.由上表可知,总共有9种情况. ··········································································· 5分 解法二:(树状图)由上图可知,总共有9种情况. ··········································································· 5分 (2)不公平. ··································································································· 6分 理由:由(1)可知,总共有9种不同的情况,它们出现的可能性相同,其中颜色相同的有3种,所以P (甲去)13=,P (乙去)23=. ············································································ 8分 1233≠, ······································································································ 9分 ∴这个游戏不公平. ····················································································· 10分五、(每题10分,共20分) 21.(1)200; ·································································································· 2分 (2)2001205030--=(人). ············································································ 3分 画图正确. ···································································································· 4分(3)C 所占圆心角度数360(125%60%)54=⨯--=°°. ········································· 7分 (4)20000(25%60%)17000⨯+=. ·································································· 9分 ∴估计该市初中生中大约有17000名学生学习态度达标. ····································· 10分红 黄 蓝红 红 黄 蓝黄 红 黄 蓝蓝22.(1)直线BD 和O ⊙相切. ··········································································· 1分 证明:∵AEC ODB ∠=∠,AEC ABC ∠=∠, ∴ABC ODB ∠=∠. ············································2分 ∵OD ⊥BC ,∴90DBC ODB ∠+∠=°. ····································3分 ∴90DBC ABC ∠+∠=°.即90DBO ∠=°. ·················································4分∴直线BD 和O ⊙相切. ········································5分(2)连接AC . ∵AB 是直径,∴90ACB ∠=°. ·················································6分 在Rt ABC △中,108AB BC ==,,∴6AC ==.∵直径10AB =, ∴5OB =. ·································································································· 7分 由(1),BD 和O ⊙相切, ∴90OBD ∠=°. ·························································································· 8分 ∴90ACB OBD ∠=∠=°. 由(1)得ABC ODB ∠=∠, ∴ABC ODB △∽△. ··················································································· 9分∴AC BCOB BD =. ∴685BD =,解得203BD =. ··········································································· 10分 六、(每题10分,共20分)23.(1)解:设每个笔记本x 元,每支钢笔y 元. ······················································· 1分4286357.x y x y +=⎧⎨+=⎩,······························································································ 2分 解得1415.x y =⎧⎨=⎩,答:每个笔记本14元,每支钢笔15元. ································································· 5分 (2)15(010)1230(10)xx y x x <⎧=⎨+>⎩≤(3)当141230x x <+时,15x <;当141230x x =+时,15x =; 当141230x x >+时,15x >. ··········································································· 8分 综上,当买超过10件但少于15件商品时,买笔记本省钱; 当买15件奖品时,买笔记本和钢笔一样; 当买奖品超过15件时,买钢笔省钱. ································································· 10分······················································································ 3分······················································································ 4分······················································ 6分 ······················································ 7分D B OA C E F24. 解:(1)延长BA 交EF 于点G . 在Rt AGE △中,23E ∠=°, ∴67GAE ∠=°. ·················································2分 又∵38BAC ∠=°,∴180673875CAE ∠=--=°°°°. ························3分 (2)过点A 作AH CD ⊥,垂足为H . ·························4分 在ADH △中,604ADC AD ∠==°,,cos DHADC AD ∠=,∴2DH =. ······························5分 sin AHADC AD∠=,∴AH = ··························6分 在Rt ACH △中,180756045C ∠=--=°°°°, ···········7分∴AC =CH AH == ···························8分∴210AB AC CD =+=≈(米). ··················································· 9分 答:这棵大树折断前高约10米. ······································································· 10分 七、(12分) 25.(1)90°. ································································································ 2分 (2)①180αβ+=°. ······················································································· 3分 理由:∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠. 即BAD CAE ∠=∠. 又AB AC AD AE ==,, ∴ABD ACE △≌△. ··················································································· 6分 ∴B ACE ∠=∠.∴B ACB ACE ACB ∠+∠=∠+∠.∴B ACB β∠+∠=.····················································································· 7分 ∵180B ACB α+∠+∠=°,∴180αβ+=°. ·························································································· 8分 ②当点D 在射线BC 上时,180αβ+=°. ························································· 10分 当点D 在射线BC 的反向延长线上时,αβ=. ··················································· 12分 八、(14分)26.解:(1)设(1)(3)y a x x =+-, ········································································ 1分 把(03)C ,代入,得1a =-, ················································································· 2分 ∴抛物线的解析式为:223y x x =-++. ····························································· 4分C60° 38°BDE23°AFHG。