现代控制理论 综述论文 2015
现代控制理论课程论文 浙江大学
![现代控制理论课程论文 浙江大学](https://img.taocdn.com/s3/m/eea70094f7ec4afe05a1df39.png)
现代控制理论课程论文现代控制理论综述姓名XXXX学号XXXX学院机械工程学院班级XXXXX专业机械设计及理论学位类型学术型2014年11月21日摘要本文对现代控制理论做了一次完整综述,主要讲了现代控制理论的起源、内容、发展及其特点。
本文简要说明了现代控制理论的主要内容,对系统的状态和状态方程、线性控制系统的能控性和能观性、系统的稳定性分析、线性定常系统的常规综合、最优控制做了简要概述。
最后介绍了一下现代控制技术在21世纪的发展趋势,主要包括信息技术与控制技术的结合、虚拟现实及计算机仿真技术、集成控制技术。
关键词:现代控制理论,综述,主要内容,发展趋势AbstractThis paper made a complete summary modern control theory, concerning the origin, content, development and characteristics of modern control theory. This paper made a brief description of the main elements of modern control theory, including the system's status and state equations, linear control system controllability and observability, the stability analysis, conventional integrated of linear time-invariant systems and optimal control. Finally we made a introduction about the trends of modern control theory in modern control technology of the 21st century, including the combination of information technology and control technology, virtual reality and computer simulation technology and integrated control technology.Key words: Modern control theory, summary, main content, development trend目录第一章绪论 (1)1.1现代控制理论的起源与发展 (1)1.2现代控制理论的特点及主要内容简介 (1)1.3现代控制理论的学习意义 (1)第二章现代控制理论的主要内容 (2)2.1系统的状态和状态方程 (2)2.2线性控制系统的能控性和能观性 (2)2.3系统的稳定性分析 (2)2.4线性定常系统的常规综合 (3)2.5最优控制 (4)第三章现代控制技术在21世纪的发展趋势 (5)3.1信息技术与控制技术的结合 (5)3.2虚拟现实及计算机仿真技术 (6)3.3集成控制技术 (6)第四章总结与展望 (7)参考文献 (8)第一章绪论1.1现代控制理论的起源与发展经典控制理论考虑的对象比较简单,对象为单输入单输出、线性、时不变系统;使用图形化方法,从而依赖于设计人员的经验;不能具有处理多目标,不能揭示系统的内部特性。
现代控制理论论文
![现代控制理论论文](https://img.taocdn.com/s3/m/960af4213169a4517723a365.png)
单元机组负荷控制解耦方法探讨一、引言近年来,在世界范围内发生了多次的电网事故,如2003年美国东北部和加拿大部分地区发生大面积停电, 2008年,中国的南方雪灾和汶川地震及美国东岸的暴雪灾害导致较大范围电网严重损毁,许多地区出现了较长时间的大面积停电,给社会和人民生活造成了很大影响;2010年,智利大地震,造成了全国范围的停电事故,全国80%人口受到影响;这些大面积停电的事故,不断加深了人们对电力系统的安全性和可靠性给以了高度的关注,加紧制定应对大停电事故的各种措施。
除加强电网建设外,发电厂的机组快速甩负荷(FCB)功能建设已引起了越来越高的关注。
尽管我国许多大机组都有FCB的设计,但在真正意义上100%负荷下成功实现者甚少。
上世纪80年代后,我国引进的部分火电项目配置了FCB的设计.由于种种原因,这些机组很难在满负荷下实现FCB.即使在个别文章所介绍的FCB试验中,似乎能够成功,但这仅是个试验而已,离实用尚有很大的距离.因为,许多类似的试验都事先采取了一系列的措施,试问,在电网突发事故时,是否能事先通知电厂,使其有充分的时间去做FCB的准备?具有完善的自动调节和保护功能,并能够实现快关、快开的所谓超弛控制。
某一电厂600WM机组为例,机组参数: FCB(Fast Cut Back-FCB)是指机组在高于某一负荷之上运行时,由于机组内部故障或外部电网故障而与电网解列,瞬间甩掉全部对外供电负荷,但是并没有发生MFT(master fuel trip主燃料跳闸)并保持锅炉在最低负荷运行,维持发电机带厂用电运行或停机不停炉的自动控制功能。
当机组实现FCB功能后,具备发电机解列带厂用电的能力,有助于电网在可能的最短时间内恢复正常,也有助于发电机组的安全停运。
二、FCB实现的介绍:2.1 FCB实现的条件当汽轮机或发电机跳闸时,机组锅炉中汽包水位低、炉膛火焰丧失、燃料丧失、炉膛压力高、炉膛压力低,以上任一条件满足且负荷大于140MW触发FCB,而此时要求锅炉本身没有发生MFT条件,汽轮机真空正常,高压旁路控制应在自动方式,燃料主控必须在自动方式。
现代控制理论的论文
![现代控制理论的论文](https://img.taocdn.com/s3/m/1198d122aaea998fcc220e41.png)
第一章经典控制理论和现代控制理论本学期学习了现代控制理论课程的主要内容,现代控制理论建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
它所采用的方法和算法也更适合于在数字计算机上进行。
现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。
现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。
现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。
现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。
以下是经典控制理论和现代控制理论的比较:1、经典控制理论:(1)理论基础:Evens的根轨迹,Nyquist稳定判据。
(2)研究对象:线性定常SISO系统分析与设计。
(3)分析问题:稳、准、快(4)采用方法:是以频率域中传递函数为基础的外部描述方法。
(5)数学描述:高阶微分方程、传递函数、频率特性;方块图、信号流图、频率特性曲线。
(6)研究方法:时域法、根轨迹法、频率法。
2、现代控制理论:(1)理论基础:李雅普诺夫稳定性理论,Bellman动态规划,Понтрягин极值原理,Kalman 滤波。
(2)研究对象:MIMO系统分析与设计(复杂系统:多变量、时变、非线性)(3)分析问题:稳、准、快(4)设计(综合)问题:1)采用方法:是以时域中(状态变量)描述系统内部特征的状态空间方法为基础的内部描述方法。
2)数学描述:状态方程及输出方程、传递函数阵、频率特性;状态图、信号流图、频率特性曲线。
3)研究方法:状态空间法(时域法)、频率法。
现代控制理论结课论文
![现代控制理论结课论文](https://img.taocdn.com/s3/m/488e612c0b4c2e3f572763a9.png)
现代控制理论方法综述研电1610 秦晓 1162201332摘要:本文将控制理论方法分为现代控制理论基础,线性最优控制,非线性最优控制三大部分,查阅文献,综述了每一部分中的经典控制方法,以及每种控制方法的优缺点和在工业中的应用,最后提出了目前在现代控制理论中依旧存在的问题。
1.引言电力系统是一个复杂的非线性动态大系统,对于这个规模庞大的系统,研究其运行的动态特性进而构建先进的安全控制系统是极富挑战性的课题。
同时,各种新技术的应用,一方面增强了系统的调控能力和经济效益,另一方面也极大的增加了电网控制的复杂性,对电力系统的安全稳定运行提出了更严格的要求。
因此,改善与提高我国电力系统的动态品质、安全稳定和经济性成为了电力工作者的首要任务。
提高电力系统稳定性的最经济和最有效的手段之一是采用先进的控制理论和方法。
在过去的时间里,电力工作者们为改进与发展电力系统控制技术进行了大量研究。
本文主要梳理总结电力系统在现代控制方面的研究成果,分析了电力系统控制技术的发展趋势,并总结了目前现代控制理论还需要解决的问题。
2.现代控制的基础现代控制理论的基础是经典控制理论,在20世纪20年代到50年代间,为了满足第二次世界大战前后军事技术和工业发展的需求,经典控制理论有了飞速的发展。
经典控制理论主要研究线性时不变、单输入单输出的控制问题。
在分析和设计大型反馈控制系统时,经典控制论主要采用频域法,其中以 Nyquist 判据、Bode 图和根轨迹法最为广泛[1~2]。
经典控制理论的设计目标是使闭环系统特征方程的特征根全部位于左半开平面上。
上述设计目标可以描述为一类无目标函数的优化问题,即约束满足问题。
由于使系统稳定的控制器解并不唯一,所以根据经典控制理论设计的PID 控制器往往带有较大的冗余性[3]。
也正是由于经典控制理论设计目标及方向简单明确,计算方便,特别适合需要依赖工程经验或现场测试进行控制器设计的系统,所以至今仍在工业中广泛应用。
现代控制理论论文
![现代控制理论论文](https://img.taocdn.com/s3/m/abde6ddd360cba1aa811dab2.png)
李雅普诺夫稳定性理论李雅普诺夫稳定性理论是近代控制理论中一个重要的组成部分,它在近代控制理论中的最优控制,最优估计,滤波和自适应控制,神经网络等方面发挥了极其重要的作用。
在20世纪30到40年代,奈奎斯特、伯德、维纳等人的著作为自动控制理论的初步形成奠定了基础,经典控制理论以拉氏变换为数学工具,以单输入——单输出的线性定常系统为主要的研究对象。
将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。
通常是采用反馈控制,构成所谓闭环控制系统。
经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。
当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,即便对这些极简单的对象、对象描述及控制任务,理论上也尚不完整,从而促使现代控制理论的发展——对经典理的精确化、数学化及理论化。
俄国数学家和力学家李雅普诺夫在1892年所创立的用于分析系统稳定性的理论。
对于控制系统,稳定性是需要研究的一个基本问题。
在研究线性定常系统时,已有许多判据如代数稳定判据、奈奎斯特稳定判据等可用来判定系统的稳定性。
李雅普诺夫稳定性理论能同时适用于分析线性系统和非线性系统、定常系统和时变系统的稳定性,是更为一般的稳定性分析方法。
李雅普诺夫稳定性理论主要指李雅普诺夫第二方法,又称李雅普诺夫直接法。
李雅普诺夫第二方法可用于任意阶的系统,运用这一方法可以不必求解系统状态方程而直接判定稳定性。
对非线性系统和时变系统,状态方程的求解常常是很困难的,因此李雅普诺夫第二方法就显示出很大的优越性。
与第二方法相对应的是李雅普诺夫第一方法,又称李雅普诺夫间接法,它是通过研究非线性系统的线性化状态方程的特征值的分布来判定系统稳定性的。
第一方法的影响远不及第二方法。
在现代控制理论中,李雅普诺夫第二方法是研究稳定性的主要方法,既是研究控制系统理论问题的一种基本工具,又是分析具体控制系统稳定性的一种常用方法。
现代控制理论论文
![现代控制理论论文](https://img.taocdn.com/s3/m/96bdcb3b482fb4daa58d4bfa.png)
非线性系统的鲁棒自适应控制Robust Adaptive Control of Uncertain Nonlinear Systems郝仁剑 3120120359摘要:本文以非线性系统的控制问题为背景,介绍了多种经典的非线性系统的控制方法以及研究进展,分析了各种控制方法存在的优点和不足。
着重介绍了鲁棒自适应控制在非线性系统中的应用,结合该领域的近期研究进展和实际应用背景,给出对鲁棒自适应控制的进一步研究目标。
关键词:非线性系统鲁棒控制自适应控制1.前言任何实际系统都具有非线性特性,非线性现象无处不在。
严格地说,线性特性只是其中的特例,但是非线性系统与线性系统又具有本质的区别。
由于非线性系统不满足叠加原理,因此非线性特性千差万别,这也给非线性系统的研究带来了很大的困难。
同时,对于非线性系统很难求得完整的解,一般只能对非线性系统的运动情况做出估计。
众所周知,控制理论经历了经典控制理论和现代控制理论两个发展阶段。
在第二次世界大战前后发展起来的经典控制理论应用拉普拉斯变换等工程数学工具来分析系统的品质。
它广泛地应用于单输入单输出、线性、定常、集中参数系统的研究中。
随着控制对象的日益复杂以及人们对控制系统精度的不断提高,经典控制理论的局限性就暴露出来了。
在20世纪50年代,Bellman根据最优原理创立了动态规划。
同时庞特里亚金等学者创立了最大值原理。
后来,Kalman提出了一系列重要的概念,如可观性,可控性,最优线性二次状态反馈,Kalman滤波等。
这些理论和概念的提出大大促进了现代控制理论的发展。
控制系统的设计都需要以被控对象的数学模型为依据,然而对于任何被控对象不可能得到其精确的数学模型,如在建立机器人的数学模型时,需要做一些合理的假设,而忽略一些不确定因数。
不确定性的必然存在也正促使了现代控制理论中另一重要的研究领域——鲁棒控制理论的发展。
Zmaes关于小增益定理的研究以及Kalman关于单输入单输出系统LQ调节器稳定裕量的分析为鲁棒控制理论的发展产生了重要的影响。
现代控制论文
![现代控制论文](https://img.taocdn.com/s3/m/29d7440bf78a6529647d5329.png)
最优控制方法及其应用摘要最优控制是现代控制理论的核心,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值,使控制系统的性能指标实现最优化的基本条件和综合方法。
可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。
从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。
解决最优控制问题的主要方法有古典变分法(对泛函求极值的一种数学方法)、极大值原理和动态规划。
最优控制已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。
研究最优控制问题有力的数学工具是变分理论,而经典变分理论只能够解决控制无约束的问题,但是工程实践中的问题大多是控制有约束的问题,因此出现了现代变分理论。
现代变分理论中最常用的有两种方法。
一种是动态规划法,另一种是极小值原理。
它们都能够很好的解决控制有闭集约束的变分问题。
值得指出的是,动态规划法和极小值原理实质上都属于解析法。
此外,变分法、线性二次型控制法也属于解决最优控制问题的解析法。
最优控制问题的研究方法除了解析法外,还包括数值计算法和梯度型法。
1目录摘要 (1)第一章古典变分法 (3)1.1 古典变分法的定义 (3)1.2 古典变分法的应用 (3)第二章最大值原理 (6)2.1 最大值原理概述 (6)2.2 最大值原理应用举例 (7)第三章动态规划 (8)3.1动态规划的概述 (8)3.2动态规划的应用 (10)第四章线性二次型 (13)结束语 (15)参考文献 (16)23第一章 古典变分法1.1 古典变分法的定义古典变分法是研究对泛函求极值的一种数学方法。
直接来说,求泛函的极大值或者极小值问题成为变分问题,而求泛函极值的方法就成为变分法。
现代控制理论小论文
![现代控制理论小论文](https://img.taocdn.com/s3/m/9c1b4aab80c758f5f61fb7360b4c2e3f5627255e.png)
现代控制理论小论文1. 引言现代控制理论是控制理论的一个重要分支,它在工程控制领域有着广泛的应用。
随着科技的发展,控制系统越来越复杂,要求控制系统具备更高的性能指标和更强的鲁棒性。
现代控制理论的研究和应用为工程控制带来了很大的推动力,以提升系统的控制性能和鲁棒性。
本篇小论文将介绍现代控制理论的基本概念、方法和应用,并讨论其在实际系统中的应用情况。
2. 现代控制理论的基本概念现代控制理论是基于数学模型的控制理论,其核心概念包括控制系统、系统模型和控制器等。
2.1 控制系统控制系统是由一组相互作用的组件组成的系统,旨在通过对系统输入进行调节以达到预期的输出。
控制系统通常包括传感器、执行器、控制算法和反馈环路等。
2.2 系统模型系统模型是控制系统的数学描述,可分为传递函数模型和状态空间模型。
传递函数模型描述了系统的输入与输出之间的关系,而状态空间模型描述了系统的状态随时间的变化。
2.3 控制器控制器是控制系统中的关键组件,根据系统的输入和输出信息,使用控制算法来生成控制信号,以调节系统的行为。
常见的控制器包括比例-积分-微分(PID)控制器、模糊控制器和自适应控制器等。
3. 现代控制理论的方法现代控制理论提供了多种方法来设计控制系统,以满足不同的控制需求。
3.1 线性控制线性控制是现代控制理论的重要方法之一,它基于线性系统的模型和理论,通过设计线性控制器来实现对系统的控制。
线性控制具有较好的稳定性和可调节性,在许多工业应用中得到广泛应用。
3.2 非线性控制非线性控制是应对非线性系统的控制方法,它考虑系统的非线性特性,并设计相应的非线性控制器来实现对系统的控制。
非线性控制可用于对复杂系统进行建模和控制,具有更强的适应性和鲁棒性。
3.3 鲁棒控制鲁棒控制是一种针对不确定性和扰动的控制方法,通过设计具有鲁棒性的控制器来使控制系统对不确定因素具有一定的容忍能力。
鲁棒控制可以提高系统的稳定性和鲁棒性,适用于对不确定因素较多的系统进行控制。
现代控制理论
![现代控制理论](https://img.taocdn.com/s3/m/3349ba7e7f21af45b307e87101f69e314332fa74.png)
非线性动态系统的稳定性和鲁棒控制理论研究上世纪50年代,Kallman成功的将状态空间法引入到系统控制理论中,从而标志着现代控制理论研究的开始。
现代控制理论的研究对象是系统的数学模型,它根据人们对系统的性能要求,通过对被控对象进行模型分析来设计系统的控制律,从而保证闭环系统具有期望的性能。
其中,线性系统理论已经形成一套完整的理论体系。
过去人们常用线性系统理论来处理很多工程问题,并在一定范围内取得了比较满意的效果。
然而,这种处理方法是以忽略系统中的动态非线性因素为代价的。
实际中很多物理系统都具有固有的动态非线性特性,如库仑摩擦、饱和、死区、滞环等,这些非线性动态非线性特性的存在常常使系统的控制性能下降,甚至变得不稳定。
这就使得利用线性系统理论处理非线性动态系统面临巨大的困难。
此外,在控制系统运行过程中,环境的变化或者元件的老化,以及外界干扰等不确定因素也会造成系统实际参数和标称值之间出现较大差别。
因此,基于标称数学模型所设计的控制律一般很难达到期望的性能指标,甚至会使系统不稳定。
综上所述,研究不确定条件下非线性动态系统的鲁棒稳定性及鲁棒控制间题具有重要的理论意义和迫切的实际需要。
非线性动态系统是指按确定性规律随时间演化的系统,又称动力学系统,其理论来源于经典力学,一般由微分方程来描述。
美国数学家Birkhoff[1]发展了法国数学家Poincare在天体力学和微分方程定性理论方面的研究,奠定了动态系统理论的基础。
在实际动态系统中,对象往往受到各种各样的不确定的影响,所以其数学模型一般不可能精确得到。
因此,我们只能用近似的标称数学模型来描述被控对象,并据此来设计控制系统,动态系统鲁棒控制由此产生。
所谓鲁棒性就是指系统预期非线性动态系统的稳定性和鲁棒控制理论研究的设计品质不因不确定性的存在而遭到破坏的特性,鲁棒控制是非线性动态系统控制理论研究的一个非常重要的分支。
现代控制理论的发展促进了对动态系统的研究,使它的应用从经典力学扩大到一般意义下的系统。
现代控制理论课程教学改革论文
![现代控制理论课程教学改革论文](https://img.taocdn.com/s3/m/0d94e050b0717fd5370cdc59.png)
现代控制理论课程教学改革论文现代控制理论课程教学改革论文1现代控制理论课程教学中存在的问题现代控制理论课程的中心任务是提出并研究用数学理论方法有效地解决工程实际问题.它一方面是数学,其研究手段包括数学推导、分析、论证和计算.另一方面,它又是一门系统的科学理论,任何问题的解决都需要通过联系实际应用的系统知识,通过程序设计来实现.因此,现代控制理论教学的目的是培养学生既要有扎实的理论基础,又要有解决实际问题的能力.但是传统的教学模式往往只注重讲授原理,对于实践环节的教学不够重视,使得学生不能全面地理解和运用书中的理论知识,而仅停留在要求学生用现成的程序求解或证明课后习题这一基本阶段.学生对课堂讲授的知识理解得不够深,难以将其自觉运用到实际中.由于过多地强调数学理论,缺乏对控制理论实际工程等背景的介绍,学生感到这门课抽象难懂、枯燥无味、难以掌握,学习的兴趣不高.2现代控制理论课程教学改革中应该坚持的原则2.1以需求为牵引,保持课程可持续发展数学学院的现代控制理论课程最早开设于2006年,至今已走过8年的历程,取得了一些成果,要想保证课程的可持续发展,必须坚持以应用型人才培养需求为牵引的原则.随着社会的飞速发展,高校人才培养模式不断变化,高等教育改革在如火如荼地进行.学校的人才培养目标从传统培养“专才”转变为培养发展型、应用型的具有较强实践动手能力的“通才”.这对人才培养提出了新的挑战,传统的教学理念、课程体系、教学内容等已经不能完全适应今后的人才培养目标,这对现代控制理论课程提出了新的更高的要求.我们要跟紧全国高等教育改革的步伐,继续为社会各行各业培养合格的新型人才.因此,必须加强培养应用型人才的现代控制理论课程建设,同时,也要建立系统、完善、多层次、多角度的现代控制理论教学体系.这样,才能保持这门课程的可持续发展,避免被淘汰的尴尬,为社会培养急需的高素质人才.2.2以质量为核心,保证课程改革协调发展课程改革的协调发展应该从课程的规模、质量和效益的协调发展及满足社会发展对人才的需求上体现出来.而从规模、质量、结构和效益及发展的整体效应来看,课程改革的核心是质量,如果课程改革不讲究质量,那么,课程建设的规模再大、结构再完善,也形同虚设,无法培养出真正的应用型实践性人才,更无法为社会服务.因此,在现代控制理论课程改革中,要坚持以质量为核心的原则,保证课程改革的协调发展.3现代控制理论课程教学改革采取的措施3.1改革教学内容以培养应用型人才的实践能力为核心,建立适合专业特色的教学改革模式.对课程结构整体优化的基本改革方向是:打破纯基础理论为中心的课程结构,实行课程知识和能力综合的课程结构.在纵向结构上,根据学生已有的知识水平和能力范围,调整原有的现代控制理论课程内容体系,减少重复内容,加强必要的应用数学软件技巧训练(如:Matlab仿真和实验等),训练和提高学生的逻辑思维能力、创新能力.在横向结构上,为适应现代高技术条件下不同学科、不同专业领域的交叉、渗透发展趋势,在不损害课程结构的纵向关联性,不削弱课程自身的逻辑性和完整性的前提下,依据学科特征,打破其自我封闭的状态,汲取多种控制论教材的优点,在淘汰陈旧内容的基础上,更新教材内容,扩大知识面.现代控制理论课程内容多,学时少.因此在选择教学内容时,要以实际编制的教学大纲为依据,在兼顾各种实际要素的前提下,精选重点教学内容,讲授最基本的概念和原理、方法,将其弄懂讲透,其他部分内容指导学生自学,课上和课后有机结合,基础理论+实际运用(实例分析和计算机编程)能够更好地展现现代控制理论课程的特点.3.2改革教学方法教学方法的改革要突出现代化特征,体现现代教育理论、思想和观点,贯彻教师的主导作用与学生的主体作用相统一的教学原则,把学生当成知识的主动加工者,大力提倡启发式、讨论式、精讲多练和自学的教学方法.教师应潜移默化地使学生掌握思想和方法,在学习和发现中提高学生的应用创新能力,让学生在探索活动中不断提高解决问题的科学思维方法.改革传统的以传授知识为主的“逻辑-演绎”式的教学线索,引入体现知识实际发生、发展的“历史-活动”式的教学线索和展现创造性思维心理过程的“心理-认知”式的教学线索,并将三者整合为一.这样使学生在获取知识和逻辑思维能力的同时,充分体现逻辑和非逻辑整合的创造过程,培养以创造性思维为核心的实践创新学习能力.现代控制理论内容多、应用性强.教师要利用经典控制理论物理概念明确、工程意义强的特点,突出现代控制理论的物理概念和工程背景,引导学生走出现代控制理论是纯粹数学推导,不易建立工程概念的误区,让学生觉得教学内容思路清晰,概念清楚,分析、处理问题方法简洁.在教学中还要注重理论联系实际,引入工程实例,通过对实际系统的讲解,引出抽象的概念和理论,从而使学生更容易理解和掌控.例如利用倒立摆平台进行直观演示,指导学生完成倒立摆的系统建模、分析及控制器设计等,提高学生的工程应用能力.随着计算机技术的发展,计算机的应用已涉及到当今社会的各个领域.现代控制理论教学改革中,可以利用计算机、应用数学软件开展实验教学,让学生在学习控制理论相关教学内容的过程中,将遇到的抽象问题通过Matlab等在计算机上逼真地演示出来,使数学问题由抽象到形象、具体,降低了数学学习的难度,同时也提供给学生一个形象展示抽象问题的有效方法,提高了学生的学习兴趣,进而提高教学效率和学习效率.3.3优化教学手段教学手段其本身就是现代科学技术发展的产物.现代教学技术为数学这一思维提供了一个崭新的'课堂教学模式,将现代教学技术和科技成果充分用于现代控制理论课程教学,开发和推广相关的计算机模拟、计算机仿真、CAI等各种教学软件和系列电视教学片.现代控制理论中有很多非常有用的系统分析方法,如状态空间表达式的求解,传递函数与状态空间模型之间的互化,系统能控性、能观性和稳定性的分析,控制器的设计等,使用这些方法时主要是算术运算,运算量极大,手工难以完成.每讲一个具体方法分析实例,要写很多板书,加上中间的算术运算,需要耗费很长时间,这势必影响教学效率,通过数学软件则可以方便快捷实现.在教学课件中插入利用数学软件编写的程序,边讲边演示,可以实现实际系统的数学模型表示.学生利用数学软件进行二维和三维图形的制作和演示,更容易理解和掌握关于现代控制理论的系统分析方法.可见,在借助多媒体课件讲授时,教师可以省去板书的时间和精力,把重点放在讲解和推导上,使教师可以更多地注意课堂教学内容的组织和讲授,增大课堂信息量,提高教学效果和教学质量.当然,在教学过程中还要处理好现代化教学手段和传统的黑板媒体之间的协调使用,尤其是某些概念的引入、基本原理、方法和技巧,必要时还需要借助板书进行演示,这有利于学生的理解和掌握.3.4改革考试方式传统的现代控制理论考试方式以闭卷考试为主,平时考勤为辅.这种考试方式有其优点,考试组织方便,对学生学习评价标准统一,当然也存在不足,学生一般等到考前根据教师讲解的重点用功学习,死记硬背,不能真正学到知识.而且笔试反映的是学生对理论知识的掌握程度,不能反映学生的应用能力和创造能力.要与应用型人才培养模式相适应,就要对现代控制理论考试方式进行改革.可以采取以下两种方式:第一种是平时测评与期末考试相结合,平时测评占20%,期末考试占80%;第二种是开卷考试和闭卷考试相结合,由于数学公式和定理多,可以要求学生将比较重要不好记忆的公式和定理写在纸上带进考场,减轻学生负担,将更多的精力投入到对知识的重点、难点进行理解、归纳和总结上.4结语总之,应用型人才培养模式框架下的现代控制理论课程教学改革转变了教师的教育思想,不仅突出了课程本身的基础地位,而且突出了对学生创造性思维的培养.现阶段,现代控制理论课程对于当代科学乃至整个社会的影响和推动作用日益显著,在现代控制理论课程的教学实践中,要积极推进教学各方面的改革,真正把素质教育落实到教学当中去。
现代控制理论----综述论文-2015
![现代控制理论----综述论文-2015](https://img.taocdn.com/s3/m/232bee9ab7360b4c2f3f6466.png)
2015级硕士期末论文《现代控制理论综述》课程现代控制理论姓名学号专业2016 年1 月 4 日经典控制理论与现代控制理论的差异现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
它所采用的方法和算法也更适合于在数字计算机上进行。
现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。
现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。
现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。
现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。
现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。
空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。
这类控制问题十分复杂,采用经典控制理论难以解决。
1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。
在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。
他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。
1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。
几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。
现代控制理论综述论文
![现代控制理论综述论文](https://img.taocdn.com/s3/m/5e8528cdd5bbfd0a79567357.png)
论文题目:现代控制理论综述摘要本文是对现代控制理论课程的完整综述,现代控制理论的主要内容包括控制系统的状态空间表达式及其解,线性控制系统的能控性和能观性,稳定性与李雅普诺夫方法,线性定常系统的综合以及最优控制理论等部分。
本文通过对控制理论各部分的阐述,构出了现代控制理论的主要框架及各部门的基本内容。
关键词:现代控制;状态方程;稳定性;最优控制;AbstractThis article is a complete review of modern control theory course, the main contents of the modern control theory, including the control system of the state space expression and its solution, the controllability of linear control systems and can view, stability and Lyapunov method, the synthesis of linear time-invariant system and optimal control theory. This article through to all parts of the control theory, compose the main framework of modern control theory and the basic content of each department.Keywords: Modern control; State equation;Stability;Optimal control目录摘要 (I)Abstract........................................................... I I一、控制理论的发展历史 (1)二、现代控制理论的基本内容 (2)2.1 控制系统的状态空间表达式 (3)2.2 线性控制系统的能控性和能观性 (3)2.2.1 线性控制系统的能控性 (3)2.2.2 线性控制系统的能观性 (4)2.3 自动控制系统的稳定性 (5)2.4 最优控制 (6)三、控制理论的发展展望 (6)四、总结 (6)参考文献 (8)一、控制理论的发展历史控制理论是关于各种系统的一般性控制规律的科学,它研究如何通过信号反馈来修正动态系统的行为和性能,以达到预期的控制目的。
现代控制理论论文
![现代控制理论论文](https://img.taocdn.com/s3/m/b12c56b665ce050876321353.png)
摘要最优控制,又称无穷维最优化或动态最优化,是现代控制理论的最基本,最核心的部分。
它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。
最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。
一个典型的最优控制问题描述如下:被控系统的状态方程和初始条件给定,同时给定目标函数。
然后寻找一个可行的控制方法使系统从输出状态过渡到目标状态,并达到最优的性能指标。
系统最优性能指标和品质在特定条件下的最优值是以泛函极值的形式来表示。
因此求解最优控制问题归结为求具有约束条件的泛函极值问题,属于变分学范畴。
变分法、最大值原理(最小值原理)和动态规划是最优控制理论的基本内容和常用方法。
庞特里亚金极大值原理、贝尔曼动态规划以及卡尔曼线性二次型最优控制是在约束条件下获得最优解的三个强有力的工具,应用于大部分最优控制问题。
尤其是线性二次型最优控制,因为其在数学上和工程上实现简单,故其有很大的工程实用价值。
关键词:最优控制;控制规律;最优性能指标;线性二次型AbstractThe optimal control, also called dynamic optimization or infinite dimension, optimization of modern control theory, the most basic part of the core. It is the center of the research question: how to control system based on the dynamic characteristics, to choose, can control system according to certain technical requirements, and makes the operation performance of the system or the quality of describing a "index" in certain significance to achieve optimal value. The optimal control problem has four points for dynamic systems, controlled, The initial and terminal conditions (state) and, Performance index and allow control.A typical of optimal control problem is described as follows: the state equation and initial conditions are given, and given the objective function. Then a feasible method for the control system of the output state transition to the target state and optimum performance. The optimal performance index and quality in the specific conditions of the optimal value is functional form. Therefore solution of optimal control problem is due to the constraint condition of functional, belongs to the category of variational learning. The variational method, the maximum principle (minimum principle) and dynamic planning is the optimal control theory, the basic contents and methods. The Pontryagin maximum principle, Behrman dynamic programming and Kaman linear quadratic optimal control is obtained in the constraint condition of the optimal solution of the three powerful tools, used in the most optimal control problem. Especially the linear quadratic optimal control, because its in mathematics and engineering implementation is simple, so it has great practical value.Key words: The optimal control, Control rule, optimal performance indicators, The linear quadratic一绪论1.1背景和意义要求将最优控制问题典型解决方法变分法、极值原理和动态规划及其在时间最短控制问题的应用和线性二次型最优控制问题(包括线性二次型实验及仿真结果)作为主要内容。
[工学]现代控制理论论文
![[工学]现代控制理论论文](https://img.taocdn.com/s3/m/4036b3aebceb19e8b9f6ba0c.png)
最优控制方法及其应用摘要:主要阐述了关于最优控制问题的基本概念,最优控制是最优化方法的一个应用。
最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。
而最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,解决最优控制问题的主要方法有变分法、极大值原理和动态规划。
常使用到的主要有时间最短控制问题和线性二次型最优控制问题等。
通过以上知识的了解和应用可以使初学者能够快速掌握最优控制的问题。
关键字:最优化最优控制极值时间最优控制线性二次型目录第一章最优控制的基础 (4)1.1 最优控制理论 (4)1.2 最优控制问题的一般形式 (5)1.3 最优控制方法 (6)第二章变分法 (7)2.1 变分法基础 (7)2.2 变分法应用 (7)第三章极大值原理 (10)3.1 极大值原理的提出和形式 (10)3.2 极大值原理的应用 (11)第四章动态规划方法 (13)4.1 动态规划概念及意义 (13)4.2 动态规划算法的基本思想和结构 (13)4.3 动态规划算法的运用 (14)第五章时间最优控制问题 (16)第六章线性二次型最优控制问题 (20)6.1 线性二次型最优控制问题的提出 (20)6.2 应用MATLAB求解二次型最优控制问题(实验部分) (22)第七章关于倒立摆的最优控制 (34)结束语 (39)参考文献 (39)第一章最优控制的基础§ 1.1 最优控制理论最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。
它是现代控制理论的重要组成部分。
最优控制是最优化方法的一个应用,如果想了解最优控制必须知道什么是最优化方法。
所谓最优化方法为了达到最优化目的所提出的各种求解方法。
从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。
从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。
现代控制理论发展文献综述
![现代控制理论发展文献综述](https://img.taocdn.com/s3/m/2c69e93db90d6c85ec3ac680.png)
<<现代控制理论>>的文献综述轮机1305班 1049721301970 陈彬彬内容摘要通过查阅这些参考资料和文献,深入了解了现代控制理论的产生、发展、内容和研究方法,并通过将其与本科期间学过的古典控制理论进行了对比,了解了两种控制理论的异同。
最后初步认识了现代控制理论在各领域中的应用。
这些参考资料和文献对以后对现代控制理论的学习将会有方向性的指导作用。
关键词:现代控制理论经典控制理论发展应用第一章前言建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
它所采用的方法和算法也更适合于在数字计算机上进行。
现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。
现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。
现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。
现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。
第二章主体部分2.1 现代控制理论的产生、发展、内容和研究方法2.1.1现代控制理论的产生及其发展第一阶段:经典(自动)控制理论经典控制理论即古典控制理论,也称为自动控制理论。
它的发展大致经历了以下几个过程:1.萌芽阶段如果要追朔自动控制技术的发展历史,早在两千年前中国就有了自动控制技术的萌芽。
两千年前我国发明的指南车,就是一种开环自动调节系统。
公元1086-1089年(北宋哲宗元祐初年),我国发明的水运仪象台,就是一种闭环自动调节系统。
2.起步阶段随着科学技术与工业生产的发展,到十八世纪,自动控制技术逐渐应用到现代工业中。
现代控制理论论文
![现代控制理论论文](https://img.taocdn.com/s3/m/45b00967ddccda38376baf9f.png)
实验题目:转速反馈单闭环直流调速系统仿真一.实验目的与要求1.了解直流电机模型2.掌握转速负反馈速系统的静特性方程3. 学会转速负反馈系统稳态分析和相关公式推导二.实验方案直流电机模型框图如下图所示,仿真参数为R=0.6,T l=0.00833,T m=0.045,Ce=0.1925。
本次仿真采用算法为ode45,仿真时间5s。
图1 直流电机模型2、闭环仿真:在上述仿真基础上,添加转速闭环控制器,转速指令为1130rpm,0~2.5s,电机空载,即I d=0;2.5s~5s,电机满载,即I d=55A。
(1)控制器为比例环节:试取不同k p值,画出转速波形,求稳态时n和s并进行比较。
若k p=1空载时的转速n1=948r/min 负载时的转速n2=920r/min 静差率s=(948-920)/948=2.95%若k p=2空载时的转速n1=1031r/min 负载时的转速n2=1016r/min静差率s=(1031-1016)/1031=1.45%(2)控制器为比例积分环节,设计恰当的k p 和k I 值,并与其它不同的k p 和k I 值比较,画出不同控制参数下的转速波形,比较静差率、超调量、响应时间和抗扰性。
图2 转速闭环直流电机调速控制框图待校正的系统传递函数:)10833.00(4.4115)(+=s s s G若采用PI 控制器,其参数的选取:τ=4T 0=0.03332s T=8 K 0T 02=0.064s所以s64.000.03332s 1Gc(s)+=超调量σ%=(1290-1130)/1130=14.16% 响应时间约为:0.17s静差率s=(1130-1128)/1128=0.18%若将PI 控制器改为:s1.00.1s 1Gc(s)+=超调量σ%=(1222.5-1130)/1130=8.18% 响应时间约为:0.55s静差率s=(1130-1127)/1127=0.18%将波形放大后发现第二种比例积分控制器的抗扰性差于第一种。
现代控制理论论文 电机系 1104
![现代控制理论论文 电机系 1104](https://img.taocdn.com/s3/m/d1ccdac208a1284ac8504325.png)
卡尔曼滤波器在永磁同步电机无速度传感器控制中的应用田晶晶(华中科技大学湖北武汉 430074)摘要:卡尔曼滤波法是一种最优线性估计方法,其特点是考虑到系统模型误差和测量噪声的统计特性,可以有效的减少随机干扰和测量噪声的影响。
将卡尔曼滤波器应用到非线性永磁同步电机控制系统中,设计一种基于扩展卡尔曼器的无速度传感器控制方案。
对永磁同步电机数学模型进行更新,并经过离散化和线性化后,通过检测电机的端电压和流过定子线圈的电流实时估算出转子位置与转速,同时对定子电流、电机转子位置与转速进行观测,探讨卡尔曼滤波算法在永磁同步电机无速度传感器控制中的状态观测能力。
关键词:卡尔曼滤波;永磁同步电机;无速度传感器The Application of Kalman Filter in Sensorless Control of Permanent Magnet Synchronous MotorTian Jingjing(Huazhong University of Science & Technology Wuhan Hubei 430074)ABSTRACT:Kalman filter method is a method of optimal linear estimation, with the feature of taking into account the statistical characteristics of the system model error and measurement noise , which can effectively reduce the influence of random interference and measurement noise. The Kalman filter is applied to the non-linear permanent magnet synchronous motor control system, in order to design a speed-sensorless control scheme based on extended Kalman filter. Update the mathematical model of permanent magnet synchronous motor , discrete and linearize tne model. The paper research into the state observation capability of Kalman filtering algorithm in PMSM sensorless control, observing the stator current、 rotor position and speed at the same time , by detecting the motor terminal voltage and current flowing through the stator coil and estimateing the real-time rotor position and speed.KEYWORD:Kalman Filter;Permanent Magnet Synchronous Motor;Sensorless Control第1章概述1.1 永磁同步电机简介电机作为一种生产、交换和使用电能的装置,在工农业生产、交通运输和军事国防中都发挥着举足轻重的作用。
现代控制理论心得范文
![现代控制理论心得范文](https://img.taocdn.com/s3/m/c7c96028f6ec4afe04a1b0717fd5360cba1a8d23.png)
现代控制理论心得范文尊敬的评委:我非常荣幸能有机会向大家分享我对于现代控制理论的心得体会。
现代控制理论是现代工程技术领域的重要理论和方法之一,它的发展对于实现自动化、智能化和高效化具有重要意义。
在学习和应用现代控制理论的过程中,我深深感受到了它的卓越性能和广泛应用的优势。
下面,我将从理论的发展、应用实例以及心得体会三个方面来介绍我的心得体会。
首先,我想谈谈现代控制理论的发展。
现代控制理论起源于20世纪50年代,它是传统控制理论的延伸和发展。
传统控制理论主要是基于线性系统的,它可以较有效地解决一些简单的线性系统的控制问题。
但随着科技的进步和工程实践的需求,线性系统已经无法满足复杂系统的控制需求。
因此,现代控制理论应运而生。
现代控制理论主要包括状态空间方法、最优控制理论、非线性控制理论、自适应控制理论等。
状态空间方法是现代控制理论的核心方法之一,它将系统的动力学行为描述为一组微分方程,从而形成了描述系统状态和输入输出关系的数学模型。
状态空间方法具有描述系统动态特性精确、处理系统非线性问题能力强等优点,在飞行器、电力系统、智能制造等领域得到了广泛应用。
最优控制理论是现代控制理论的重要组成部分,它主要研究系统在给定性能指标下如何选择最优控制输入,从而实现控制目标的最优化问题。
最优控制理论通过对控制问题进行数学建模,采用优化方法求解,可以得到最优的控制策略。
最优控制理论在航空航天、火力系统、交通运输等领域有广泛应用。
非线性控制理论主要研究非线性系统的控制问题,它在系统建模、控制设计和分析方面有很大的突破。
非线性控制理论提供了一系列描述非线性系统行为、分析系统稳定性和设计控制算法的方法,对于解决非线性系统的控制问题具有重要意义。
自适应控制理论是现代控制理论中的新兴研究方向,它主要研究系统在不确定性环境下如何自适应地调整控制策略,以实现对系统的稳定性和性能的要求。
自适应控制理论通过利用系统自身的信息对控制器参数进行实时调整,从而适应不确定因素的影响,提高系统的鲁棒性和自适应性能。
现代控制理论概述及实际应用意义
![现代控制理论概述及实际应用意义](https://img.taocdn.com/s3/m/01c35028af45b307e87197b1.png)
都是控制理论在生活 中的应用 。现代 在15年提 出了动态规则;15年卡尔 97ቤተ መጻሕፍቲ ባይዱ99
控制理论如此广泛 ,因此学好现代控 曼 (am n Kla )和布西创建了卡尔曼滤波 的方法 。根据 系统的输入输 出的试验 制理论至关重要 。 2 现代控制理论的产生与发展 . 理论;16 年在控制系统的研究中成功 数据,从一类 给定的模 型中确定一个 90
( 内部 )一输 出。 经典 控 制 理论 的特 点研 究对 象
5 现代控制理论的应用 . 比起 经 典控 制 理论 ,现代 控 制
( )线 性 系 统 基 本 理 论 4
是单输入 、单输 出线性定常系统 。其 理论考虑 问题更全面、更复杂 ,主要 表现在 考虑系统 内部之间的耦合,系
其局限性主要表现在难 以应 用于时变 业、农 业、交通运输及 国防建设等 各
当系统 中存在 随 机干 扰 和环 境 系统、多变量系统。难 以揭 示系统 更 个领域 。主要有倒立摆稳定控制 、单 噪声时,其综合必须应用概 率和统计 为深刻 的特性 。
方法进 行 。即: 己知系统数 学模型 , 级倒立摆稳定控制、二级倒立摆稳定
统 。它所采用的方法 和算法 也更适合 别表现在经典控制理论 的研究对象是 制 ,它的 出现 对 电机 控制技术 的研究
于在数字计算机上进行 。现代控制 理 单入单 出的 ( IO S S )系统 ,以及线性 具有划时代 的意义 ,使 电机控制技术 论还为设计和构造具有指定的性能指 定常系 统。用 到的工具有传递 函数 。 的发展步入 了一个全新 的阶段 。18 95
【 关键词 】现代控制理论 ;差异 ;应用;意义
1 引言 . 控 制 理论 作 为一 门科 学技 术 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015级硕士期末论文《现代控制理论综述》课程现代控制理论姓名学号专业2016 年1 月 4 日经典控制理论与现代控制理论的差异现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
它所采用的方法和算法也更适合于在数字计算机上进行。
现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。
现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。
现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。
现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。
现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。
空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。
这类控制问题十分复杂,采用经典控制理论难以解决。
1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。
在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。
他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。
1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。
几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。
状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。
其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。
到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。
现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。
线性系统理论是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。
按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。
非线性系统理论的分析和综合理论尚不完善。
研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。
更一般的非线性系统理论还有待建立。
从70年代中期以来,由微分几何理论得出的某些方法对分析某些类型的非线性系统提供了有力的理论工具。
最优控制理论是设计最优控制系统的理论基础,主要研究受控系统在指定性能指标实现最优时的控制规律及其综合方法。
在最优控制理论中,用于综合最优控制系统的主要方法有极大值原理和动态规划。
最优控制理论的研究范围正在不断扩大,诸如大系统的最优控制、分布参数系统的最优控制等。
随机控制理论的目标是解决随机控制系统的分析和综合问题。
维纳滤波理论和卡尔曼-布什滤波理论是随机控制理论的基础之一。
随机控制理论的一个主要组成部分是随机最优控制,这类随机控制问题的求解有赖于动态规划的概念和方法。
适应控制理论系统是在模仿生物适应能力的思想基础上建立的一类可自动调整本身特性的控制系统。
适应控制系统的研究常可归结为如下的三个基本问题:①识别受控对象的动态特性;②在识别对象的基础上选择决策;③在决策的基础上做出反应或动作。
一、现代控制理论的发展1.智能控制(Intelligent Control)智能控制是人工智能和自动控制的结合物,是一类无需人的干预就能够独立地驱动智能机器,实现其目标的自动控制。
智能控制的注意力并不放在对数学公式的表达、计算和处理上,而放在对任务和模型的描述,符号和环境的识别以及知识库和推理机的设计开发上。
智能控制用于生产过程,让计算机系统模仿专家或熟练操作人员的经验,建立起以知识为基础的广义模型,采用符号信息处理、启发式程序设计、知识表示和自学习、推理与决策等智能化技术,对外界环境和系统过程进行理解、判断、预测和规划,使被控对象按一定要求达到预定的目的。
2.非线性控制(Nonlinear Control)非线性控制是复杂控制理论中一个重要的基本问题,也是一个难点课题,它的发展几乎与线性系统平行。
非线性系统的发展,数学工具是一个相当困难的问题,泰勒级数展开对有些情况是不能适用的。
古典理论中的“相平面”法只适用于二阶系统,适用于含有一个非线性元件的高阶系统的“描述函数”法也是一种近似方法。
由于非线性系统的研究缺乏系统的、一般性的理论及方法,于是综合方法得到较大的发展3.自适应控制(Adaptive Control)自适应控制系统通过不断地测量系统的输入、状态、输出或性能参数,逐渐了解和掌握对象,然后根据所得的信息按一定的设计方法,作出决策去更新控制器的结构和参数以适应环境的变化,达到所要求的控制性能指标。
4.鲁棒控制(Robust Control)过程控制中面临的一个重要问题就是模型不确定性,鲁棒控制主要解决模型的不确定性问题,但在处理方法上与自适应控制有所不同。
自适应控制的基本思想是进行模型参数的辩识。
进而设计控制器。
控制器参数的调整依赖于模型参数的更新,不能预先把可能出现的不确定性考虑进去。
而鲁棒控制在设计控制器时尽量利用不确定性信息来设计一个控制器,使得不确定参数出现时仍能满足性能指标要求。
鲁棒控制认为系统的不确定性可用模型集来描述,系统的模型并不唯一,可以是模型集里的任一元素,但在所设计的控制器下,都能使模型集里的元素满足要求。
5.模糊控制(Fuzzy Control)模糊控制借助模糊数学模拟人的思维方法,将工艺操作人员的经验加以总结,运用语言变量和模糊逻辑理论进行推理和决策,对复杂对象进行控制。
模糊控制既不是指被控过程是模糊的,也不意味控制器是不确定的,它是表示知识和概念上的模糊性,它完成的工作是完全确定的。
1974年英国工程师E.H.Mamdam首次把Fuzzy集合理论用于锅炉和蒸气机的控制以来,开辟了Fuzzy控制的新领域,特别是对于大时滞、非线性等难以建立精确数学模型的复杂系统,通过计算机实现模糊控制往往能取得很好的结果。
模糊控制的特点是不需要精确的数学模型,鲁棒性强,控制效果好,容易克服非线性因素的影响,控制方法易于掌握。
最近有人提出神经——模糊Inter3融合控制模型,即把融合结构、融合算法及控制合为一体进行设计。
又有人提出利用同伦BP网络记忆模糊规则,以“联想方式”使用这些经验。
模糊控制有待进一步研究的问题:模糊控制系统的功能、稳定性、最优化问题的评价;非线性复杂系统的模糊建模,模糊规则的建立和模糊推理算法的研究;找出可遵循的一般设计原则。
6.神经网络控制(Neural Network Control)神经网络是由所谓神经元的简单单元按并行结构经过可调的连接权构成的网络。
神经网络的种类很多,控制中常用的有多层前向BP网络,RBF络,Hopfield 网络以及自适应共振理论模型(ART)等。
神经网络控制就是利用神经网络这种工具从机理上对人脑进行简单结构模拟的新型控制和辨识方法。
神经网络在控制系统中可充当对象的模型,还可充当控制器。
7.实时专家控制(Real Time Expert Control)专家系统是一个具有大量专门知识和经验的程序系统,它应用人工智能技术,根据某个领域一个或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要专家决定的复杂问题。
专家系统和传统的计算机程序最本质的区别在于:专家系统所要解决的问题一般没有算法解,并且往往要在不完全、不精确或不确定的信息基础上作出结论。
实时专家系统应用模糊逻辑控制和神经网络理论,融进专家系统自适应地管理一个客体或过程的全面行为,自动采集生产过程变量,解释控制系统的当前状况,预测过程的未来行为,诊断可能发生的问题,不断修正和执行控制计划。
实时专家系统具有启发性、透明性、灵活性等特点,目前已经在航天试验指挥、工业炉窑的控制、高炉炉热诊断中得到广泛应用。
目前需要进一步研究的问题是如何用简洁语言来描述人类长期积累的经验知识,提高联想化记忆和自学习能力。
8.定性控制(Qualitative Control)定性控制是指系统的状态变量为定性量时(其值不是某一精确值而只知其处于某一范围内),应用定性推理对系统施加控制变量使系统在某一期望范围。
9.预测控制(Predictive Control)预测控制是在工业实践过程中独立发展起来的一种新型控制方法,它不仅适用于工业过程这种“慢过程”的控制,也能适用于快速跟踪的伺服系统这种“快过程”控制。
目前实用的预测控制方法有动态矩阵控制(DMC),模型算法控制(MAC),广义预测控制(GPC),模型预测启发控制(MPHC)以及预测函数控制(PFC)等。
最近有人提出一种新的基于主导内模概念的预测控制方法:结构对外来激励的响应主要由其本身的模态所决定,即结构只对激励信息中与其起主导作用的几个主要自振频率相接近的频率成分有较大的响应。
目前利用神经网络对被控对象进行在线辨识,然后用广义预测控制规律进行控制得到较多重视。
预测控制目前存在的问题是预测精度不高;反馈校正方法单调;滚动优化策略少;对任意的一般系统,其稳定性和鲁棒性分析较难进行;参数调整的总体规则虽然比较明确,但对不同类型的系统的具体调整方法仍有待进一步总结。
10.分布式控制系统(Distributed Control System)分布式控制系统又称集散控制系统,是70年代中期发展起来的新型计算机控制系统,它融合了通信技术(Communication),计算机技术(Computer),图像显示技术(CRT),控制技术(Control)的“4C”技术,形成了以微处理器为核心的系统,实现对生产过程的监视、控制和管理。
既打破了常规控制仪表功能的局限,又较好地解决了早期计算机系统对于信息、管理过于集中带来的危险,而且还有大规模数据采集、处理的功能以及较强的数据通信能力。
分布式控制系统既有计算机控制系统控制算法灵活,精度高的优点,又有仪表控制系统安全可靠,维护方便的优点。