21 几何不变体系和几何可变体系.
建筑力学大纲 知识点第四章 几何组成分析
第4章平面体系的几何组成分析4.1几何不变与几何可变体系的概念通常平面体系可以分成三类,即几何不变体系、几何可变体系和瞬变体系。
在不考虑材料微小变形的条件下,体系受力后,能保持其几何形状和位置的不变,而不发生刚体形式的运动,这类体系称为几何不变体系。
图4-2所示在荷载F的作用下,该体系必然发生刚体形式的运动。
此时无论F值如何小,它的几何形状和位置都要发生变化。
这样的体系称为几何可变体系。
图4-1 图4-2图4-3所示体系,这种在原来的位置上发生微小位移后不能再继续移动的体系称为瞬变体系。
(a)(b)(c)图4-34.2刚片·自由度·联系的概念刚片:对体系进行几何组成分析时,由于不考虑材料的变形,所以各个构件均为刚体,由若干个构件组成的几何不变体系也是一个刚体。
研究平面体系时,将刚体称为刚片。
自由度是确定体系位置时所需要的独立参数的数目。
当对刚片施加约束时,它的自由度将减少。
能减少一个自由度的约束称为一个联系。
4 .3 几何不变体系的组成规则无多余联系是指体系内的约束恰好使该体系成为几何不变体系,几何不变体系的基本组成规则有三条。
规则一:二刚片规则。
两刚片用既不完全平行,也不相交于一点的三根链杆联结。
所组成的体系是几何不变的。
规则二:三刚片规则。
三个刚片用不在一条直线的铰两两相联结组成的体系是几何不变的。
规则三:二杆结点规则。
在刚片上加或减去二杆结点时,形成的体系是几何不变的。
4 .4 静定结构和超静定结构·常见的结构形式4.4.1静定结构和超静定结构几何不变体系可分为无多余联系和有多余联系两类。
无多余联系的几何不变体系称为静定结构,有多余联系的几何不变体系则称为超静定结构。
4.4.2常见的结构形式1.梁板体系2.桁架体系3.拱结构体系4.框架、筒体体系5.悬索体系6.薄壳体系7. 膜结构8.树状结构小结(1)体系可以分为几何不变体系和几何可变体系,只有几何不变体系才能用作结构,几何可变及瞬变体系不能用作结构。
建筑力学与结构第4章
【学习目标】通过本章的学习,了解几何不变体系和 几何可变体系的概念,理解几何组成分析的目的;掌握平 面体系的几何组成规则并能熟练应用;了解静定结构和超 静定结构的联系和区别。 【学习重点】平面体系的几何组成分析规则,运用规 则判定体系是否为几何不变体系。
4.1 概述
若干个杆件按一定规律相互连接,并与基础连接成一 整体,构成杆件体系。如果体系的所有杆件和约束及外部 作用均在同一平面内,则称为平面体系。 1.几何不变体系和几何可变体系 在不考虑材料变形的条件下,体系受力后,能保持 其几何形状和位置的不变,且不发生刚体形式的运动,这 类体系称为几何不变体系。
图4-16 例4-4图
例4-5 对如图4-17所示结构进行几何组成分析。已 知体系中杆DE、FG、AB互相平行。 解 拆除二元 体D-C-E,剩下部 分中三角形ADF 和BEG是两刚片, 这两刚片用互相 平行的三根链杆 连接,故构成瞬 变体系。
图4-17 例4-5图
例4-6
对如图4-18所示结构进行几何组成分析。
一个单铰相当于两 个约束,也就是相当于 两根链杆的作用。
连接n个刚片的复铰, 其作用相当于(n-1)个单 铰,也即相当于2(n-1) 个约束。
相当于3个单铰
相当于2个单铰
单铰数为1
图4-5 复铰和单铰示例
刚片Ⅰ和刚片Ⅱ间为刚性联结。
图4-6 刚性联结
一个刚性连接相对于三个约束。
必要约束: 凡使体系的自由度减少为零所需要的最少约束。 多余约束: 如果在一个体系中增加一个约束,而体系的自由度并不 因此而减少。
2.几何组成分析的目的
对体系进行几何组成分析,目的在于: 1)判断体系是否为几何不变体系,从而决定他能 否作为结构。 2)研究几何不变体系的组成规则,以保证所设计 的结构是几何不变的。 3)正确区分静定结构和超静定结构,为进行结构 的内力计算打下必要的基础。
第7章 平面体系的几何组成分析概况
例10.
刚片I、II由5,6杆虚铰于A(无穷远); 刚片II、III由3,4虚铰于3; 刚片I、III由1,2杆虚铰于2; 三铰A、3、2不共线,构成几何不变,且无多余约束的体系。
例11
图示刚片I、II、III 刚片I、II由1,2杆虚铰于A; 刚片II、III由5,6虚铰于C; 刚片I、III由3,4杆虚铰于B; 三铰A、B、C不共线,构成内部几何不变,且无多余约束 的体系。 注意:几何构造分析中,由于每一杆是一个约束,因而 每根杆只能用一次。.
实铰A,B效果相同,C为虚铰, 因此, 两刚片的连接可归结 为一个铰和一个链杆的连接
或:两个刚片由一个实铰和不过该铰的一根 链杆连接,构成几何不变,且无多余约束 的体系。
规则二:三个刚片用不在同一直线上的三个铰两两相连,则所 组成的体系是几何不变的。
几 何 不 变 铰结三角形,几何不变
三铰各由两链杆构成实铰, 构成几何不变,无多余约束
例6
去除二元片,如图所示。 I、II实铰于A; I、III由1,2虚铰于B; II、III由3,4虚铰于C; A、B、C三铰不共线, 构成几何不变,且无多余约束的体系。
例7.
刚片I与地基III由不彼此平行,又不交于同一点的三杆1,2, 3连接,构成几何不变,且无多余约束的部分。I与III一起视 为扩展的地基刚片IV。 II与IV由实铰A及不过该铰的杆4连接,构成几何不变,且无 多余约束的部分。 所以,原体系构成几何不变,且无多余约束的体系。 从基础部分(几何不变部分)依次添加扩展地基刚片
把II 看作链杆,由两刚片法 则,构成几何不变,无多 余约束
三刚片由不共线的三个虚 铰连接,构成几何不变, 无多余约束体系
三铰不共线,几何不 变,无多余约束
几何不变体系
5多余约束:不减少体系自由度过的约束称为多余约束。 A
a 注意:多余约束是结构中有用的、不可少的约束。它将影响
结构的受力与变形,只是不减少体系的自由度。
6、单刚结点:将两刚片联结成一个整体的结点
图示两刚片有六个自由度 加刚联结后有三个自由度
一个单刚结点可减少三个自由度相当于三个约束。
刚结点将刚片连成整体(新刚片)。若是发散的,无多余约束, 若是闭合的,则每个无铰封闭框都有三个多余约束。
O 瞬铰
单铰
A 定轴转动
5
平面运动!
4、复铰(重铰)联结三个或三个以上刚片的铰
A
x
C
先有刚片A,然后以单铰将 刚片B联于刚片A, 再以单铰
将刚片C联刚片于A上
也可以理解加复铰前三个刚
共有九个自由度, 加复铰后还剩
图示五个自由度。
B y
所以联结三个刚片的复铰相当
于两个单铰,减少体系四个约束。
一般说来,联结n个刚片的复铰相当于n-1个 单铰,相当于 2(n-1)个约束!
Δ是微量
构使用.
P
只有几何不变体N 系才 N
能作为建筑结构使用!!
2
三、自由度:所谓体系的自由度是指体系运动时,可以 独立改变的几何参数的数目; 即确定体系位置所需独立坐 标的数目。
1、平面内一点_2_各自由度;
2、平面内一刚片_3_各自由度;
y x
yx 图a
yX
o
y
x
图b
3
四、约束:在体系内部加入的减少自由度的装置
§2.3无多余约束几何不变体系的组成规则
图a为一无多余约束的几何不变体系 将杆AC,AB,BC均看成刚片,就成为三刚 片组成的无多余约束的几何不变体系
结构力学之平面体系的几何组成分析
二、二刚片规则: 两个刚片用既不全平行也不全交于一点的 三根链杆相联,所组成的体系是几何不变 体系,且无多余约束。
O
ΙΙ
ΙΙΙ
推论: 两个刚片由一个铰和一根轴线不通过该铰的 链杆相联,所组成的体系是几何不变体系, 且无多余约束。
ΙΙ
C
A
B
例三、
C
A
分析图示体系的几何构造:
D
解法一: 1、找刚片:
依据材料概括晚清中国交通方式的特点,并分析其成因。
提示:特点:新旧交通工具并存(或:传统的帆船、独轮车, 近代的小火轮、火车同时使用)。 原因:近代西方列强的侵略加剧了中国的贫困,阻碍社会发 展;西方工业文明的冲击与示范;中国民族工业的兴起与发展;
政府及各阶层人士的提倡与推动。
[串点成面· 握全局]
(二)二元体规则:
增加或去掉二元体不改变原体系的几何
组成性质。
C
A
B
例五、 分析图示体系的几何构造:
解:
A
D
E
基本铰结三角形ABC符合 三刚片规则,是无多余约
B
束的几何不变体系;依次
C
F
G
在其上增加二元体A-D-C、
C-E-D、C-F-E、E-G-F后, 体系仍为几何不变体,且 无多余约束。
一、几何构造特性:
(一)无多余联系的几何不变体系称为静定 结构。
静定结构几何组成的特点是:
任意取消一个约束,体系就变成了
几何可变体系。
(二)有多余联系的几何不变体系称为超静 定结构。
特点: 某些约束撤除以后,剩余体系仍
为几何不变体系。
二、静力特性:
(一)静定结构: 在荷载作用下,可以依据
05结构力学第二章
例8:对图示体系作几何组成分析
方法1: 若基础与其它部分三杆相连, 方法1: 若基础与其它部分三杆相连,去掉基础只分析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法4: 去掉二元体. 方法5: 从基础部分(几何不变部分)依次添加. 方法4: 去掉二元体. 方法5: 从基础部分(几何不变部分)依次添加.
规律2 规律
II I
III
2. 两个刚片之间的组成方式 规律1 规律 两个刚片之间用一个铰和一根链杆相连, 且 两个刚片之间用一个铰和一根链杆相连 三铰不在一直线上,则组成无多余约束的几何 三铰不在一直线上 则组成无多余约束的几何 体系。 或 两个刚片之间用三根链杆相 不变 体系 且三根链杆不交于一点,则组成无多余约束 连,且三根链杆不交于一点 则组成无多余约束 且三根链杆不交于一点 的几何不变体系。 的几何不变体系。
例4: 对图示体系作几何组成分析
解: 该体系为瞬变体系. 该体系为瞬变体系. 方法3: 方法3: 将只有两个铰与其它部分相连的 刚片看成链杆. 刚片看成链杆.
方法1: 若基础与其它部分三杆相连, 方法1: 若基础与其它部分三杆相连,去掉基础只分析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆.
二元体( 二元体(片)规则 二元体: 二元体:在一个体系上用两个不共线的链杆连 接一个新结点的装置。 接一个新结点的装置。
在一个体系上加减二元体不影响原体系的几何组成
结构力学第2章
第2章 平面体系的几何构造分析 五、体系的计算自由度与自由度
返回
1. 计算自由度与自由度的关系
自测
S(自由度) W(计算自由度)= n(多余约束) 2. 自由度与几何体系的关系 几何不变体系的自由度为零,凡是自由度大于零的 体系都是几何可变体系。 3. 几何性质与静定、超静定的关系 静定、超静定结构都必须是几何不变体系,其中无多 余约束的几何不变体系是静定结构,有多余约束的几何不 变体系是超静定结构。
A B C A D O1 B C
帮助 开篇
退出
上一页
下一页
II
O1 D E
I
F O2
I II
E F III
III (a)
O2
(b)
烟台大学
第2章 平面体系的几何构造分析 四、应注意的问题
返回
自测
(1) 刚片必须是内部几何不变的部分。 例如,不能把图a中的 EFGD取作刚片(图b), 因为它是几何可变的。
烟台大学
A B (a) C C (b) B D A B (c) A C
注意:去掉二元体是体系的拆除过程,应从体系的外 边缘开始进行,而增加二元体是体系的组装过程,应从一 个基本刚片开始。
烟台大学
第2章 平面体系的几何构造分析
二、几个容易混淆的概念
返回
自测
E C A D B
1. 二元体
帮助 开篇
退出
上一页
下一页
烟台大学
第2章 平面体系的几何构造分析
返回
自测
例如, 在分析图a 所示体系的几何组成时,可去掉二 元体,体系变为图b。将基础视为刚片,AB杆(刚片Ⅰ)、 BC杆(刚片Ⅱ)与基础(刚片Ⅲ)符合三刚片规律,体 系为无多余约束的几何不变体系。
结构力学总复习
加*号的量表示虚设量 (2)变形体虚位移方程:虚设变形形态,则虚功方程可写为
* * * F F c ( M F F P N Q 0 )ds * * RK K B A
结构位移计算的一般公式 在支座处还有给定位移cK
( M FN FQ 0 )ds FRK cK
变形体的虚功原理
设变形体在力系作用下处于平衡状态,
又设变形体由于其他原因产生符合约束条件的微小连续变形,
则外力在位移上所作外虚功W恒等于各个微段的应力合力在变形 上所作的内力虚功Wi。即 W Wi
变形体虚功方程的两种应用
(1)变形体虚力方程:虚设平衡力系,则虚功方程可写为
* * * F F c ( M F F N Q 0 )ds * P * RK K B A
80
4m
20kN 3ql2/4
XA YA
A
B
XB
l
l YB
C
2 2 YA 2l 0 M ql 0 . 5 ql B
3ql/8 YA
A
B YB
3ql/8
YA ql 4 2 2 M ql ql 4 X A 2l 0 C
XA 3ql 8
2l
M(kN.m)
第 1章
绪论
结构的概念和结构力学的研究内容 结构计算简图的简化要点 杆件结构的分类 荷载的分类
第 2章
平面体系的机动分析
几何构造分析的概念
平面几何不变体系的组成规律
平面杆件体系的计算自由度
几何构造分析的几个概念
1. 几何不变体系和几何可变体系 几何不变体系—在不考虑材料应变的条件下,体系的位置 和形状是不能改变的。 几何可变体系—在不考虑材料应变的条件下,体系的位置和
结构力学平面体系的几何构造分析高教书苑
高级教育
14
2.方法
§2-2 几何不变体系的组成规律
㈠计算自由度法
m—刚片总数; g—单刚结点总数;
高级教育
30
§2-3 平面杆件体系的计算自由度
例2-3-4 求图示体系的计算自由度。
解:
m 2 g 1 h 1 b 5
I A II
W 3 2 (31 2 1 5)
6 10 4
1
3
2
45
例2-3-5 求图示体系的计算自由度。
A
1
B
解:
j 5 b 10
2 34 5
W 2 5 10 0
四、约束(联系)
凡是能减少体系自由度的装置就称为约束。
约束
非多余约束:能真正减少体系自由度的约束。 多余约束:加上此约束体系的自由度并不因此而减少。
1)链杆约束
①单链杆约束(连接两个点的链杆)
结论:一根单链杆可减少一个自由度相当于一个约束或联系。
②复链杆约束(连接两个以上点的链杆) 结论:连接n个点的复链杆相当于(2n-3)根单链杆的作用。
21
§2-2 几何不变体系的组成规律
例2-2-1 试分析图示体系的几何构造。
解:
A
3
6
I
B
1 II
III
2C
5
4
刚片I、 II用链杆1、2相连, (瞬铰A);
刚片I、 III用链杆3、4相连, (瞬铰B);
刚片II、III用链杆5、6相连, (瞬铰C)。
01-平面杆件体系知识点小结
第2章平面杆件体系的几何组成分析(知识点小结)一、几何组成分析的几个概念1、几何不变体系与几何可变体系几何不变体系是指受到任意荷载作用下,若不考虑材料的应变,其几何形状和位置均能保持不变的体系。
几何可变体系是指即使不考虑材料的应变,在微小的荷载作用下也会产生刚体位移,而不能保持原有的几何形状和位置。
几何可变体系分为几何常变体系和几何瞬变体系。
几何可变体系在很小的荷载作用下会产生位移,经微小位移后仍能继续发生刚体运动,这样的几何可变体系称为几何常变体系。
若原为几何可变体系,经微小位移后即转化为几何不变体系,这类几何可变体系为几何瞬变体系。
工程结构绝不能采用几何瞬变体系,而且也应避免采用接近于瞬变的体系。
2、自由度指体系在所受限制的许可条件下独立的运动方式,即能确定体系几何位置的彼此独立的几何坐标数目。
平面内一点的自由度为2,一个刚片的自由度为3。
3、约束(联系)约束是指指限制体系运动的各种装置。
约束包括外部约束(支座约束)和内部约束。
(1)外部约束一个活动铰支座、固定铰支座和固定支座分别相当于1、2、3个约束。
(2)内部约束一根单链杆相当于1个约束;连接m(m>2)个结点的复链杆,相当于2m-3个单链杆,即相当于2m-3个约束;一个单铰相当于2个约束;连接m(m>2)个刚片的复铰,可折合成(m-1)个单铰,即相当于2(m-1)个约束作用;一单刚结点相当于三个约束;联结m(m>2)个刚片的刚结点称为复刚结点,可折合成(m-1)个单刚结点,即相当于3(m-1)个约束。
约束从能否减少体系的自由度方面来划分,可分为必要约束和多余约束。
为保持体系几何不变所必须具有的约束称为必要约束,不能使体系的自由度数目减少的约束称为多余约束。
4、瞬铰(虚铰)两个刚片间用两个不共线链杆相联,其约束作用相当于这两根链杆交点位置处的一个铰所起的约束作用,这个铰称为虚铰或瞬铰(图2-1a)。
在几何组成分析中,尤其要注意这样特殊情况:两刚片间用两根相互平行的链杆相连,两根平行链杆所起的约束作用相当于无穷远处的瞬铰所起的约束作用,如图2-1b所示。
结构力学-平面体系的几何组成分析知识重点及习题解析
《结构力学》平面体系的几何组成分析知识重点及习题解析一、基本概念1.1、几何不变体系若不考虑材料变形,在任意荷载作用下几何形状和位置均能保持不变的体系。
1.2、几何可变体系即使不考虑材料变形,在很小的荷载作用下,也会发生机械运动而不能保持原有几何形状和位置的体系。
1.3、瞬变体系原可发生形状或位置的改变,但经微小位移后即转化为几何不变的体系。
1.4、刚片平面杆件体系中的几何不变的部分,也可以是一根杆件或大地等。
1.5、虚铰连接两个刚片的两根链杆的作用相当于在其交点处的一个单铰,不过这个铰的位置随着链杆的转动而改变,这种铰称为虚铰。
1.6、自由度物体运动时可以独立变化的几何参数的数目,也即确定物体位置所需的独立坐标数目。
1.7、约束减少自由度的装置,称为联系或约束。
1.8、必要约束能改变体系自由度的约束,也即使体系成为几何不变而必须的约束。
1.9、多余约束不能减少体系自由度的约束。
1.10、计算自由度并非体系的真实自由度,而是体系的自由度数目减约束数目。
计算公式如下:W=3m-(2h+r)式中W一计算自由度;m一刚片数;h—单铰数,连接n个杆件的复铰相当于n-1个单铰;r—支座链杆数。
对于铰结链杆体系,还可用如下公式计算:W=2j-(b+r)式中j一结点数;b一杆件数二、几何不变体系的基本组成规则2.1、三刚片规则三个刚片用不在不同一条直线上的三个单铰两两铰连,组成的体系是几何不变的。
2.2、二刚片规则两个刚片用一个铰和一根不通过此铰的链杆相连,为几何不变体系;或者两个刚片用三根不全平行也不交于同一点的链杆相连,为几何不变体系。
2.3、二元体规则在一个体系上增加或拆除二元体,不会改变原有体系的几何构造性质。
三、几何构造与静定性的关系所谓体系的静定性,是指体系在任意荷载作用下的全部反力和内力是否可以根据静力平衡条件确定。
静定结构的几何构造特征是几何不变且无多余约束,而有多余约束的几何不变体系则是超静定结构。
§2-1几何组成分析中相关几个概念
2、引出本章几个主要目的: 、引出本章几个主要目的:
1、判定:杆件体系能否作为结构 2、拼接:组成结构的规则,杆件如何组合才能成为结构 3、最优:最合理的组成方式 4、确定相应的计算方法:静定或超静定、多跨结构:基 本+附属,确定计算顺序
二、刚片(rigid body)和自由度(degree of freedom) 刚片( body)和自由度 和自由度(
O1
B A
1 2
实铰
两根链杆延 长线组成的 虚铰
两根链杆相 交组成的虚 铰
六、无穷远处的瞬铰
◆如果用两根平行的链杆l和2把刚片与基础相连接,则两根链杆的交 点在无穷远处。因此,两根链杆所起的约束作用相当于无穷远处的瞬 铰所起的约束作用。由于瞬铰在无穷远处,因此绕瞬铰的微小转动就 退化为平动,即沿两根链杆的正交方向产生平动
B A Ⅰ Ⅱ Ⅰ A C B C Ⅱ
体系1
体系2
在体系1中,链杆1上的A点可绕B点沿圆弧Ⅰ运动,链杆2上的A点可 绕C点沿圆弧Ⅱ运动。两个链杆在A点铰结在一起,由于两个圆弧在 A点相切,故A点仍可沿公切线方向作微小的运动。当A点沿公切线 发生微小位移后,两根链杆就不再彼此共线,因而体系也不再是可 变体系。瞬变体系是可变体系的一种特例。 在体系2中,由于两个圆弧在A点不是相切而是相交,因此A点既不 能沿圆弧Ⅰ运动,也不能沿圆弧Ⅱ运动,A点已被完全固定了。
1、刚片 平面体系中几何形状不变的平面刚体(不考虑材料应变),称之为钢片。 如:一根梁、一根链杆、大地、体系中已经确定为几何不变的部分
2、自由度 用来确定物体或体系在平面中的位置时所需要的独立坐标的数目:n y y B x 1 x A ϕ
y
x
O O
y
结构力学第二章 平面体系的几何组成分析
2 3 固定一个结点的装配格式简单装配格式
B
I
C
A
A
II
II
固定一个刚片的装配格式
3
3
B
I
B C 12 I
C 联合装配格式
A
II
III
固定两个刚片的装配格式
B
I C 复合装配格式
29/73
2-2 平面几何不变体系的组成规律 四、体系的装配 多次应用上述基本组成规律或基本装配格式,可以组成各 种各样的几何不变且无多余约束的体系。 装配的过程通常有两种: 1 从基础出发进行装配
x
一个链杆相当于1个约束
若用数学表达式,则应满足以下条件: xB xA 2 yB yA 2 l2
4个坐标参数必须受到上述条件的限制,故只有3个独立运动 几何参数。
14/73
2-1 几何构造分析的几个概念 五、多余约束
如果在一个体系中增加一个约束,而体系的自由度并不因此 而减少,这种约束称为多余约束。
二、刚片
在几何组成分析中,可能遇到各种各样的平面物体,不论其具 体形状如何,凡本身为几何不变者,则均可把它看作为刚片。
6
4 2
5 3
1
5/73
2-1 几何构造分析的几个概念 三、自由度
y A'
A Dx
O
x
平面内一点有两种独立运动方式 (两个坐标x, y可以独立地改变)
一点在平面内有两个自由度
Dy Dy
A
II B
3
I
C
II
B 12
A
3
I
C
几何不变 无多余约束
几何不变 无多余约束
规律3 两个刚片用三个链杆相连,且三链杆不交于同一点,则 组成几何不变的整体,并且没有多余约束。
2.1 几何不变体系和几何可变体系
体系的几何组成分析不考虑材料的应变,任一杆件(或体系中一
LIAOCHENG UNIVERSITY
几何不变部分)均可看为一个刚体,一个平面刚体称为一个刚片。
二、自由度
体系运动时可以独立改变的座标的数目,称为该体系的自由度。
y
A
A1
Dy Dx
y
A B Dx
B1
A1
Dq
Dy
o
x
o
的自由度为3
平面内一个点的自由度为2。
A
B
A
B
a) 几何不变体系
b) 几何可变体系
聊城大学建筑工程学院
2、外部支承不恰当:
如图a所示简支梁,本为几何不变体系;
但若将A端水平支杆移至C处并竖向设置,如图b所示, 则在图示FP作用下,梁AB将相对于地基发生刚性平移, 即变成了几何可变体系。
FP A B FP C C1 B B1
LIAOCHENG UNIVERSITY
材
LIAO能保持不变的体系。
D
FP A A1 弹性变形 EI FP A EI1=∞
B
B
聊城大学建筑工程学院
2、几何可变体系——受到任意荷载作用后,若不考虑材
料的应变,其几何形状和位置仍可以发生改变的体系。
LIAOCHENG UNIVERSITY
W = 2j-(b+r) = 2×3-(2+4) = 0
对给定的一个结构,计算结果不因选取计算方式而改变。
聊城大学建筑工程学院
三、体系的几何组成性质与计算自由度之间的关系 先求出图示各体系的W。
LIAOCHENG UNIVERSITY
a) W=1>0
b) W=0
结构力学 第2章 平面体系的几何组成分析
2.1 几何不变体系和几何可变体系
一、几何不变体系和几何可变体系
1、几何不变体系——受到任意荷载作用后,若不考虑 材料的应变,其几何形状和位置均能保持不变的体系。
D
FP A A1 弹性变形 EI FP A
几何不变体系:刚体.swf
EI1=∞
B
B
一、几何不变体系和几何可变体系
2、几何可变体系——受到任意荷载作用后,若不考虑材料 的应变,其几何形状和位置仍可以发生改变的体系。
三、体系的几何组成性质与计算自由度之间的关系
a) W=1>0 由此可知:
b) W=0
c) W=-1<0
(1) 若W>0,体系一定是几何可变的。 (2) 若W≤0,只表明具有几何不变的必要条件,但不 是充分条件。因为体系是否几何不变还取决于约束的 布置是否合理。
2.4 平面几何不变体系的基本组成规则
(4)刚片与地基之间的固定支座和铰支座不计入g和h, 而应等效代换为三根支杆或两根支杆计入r。
【例2-1】试求图示体系的计算自由度W。
m1 m4 m7 (3)h m2 m5 (1)h m6 (3)g
(1)h m3 (3)h
m8
(3)r
m9 (3)r
m=9,g=3,h=8, r=6
W = 3m-(3g+2h+r) = 3×9-(3×3+2×8+6) = -4
图a是内部没有多余约束的 刚片,而图b、c、d则是内 部分别有1、2、3个多余约 a) 束的刚片,它们可以看作 在图a的刚片内部分别附加 了一根链杆或一个铰结或 c) 一个刚结。
b)
d)
在应用公式时,应注意以下几点:
(3)刚片与刚片之间的刚结或铰结数目(复刚结或复 铰结应折算为单刚结或单铰结数目)计入g和h。
第二章 平面结构的几何构造分析_
刚片Ⅰ、Ⅱ由不共线的铰D和链 杆C相连组成大刚片Ⅰ ,同理 大刚片Ⅰ、刚片Ⅲ也由不共线 的铰B和链杆A相连,所以体系 为无多余约束的几何不变体。
刚片Ⅰ、Ⅱ由不共线的铰A和链 杆1相连组成大刚片Ⅰ ,同理大 刚片Ⅰ、基础也由不共线的一铰 和一链杆相连,所以体系为无多 余约束的几何不变体。
【例2.4 】 试分析图示体系的几何构造
解: 解:
013 基础 Ⅲ
Ⅰ
023
Ⅱ
012
刚片Ⅰ、Ⅱ、Ⅲ由不共线的三 铰相连,所以体系为无多余约 束的几何不变体。 刚片ABCDEF由铰D和链杆F 相连,组成几何不变体系, 所以体系为有多余约束 (链杆A或F)体系。
◆通过以上几个例题,可以归纳出以下几点: (1)体系通常是由多个构造单元逐步形成的,即从第一个构造单元 开始,然后按照某种顺序,把其他构造单元逐个地装配起来。在构造 分析中,通常先找出—个几何不变的部分作为第一个构造单元,然后 在其基础上扩大、装配,把由构造单元到体系的装配过程分析清楚。 (2)要注意约束的等效替换。例如,联系两个刚片的两根链杆可用 相应的瞬铰来替换,或复杂形状的联结杆可用直线链杆来替换。 (3)有的体系只有一种装配方式,有的体系却有几种装配方式,还 有一些结构体系的几何构造比较复杂,需要采用其它的构造方式装配。
2 7
(3)混合体系:
W 3m 2 j (3 g 2h b)
2 8
体系的计算自由度: 计算自由度等于刚片总自由度数减总约束数
W = 3m-(3g+2h+b)
m---刚片数(不包括地基) g---单刚结点数 h---单铰数 b---单链杆数(含支杆)
铰结链杆体系---完全由两端铰结的杆件所组成的体系
几何可变体系与几何不变体系
[几何可变体系与几何不变体系]几何可变体系——在任意荷载的作用下,即使不考虑材料的应变,它的形状和位置也是可以改变的。
几何不变体系——如果不考虑材料的应变,它的形状和位置是不能改变的。
[机动分析的目的](1)判断体系是否可变;(2)研究不变体系的基体组成规律;(3)确定结构的静定次数;(4)进行组成分析,选择简单的计算次序。
[自由度与刚片]物体在运动时决定其位置的几何参变数称为自由度。
几何形状不变的平面体称为刚片。
一个刚片在平面内运动有三个自由度;一个点在平面内运动有两个自由度;一个点在空间内运动有三个自由度;一个刚体在空间内运动有六个自由度。
[约束]减少自由度的装置称为约束。
[约束的影响](1)支座约束可动铰支座相当于一个约束,减少一个自由度;固定铰支座相当于两个约束,减少两个自由度;固定端支座相当于三个约束,减少三个自由度;定向支座相当于两个约束,减少两个自由度。
(2)链杆两刚片加一链杆约束,减少一个自由度。
(3)铰结点单铰:两刚片加一单铰结点约束,减少两个自由度。
复铰:个刚片在同一点用铰连接,相当于个单铰的约束。
(4)刚结点单刚结点:两刚片加一刚结点约束,减少三个自由度。
复刚结点:个刚片在同一点用刚结点连接,相当于个单刚结点的约束。
[结构体系自由度的计算公式](1)一般公式各部件自由度总和-全部约束数为结构体系自由度。
(2)平面杆件体系自由度的计算公式式中为刚片个数;为单刚结点个数;为单铰结点个数;为链杆个数;为支座约束个数,如果为自由体,即无支座约束,则。
(3)平面桁架自由度的计算公式式中为结点个数;为链杆个数;为支座约束个数,如果为自由体,即无支座约束,则。
[自由度与几何不变性的关系]体系为几何不变的必要条件是自由度等于或小于零,此条件并非充分条件。
如果,则体系为几何可变体系;如果或,则不能确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
但若从其内部抽掉一根桁杆CB,如图b所示,则当结点C处作用 FP时,该桁架杆件之间将产生刚性位移,即变成几何可变体系。
FP C D FP C C1 D D1 LIAOCHENG UNIVERSITY
ABຫໍສະໝຸດ ABa) 几何不变体系
b) 几何可变体系
聊城大学建筑工程学院
2、外部支承不恰当:
如图a所示简支梁,本为几何不变体系;
但若将A端水平支杆移至C处并竖向设置,如图b所示, 则在图示FP作用下,梁AB将相对于地基发生刚性平移, 即变成了几何可变体系。
FP A B FP
LIAOCHENG UNIVERSITY
A
C C1
B B1
A1
a) 几何不变体系
D
FP A A1 弹性变形 EI FP A EI1=∞
B
B
聊城大学建筑工程学院
2、几何可变体系——受到任意荷载作用后,若不考虑材
料的应变,其几何形状和位置仍可以发生改变的体系。
LIAOCHENG UNIVERSITY
聊城大学建筑工程学院
FP
A A1
EI1=∞ B 刚体位移 A2
二、造成几何可变的原因 1、内部构造不健全:
2.1 几何不变体系和几何可变体系
LIAOCHENG UNIVERSITY
一、几何不变体系和几何可变体系 二、造成几何可变的原因 三、几何组成分析的目的
聊城大学建筑工程学院
一、几何不变体系和几何可变体系
1、几何不变体系——受到任意荷载作用后,若不考虑
材
LIAOCHENG UNIVERSITY
料的应变,其几何形状和位置均能保持不变的体系。
b) 几何可变体系
聊城大学建筑工程学院
三、几何组成分析的目的 结构必须是几何不变体系才能承担荷载。
几何组成分析的目的:
主要就是要检查并设法保证结构是几何不变体系;
LIAOCHENG UNIVERSITY
有助于结构受力分析和选择更加合理的结构形式。
聊城大学建筑工程学院