实际问题之最大利润问题

合集下载

《最大利润问题》课件

《最大利润问题》课件
模拟退火算法具有较强的鲁棒性和灵活性,适用于处理离散和连续的 优化问题。
03
最大利润问题的实际案例
投资组合优化问题
总结词
投资组合优化问题涉及到在风险和收益之间寻找最佳平衡,以最大化长期回报 。
详细描述
投资者通过选择不同的资产(如股票、债券、现金等)来构建投资组合,目标 是最大化投资组合的长期回报,同时控制风险。最大利润问题在投资组合优化 中表现为确定最佳资产配置,以最大化预期收益。
生产调度问题
总结词
生产调度问题是在给定生产资源和市场需求的情况下,合理安排生产计划,以最 小化生产成本并最大化利润。
详细描述
生产调度涉及原材料采购、生产计划、人员和设备安排等方面。最大利润问题表 现为确定最佳的生产计划和调度安排,以最小化生产成本并最大化利润。
物流配送问题
总结词
物流配送问题是在满足客户需求的前 提下,通过优化配送路线和车辆调度 ,降低运输成本并提高运输效率。
02
最大利润问题的求解方法
动态规划法
01
02
03
04
动态规划是一种通过将问题分 解为子问题并解决子问题来找 到原问题的最优解的方法。
在最大利润问题中,动态规划 法通常用于解决具有重叠子问
题和最优子结构的问题。
通过构建状态转移方程,动态 规划法能够避免重复计算子问
题,提高求解效率。
动态规划法的适用范围较广, 可以应用于各种不同类型的问 题,如背包问题、排班问题等
《最大利润问题》ppt课件
contents
目录
• 最大利润问题概述 • 最大利润问题的求解方法 • 最大利润问题的实际案例 • 最大利润问题的扩展与展望 • 结论与总结
01
最大利润问题概述

数学人教版九年级上册22.3.1实际问题与二次函数 最大利润问题

数学人教版九年级上册22.3.1实际问题与二次函数 最大利润问题

这条抛物线的顶点是函数图
像的最高点,也就是说当x取
顶点坐标的横坐标时,这个
30
x \ 元 函数有最大值。
例1.某商品现在的售价为每件60元, 每星 期可卖出300件, 市场调查反映: 每涨价1 元, 每星期少卖出10件; 每降价1元, 每星 期可多卖出20件, 已知商品的进价为每件 40元, 如何定价才能使利润最大?
➢配方变形, 或利用公式求它的最大值或最小值。
➢检查求得的最大值或最小值对应的自变量的值 必须在自变量的取值范围内, 若不在, 则考虑 自变量的两端。
1.某产品每件成本10元, 试销阶段每件产品的销售价 x (元)与产品的日销售量 y(件)之间的关系如下表:
x(元) 15 20 30 … y(件) 25 20 10 … 若日销售量 y 是销售价 x 的一次函数。
二次函数最值问题强化训练
1.(1)当x= 1 时,
二次函数y=-x2+2x-2有最大值.
(2)已知二次函数y=x2-6x+m的最小
值为1,那么m的值为 10
.
2.图中所示的二次函数图像的解析式为:
y 2x2 8x 13
⑴若-3≤x≤3, 求该函数的
y
最大值、最小值?
55
5
⑵又若0≤x≤3, 求该函数
的最大值、最小值分别为
6
4
55
13
2
0
x
-4 -2
2
注: 1.自变量X的取值范围为一切实数, 顶点处取最 值。
2.有取值范围的在端点或顶点处取最值。
2 .抛物线y=ax 2 + bx + c 的对称轴是
直 线__x____2_ba,
顶点坐标是(
b 2a

最大利润问题

最大利润问题

(3)家佳源购进一批单价为20元的日用 品,如果以单价30元销售,那么半个月 内可以售出400件。根据销售经验,提 高单价会导致销售量的减少,即销售单 价每提高1元,销售量相应减少20件。 如何 提高售价,才能在半个月内获得最 大利润?最大利润是多少?
4、某产品进货单价为90元,按100元一个售出时, 能售500个,如果这种商品涨价1元,其销售额就 减少10个,为了获得最大利润,其单价应定为( ) A.130元; B.120元 C.110元; D.100元
时, y最大=k
1、某商店销售一种销售成本为40元的 水产品,若按50元/千克销售,一月可售出 500千克,销售价每涨价1元,月销售量就 减少10千克.销售单价定为多少时,获得 最大利润?最大利润是多少?
2、某商场销售某种品牌的纯牛奶,已知进价 为每箱40元,生产厂家要求每箱售价在40元 ~70元之间.市场调查发现:若每箱发50元销售, 平均每天可售出90箱价格每升高1元,平均每 天少销售3箱. 每箱定价多少元时,才能使平均 每天的利润最大?最大利润是多少?
5、某商场销售一种名牌衬衫,平均每 天可售出30件,每件盈利50元,为了扩 大销售,增加盈利,尽快减少库存,商 场决定采取适当的降价措施,经调查发 现,如果每件衬衫每降价1元,商场平 均每天可多售出2件。每件降价多少元, 获得最大利润?最大利润是多少?
何时获得最大利润
• 6、某化工材料经销公司购进了一种化工原料共 700千克,已知进价为30元/千克,物价部门规定其 销售价在30元~70元之间.市场调查发现:若单价定 为70元时,日均销售60千克.价格每降低1元,平均 每天多售出2千克.在销售过程中,每天还要支出其 它费用500元(天数不足一天时,按整天计算). • (1)求销售单价为x(元/千克)与日均获利y(元)之 间的函数关系式,并注明x的取值范围 • (2)何时获得的最大利润

《实际问题与二次函数》(商品最大利润问题)

《实际问题与二次函数》(商品最大利润问题)

06
研究方法与展望
研究方法的优缺点分析
数学规划方法
数学规划是一种经典的优化方法,能够解决商品最大利润问题。优点是模型简单、易于理 解,缺点是求解速度较慢,且对某些复杂问题可能需要更多的计算资源。
人工智能方法
人工智能方法如神经网络、遗传算法等,能够自适应地求解问题。优点是求解速度较快, 缺点是模型复杂,不易于理解和调试。
构建二次函数模型
根据成本、售价和销量,利用二次函数构建 利润模型。
求最大利润
通过求导数,确定最大利润点,并求出最大 利润。
优化问题的提出与解决
• 优化问题:在商品利润问题中,如何调整售价、成本和销 量等因素,以最大化利润。
优化问题的提出与解决
解决步骤
1. 确定优化目标:明确要优化的目标,如最大化利润、最小化成本等。
混合方法
混合方法是将数学规划方法和人工智能方法结合起来,取长补短,综合利用各种方法的优 点。优点是求解速度快、精度高,缺点是需要更多的计算资源和时间。
研究方法在其他领域的应用前景
生产计划
在生产计划中,如何优化资源配置、提高生产效率是一个核心问题。商品最大利润问题可以转化为生产计划问题,因此研究方法在其他领域的应用前景广阔。
2. 分析影响因素:分析对利润产生影响的因素,如售价、成本、销量等 。
优化问题的提出与解决
3. 构建优化模型
根据影响因素和目标,构建优化模型。
4. 求解最优解
利用数学方法求解最优解,如求导数、使用优化算法等。
5. 实施优化方案
根据最优解调整售价、成本和销量等因素,以实现最大利润。
04
商品利润问题的实例分析
顶点
二次函数图像的最高点或最低点,其 坐标为(-b/2a,[4ac-b^2]/4a)。

二次函数实际应用之利润最大值、面积最值问题

二次函数实际应用之利润最大值、面积最值问题

合用标准文案二次函数的实质应用——最大利润问题、面积最大 ( 小) 值问题一:最大利润问题知识要点:二次函数的一般式 y ax 2bx c ( a0 )化成极点式 ya( x b ) 24ac b 2 ,若是自变量的2a 4a取值范围是全体实数,那么函数在极点处获取最大值〔或最小值〕 .即当 a0 时,函数有最小值,并且当 xb , y 最小值 4ac b 2 ;2a4a当 a0 时,函数有最大值,并且当x b, y 最大值 4ac b 2 .2a4a若是自变量的取值范围是x 1xx 2 ,若是极点在自变量的取值范围x 1 x x 2 内,那么当xb, y 最值4ac b 2 ,若是极点不在此范围内,那么需考虑函数在自变量的取值范围内的增减2a4a ax 22性;若是在此范围内 y 随 x 的增大而增大,那么当 x x 2 时, y 最大 bx 2 c ,当 x x 1 时, y最小ax 12bx 1 c ;若是在此范围内y 随 x 的增大而减小,那么当 x x 1 时, y 最大ax 12 bx 1 c ,当 xx 2 时,y最小ax 22bx 2 c .商品定价一类利润计算公式:经常出现的数据: 商品进价;商品售价;商品销售量;涨价或降价;销售量变化;其他本钱。

总利润 =总售价 -总进价 - 其他本钱 =单位商品利润 ×总销售量-其他本钱单位商品利润 =商品定价-商品进价总售价 =商品定价 ×总销售量;总进价 =商品进价×总销售量[ 例 1]:某电子厂商投产一种新式电子厂品, 每件制造本钱为 18 元,试销过程中发现, 每个月销售量 y 〔万件〕与销售单价 x 〔元〕之间的关系能够近似地看作一次函数 y= ﹣ 2x+100 .〔利润 = 售价﹣制造本钱〕( 1 〕写出每个月的利润 z 〔万元〕与销售单价 x 〔元〕之间的函数关系式;( 2 〕当销售单价为多少元时,厂商每个月能获取 3502 万元的利润?当销售单价为多少元时,厂商每个月能获取最大利润?最大利润是多少?〔 3 〕依照相关部门规定, 这种电子产品的销售单价不能够高于 32 元,若是厂商要获取每个月不低于 350 万 元的利润,那么制造出这种产品每个月的最低制造本钱需要多少万元? 解:〔 1 〕 z= 〔 x -18 〕 y= 〔x -18 〕〔 -2x+100 〕 = -2x 2+136x-1800 ,∴ z 与 x 之间的函数解析式为 z= -2x 2 +136x-1800;〔 2 〕由 z=350 ,得 350= -2x 2+136x -1800 ,解这个方程得 x 1=25 ,x 2 =43因此,销售单价定为 25 元或 43 元,将 z =-2x 2 +136x-1800配方,得 z=-2 〔 x-34 〕 2+512 ,因此,当销售单价为 34 元时,每个月能获取最大利润,最大利润是 512 万元;(3 〕结合〔 2 〕及函数 z=-2x 2+136x ﹣ 1800 的图象〔以以下列图〕可知,当25≤x ≤43时 z ≥350 ,优秀文档又由限价 32 元,得 25 ≤x ≤32,依照一次函数的性质,得 y=-2x+100 中 y 随 x 的增大而减小,∴当 x=32时,每个月制造本钱最低最低本钱是 18 ×〔 -2 ×32+100 〕 =648 〔万元〕, 因此,所求每个月最低制造本钱为 648 万元.[ 练习 ] :1.某商品现在的售价为每件 60 元,每星期可卖出 300 件,市场检查反响:每涨价 1 元,每星期 少卖出 10 件;每降价 1 元,每星期可多卖出 20 件,商品的进价为每件 40 元,怎样定价才能使利润 最大?解:设涨价〔或降价〕为每件x 元,利润为 y 元,y 1 为涨价时的利润, y 2 为降价时的利润那么: y 1 (60 40 x)(300 10x)10( x 2 10x 600)10( x 5) 26250当 x5 ,即:定价为 65 元时, y max6250 〔元〕y 2 (60 40 x)(30020x)20( x 20)( x15)20( x 2.5) 2 6125当,即:定价为 57.5 元时, y max 6125 〔元〕综合两种情况,应定价为65 元时,利润最大.[ 例 2] : 市 “健益 〞商场购进一批 20 元 /千克的绿色食品,若是以 30?元 /千克销售,那么每天可售出400 千克.由销售经验知,每天销售量y (千克 )?与销售单价 x (元 )( x30 〕存在以以下列图所示的一次函数关系式. ⑴试求出 y 与 x 的函数关系式;⑵设 “健益 〞商场销售该绿色食品每天获取利润 P 元,当销售单价为何值时,每天可获取最大利润?最大利润是多少?⑶依照市场检查,该绿色食品每天可获利润不高出 4480 元, ?现该商场经理要求每天利润不得低于4180 元,请你帮助该商场确定绿色食品销售单价 x 的范围 (?直接写出答案 ).解:⑴设 y=kx+b 由图象可知,30k b 400,k 2040k b 200 解之得 :1000 ,b即一次函数表达式为y20x 1000 (30 x50) .⑵ P(x20) y ( x 20)( 20 x 1000)20 x 2 1 4 0 x0 2 0 0 0 0∵ a 200 ∴ P 有最大值.当 x140035 时, P max4500 〔元〕(2 20)〔或经过配方,P 20( x 35) 24500 ,也可求得最大值〕答:当销售单价为35 元 /千克时,每天可获取最大利润4500 元.⑶∵ 418020( x35) 2 4500 44801 ( x 35) 216∴ 31≤x ?≤34或 36≤x ≤39.练习 2.某公司投资 700 万元购甲、乙两种产品的生产技术和设备后, 进行这两种产品加工. 生产甲种产品每件还需本钱费 30 元,生产乙种产品每件还需本钱费 20 元.经市场调研发2合用标准文案现:甲种产品的销售单价为x〔元〕,年销售量为 y〔万件〕,当 35≤x<50 时, y 与 x 之间的函数关系式为 y=20﹣;当 50≤x≤70 时, y 与 x 的函数关系式以以下列图,乙种产品的销售单价,在 25 元〔含〕到 45 元〔含〕之间,且年销售量牢固在10 万件.物价部门规定这两种产品的销售单价之和为90 元.〔1〕当 50≤x≤70 时,求出甲种产品的年销售量y〔万元〕与 x 〔元〕之间的函数关系式.〔2〕假设公司第一年的年销售量利润〔年销售利润=年销售收入﹣生产本钱〕为W〔万元〕,那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?〔3〕第二年公司可重新对产品进行定价,在〔2〕的条件下,并要求甲种产品的销售单价x 〔元〕在 50≤x≤70 范围内,该公司希望到第二年年终,两年的总盈利〔总盈利=两年的年销售利润之和﹣投资本钱〕不低于85 万元.请直接写出第二年乙种产品的销售单价m〔元〕的范围.解:〔1〕设y与x的函数关系式为 y=kx+b〔k≠0〕,∵函数图象经过点〔 50, 10〕,〔 70, 8〕,∴,解得,因此, y=﹣0.1x+15;〔 2〕∵乙种产品的销售单价在25元〔含〕到 45元〔含〕之间,∴,解之得 45≤x≤65,①45≤x< 50时, W=〔x﹣30〕〔 20﹣〕+10〔90﹣x﹣20〕,=﹣0.2x2+16x+100,=﹣〔x2﹣ 80x+1600〕+320+100,=﹣〔x﹣40〕2+420,∵﹣<0,∴ x> 40时, W随x的增大而减小,∴当 x=45时, W 有最大值, W最大 =﹣〔45﹣ 40〕2+420=415万元;②50≤x≤65时, W=〔x﹣30〕〔﹣ 0.1x+15〕+10〔 90﹣x﹣20〕,=﹣0.1x2+8x+250,=﹣〔x2﹣80x+1600〕 +160+250,=﹣〔x﹣40〕2+410,∵﹣<0,∴ x> 40时, W随x的增大而减小,∴当 x=50时, W 有最大值, W最大 =﹣〔50﹣ 40〕2+410=400万元.综上所述,当 x=45,即甲、乙两种产品定价均为 45元时,第一年的年销售利润最大,最大年销售利润是 415万元;(3〕依照题意得,W=﹣0.1x2+8x+250+415﹣700=﹣0.1x2+8x﹣35,令 W=85,那么﹣ 0.1x2+8x﹣35=85,解得 x1=20,x2=60.又由题意知, 50≤x≤65,依照函数性质解析, 50≤x≤60,即 50≤90﹣m≤60,∴ 30≤m≤40.二、面积最大〔最小〕值问题实责问题中图形面积的最值问题解析思路为:优秀文档〔1〕解析图形的成因〔 2〕鉴别图形的形状〔 3〕找出图形面积的计算方法〔4〕把计算中要用到的所有线段用未知数表示〔5〕把线段长度代入计算方法形成图形面积的函数解析式,注意自变量的取值范围〔6〕依照函数的性质以及自变量的取值范围求出头积的最值。

九年级数学上册教学课件《最大利润问题》

九年级数学上册教学课件《最大利润问题》
怎样确定n的取值范围?
可得:0≤n≤30.
y1=-10n2+100n+6000 (0≤n≤30)
抛物线y1 =-10n2+100n+6000顶点坐标为 ,所以商品的单价上涨 元时,利润最大,为 元.
综合应用
3.某种文化衫以每件盈利20元的价格出售,每天可售出40件. 若每件降价1元,则每天可多售10件,如果每天要盈利最多,每件应降价多少元?
解:设每件应降价x元,每天的利润为y元,由题意得:y=(20-x)(40+10x) =-10x2+160x+800 =-10(x-8)2+1440 (0<x<20).当x=8时,y取最大值1440.即当每件降价8元时,每天的盈利最多。
拓展延伸
4.求函数y=-x2+6x+5的最大值和最小值.(1)0≤x≤6; (2) -2≤x≤2.
解:y=-x2+6x+5=-(x-3)2+14(1)当0≤x≤6时,当x=3时, y有最大值14,当x=0或6时,y有最小值5.
(2)当-2≤x≤2时,当x=2时,y有最大值13,当x=-2时,y有最小值-11.
解:设所得利润为y元,由题意得y=x(200-x)-30(200-x) =-x2+230x-6000 =-(x-115)2+7225 (0<x<200)当x=115时,y有最大值.即当这件商品定价为115元时,利润最大.
怎样确定m的取值范围?
可得:0≤m≤20.
降价情况下的最大利润又是多少呢?
y2=-20m2+100m+6000 (0≤m≤20)
抛物线y2=-20m2+100m+6000顶点坐标为 ,所以商品的单价下降 元时,利润最大,为 元.

二次函数与实际问题-最大利润问题

二次函数与实际问题-最大利润问题
二次函数是解决实际问题 中常用的数学工具,具有 广泛的应用领域。
2 实际问题的挑战与机

实际问题的解决需要面对 各种挑战,但也提供了发 展和创新的机遇。
3 未来的发展趋势
随着技术的进步和需求的 变化,二次函数在解决实 际问题中的应用将继续发 展和演变。
可以引入其他约束、考虑风险和不确定性,提高决策的全面性和鲁棒性。
VI. 二次函数实践与练习
1 实际问题的解决方法和演示
通过实际案例和示例演示,帮助学习者理解 和应用二次函数解决实际问题。
2 练习题
提供一些练习题,加深对二次函数和实际问 题的理解。
VII. 二次函数与实际问题-总结与展望
1 二次函数的重要性
二次函数与实际问题-最 大利润问题
I. 二次函数概述
1 什么是二次函数?
二次函数是一个在方程中有二次项的函数,一般形式为y=ax^2+bx+c。
2 二次函数的一般式和标准式
一般式为y=ax^2+bx+c,标准式为y=a(x-h)^2+k。
3 二次函数图像
二次函数的图像可以是抛物线,开口向上或向下,取决于a的正负。
通过分析实际情况建立利润函数,将利润与决策因素相联系。
2
寻找最大值
通过求导或观察图像,找到利润函数的最大值,例,演示如何使用二次函数解决最大利润问题。
IV. 二次函数在其他问题中的应用
二次函数解决投影高度 问题
通过建立二次函数模型,可 以计算出物体的最大或最小 高度。
II. 最大利润问题简介
1 什么是最大利润问题?
最大利润问题是在实际情况中,通过优化决策来实现最大化利益的问题。
2 实际应用场景

人教九年级数学上册- 最大利润问题(附习题)

人教九年级数学上册- 最大利润问题(附习题)

即降价情况下,定价57.5元时,有最大利润6125元.
(1)涨价情况下,定价65元时,有最大利润6250元. (2)降价情况下,定价57.5元时,有最大利润6125元.
综上可知: 该商品的价格定价为65元时,可获得最大利润6250元.
基础巩固
随堂演练
1.下列抛物线有最高点或最低点吗?如果有,写出这些
综合应用
3.某种文化衫以每件盈利20元的价格出售,每天可售出40 件. 若每件降价1元,则每天可多售10件,如果每天要盈利 最多,每件应降价多少元?
解:设每件应降价x元,每天的利润为y元, 由题意得:y=(20-x)(40+10x)
=-10x2+160x+800 =-10(x-8)2+1440 (0<x<20). 当x=8时,y取最大值1440. 即当每件降价8元时,每天的盈利最多。
点的坐标(用公式):
(1)y=-4x2+3x;
(2)y=3x2+x+6.
解:b 2a
3
2 4
3 8
,
4ac b2 4a
32
4 4
9, 16
最高点为
3 8
,
9 16
.
解:b 1 1 , 2a 2 3 6
4ac b2 4 3 6 12 71
,
4a
43
12
最低点为
1 6
,
71 12
课堂小结
利用二次函数解决利润问题的一般步骤: (1)审清题意,理解问题; (2)分析问题中的变量和常量以及数量之间的关系; (3)列出函数关系式; (4)求解数学问题; (5)求解实际问题.
分析:(1)根据题意,设平均每天销售A种礼盒 为x盒,B种礼盒为y盒,列二元一次方程组解 答;(2)根据题意,设A种礼盒降价m元/盒,则A 种礼盒的销售量为(10+m3 )盒,再根据总利润 =每件商品的利润×销售量”列出解析式即 可.

二次函数与实际问题 最大利润问题

二次函数与实际问题  最大利润问题

二次函数与实际问题最大利润问题1.某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价(x)定为多少元时,才能使每天所赚的利润(y)最大并求出最大利润.2.2009年度东风公司神鹰汽车改装厂开发出A型农用车,其成本价为每辆2万元,出厂价为每辆2.4万元,年销售价为10000辆,2010年为了支援西部大开发的生态农业建设,该厂抓住机遇,发展企业,全面提高A型农用车的科技含量,每辆农用车的成本价增长率为x,出厂价增长率为0.75x,预测年销售增长率为0.6x.(年利润=(出厂价﹣成本价)×年销售量)(1)求2010年度该厂销售A型农用车的年利润y(万元)与x之间的函数关系.(2)该厂要是2010年度销售A型农用车的年利润达到4028万元,该年度A型农用车的年销售量应该是多少辆3.某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?4.东海体育用品商场为了推销某一运动服,先做了市场调查,得到数据如下表:(1)以x作为点的横坐标,p作为纵坐标,把表中的数据,在图中的直角坐标系中描出相应的点,观察连接各点所得的图形,判断p与x的函数关系式;(2)如果这种运动服的买入价为每件40元,试求销售利润y(元)与卖出价格x(元/件)的函数关系式(销售利润=销售收入﹣买入支出);(3)在(2)的条件下,当卖出价为多少时,能获得最大利润?5.某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着如图所示的一次函数关系.(1)求y关于x的函数关系式;(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额一年销售产品总进价一年总开支).当销售单价x为何值时,年获利最大并求这个最大值;(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?6.为了顺应市场要求,无为县花炮厂技术部研制开发一种新产品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该厂年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末花炮厂累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?7.有一种葡萄:从树上摘下后不保鲜最多只能存放一周,如果放在冷藏室,可以延长保鲜时间,但每天仍有一定数量的葡萄变质,假设保鲜期内的重量基本保持不变,现有一位个体户,按市场价收购了这种葡萄200千克放在冷藏室内,此时市场价为每千克2元,据测算,此后每千克鲜葡萄的市场价格每天可以上涨0.2元,但是,存放一天需各种费用20元,平均每天还有1千克葡萄变质丢弃.(1)设x天后每千克鲜葡萄的市场价为P元,写出P关于x的函数关系式;(2)若存放x天后将鲜葡萄一次性出售,设鲜葡萄的销售金额为y元,写出y关于x的函数关系式;(3)问个体户将这批葡萄存放多少天后出售,可获得最大利润,最大利润q是多少?8.某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请你写出y与x之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大,最大总量是多少?9.某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足关系:m=140﹣2x.(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?10.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.11.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)是销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日的销售利润是多少元?12.某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.13.某企业投资100万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万.该生产线投产后,从第1年到第x年的维修、保养费用累计为y(万元),且y=ax2+bx,若第1年的维修、保养费用为2万元,第2年为4万元.(1)求y的解析式;(2)投产后,这个企业在第几年就能收回投资?14.某商店经销一种销售成本为每千克40元的水产品.根据市场分析,若按每千克50元销售,一个月能销售500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;(2)设销售单价为每千克x元,月销售利润为y元,求y与x之间的函数关系式;(3)当销售单价定为每千克多少元时,月销售利润最大,最大利润是多少?15.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?16.某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x (元/千克)的变化而变化,具体关系式为:w=﹣2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1)求y与x的关系式;(2)当x取何值时,y的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?17.儿童商场购进一批M型服装,销售时标价为75元/件,按8折销售仍可获利50%.商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x>0).(1)求M型服装的进价;(2)求促销期间每天销售M型服装所获得的利润W的最大值.18.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?19.国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=170﹣2x,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2与x之间的函数关系式;(2)求月产量x的范围;(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?20.某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件.(1)假定每件商品降价x元,商店每天销售这种小商品的利润是y元,请写出y与x间的函数关系式,并注明x 的取值范围.(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入﹣购进成本)21.恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?22.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?23.近年来,“宝胜”集团根据市场变化情况,采用灵活多样的营销策略,产值、利税逐年大幅度增长.第六销售公司2004年销售某型号电缆线达数万米,这得益于他们较好地把握了电缆售价与销售数量之间的关系.经市场调研,他们发现:这种电缆线一天的销量y(米)与售价x(元/米)之间存在着如图所示的一次函数关系,且40≤x≤70.(1)根据图象,求y与x之间的函数解析式;(2)设该销售公司一天销售这种型号电缆线的收入为w元.①试用含x的代数式表示w;②试问:当售价定为每米多少元时,该销售公司一天销售该型号电缆的收入最高,最高是多少元?24.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?2018年11月23日155****1869的初中数学组卷参考答案与试题解析一.解答题(共30小题)1.【分析】日利润=销售量×每件利润.每件利润为x﹣8元,销售量为100﹣10(x﹣10),据此得关系式.【解答】解:由题意得,y=(x﹣8)[100﹣10(x﹣10)]=﹣10(x﹣14)2+360(10≤a<20),∵a=﹣10<0∴当x=14时,y有最大值360答:他将售出价(x)定为14元时,才能使每天所赚的利润(y)最大,最大利润是360元.【点评】本题重在考查运用二次函数性质求最值常用配方法或公式法.2.【分析】(1)根据题意,借助于矩形面积,直接解答;(2)在(1)中,把y=8代入即可解答.【解答】解:(1)由题意可得:(4+x)(3+x)﹣3×4=y,化简得:y=x2+7x;(2)把y=8代入解析式y=x2+7x中得:x2+7x﹣8=0,解之得:x1=1,x2=﹣8(舍去).∴当边长增加1cm时,面积增加8cm2【点评】本题考查的是二次函数的实际应用,难度简单.3.【分析】(1)弄清题意和题目中的数量关系,(2)根据题意列出不等式组或方程,(3)解答.【解答】解:(1)由∴﹣1≤k≤1∴k=1或k=﹣1(1分)当k=1时,,年销售量随售价x增大而增大,不合.∴﹣1,y=﹣x+b(2分)把x=60,y=50000件=5万件代入,5=﹣×60+b,b=8∴y=﹣x+8(3分)(2)z=yx﹣40y﹣120=(﹣x+8)(x﹣40)﹣120=﹣x2+10x﹣440=﹣(x﹣100)2+60(4分)∴当x=100元时,年获利最大值为60万元.(5分)(3)令z=40,得40=﹣x2+10x﹣440整理得x2﹣200x+9600=0(6分)解得:x1=80,x2=120.(7分)由图象可知,(画图并标上数据1分)要使年获利不低于40万元,销售单价应在80元到120元之间,(说明此点1分)又因为销售单价越低,销售量越大,所以要使销售量最大,又要使年获利不低于40万元,则销售单价应定为80元.(说明此点1分)(10分)【点评】本题信息量较大,在考查提取、筛选信息,分析、解决实际问题等能力的同时,培养了同学们数形结合的思想.4.【分析】本题属于市场营销问题,销售利润=每辆车的利润×销售量,每辆车的利润=出厂价﹣成本价,其中,出厂价,成本价,销售量,都有各自对应的增长率,要正确使用.【解答】解:(1)由题意得:y=[2.4×(1+0.75x)﹣2(1+x)]×10000×(1+0.6x)=﹣1200x2+400x+4000;(2)由y=4028,即﹣1200x2+400x+4000=4028,解得x1=0.1,x2=.该年度A型农用车的年销售量=10000(1+0.6x)将x1=0.1,x2=代入得10600辆或11400辆.【点评】先有二次函数,再解一元二次方程,由一般都特殊;充分体现了两者之间的联系,对于一元二次方程的两个解是否都符合题意,一定要根据题意,通过计算,才能确定.5.【分析】(1)设花园靠墙的一边长为x(m),另一边长为,用面积公式表示矩形面积;(2)就是已知y=200,解一元二次方程,但要注意检验结果是否符合题意;即结果应该是0<x≤15.(3)由于0<x≤15,对称轴x=20,即顶点不在范围内,y随x的增大而增大.∴x=15时,y有最大值.【解答】解:(1)根据题意得:y=x•,即y=﹣x2+20x(0<x≤15)(2)当y=200时,即﹣x2+20x=200,解得x1=x2=20>15,∴花园面积不能达到200m2.(3)∵y=﹣x2+20x的图象是开口向下的抛物线,对称轴为x=20,∴当0<x≤15时,y随x的增大而增大.∴x=15时,y有最大值,y最大值=﹣×152+20×15=187.5m2即当x=15时,花园的面积最大,最大面积为187.5m2.【点评】本题考查实际问题中二次函数解析式的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.6.【分析】(1)根据利润=销售价﹣进价列关系式;(2)总利润=每个的利润×销售量,销售量为400﹣10x,列方程求解,根据题意取舍;(3)利用函数的性质求最值.【解答】解:由题意得:(1)50+x﹣40=x+10(元)(3分)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10 x2=20要使进货量较少,则每个定价为70元,应进货200个.(3分)(3)设每个定价增加x元,获得利润为y元.y=(x+10)(400﹣10x)=﹣10x2+300x+4000=﹣10(x﹣15)2+6250当x=15时,y有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)【点评】应用题中求最值需先求函数表达式,再运用函数性质求解.此题的关键在列式表示销售价格和销售量.7.【分析】(1)篱笆只有两边,且其和为18,设一边为x,则另一边为(18﹣x),根据公式表示面积;据实际意义,0<x<18;(2)根据函数性质求最值,可用公式法或配方法.【解答】解:(1)由已知,矩形的另一边长为(18﹣x)m则y=x(18﹣x)=﹣x2+18x自变量x的取值范围是0<x<18.(2)∵y=﹣x2+18x=﹣(x﹣9)2+81∴当x=9时(0<x<18),苗圃的面积最大,最大面积是81m2.又解:∵a=﹣1<0,y有最大值,∴当x=﹣时(0<x<18),y最大值==81(m2).【点评】运用函数性质求最值解决实际问题时常需考虑自变量的取值范围;二次函数求最值常用配方法和公式法.8.【分析】(1)易知是一次函数关系,由其中两点可求关系式;(2)根据利润的计算方法求关系式;(3)运用函数的性质求最值.【解答】解:(1)p与x成一次函数关系.设函数关系式为p=kx+b,则解得:k=﹣10,b=1000,∴p=﹣10x+1000经检验可知:当x=52,p=480,当x=53,p=470时也适合这一关系式∴所求的函数关系为p=﹣10x+1000;(2)依题意得:y=px﹣40p=(﹣10x+1000)x﹣40(﹣10x+1000)∴y=﹣10x2+1400x﹣40000;(3)由y=﹣10x2+1400x﹣40000可知,当x=﹣=70时,y有最大值∴卖出价格为70元时,能获得最大利润.【点评】(1)判断关系式后不要忘了验证;(2)求最值问题需先求函数表达式,再根据函数性质求解.9.【分析】(1)设直线解析式为y=kx+b,把已知坐标代入求出k,b的值后可求出函数解析式;(2)根据题意可知z=yx﹣40y﹣120,把x=100代入解析式即可;(3)令z=40,代入解析式求出x的实际值.【解答】解:(1)设y=kx+b,它过点(60,5),(80,4),,解得:,(2分)∴y=﹣x+8;(3分)(2)z=yx﹣40y﹣120=(﹣x+8)(x﹣40)﹣120=﹣x2+10x﹣440∴当x=100元时,最大年获利为60万元;(6分)(3)令z=40,得40=﹣x2+10x﹣440,整理得:x2﹣200x+9600=0,解得:x1=80,x2=120,(8分)由图象可知,要使年获利不低于40万元,销售单价应在80元到120元之间,(9分)又因为销售单价越低,销售量越大,所以要使销售量最大,且年获利不低于40万元,销售单价应定为80元.(10分)【点评】本题考查的是二次函数的实际应用.考生应学会数形结合解答二次函数的相关题型.10.【分析】(1)由已知图象上的三点坐标,设二次函数解析式为s=at2+bt+c,列方程组,求解析式;(2)求二次函数最大值,可以用公式法或者配方法;(3)第8个月公司所获利润=第8个月公司累积利润﹣第7个月公司累积利润.【解答】解:(1)设二次函数解析式为s=at2+bt+c∵图象经过(0,0),(4,0),(2,﹣2)由题意,得解得∴s=t2﹣2t(t≥0)(本题也可以选择其它三点坐标解题);(2)当s=30时,30=t2﹣2t解得t1=﹣6(不合题意,舍去),t2=10∴截止到10月末花炮厂累积利润达30万元;(3)当t=8时,s1=×82﹣2×8=16(万元)当t=7时,s2=×72﹣2×7=10.5(万元)∴第8个月公司利润为s1﹣s2=16﹣10.5=5.5(万元).【点评】本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.11.【分析】(1)根据题意:观察图象,找函数图象上升的范围及从最低到最高的横坐标的差即可得到答案;(2)直接读取x=12时,纵坐标的数值即可;(3)根据图象,使用待定系数法,设出函数的解析式,找到函数过的特殊点,可求出答案.【解答】解:(1)第一天中,从4时到16时这头骆驼的体温是上升的,它的体温从最低上升到最高需要12小时;(2)第三天12时这头骆驼的体温是39℃;(3)观察可得:函数的对称轴为x=16,且最大值为40,故设其解析式为y=a(x﹣16)2+40,且过点(12,39)将其坐标代入可得解析式为y=﹣x2+2x+24(10≤x≤22).【点评】本题考查利用图象获取信息的能力及二次函数的实际应用,要求学生会使用待定系数法求函数的解析式.12.【分析】本题属于市场营销问题,销售额=每千克市场价×销售量,每千克市场价,销售量都与天数有关,根据题意表达这两个式子很关键.利润=销售额﹣收购价﹣各种费用,由二次函数性质求利润的最大值.【解答】解:(1)设x天后每千克鲜葡萄的市场价为p元,则有p=0.2x+2;(2)若存放x天后将鲜葡萄一次性出售,设鲜葡萄的销售总额为y元,则有y=(200﹣x)(0.2x+2),即y=﹣0.2x2+38x+400;(3)设将这批葡萄存放x天后出售,则有q=(200﹣x)(0.2x+2)﹣400﹣20x=﹣0.2x2+18x=﹣0.2(x﹣45)2+405,因此这批葡萄存放45天后出售,可获得最大利润405元.【点评】把实际问题转化为一次函数,二次函数,用二次函数的性质解答题目的问题,充分体现函数在生活中的应用价值,培养学生的学习兴趣.13.【分析】(1)生产总量=每台机器生产的产品数×机器数;(2)根据函数性质求最值.【解答】解:(1)根据题意得:y=(80+x)(384﹣4x)=﹣4x2+64x+30720(0<x<96);(2)∵y=﹣4x2+64x+30720=﹣4(x2﹣16x+64)+256+30720=﹣4(x﹣8)2+30976,∴当x=8时,y有最大值30976,则增加8台机器,可以使每天的生产总量最大,最大总量是30976件.【点评】认真审题,表示函数关系式是关键.14.【分析】(1)由销售利润=(销售价﹣进价)×销售量可列出函数关系式;(2)应用二次函数的性质,求最大值.【解答】解:(1)依题意,y=m(x﹣20),代入m=140﹣2x化简得y=﹣2x2+180x﹣2800.(2)y=﹣2x2+180x﹣2800=﹣2(x2﹣90x)﹣2800=﹣2(x﹣45)2+1250.当x=45时,y最大=1250.∴每件商品售价定为45元最合适,此销售利润最大为1250元.【点评】本题考查的是二次函数的应用,难度一般,用配方法求出函数最大值即可.15.【分析】(1)利润=单件利润×销售量;(2)根据利润的计算方法表示出关系式,解方程、画图回答问题.【解答】解:(1)若商店经营该商品不降价,则一天可获利润100×(100﹣80)=2000(元);(3分)(2)①依题意得:(100﹣80﹣x)(100+10x)=2160(5分)即x2﹣10x+16=0解得:x1=2,x2=8(6分)经检验:x1=2,x2=8都是方程的解,且符合题意,(7分)答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(8分)②依题意得:y=(100﹣80﹣x)(100+10x)(9分)∴y=﹣10x2+100x+2000=﹣10(x﹣5)2+2250 (10分)画草图:观察图象可得:当2≤x≤8时,y≥2160,∴当2≤x≤8时,商店所获利润不少于2160元.(13分)【点评】本题关键是求出利润的表达式,体现了函数与方程、不等式的关系.16.【分析】(1)本题属于市场营销问题,销售利润=一件利润×销售件数,一件利润=销售价﹣成本,日销售量y是销售价x的一次函数,所获利润W为二次函数.(2)运用二次函数的性质,可求最大利润.【解答】解:(1)设此一次函数关系式为y=kx+b,则,解得k=﹣1,b=40故一次函数的关系式为y=﹣x+40.(2)设所获利润为W元,则W=(x﹣10)(40﹣x)=﹣x2+50x﹣400=﹣(x﹣25)2+225所以产品的销售价应定为25元,此时每日的销售利润为225元.【点评】本题涉及一次函数,二次函数的求法,及二次函数性质的运用,需要根据题意,逐步求解,由易到难,搞清楚这两个函数之间的联系.17.【分析】(1)总利润=每件利润×销售量.设每天利润为w元,每件衬衫应降价x元,据题意可得利润表达式,再求当w=1200时x的值;(2)根据函数关系式,运用函数的性质求最值.【解答】解:设每天利润为w元,每件衬衫降价x元,根据题意得w=(40﹣x)(20+2x)=﹣2x2+60x+800=﹣2(x﹣15)2+1250(1)当w=1200时,﹣2x2+60x+800=1200,解之得x1=10,x2=20.根据题意要尽快减少库存,所以应降价20元.答:每件衬衫应降价20元.(2)解:商场每天盈利(40﹣x)(20+2x)=﹣2(x﹣15)2+1250.所以当每件衬衫应降价15元时,商场盈利最多,共1250元.答:每件衬衫降价15元时,商场平均每天盈利最多.【点评】本题重在考查根据题意写出利润的表达式是此题的关键.18.【分析】(1)根据条件解方程组易得解析式;(2)收回投资即纯利润=投资(包括购设备、维修、保养).【解答】解:(1)由题意,x=1时,y=2;x=2时,y=2+4=6,分别代入y=ax2+bx得解得:∴y=x2+x.(2)设g=33x﹣100﹣x2﹣x,则g=﹣x2+32x﹣100=﹣(x﹣16)2+156由于当1≤x≤16时,g随x的增大而增大,故当x=3时,g=﹣(x﹣16)2+156=﹣13<0,当x=4时,g=﹣(x﹣16)2+156=﹣(4﹣16)2+156=12>0,即第4年可收回投资.【点评】第二个问题可解方程求解.但运用函数知识解题解决问题的面更宽阔些.19.【分析】(1)根据“销售单价每涨1元,月销售量就减少10千克”,可知:月销售量=500﹣(销售单价﹣50)×10.由此可得出售价为55元/千克时的月销售量,然后根据利润=每千克的利润×销售的数量来求出月销售利润;(2)方法同(1)只不过将55元换成了x元,求的月销售利润变成了y;(3)得出(2)的函数关系式后根据函数的性质即可得出函数的最值以及相应的自变量的值.【解答】解:(1)∵当销售单价定为每千克55元时,则销售单价每涨(55﹣50)元,少销售量是(55﹣40)×10千克,∴月销售量为:500﹣(55﹣50)×10=450(千克),所以月销售利润为:(55﹣40)×450=6750元;(2)当销售单价定为每千克x元时,月销售量为:[500﹣(x﹣50)×10]千克.每千克的销售利润是:(x﹣40)元,所以月销售利润为:y=(x﹣40)[500﹣(x﹣50)×10]=(x﹣40)(1000﹣10x)=﹣10x2+1400x﹣40000,。

最大利润问题

最大利润问题

1.某商店购进一批单价为16元的日用品,销售一段时间后,为了获取更多利润, 商店决定提高销售价格,经试验发现,若按每件20元的价格销售时,每月能卖360件; 若按每件25元的价格销售时,每月能卖210件.假定每月销售件数y(件)是价格x( 元/件)的一次函数. (1)试求y 与x 之间的函数关系式;(2)在商品不积压,且不考虑其他因素的条件下,问销售价格为多少时,才能使每月获得最大利润?每月的最大利润是多少?(总利润=总收入-总成本).2.某旅社有客房120间,每间房的日租金为50元时,每天都客满,旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?3.某商场以80元/件的价格购进西服1000件,已知每件售价为100元时,可全部售出.如果定价每提高1%,则销售量就下降0.5%,问如何定价可使获利最大?(总利润=总收入-总成本).4.已知a 2-5ab+6b 2=0,则abb a 等于_______5.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程.若该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前七个月的利润总和与t之间的关系)为s=12t2-2t.(1)第几个月末时,公司亏损最多?为什么?(2)第几个月末时,公司累积利润可达30万元?(3)求第8个月公司所获利润是多少万元?6.启明公司生产某种产品,每件成本是3元,售价是4元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x( 万元)时,产品的年销售量是原销售量的y倍,且y=277101010xx-++. 如果把利润看作是销售总额减去成本和广告费:(1)试写出年利润s(万元)与广告费x(万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大?最大年利润是多少万元?(2)把(1)中的最大利润留出3万元做广告,其余的资金投资新项目,现有6个项目可供选择,各项目每股投资金额和预计年收益如下表:如果每个项目只能投一股,且要求所有投资项目的收益总额不得低于1.6万元, 问有几种符合要求的方式?写出每种投资方式所选的项目.7.如图,已知△ABC 是一等腰三角形铁板余料,其中AB=AC=20cm,BC=24cm.若在△ABC 上截出一矩形零件DEFG,使EF 在BC 上,点D 、G 分别在边AB 、AC 上. 问矩形DEFG 的最大面积是多少?F BGDCA8.如图,在Rt△ABC 中,∠ACB=90°,AB=10,BC=8,点D 在BC 上运动(不运动至B,C),DE∥AC,交AB 于E,设BD=x,△ADE 的面积为y.(1)求y 与x 的函数关系式及自变量x 的取值范围;(2)x 为何值时,△ADE 的面积最大?最大面积是多少?EBDA9.如图16,在平面直角坐标系中,直线y =x 轴交于点A ,与y 轴交于点C,抛物线2(0)y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标; (2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;x答案:1.(1)设y=kx+b,则∵当x=20时,y=360;x=25时,y=210.∴3602021025k bk b=+⎧⎨=+⎩, 解得30960kb=-⎧⎨=⎩∴y=-30x+960(16≤x≤32)(2)设每月所得总利润为w元,则 w=(x-16)y=(x-16)(-30x+960)=-30(x-24)2+ 1920.∵-30<0,∴当x=24时,w有最大值.即销售价格定为24元/件时,才能使每月所获利润最大, 每月的最大利润为1920元. 2.设每间客房的日租金提高x个5元(即5x元),则每天客房出租数会减少6x间,客房日租金总收入为y=(50+5x)(120-6x)=-30(x-5)2+6750.当x=5时,y有最大值6750,这时每间客房的日租金为50+5×5=75元. 客房总收入最高为6750元.3.商场购这1000件西服的总成本为80×1000=8000元.设定价提高x%, 则销售量下降0.5x%,即当定价为100(1+x%)元时,销售量为1000(1-0.5x%)件.故y=100(1+x%)·1000(1-0.5x%)-8000=-5x2+500x+20000=-5(x-50)2+32500.当x=50时, y 有最大值32500.即定价为150元/件时获利最大,为32500元.5.(1)s=12(t-2)2-2.故第2个月末时公司亏损最多达2万元.(2)将s=30代入s=12t2-2t,得30=12t2-2t,解得t1=10,t2=-6(舍去).即第10个月末公司累积利润达30万元.(3)当t=7时,s=12×72-2×7=10.5,即第7个月末公司累积利润为10.5万元;当t=8时,s=12×82-2×8 =16,即第8个月末公司累积利润为16万元. 16-10.5=5.5万元.故第8个月公司所获利润为5.5万元.6.(1)s=10×277101010xx⎛⎫-++⎪⎝⎭×(4-3)-x=-x2+6x+7.当x=62(1)-⨯-=3 时,S 最大=24(1)764(1)⨯-⨯-⨯-=16.∴当广告费是3万元时,公司获得的最大年利润是16万元.(2)用于再投资的资金有16-3=13万元.有下列两种投资方式符合要求:① 取A 、B 、E 各一股,投入资金为 5+2+6=13万元,收益为0.55+0.4+0.9=1.85万元>1.6万元.② 取B 、D 、E 各一股,投入资金为 2+4+6=12万元<13万元,收益为0.4+0.5+0.9=1.8万元>1.6万元 .7.过A 作AM⊥BC 于M,交DG 于N,则=16cm. 设DE=xcm,S 矩形=ycm 2,则由△ADG∽△ABC,故AN DG AM BC =,即161624x DG-=,故DG=32(16-x). ∴y=DG·DE=32(16-x)x=-32(x 2-16x)=-32(x-8)2+96,从而当x=8时,y 有最大值96.即矩形DEFG 的最大面积是96cm 2.8.(1)在Rt△ABC 中=∴tanB=6384=. ∵DE∥AC,∴∠BDE=∠BCA=90°.∴DE=BD·tanB=34x,CD=BC-BD=8-x.设△ADE 中DE 边上的高为h,则∵DE∥AC,∴h=CD.∴y=12DE ·CD=1324x ⨯×(8-x) ,即y= 238x -+3x.自变量x 的取值范围是0<x<8.(2)x=3328-⎛⎫⨯- ⎪⎝⎭=4时,y 最大=234038348⎛⎫⨯-⨯- ⎪⎝⎭⎛⎫⨯- ⎪⎝⎭=6. 即当x=4时,△ADE 的面积最大,为6.9.解:(1)直线y =x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(0C ,························ 1分 点A C ,都在抛物线上,03a c c⎧=++⎪∴⎨⎪=⎩3a c ⎧=⎪∴⎨⎪=⎩ ∴抛物线的解析式为2y x x =-··············· 3分 ∴顶点1F ⎛ ⎝⎭ ·························· 4分 (2)存在 ······························· 5分1(0P ······························ 7分2(2P ······························ 9分。

二次函数与实际问题中利润问题(附答案)

二次函数与实际问题中利润问题(附答案)
如果设果园增种x棵橙子树,总产量为y个,则
②T恤衫何时获得最大利润,销售量与单价满足如下关系:在一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.当销售单价为多少元时,可以获得最大利润,最大利润是多少元?
(1)写出售价x(元/件)与每天所得利润y(元)之间的函数关系式;
(2)每件定价多少元时,才能使一天的利润最大?
⑥纯牛奶何时利润最大:
6.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元~70元之间.市场调查发现:若每箱发50元销售,平均每天可售出90箱,价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.
(2)当销售单价定为55元时,计算出月销售量和销售利润;
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
(1)
(2)
(3)
⑧化工材料何时利润最大:
8 .某化工材料经销公司购进了一种化工原料共700千克,已知进价为30元/千克,物价部门规定其销售价在30元~70元之间.市场调查发现:若单价定为70元时,日均销售60千克.价格每降低1元,平均每天多售出2千克.在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算).
设销售价为x元(x≤13.5元),利润是y元,则
③日用品何时获得最大利润:
3.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?
设销售价为x元(x≥30元),利润为y元,则
二次函数y=ax2+bx+c(a≠0)的性质:

实际问题与二次函数------最大利润问题

实际问题与二次函数------最大利润问题

22.3.2实际问题与二次函数------最大利润问题一、教学目标:1、知识与技能:通过探究实际问题与二次函数关系,能用配方法或公式法求二次函数最值,并由自变量的取值范围确定实际问题的最值。

2、过程与方法:(1)、通过研究生活中实际问题,体会建立数学建模的思想. (2)、通过学习和探究“销售利润”问题,渗透转化及分类的数学思想方法.3、情感态度:通过将“二次函数的最大值”的知识灵活用于实际,让学生亲自体会到学习数学的价值,从而提高学生学习数学的兴趣。

二、学情分析:学生已经学习了二次函数的定义、图象和性质,学习了列代数式,列方程解应用题,这些内容的学习为本节课奠定了基础,使学生具备了一定的建模能力,但运用二次函数的知识解决实际问题要求学生能比较灵活的运用知识,对学生来说要完成这一建模过程难度较大。

三、教学重难点:教学重点:1、理解数学建模的基本思想,能从实际问题中抽象出二次函数的数学模型。

2、能根据实际问题,确立二次函数解析式,并用配方法或公式法求最值教学难点:从实际情景中抽象出函数模型。

四、教学过程:【活动1】小视频导入本节课的探究内容:某运动服的进价为每套40元,售价是每套60元时,每星期可卖出300套,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10套,每降价1元,每星期可多卖出20套,问:如何定价才能使利润最大?(设计说明:教师通过小视频将这个实际问题呈现给学生,但本问题是一道较复杂的市场营销问题,不能直接建立函数模型,需要分类讨论,初中学生分类讨论的思想较薄弱,这给解题造成了障碍,造成学习上的困难,因此,并没有马上去处理这个问题而是先进行一下知识储备。

)【活动2】小组合作探究解决自主学习中存在的问题:1、与利润有关的几个等式:(1)总价、单价、数量的关系;(2)单件利润、售价、进价的关系;(3)总利润、单件利润、数量的关系。

2、如何求2(0)y ax bx c a=++≠的最值?你有几种方法?3、二次函数2=-+的对称轴是直线,顶点坐标是y x2(3)5当x= 时,y有最值,是。

二次函数与实际问题中利润问题(附答案)

二次函数与实际问题中利润问题(附答案)
(1)写出售价x(元/箱)与每天所得利润w(元)之间的函数关系式;
(2)每箱定价多少元时,才能使平均每天的利润最大?最大利润是多少?
⑦水产品何时利润最大:
.某商店销售一种销售成本为40元的水产品,若按50元/千克销售,一月可售出5000千克,销售价每涨价1元,月销售量就减少10千克.
(1)写出售价x(元/千克)与月销售利润y(元)之间的函数关系式;
二次函数y=ax2+bx+c(a≠0)的性质:
顶点式,对称轴和顶点坐标公式:
利润=售价-进价
总利润=每件利润×销售数量
①何时橙子总产量最大:
1.某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.增种多少棵橙子树时,总产量最大?
求销售单价为x(元/千克)与日均获利y(元)之间的函数关系式,并注明x的取值范围(提示:日均获利=每千克获利与×均销售量-其它费用)和获得的最大利润.
(2)当销售单价定为55元时,计算出月销售量和销售利润;
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
(1)
(2)
(3)
⑧化工材料何时利Βιβλιοθήκη 最大:8 .某化工材料经销公司购进了一种化工原料共700千克,已知进价为30元/千克,物价部门规定其销售价在30元~70元之间.市场调查发现:若单价定为70元时,日均销售60千克.价格每降低1元,平均每天多售出2千克.在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算).
如果设果园增种x棵橙子树,总产量为y个,则

中考数学复习---函数的实际应用之利润最值问题专项练习(含答案)

中考数学复习---函数的实际应用之利润最值问题专项练习(含答案)

中考数学复习---函数的实际应用之利润最值问题专项练习(含答案)1.某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(1)求y 关于x 的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.【答案】(1)()y 309601032x x =−+≤≤(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元【分析】(1)设()0y kx b k =+≠,把20x =,360y =和30x =,60y =代入求出k 、b 的值,从而得出答案;(2)根据总利润=每件利润×每月销售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案.(1)解:设()0y kx b k =+≠,把20x =,360y =和30x =,60y =代入可得203603060k b k b +⎧⎨+⎩==,解得30960k b =−⎧⎨=⎩, 则()y 309601032x x =−+≤≤;(2)解:每月获得利润()()3096010P x x =−+−()()303210x x =−+−()23042320x x =−+−()230213630x =−−+. ∵300−<,∴当21x =时,P 有最大值,最大值为3630.答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元.【点睛】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值.2.某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M 元,结合题意,根据二次函数的性质,计算得利润最大值对应的x 的值,从而得到答案.【详解】(1)由题意列方程得:(x +40-30) (300-10x )=3360解得:x 1=2,x 2=18∵要尽可能减少库存,∴x 2=18不合题意,故舍去∴T 恤的销售单价应提高2元;(2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=()210104000x −−+∴当x =10时,M 最大值=4000元∴销售单价:40+10=50元∴当服装店将销售单价50元时,得到最大利润是4000元.【点睛】本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.3.某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y (万件)与售价x (元/件)之间满足函数关系式y =24-x ,第一年除60万元外其他成本为8元/件.(1)求该产品第一年的利润w (万元)与售价x 之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?【答案】(1)232252w x x =-+-(2)①第一年的售价为每件16元,②第二年的最低利润为61万元.【分析】(1)由总利润等于每件产品的利润乘以销售的数量,再减去投资成本,从而可得答案;(2)①把4w =代入(1)的函数解析式,再解方程即可,②由总利润等于每件产品的利润乘以销售的数量,再减去投资成本,列函数关系式,再利用二次函数的性质求解利润范围即可得到答案.(1)解:由题意得:()860w x y =--()()82460x x =---232252,x x =-+-(2)①由(1)得:当4w =时,则2322524,x x -+-=即2322560,x x -+=解得:1216,x x ==即第一年的售价为每件16元, ② 第二年售价不高于第一年,销售量不超过13万件,16,2413x x ì£ï\í-?ïî解得:1116,x # 其他成本下降2元/件,∴()()2624430148,w x x x x =---=-+-对称轴为()3015,21x =-=? 10,a =-<∴ 当15x =时,利润最高,为77万元,而1116,x #当11x =时,513461w =?=(万元)当16x =时,108476w =?= (万元)6177,w \#所以第二年的最低利润为61万元.【点睛】本题考查的是二次函数的实际应用,二次函数的性质,理解题意,列出函数关系式,再利用二次函数的性质解题是关键.4.某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.(1)求该水果每次降价的百分率;(2)从第二次降价的第1天算起,第x 天(x 为整数)的销量及储藏和损耗费用的相关信息如下表所示: 时间(天)x 销量(斤)120﹣x 储藏和损耗费用(元) 3x 2﹣64x+400已知该水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?【答案】(1)10%;(2)y =﹣3x 2+60x+80,第9天时销售利润最大,最大利润是377元【解析】【分析】(1)根据题意,可以列出相应的方程,从而可以求得相应的百分率;(2)根据题意和表格中的数据,可以求得y 与x (1≤x <10)之间的函数解析式,然后利用二次函数的性质可以求出第几天时销售利润最大,最大利润是多少.【详解】解:(1)设该水果每次降价的百分率为x ,10(1﹣x )2=8.1,解得,x 1=0.1,x 2=1.9(舍去),答:该水果每次降价的百分率是10%;(2)由题意可得,y =(8.1﹣4.1)×(120﹣x )﹣(3x 2﹣64x+400)=﹣3x 2+60x+80=﹣3(x ﹣10)2+380, ∵1≤x <10,∴当x =9时,y 取得最大值,此时y =377,由上可得,y 与x (1≤x <10)之间的函数解析式是y =﹣3x 2+60x+80,第9天时销售利润最大,最大利润是377元.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和方程的知识解答.5.国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示: 水果单价甲 乙 进价(元/千克)x 4x + 售价(元/千克) 20 25已知用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同.(1)求x 的值; (2)若超市购进这两种水果共100千克,其中甲种水果的重量不低于乙种水果重量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?【答案】(1)16;(2)购进甲种水果75千克,则乙种水果25千克,获得最大利润425元【分析】(1)根据用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同列出分式方程,解之即可;(2)设购进甲种水果m 千克,则乙种水果100-m 千克,利润为y ,列出y 关于m 的表达式,根据甲种水果的重量不低于乙种水果重量的3倍,求出m 的范围,再利用一次函数的性质求出最大值.【详解】解:(1)由题意可知:120015004x x =+,解得:x=16,经检验:x=16是原方程的解;(2)设购进甲种水果m千克,则乙种水果100-m千克,利润为y,由题意可知:y=(20-16)m+(25-16-4)(100-m)=-m+500,∵甲种水果的重量不低于乙种水果重量的3倍,∴m≥3(100-m),解得:m≥75,即75≤m<100,在y=-m+500中,-1<0,则y随m的增大而减小,∴当m=75时,y最大,且为-75+500=425元,∴购进甲种水果75千克,则乙种水果25千克,获得最大利润425元.【点睛】本题考查了分式方程和一次函数的实际应用,解题的关键是读懂题意,列出方程和函数表达式.6.某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成份每千克含铁42毫克配料表原料每千克含铁甲食材50毫克乙食材10毫克规格每包食材含量每包单价A包装1千克45元B包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A 的数量不低于B 的数量,则A 为多少包时,每日所获总利润最大?最大总利润为多少元?【答案】(1)甲、乙两种食材每千克进价分别为40元、20元;(2)①每日购进甲食材400千克,乙食材100千克;②当A 为400包时,总利润最大.最大总利润为2800元【分析】(1)设乙食材每千克进价为a 元,根据用80元购买的甲食材比用20元购买的乙食材多1千克列分式方程即可求解;(2)①设每日购进甲食材x 千克,乙食材y 千克.根据每日用18000元购进甲、乙两种食材并恰好全部用完,利用进货总金额为180000元,含铁量一定列出二元一次方程组即可求解;②设A 为m 包,根据题意,可以得到每日所获总利润与m 的函数关系式,再根据A 的数量不低于B 的数量,可以得到m 的取值范围,从而可以求得总利润的最大值.【详解】解:(1)设乙食材每千克进价为a 元,则甲食材每千克进价为2a 元, 由题意得802012a a−=,解得20a =. 经检验,20a =是所列方程的根,且符合题意.∴240a =(元).答:甲、乙两种食材每千克进价分别为40元、20元.(2)①设每日购进甲食材x 千克,乙食材y 千克.由题意得()402018000501042x y x y x y +=⎧⎨+=+⎩,解得400100x y =⎧⎨=⎩ 答:每日购进甲食材400千克,乙食材100千克.②设A 为m 包,则B 为()500200040.25m m −=−包. 记总利润为W 元,则 ()45122000418000200034000W m m m =+−−−=−+.A 的数量不低于B 的数量,∴20004m m ≥−,400m ≥.30k =−<,∴W 随m 的增大而减小。

最大利润问题

最大利润问题

实际问题与二次函数学习目标:1.掌握商品经济等问题中的相等关系的寻找方法,并会应用函数关系式求利润的最值;2.会应用二次函数的性质解决实际问题.基础练习:1.如何求二次函数y=ax2+bx+c (a ≠0)的最值?有哪几种方法?写出求二次函数最值的公式.(1)配方法求最值 (2)公式法求最值2.当x= 时,二次函数y=-x2+2x -2有最大值.3、某种品牌的电脑进价为3000元,售价3580元.①十月份售出20台,则每台电脑的利润为 ,十月份的利润为 .②十一月份每台售价降低100元,结果比十月份多售出10台,则销售每台电脑的利润为 ,十一月份的利润为 .销售问题常用数量关系:每件产品的利润=售价 - 进价销售总利润=每件产品的利润×销售数量一、自主初学问题1. 某商品现在的售价是每件60元,每星期可卖出300件。

市场调查反映:如果调整价 格 ,每涨价1元,每星期要少卖出10件;已知商品的进价为每件40元,要想获得 6000元的利润,该商品应定价为多少元?问题2. 某商品现在的售价是每件60元,每星期可卖出300件。

市场调查反映:如果调整价 格 ,每涨价1元,每星期要少卖出10件,已知商品的进价为每件40元.该商品定价 为多少元时,商场能获得最大利润?解这类题目的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;2b ac b x=-y a 4a 4-当时,有最大(小)值2二、小组合学某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?在上题中,若商场规定试销期间获利不得低于40%又不得高于60%,则销售单价定为多少时,商场可获得最大利润?最大利润是多少?三、迁移再学:某超市经销一种成本为每件40元的商品.据市场调查,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件.设销售单价为x元(x≥50),一周的销售量为y件.(1)写出y与x的函数关系式(标明x的取值范围)(2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过10000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?本课小结:1、谈谈这节课你的收获。

中考数学总复习《最大利润问题(一次函数的实际应用)》专题训练(附答案)

中考数学总复习《最大利润问题(一次函数的实际应用)》专题训练(附答案)

中考数学总复习《最大利润问题(一次函数的实际应用)》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.某学校准备购买A、B两种型号的垃圾箱,通过市场调研发现:买2个A型垃圾箱和1个B型垃圾箱共需100元;买1个A型垃圾箱和2个B型垃圾箱共需110元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)若该校需购买A,B两种型号的垃圾箱共30个,其中A型垃圾箱不超过16个,求购买垃圾箱的总费用w (元)与A型垃圾箱的数量a(个)之间的函数关系式,并说明总费用至少要多少元?2.春节临近,为了满足顾客的消费需求,某大型商场计划用200000元购进一批家电,这批家电的进价和售价如表:类别彩电冰箱洗衣机进价(元/台)200026001000售价(元/台)230028001100若在现有资金允许的范围内,计划购买三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商场购买冰箱x台.(1)用含x的代数式表示洗衣机的台数;(2)商场最多可以购买冰箱多少台?(3)购买冰箱多少台时,能使商场销售完这批家电后获得的利润最大?最大利润为多少元?3.某商场准备购进甲、乙两种服装进行销售,甲种服装每件进价160元,售价220元;乙种服装每件进价120元,售价160元.现计划购进两种服装共100件,其中甲种服装不少于60件.设购进甲种服装x件,两种服装全部售完,商场获利y元.(1)求y与x之间的函数关系式.(2)若购进100件服装的总费用不超过15000元,则最大利润为多少元?4.某商店11月份购进甲、乙两种配件共花费1350元,其中甲种配件6元/个,乙种配件15元/个.12月份,这两种配件的进价上调为:甲种配件8元/个,乙种配件18元/个.(1)若该店12月份购进这两种配件的数量与11月份都相同,将多支付货款350元,求该店11月份购进甲、乙两种配件分别是多少个?(2)若12月份将这两种配件进货总量减少到120个,设购进甲种配件a个,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若乙种配件不少于30个,则12月份该店需要支付这两种配件的货款最少应是多少元?5.某商店准备购进甲乙两种服装共100件进行销售,其中甲种服装每件利润40元,乙种服装每件利润50 x≥)件,两种服装全部售完,商场获利y元.元.设购进甲种服装x(30(1)求y与x之间的函数关系式;(2)该店购进甲,乙服装各多少件时,才能使销售总利润最大?最大利润为多少元?(3)实际进货时,厂家对甲服装的出厂价下调a(020<<)元,且限定该店最多只能购进甲服装60件.若a该店保持售价不变,请你根据以上信息,设计出使这100件服装总利润最大的进货方案.6.为迎接“国家级文明卫生城市”检查,我市环卫局准备购买A,B两种型号的垃圾箱.通过市场调研发现:购买1个A型垃圾箱和2个B型垃圾箱共需170元;购买3个A型垃圾箱和1个B型垃圾箱共需210元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)该市现需要购买A,B两种型号的垃圾箱共30个,其中购买A型垃圾箱不超过16个.①求购买垃圾箱的总花费W(元)与A型垃圾箱x(个)之间的函数关系式;①当购买A型垃圾箱个数多少时总费用最少,最少费用是多少?7.某商店销售3台A 型和5台B 型电脑的利润为3000元,销售5台A 型和3台B 型电脑的利润为3400元.(1)求每台A 型电脑和B 型电脑的销售利润各多少元?(2)该商店计划一次购进两种型号的电脑共50台,设购进A 型电脑n 台,这50台电脑的销售总利润为w 元.请写出w 关于n 的函数关系式,并判断总利润能否达到26000元,请说明理由.8.第19届亚运会已于2023年9月23日至10月8日在中国浙江杭州成功举行.这是党的二十大胜利召开之后我国举办的规模最大、水平最高的国际综合性体育赛事,举国关注,举世瞩目.杭州亚运会三个吉祥物分别取名“琮琮”“宸宸”“莲莲”.某专卖店购进A ,B 两种杭州亚运会吉祥物礼盒进行销售.A 种礼盒每个进价160元,售价220元;B 种礼盒每个进价120元,售价160元.现计划购进两种礼盒共100个,其中A 种礼盒不少于60个.设购进A 种礼盒x 个,两种礼盒全部售完,该专卖店获利y 元.(1)求y 与x 之间的函数关系式;(2)若购进100个礼盒的总费用不超过15000元,求最大利润为多少元?(3)在(2)的条件下,该专卖店对A 种礼盒以每个优惠(020)m m <<元的价格进行优惠促销活动,B 种礼盒每个进价减少n 元,售价不变,且4m n -=,若最大利润为4900元,请直接..写出m 的值.9.某教育科技公司销售A,B两种多媒体,这两种多媒体的进价与售价如表所示:A B进价(万元/套)3 2.4售价(万元/套) 3.3 2.8(1)若该教育科技公司计划购进两种多媒体共50套,共需资金132万元,该教育科技公司计划购进A,B两种多媒体各多少套?(2)若该教育科技公司计划购进两种多媒体共50套,其中购进A种多媒体m套(1020<<),当把购进的m两种多媒体全部售出,求购进A种多媒体多少套时,能获得最大利润,最大利润是多少万元?10.某商店购进一批牛奶进行销售,据了解,每箱甲种牛奶的进价比每箱乙种牛奶的进价少5元,且购进2箱甲种牛奶和3箱乙种牛奶共需215元.(1)问甲、乙两种牛奶每箱的进价分别为多少元?(2)若每箱甲种牛奶的售价为50元,每箱乙种牛奶的售价为60元,考虑到市场需求,商店决定共购进这两种牛奶共300箱,且购进甲种牛奶的数量不少于100箱.设购进甲种牛奶m箱,总利润为W元,请求出总利润W(元)与m(箱)的函数关系式,并根据函数关系式求出获得最大利润的进货方案.(1)学校用4920元以进价购进这批篮球和足球,求购进篮球和足球各多少个;(2)设该电商所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数表达式(不要求写出x的取值范围);(3)因资金紧张,电商的进货成本只能在4745元的限额内,请为学校设计一种进货方案使得尽可能多地购买篮球和足球,同时要使电商利润最小;并求出利润的最小值.13.陕西洛川盛产苹果,政府要将其发展成“帮助群众脱贫致富、推动乡村振兴”的特色产业.王师傅在政府的扶持下种植了A、B两个品种的苹果共50亩,两种苹果的成本和售价如下表所示:品种成本(万元/亩)售价(万元/亩)A 1.1 2.2B 1.3 2.7设种植A品种苹果x亩,若50亩地全部种植两种苹果共获得利润y万元.(1)求y与x之间的函数关系式;(2)若A品种苹果的种植亩数不少于B品种苹果种植亩数的1.5倍,则种植A品种苹果多少亩时利润最大?并求出最大利润.14.某校在开展数学文化节知识竞赛中,对优秀选手予以评奖,并颁发奖品,奖品有甲、乙、丙三种类型.已知1个甲种奖品的价格是1个丙种奖品价格的2倍,1个乙种奖品的价格比1个甲种奖品的价格少20元.若决定:今年新采购100台污水处理设备用以增强公司的污水处理能力.经过市场考查,诚信机械设备公司(以下简称:诚信公司)推荐了A、B两种型号的设备供选择,其中每台的报价与月处理污水量如表:经核算,若按诚信公司的报价:购买一台A型设备将比购买一台B型设备多20万元,购买2台A型设备会比购买3台B型设备少40万元.(1)求m,n的值;(2)诚信公司最初给出的销售条件是:购买B型设备原则上不予优惠;购买A型设备不超过20台时无优惠;购买20台以上时,超过20台的部分每台可按报价的7.5折销售.并且由于受库存和产能等因素限制,在规定的交货期限内,诚信公司最多只能提供80台A型设备,而富春紫光需要这批新购进的100台设备月处理污水总能力不能低于20600吨①富春紫光买下这批设备最少需要支付多少购买资金?①经过反复谈判协商,诚信公司最终同意:在富春紫光按照最初的销售条件全部买下诚信公司库存的50台A型设备的前提下,再给予B 型设备如下的优惠措施:购买B 型设备不超过a 台时无优惠;购买a 台以上时,超过a 台的部分每台可按报价的8折销售.如果富春紫光想要用不超过7850万元的资金买下这批污水处理设备,试求a 的最大值?参考答案: 1.(1)每个A 型垃圾箱30元,每个B 型垃圾箱40元(2)购买垃圾箱的总费用w (元)与A 型垃圾箱的数量a (个)之间的函数关系式为101200w a =-+,总费用至少要1040元2.(1)1003x -(2)27台(3)购买冰箱27台时,能使商场销售完这批家电后获得的利润最大,最大利润为23500元3.(1)204000y x =+(2)当75x =时,y 最大,最大值为5500元4.(1)该店11月份购进甲种配件100个,购进乙种配件50个;(2)102160w a =-+;(3)12月份该店需要支付这两种配件的货款最少应是1260元.5.(1)105000y x =-+(2)当购进甲服装30件,乙服装70件时,总利润最大,为4700元(3)购进60件甲服装,40件乙服装时,总利润最大6.(1)每个A 型垃圾箱50元,每个B 型垃圾箱60元.(2)①()101800016W x x =-+≤≤,其中x 为整数.①购买16个A 型垃圾箱时总费用最少,最少费用是1640元.7.(1)每台A 型电脑和B 型电脑的销售利润各为500,300元(2)20015000w n =+,不能8.(1)()20400060y x x =+≥(2)5500元(3)109.(1)购进A 种多媒体20套,B 种多媒体30套(2)购进A 种多媒体11套时,能获得最大利润,最大利润是189.万元10.(1)每箱甲种牛奶的进价为40元,每箱乙种牛奶的进价为45元.(2)总利润W (元)与m (箱)的函数关系式为54500W m =-+;获得最大利润的进货方案为购进甲种牛奶100箱,乙种牛奶200箱.11.(1)每辆甲车一次能装运18吨生活物资,每辆乙车一次能装运26吨生活物资(2)有三种派车方案(3)安排甲车3辆,乙车7辆所用的燃油费最少,最低燃油费是24200元12.(1)购进篮球37个,购进足球13个(2)51750y x =-+(3)购进篮球16个,足球34个利润最小为1670元13.(1)0.370y x =-+(2)当30x =时,最大利润为61万元14.(1)1个甲种奖品的价格为60元,1个乙种奖品的价格为40元,1个丙种奖品的价格为30元(2)11500元15.(1)m的值为100,n的值为80(2)①富春紫光买下这批设备最少需要支付8100万元购买资金;①a的最大值为25.第11页共11页。

实际问题之最大利润问题

实际问题之最大利润问题

1.在2006年青岛崂山北宅樱桃节前夕,某果品批发公司为 指导今年的樱桃销售,对往年的市场销售情况进行了调查 统计,得到如下数据:
销售价 x(元/千克)
销售量 y(千克) … …
25 2000
24 2500
23 3000
22 3500
… …
(1)在如图的直角坐标系内,作出各组 有序数对(x,y)所对应的点.连接各 点并观察所得的图形,判断y与x之间的 函数关系,并求出y与x之间的函 数关系式; (2)若樱桃进价为13元/千克,试求销 售利润P(元)与销售价x (元/千克)之间 的函数关系式,并求出当x取何值时,P 的值最大?
由(2)(3)的讨论及现在的销售 情况,你知道应该如何定价能 使利润最大了吗?
答:综合以上两种情况,定价为65元时可 获得最大利润为6250元.
(1)列出二次函数的解析式,并根 据自变量的实际意义,确定自变量的 取值范围; (2)在自变量的取值范围内,运用 公式法或通过配方求出二次函数的最 大值或最小值。
O 120 170 220
x(元
例:某机械租赁公司有同一型号的机械设备40套。经 过一段时间的经营发现:当每套机械设备的月租金为 270元时,恰好全部租出。在此基础上,当每套设备的 月租金每提高10元时,这种设备就少租出一套,且没 租出的一套设备每月需支出费用(维护费、管理费等) 20元。设每套设备的月租金为x(元),租赁公司出租 该型号设备的月收益(收益=租金收入-支出费用)为 y(元)。 (1)用含x的代数式表示未出租的设备数(套)以及 所有未出租设备(套)的支出费
z(万元) 1380
1130
1 2 当z =1130时,即1130 = - 10x +34x -1510. 整理,得 x2-340x+26400=0. 解得 x1=120, x2=220. 1 2 函数z = - 10 x +34x-1510的图象大致如图所示:由图 象可以看出:当120≤x≤220时,z≥1130. 所以第二年的销售单价应确定在不低于120元且不高于 220元的范围内.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像是一条抛物线的一
部分,这条抛物线的顶
点是函数图像的最高点,
也就是说当x取顶点坐
标的横坐标时,这个函
数有最大值。由公式可
30
x \ 元 以求出顶点的横坐标.
解:设每件降价x元时的总利润为y元.
y=(60-40-x)(300+20x) =(20-x)(300+20x)
怎样确定x 的取值范围
=-20x2+100x+6000
=-10(x-5)2+6250
当x=5时,y的最大值是6250.
定价:60+5=65(元)
y 10 x2 100 x 6000 (0≤X≤30)
x
b 2a
5时,y最大值
10 52
0
所以,当定价为65元时,利润最大,最大利润为6250元
y\元
6250 6000
05
可以看出,这个函数的
分析: 调整价格包括涨价和降价两种情况
先来看涨价的情况:⑴设每件涨价x元,则每星期售出商
品的利润y也随之变化,我们先来确定y与x的函数关系式。
涨价x元时则每星期少卖10x件,实际卖出(300-10x)件,销额
为 (60+x)(300-10x)元,买进商品需付40(300-10x)元因此,
所得利润为
y=(60+x)(300-10x)-40(300-元10x)
∴当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元
创新学习
某果园有100棵橙子树,每一棵树平 均结600个橙子.现准备多种一些橙子树 以提高产量,但是如果多种树,那么树之 间的距离和每一棵树所接受的阳光就会 减少.根据经验估计,每多种一棵树,平均 每棵树就会少结5个橙子.若每个橙子市 场售价约2元,问增种多少棵橙子树, 果园的总产值最高,果园的总产值最高 约为多少?
(2)若樱桃进价为13元/千克,试求销 售利润P(元)与销售价x (元/千克)之间 的函数关系式,并求出当x取何值时,P 的值最大?
解:(1)正确描点、连线.由图象可知,y是x的一次 函数.设 y=kx+b , ∵点(25,2000),(24,2500)在图象上,
2000 25k b, 2500 24k b.
4. 二次函数y=-3(x+4)2-1的对称轴是 直线x=-4 ,顶点 坐标是 (-4 ,-1) 。当x= -4 时,函数有最 大 值,是 -1 。
5.二次函数y=2x2-8x+9的对称轴是 直线x=2 ,顶点 坐标是 (2 ,1) .当x= 2 时,函数有最 小 值,是 1 。
某商品现在的售价为每件60元, 每星期可卖出300件,市场调查反 映:每涨价1元,每星期少卖出10 件;每降价1元,每星期可多卖出 20件,已知商品的进价为每件40 元,如何定价才能使利润最大?
即 y 10 x2 100 x 6000 (0≤X≤30)
解:设每件涨价为x元时获得的总利润为y元.
y =(60-40+x)(300-10x)
(0≤x≤30)
=(20+x)(300-10x)
=-10x2+100x+6000
=-10(x2-10x ) +6000
=-10[(x-5)2-25 ]+6000
同学们,今天就让我们一 起去体会生活中的数学给
我们带来的乐趣吧!
基础扫描
1. 二次函数y=a(x-h)2+k的图象是一条 抛物线 ,它的对
称轴是 直线x=h ,顶点坐标是 (h,k) .
2 . 二次函数y=ax2+bx+c的图象是一条 抛物线,它的对称
轴是
直线x
b 2a
,顶点坐标是
b 2a
,
4ac 4a
牛刀小试
某商店购进一批单价为20元的日用品,如果以单价30 元销售,那么半个月内可以售出400件.根据销售经验,提 高单价会导致销售量的减少,即销售单价每提高1元,销 售量相应减少20件.售价提高多少元时,才能在半个月内 获得最大利润?
解:设售价提高x元时,半月内获得的利润为y元.则 y=(30-20+x)(400-20x) =-20x2+200x+4000 =-20(x-5)2+4500
=-20(x2-5x-300)
=-20(x-2.5)2+6125 (0≤x≤20)
所以定价为60-2.5=57.5时利润最大,最大值为6125元.
由(2)(3)的讨论及现在的销售 情况,你知道应该如何定价能
使利润最大了吗?
答:综合以上两种情况,定价为65元时可 获得最大利润为6250元.
(1)列出二次函数的解析式,并根 据自变量的实际意义,确定自变量的 取值范围; (2)在自变量的取值范围内,运用 公式法或通过配方求出二次函数的最 大值或最小值。
1.在2006年青岛崂山北宅樱桃节前夕,某果品批发公司为 指导今年的樱桃销售,对往年的市场销售情况进行了调查 统计,得到如下数据:
销售价 x(元/千克) …
25
24
23
22

销售量 y(千克)

2000 2500 3000 3500

(1)在如图的直角坐标系内,作出各组 有序数对(x,y)所对应的点.连接各 点并观察所得的图形,判断y与x之间的 函数关系,并求出y与x之间的函 数关系式;
b
2
.
当a>0时,抛
4ac b2
物线开口向 上 ,有最 低 点,函数有最 小 值,是 4a ;当
a<0时,抛物线开口向 下 ,有最 高 点,函数有最 大 值, 4ac b2
是 4a 。
基础扫描
3. 二次函数y=2(x-3)2+5的对称轴是 直线x=3 ,顶点 坐标是 (3 ,5) 。当x= 3 时,y的最小值是 5 。
解之得:
k 500, b 14500.
∴ y =-500x+14500
(2)P=(x-13)·y=(x-13)·(-500 x+14500) =-500 x 2+21000 x-188500=-500(x-21)2+ 32000. ∴P与x的函数关系式为P=-500 x 2+21000 x- 188500,当销售价为21元/千克时,能获得最大利润.
请大家带着以下几个问题读题
(1)题目中有几种调整价格的方法?
(2)题目涉及到哪些变量?哪一个量是 自变量?哪些量随之发生了变化?
某商品现在的售价为每件60元,每星期 可卖出300件,市场调查反映:每涨价1 元,每星期少卖出10件;每降价1元,每 星期可多卖出20件,已知商品的进价为 每件40元,如何定价才能使利润最大?
相关文档
最新文档