机械零件常见的实效形式
机械零件失效形式及诊断
![机械零件失效形式及诊断](https://img.taocdn.com/s3/m/93351842eef9aef8941ea76e58fafab069dc4416.png)
机械零件失效形式及诊断1. 引言机械零件是任何机械设备中最关键的组成部分之一。
随着机械设备的运行时间增加,零件的失效概率也会增加。
因此,了解机械零件的失效形式以及如何进行诊断对于设备的维护和保养至关重要。
本文将讨论常见的机械零件失效形式以及相应的诊断方法,希望能给读者提供一些有益的知识和实用的技巧。
2. 机械零件失效形式2.1 磨损失效磨损是机械设备常见的失效形式之一。
机械零件在长时间的摩擦和磨损中会出现磨损现象,导致零件尺寸变小、表面质量下降等问题。
常见的磨损形式包括表面磨损、疲劳磨损和焊接磨损等。
2.2 塑性变形失效塑性变形是指机械零件在受外力作用下发生塑性变形,导致零件形状和尺寸的永久性变化。
塑性变形常见的形式有弯曲、扭转和压扁等。
2.3 断裂失效断裂是机械设备中最严重的失效形式之一。
机械零件在受到较大的外力作用下可能会发生断裂,导致机械设备无法正常工作。
常见的断裂形式包括静态断裂、疲劳断裂和韧性断裂等。
2.4 腐蚀失效腐蚀是指机械零件在介质中受到化学反应导致金属表面发生腐蚀破坏的现象。
腐蚀会导致机械零件的表面质量下降、尺寸变化等问题。
3. 机械零件失效的诊断方法3.1 监测技术通过使用各种监测技术,可以实时监测机械零件的工作状态和性能参数。
这些监测技术包括振动监测、噪声监测、温度监测等。
通过对监测数据的分析和比对,可以及时发现机械零件的异常情况,进而进行相应的维修和更换。
3.2 检查和观察定期的检查和观察是诊断机械零件失效的有效方法之一。
通过检查和观察,可以发现机械零件的磨损、变形、断裂等异常情况。
同时,还可以观察机械零件的润滑情况、磨损程度等。
这些信息对于及时诊断并防止机械零件失效具有重要意义。
3.3 非破坏性检测技术非破坏性检测技术可以在不破坏机械零件的情况下检测其内部的缺陷和损伤。
这些技术包括超声波检测、磁粉检测、射线检测等。
通过分析和评估检测结果,可以及时发现机械零件的问题,并采取相应的修复措施。
机械零件的失效形式
![机械零件的失效形式](https://img.taocdn.com/s3/m/48c787cbdc3383c4bb4cf7ec4afe04a1b171b05a.png)
抗力指标:比例极限、弹性极限和屈服极限
零构件发生过弹性变形的原因:刚度不足
抗力指标:弹性模量E或者切变模量G
强 调! 金属和合金的弹性模量不能通过合金化和热处理、冷变形等方法改变。
总 结
强度和塑性指标:屈服强度和塑性用于一般零件的抗断裂设计。
本节中所讲的材料的力学性能指标及应用
弹性指标:弹性极限和弹性模量是设计弹性零件考虑的性能指标。如汽车板簧和各类弹簧等
一、基本概念
01
02
03
04
05
静载荷和冲击载荷
断裂:材料在外力作用下分为两个或者两个以上部分的现象。
断裂的分类:韧性断裂和脆性断裂
断裂过程:裂纹萌生和裂纹扩展
韧性:表示材料在塑性变形和断裂过程中吸收能量的能力。
韧性断裂和脆性断裂的断口微观形貌 韧性断口 脆性断口
二、冲击韧性及衡量指标
STEP5
第六节 零件在高温下的蠕变变形和 断裂失效
问 题 金属材料在高温下的力学行为有哪些特点? 什么是蠕变? 评价金属材料高温力学性能指标有哪些? 高温下零件的失效方式有哪些?如何防止?
一、材料在高温下的力学行为
二、评价材料高温力学性能指标
蠕变极限:高温长期载荷作用下材料对塑性变形的抗力指标成为蠕变极限。 表示方法(1)在规定温度下使试样产生规定稳态蠕变速率的应力值 ,符号为 材料的强度随温度的升高而降抵。 高温下材料的强度随时间的延长而降抵。 高温下材料的变形量随时间的延长而增加。 蠕变:材料在长时间恒应力作用下缓慢产生塑性变形的现象称为蠕变。
02
03
问 题
第一节 零件在常温静载下的过量变形
一、材料的静载性能指标
01
刚度和强度指标
机械零件的失效分析-学习领悟
![机械零件的失效分析-学习领悟](https://img.taocdn.com/s3/m/22bec72af46527d3240ce0b7.png)
机械零件的失效分析失效:零件或部件失去应有的功效零件在工作过程中最终都要发生失效。
所谓失效是指:①零件完全破坏,不能继续工作;②严重损伤,继续工作很不安全;③虽能安全工作,但已不能满意地起到预定的作用。
只要发生上述三种情况中的任何一种,都认为零件已经失效。
一般称呼失效大多是特指零件的早期失效,即未达到预期的效果或寿命,提前出现失效的过程。
失效分析:探讨零件失效的方式和原因,并提出相应的改进措施。
根据失效分析的结果,改进对零件的设计、选材、加工和使用,提高零部件的使用寿命,避免恶性事故的发生,带来相应的经济效益和社会效益。
一、零件的失效形式失效形式分3种基本类型:变形、断裂和表面损伤。
1、变形失效与选材(机件在正常工作过程中由于变形过大导致失效)①弹性变形失效(由于发生过大的弹性变形而造成的零件失效)弹性变形的大小取决于零件的几何尺寸及材料的弹性模量。
金刚石与陶瓷的弹性模量最高,其次是难溶金属、钢铁,有色金属则较低,有机高分子材料的弹性模量最低。
因此,作为结构件,从刚度及经济角度看,选择钢铁是比较合适。
②塑性变形失效(零件由于发生过大的塑性变形而不能继续工作的失效)塑性变形失效是零件中的工作应力超过材料的屈服迁都的结果。
一般陶瓷材料的屈服强度很高,但脆性非常大,因此,不能用来制造高强度结构件。
有机高分子材料的强度很低,最高强度的塑料也不超过铝合金。
因此,目前用作高强度结构的主要材料还是钢铁。
2、断裂失效①塑性断裂零件在受到外载荷作用时,某一截面上的应力超过了材料的屈服强度,产生很大的塑性变形后发生的断裂;②脆性断裂脆性断裂发生时,事先不产生明显的塑性变形,承受的工作应力通常远低于材料的屈服强度,所以又称为低应力脆断;③疲劳断裂在低于材料屈服强度的交变应力反复作用下发生的断裂称为疲劳断裂;④蠕变断裂在应力不变的情况下,变形量随时间的延长而增加,最后由于变形过大或断裂而导致的失效;3、表面损伤①磨损失效磨损主要是在机械力的作用下,相对运动的接触表面的材料以细屑形式逐渐磨耗,而使零件尺寸不断变小的一种失效方式。
机械零件失效分析
![机械零件失效分析](https://img.taocdn.com/s3/m/85d2bf77b80d6c85ec3a87c24028915f814d845b.png)
机械零件失效分析机械零件是构成机械设备的基本组成部分,其质量和性能的好坏直接关系到整个机械设备的可靠性和安全性。
然而,在机械设备的长期运行中,由于各种原因,机械零件可能会出现失效现象。
失效分析是一种通过分析失败机械零件的失效原因来帮助我们改进设计、制造和维修策略的方法。
一、失效类型机械零件的失效类型多种多样,常见的包括疲劳失效、磨损失效、腐蚀失效、断裂失效等。
疲劳失效是指材料在交变载荷作用下的长期疲劳过程中逐渐出现的损伤。
磨损失效是指机械零件在运行过程中由于与其他零件或外界环境的摩擦而造成的表面磨损。
腐蚀失效是指机械零件由于环境中的化学腐蚀而失效。
断裂失效是指机械零件由于超过其承载能力而发生断裂。
二、失效原因机械零件失效的原因也是多种多样的,常见的有材料问题、设计问题、制造问题、装配问题、使用问题等。
材料问题是指机械零件材料的质量或性能不达标,如含气体、夹杂物、晶粒非均匀等。
设计问题是指机械零件在设计过程中存在结构强度不足、刚度不够的问题。
制造问题是指机械零件在加工过程中存在加工质量不合格、工艺控制不严等问题。
装配问题是指机械零件在装配过程中存在装配不当、配合间隙设计不合理等问题。
使用问题是指机械零件在使用过程中存在操作不当、润滑不足等问题。
三、失效分析方法失效分析是通过分析失效零件的失效样品、现场情况以及相关维修记录来查找失效原因。
常用的失效分析方法包括物理分析、化学分析、力学分析、金相分析等。
物理分析是通过观察失效零件的外部形态和内部结构来判断失效形式。
化学分析是通过对失效零件进行化学成分分析以及腐蚀产物分析来判断失效原因。
力学分析是通过对失效零件进行力学性能测试以及有限元分析等方法来判断失效原因。
金相分析是通过对失效零件进行金相组织观察以及晶体学分析等方法来判断失效原因。
四、失效分析结果的应用失效分析的最终目的是为了指导我们改进机械零件的设计、制造和维修策略,提高机械设备的可靠性和安全性。
机械零件的失效
![机械零件的失效](https://img.taocdn.com/s3/m/42b7cd3abf23482fb4daa58da0116c175f0e1e9e.png)
一. 断口分析方法
对金属材料的室温拉伸或冲击试样的断口宏观观察,可以看到其断 口可分为纤维状区,放射状区及剪切唇区三个不同的区域.
脆性断裂
工程构件在很少或不出现宏 观塑性变形(一般按光滑拉 伸试样的ψ<5%)情况下发 生的断裂称作脆性断裂,因 其断裂应力低于材料的屈服 强度,故又称作低应力断裂。 钢丝绳:断裂有预兆。
磨损失效的基本影响因素
摩擦,磨损和润滑,即磨损失效涉及到摩擦 副的材质和磨损工况
磨损失效
触的一对金属表面,相对运动时金属表 面不断发生损耗或产生塑性变形,使金 属表面状态和尺寸改变的现象称为磨损
防止和减少 磨损的方法 和途径
正确的选材是提高耐磨性的关键。
尽量保证液体润滑,对设备进行正确、 合理的润滑,能有效减少设备零部件 的磨损,延长设备使用寿命。
采用多种表面处理方法:如滚压、化 学表面热处理、镀铬、喷涂等
正确进行摩擦副的结构设计
设备正确的维护与使用对设备的寿命 影响很大。
皮带传动与 磨损:
在同一组中,皮带长短不一或者因为磨 损造成皮带轮槽深浅不一,皮带轮轴弯 曲均会产生较大的振动,对那些精密的 设备还可能形成振动源。
若调得太松,起动时会产生怪叫声,并 且会发生起转慢,主动轮发热;
失效的基本因素
STEP1
STEP2
STEP3
STEP4
STEP5
设计因素—确定 材质,尺寸,结 构,提出必要的 技术文件:图纸, 说明书等.(非标 设备)
制造因素—铸、 锻、焊,机加工和 热处理等达不到 设计要求而导致 零件失效.
装配调试因素— 在安装过程中 , 未达到要求的质 量指标.
材质因素—选材 不当,材质内部缺 陷,毛坯加工或冷 热加工产生的缺 陷
第2章机械零件的工作能力和计算准则
![第2章机械零件的工作能力和计算准则](https://img.taocdn.com/s3/m/50711e64ddccda38376baf53.png)
复合应力计算安全系数为:
s sca [s] s 2 2 2 ( ) s
或: sca
s s s s
2 2
[s]
3.允许少量塑性变形的零件(可按 1.5 s 作为极限应 力)
这类零件可按允许一定塑性变形时的载荷进行强度计算。 看课本图2.3,受弯矩M的简支梁,用塑性材料制成时,随 着弯矩M的增大,由(a)到(c)变化,到(c)图时材料 全部屈服。此时梁承受的弯矩计为 M lim ,因此,可以按 进行强度计算。 M lim
第2章 机械零件的工作能力 和计算准则
1.失效:机械零件丧失工作能力或达不到设 计要求的性能时,称为失效。 有人平时不说“失效”,而说“坏了”,是 不准确的。有些零件看上去没有“坏”但 已经失效了。 2.常见的失效形式
零件失效表现在强度问题、刚度问题、表面 失效和其他方面。
零件的失效形式有: 1)断裂; 2)过大塑性变形; 3)过量的弹性变形; 4)表面失效(工作表面的过度磨损或损伤 等); 5)其他形式(联接的松弛、摩擦传动的打滑 等)。
单位接触线载荷。B为接触线长度。
F P B
(2)两球接触
1 3 6F 2 2 1 1 1 2 E E2 1
2
F Hmax 2
H max
1
1 2 E1、E2 两接触体材料的弹性模 量 1、 2 两接触体材料的泊松比
式中 : 相应的强度条件可表示为:
σ、τ——零件的最大工作应力。其中σ为 正应力,可由拉伸、压缩、弯曲等产生;τ 为切应力,可由扭转、剪切等产生; 2.[σ]、[τ]——许用正应力、许用切应力; 3.σlim、τlim——材料的极限正应力、极限 切应力; 4.[Sσ],[Sτ]——对应于正应力、切应力的许 用安全系数。
机械零件的主要失效形式有
![机械零件的主要失效形式有](https://img.taocdn.com/s3/m/3a42690ebed5b9f3f90f1c63.png)
机械零件的主要失效形式有:根断表面压碎表面点蚀塑性变形过量弹性形变共振过热和过量磨损等平键按用途分为平键导键滑键普通平键用于静联接,即轴与轴上零件之间没有先对移动。
按端部形状不同分为A型(圆头) B型(平头) C型(单圆头) 3种导键和滑键均用于动联接。
导键适用于轴上零件轴向位移量不大的场合;滑键用于轴上零件轴向位移较大的场合。
平键的宽度应根据轴的直径选取润滑剂的主要作用是减小抹茶,磨损,降低工作表面温度。
常用的润滑剂有:液体润滑剂,半固体润滑剂,固体润滑剂,气体润滑剂径向滑动轴承动压油膜的形成过程静止时,轴与轴承孔自然形成油楔;刚启动,速度低。
由于轴径与轴承之间摩擦,轴承沿轴承孔上爬。
随着速度增大,被轴径带动起来的润滑油进入楔形间隙并产生东亚力将轴径推离,形成动压油膜。
提高螺纹连接强度的措施有:1. 改善螺纹牙间的载荷分配;2. 减小螺栓的应力幅3. 采用合理的制造工艺(冷镦,液压,冷作硬化)4. 避免附加弯曲应力5. 减小应力集中的影响6. 氰化氮化,喷丸等表面硬化处理改善螺纹牙间的载荷分配,避免附加弯曲应力是针对静强度,其余是疲劳强度当螺纹公称直径,牙型角,螺纹线数相同时,细牙螺纹的自锁性能比粗牙螺纹的自锁性能好螺纹联接的主要类型有1. 螺栓联接,常用语被联接件不太厚和周边有足够装配空间的场合2. 双头螺栓联接,用于常装拆或结构上受限制不能采用螺栓联接的场合3. 螺钉联接,用于不经常装拆联接的场合4. 紧定螺钉联接,多用于轴和轴上零件的联结,可传递不大的力和转矩对于普通螺栓组联接,当被联接件受横向工作载荷作用时,其螺栓本身主要受拉应力。
带传动中的两种滑动弹性滑动:带传动中,拉力差使带的弹性型变量变动,而引起带与带轮之间的相对滑动,称为弹性滑动。
使带传动比不精确,且使带与带轮之间产生磨损;打滑:当外界传递功率过大,所需有效拉力大于极限有效拉力时,带与带轮之间的显著滑动。
使带传动失效,但起过载保护作用。
零件的失效形式
![零件的失效形式](https://img.taocdn.com/s3/m/315fa73558fb770bf78a5527.png)
造成接触面金属损耗。
表面疲劳磨损:两接触表面在交变接触压应力的作用下,
材料表面因疲劳而产生物质损失。
腐蚀磨损:零件表面在摩擦的过程中,表面金属与周围介
质发生化学或电化学反应,因而出现的物质损失。
一、零件的失效形式
2、零件的变形失效
(1)变形失效的概念
一、零件的失效形式
4、零件的腐蚀失效
4.2腐蚀失效的类型
常见的腐蚀失效形式有:点蚀、 缝隙腐蚀、应力腐蚀、 腐蚀疲劳、晶间腐蚀、均匀腐蚀、磨损腐蚀、氢脆等。
机械设备在外力载荷作用下机械设备的变形量不断增加, 经过弹性变形阶段和塑性变形阶段后,发生的形状和尺寸的 变化而出现裂纹、裂纹扩展直至失效。
一、零件的失效形式
2、零件的变形失效
(2)工程上常见的变形失效形式有:
1、弹性变形失效:机械设备在外力作用下将发生弹性变 形,如果弹性变形过量。会使零部件失去有效 T作能力。引 起弹性变形失效的原因,主要是零部件的刚度不足。因此, 要预防弹性变形失效,应选用弹性模量大的材料。
机械设备维修工程学
机械零件的失效
1零件的失效形式
在设备使用过程中,机械零件由于设计、材料、工艺及装配等各种原因,丧 失规定的功能,无法继续工作的现象称为失效。当机械设备的关键零部件失 效时,就意味着设备处于故障状态。机械零件失效的模式,即失效的外在表 现形式,主要表现为磨损、疲劳断裂、变形和锈蚀等。 磨损一种常发生于传动齿轮的齿面(如变速箱、换向箱、车轴齿轮箱里 的齿轮)、发动机凸轮轴、滑动轴承、滚动轴承中 ,离合器摩擦片、轮对的 磨损。 疲劳断裂过程一般都存在于受交变负荷的零件中。常见于各种联接螺栓、 减震弹簧、车体走行各部的焊接部件(比如转向架上的制动吊耳)等零件, 也会发生在齿轮的轮齿、传动轴等重要零件中。 变形主要是发生在各类构件中,比如收轨作业车的插盒、保护边框,会 在装卸钢轨作业中发生撞击变形失效。 锈蚀常发生在车体表面,制动系统的各部风管及接头 。
机械设计基础知识点整理
![机械设计基础知识点整理](https://img.taocdn.com/s3/m/662ee8026294dd88d1d26be3.png)
基础常识1、常用的热处理方法:退火(随炉缓冷)、正火(在空气中冷却)、淬火(在水或油中迅速冷却)、回火(吧淬火后的零件再次加热到低于临界温度的一定温度,保温一段时间后在空气中冷却)、调质(淬火+高温回火的过程)、化学热处理(渗碳、渗氮、碳氮共渗)2、机械零件常见的失效形式:因强度不足而断裂;过大的弹性变形或塑性变形;摩擦表面的过度磨损、打滑或过热;连接松动;容器、管道等的泄露;运动精度达不到设计要求3、疲劳破坏及其特点:变应力作用下的破坏称为疲劳破坏。
特点:在某类变应力多次作用后突然断裂;断裂时变应力的最大应力远小于材料的屈服极限;即使是塑性材料,断裂时也无明显的塑性变形。
确定疲劳极限时,应考虑应力的大小、循环次数和循环特征.4、螺纹的种类:普通螺纹、管螺纹、矩形螺纹、梯形螺纹、锯齿形螺纹5、自锁条件:λ≤ψ即螺旋升角小于等于当量摩擦角6、螺旋机构传动与连接:普通螺纹由于牙斜角β大,自锁性好,故常用于连接;矩形螺纹梯形螺纹锯齿形螺纹因β小,传动效率高,故常用于传动7、螺旋机构的类型及应用:①变回转运动为直线运动,传力螺旋(千斤顶、压力机、台虎钳)、传导螺旋(车窗进给螺旋机构)、调整螺旋(测微计、分度机构、调整机构、道具进给量的微调机构)②变直线运动为回转运动8、螺旋机构的特点:具有大的减速比;具有大的里的增益;反行程可以自锁;传动平稳,噪声小,工作可靠;各种不同螺旋机构的机械效率差别很大(具有自锁能力的的螺旋副效率低于50%)9、连杆机构广泛应用的原因:能实现多种运动形式的转换;连杆机构中各运动副均为低副,压强小、磨损轻、便于润滑、寿命长;其接触表面是圆柱面或平面,制造比较简易,易于获得较高的制造精度10、曲柄存在条件:①最短杆长度+最长杆长度≤其他两杆之和②最短杆为连架杆或机架。
11、凸轮运动规律及冲击特性:①等速:刚性冲击、低速轻载②等加速等减速:柔性冲击、中速轻载③余弦加速度:柔性冲击、中速中载④正弦加速度:无冲击、高速轻载12、齿轮传动的优缺点:①优点:适用的圆周速度和功率范围广;传动比精确;机械效率高;工作可靠;寿命长;可实现平行轴、相交轴交错轴之间的传动;结构紧凑;②缺点:要求有较高的制造和安装精度,成本较高;不适宜于远距离的两轴之间的传动13、渐开线的特性:①发生线在基圆上滚过的一段长度等于基圆上被滚过的弧长;②渐开线上任一点的法线必与基圆相切,且N点位渐开线在K点的曲率中心,线段NK为其曲率半径;③cosαk=ON/OK=rb/rk 渐开线上各点的压力角不等,向径rk越大,其压力角越大,基圆上压力角为零;④渐开线的形状取决于基圆大小,随着基圆半径增大,渐开线上对应点的曲率半径也增大,当基圆无限大时,渐开线成为直线,故渐开线齿条的齿廓为直线;⑤基圆以内无渐开线14、齿轮啮合条件:必须保证处于啮合线上的各对齿轮都能正确的进入啮合状态, m1=m2=m;α1=α2=α即模数和压力角都相等;斜齿轮还要求两轮螺旋角必须大小相等,旋向相反;锥齿轮还要求两轮的锥距相等;涡轮蜗杆要求蜗杆的导程角与涡轮的螺旋角大小相等,旋向相同15、正变位齿轮优点:可以加工出齿数小于Zmin而不发生根切的齿轮,使齿轮传动结构尺寸减小;选择适当变位量来满足实际中心距得的要求;提高小齿轮的抗弯能力,从而提高一对齿轮传动的总体强度16、直齿轮传动平稳性差,冲击和噪声大;斜齿轮传动平稳,冲击和噪声小,适合于高速传动17、轮系的功用:获得大的传动比(减速器);实现变速、变向传动(汽车变速箱);实现运动的合成与分解(差速器、汽车后桥);实现结构紧凑的大功率传动(发动机主减速器、行星减速器)18、弹性滑动与打滑:打滑:由于超载所引起的带在带轮上的全面滑动,可以避免;弹性滑动:由于带的弹性变形而引起的带在带轮上的滑动,不可避免19、螺纹连接的基本类型:螺栓连接(普通螺栓连接、铰制孔用螺栓连接)、双头螺柱连接、螺钉连接、紧螺钉连接20、螺纹连接的防松:摩擦防松(弹簧垫圈、双螺母、椭圆口自锁螺母、横向切口螺母)、机械防松(开口销与槽形螺母、止动垫圈、圆螺母止动垫圈、串连钢丝)、永久防松(冲点法、端焊法、黏结法)21、提高螺栓连接强度的方法:避免产生附加弯曲应力;减少应力集中22、键连接类型:平键连接(侧面)、半圆键连接(侧面)、楔键连接(上下面)、花键连接(侧面)23、平键的剖面尺寸确定:键的截面尺寸b×h(键宽×键高)以及键长L24、联轴器与离合器区别:连这都是用来连接两轴(或轴与轴上的回转零件),使它们一起旋转并传递扭矩的器件,用联轴器连接的两根轴,只有在停止运转后用拆卸的方法才能将他们分离;离合器则可在工作过程中根据工作需要不必停转随时将两轴接合或分离25、联轴器分类:刚性联轴器(无补偿能力)和挠性联轴器(有补偿能力)26、轴承摩擦状态:干摩擦状态、边界摩擦状态、液体摩擦状态、混合摩擦状态;边界和混合摩擦统称为非液体摩擦27、轴的分类:心轴(转动心轴、固定心轴;只承受弯矩不承受扭矩)、转轴(即承受弯矩又承受扭矩)、传动轴(主要承受扭矩,不承受或承受很小弯矩)28、轴的计算注意:①轴上有键槽时,放大轴径:一个键槽3°--5°;两个键槽7°--10°②式中弯曲应力为对称循环变应力,当扭转切应力为静应力时,取α=0.3;当扭转切应力为脉动循环变应力时,取α=0.6;若扭转切应力为对称循环变应力时,取α=1(α为折合系数)29、轴结构设计一般原则:轴的受力合理,有利于满足轴的强度条件;轴和轴上的零件要可靠的固定在准确的工作位置上;轴应便于加工;轴上的零件要便于拆装和调整;尽量减少应力集中等30、滚动轴承类型选择影响因素:转速高低、受轴向力还是径向力、载荷大小、安装尺寸的要求等。
机械零件的失效形式
![机械零件的失效形式](https://img.taocdn.com/s3/m/7c795fed102de2bd96058848.png)
1.机械零件的失效形式:整体断裂、过大的残余变形、零件表面破坏(腐蚀、磨损和接触疲劳)、破坏正常工作条件引起的失效2.设计零件应满足的要求:避免在预定寿命期内失效的要求(强度、刚度、寿命)、结构工艺性要求、经济性要求、质量小的要求、可靠性要求3.零件的设计准则:强度准则、刚度准则、寿命准则、振动稳定性准则、可靠性准则4.零件的设计方法:理论设计、经验设计、模型试验设计5.机械零件常用的材料:金属材料、高分子材料、陶瓷材料、复合材料6.零件的强度分为:静应力强度和变应力强度7.应力比r=-1为对称循环应力;r=0为脉动循环应力8.BC阶段为应变疲劳(低周疲劳);CD为有限寿命疲劳阶段;D点以后的线段代表了试件无限寿命疲劳阶段;D点为持久疲劳极限9.提高零件疲劳强度的措施:尽可能降低零件上应力集中的影响(减载槽、开环槽)、选用疲劳强度高的材料和规定能提高材料疲劳强度的热处理方法及强化工艺10.滑动摩擦:干摩擦、边界摩擦、流体摩擦及混合摩擦11.零件的磨损过程:磨合阶段、稳定磨损阶段、剧烈磨损阶段;应该力求缩短磨合期、延长稳定磨损期、推迟剧烈磨损的到来12.磨损的分类:粘附磨损、磨粒磨损、疲劳磨损、冲蚀磨损、腐蚀磨损、微动磨损13.润滑剂分为:气体、液体、固体和半固体四种;润滑脂分为:钙基润滑脂、纳基润滑脂、锂基润滑脂、铝基润滑脂14.普通连接螺纹牙型为等边三角形,自锁性较好;矩形传动螺纹的传动效率比其他螺纹高;梯形传动螺纹是最常用的传动螺纹15.常用的连接螺纹要求自锁性,故多用单线螺纹;传动螺纹要求传动效率高,故多用双线或三线螺纹16.普通螺栓连接(被连接件上开有通孔或铰制孔)、双头螺柱连接、螺钉连接、紧定螺钉连接17.螺纹连接预紧的目的:增强连接的可靠性和紧密性,防止受载后被连接件间出现缝隙或相对滑移。
螺纹连接放松的根本问题:防止螺旋副在受载时发生相对转动。
(摩擦防松、机械防松、破坏螺旋副运动关系防松)18.提高螺纹连接强度的措施:降低影响螺栓疲劳强度的应力幅(减少螺栓刚度或增大被连接件刚度)、改善螺纹牙上载荷分布不均的现象、减小应力集中的影响、采用合理的制造工艺19.键连接类型:平键连接(两侧面是工作面)、半圆键连接、锲键连接、切向键连接20.带传动分为:摩擦型和啮合型21.带的瞬间最大应力发生在带的紧边开始绕上小带轮处;带一周,应力变化四次22.V带传动的张紧:定期张紧装置、自动张紧装置、采用张紧轮的张紧装置23.滚子链的链节数一般为偶数(链轮的齿数取奇数),滚子链为奇数时采用过度链节24.链传动张紧的目的:避免在链条的松边垂度过大时产生啮合不良和链条振动现象,同时为了增加链条与链轮的啮合包角25.齿轮的失效形式:轮齿折断、齿面磨损(开式齿轮)、齿面点蚀(闭式齿轮)、齿面胶合、塑性变形(从动轮出现脊棱、主动轮出现沟槽)26.齿轮工作面的硬度大于350HBS或38HRS的称为硬面齿;反之为软齿面齿轮27.提高制造精度,减小齿轮直径以降低圆周速度,均可减小动载荷;为了减小动载荷,可将齿轮进行齿顶修缘;将齿轮的轮齿做成鼓形是为了改善齿向载荷分布28.Tanr=z1:q(直径系数)导程角越大,效率越高,自锁性越差29.对蜗轮进行变位,变位后蜗轮的分度圆和节园仍旧重合,只是蜗杆的节线有所改变不再与其分度圆重合30.蜗杆传动的失效形式:点蚀、齿根折断、齿面胶合及过度磨损;失效经常发生在蜗轮上31.闭式蜗杆传动的功率损耗:啮合磨损损耗、轴承磨损损耗、进入油池中的零件搅油时的溅油损耗32.蜗杆传动必须根据单位时间内的发热量等于同时间内的散热量条件进行热平衡计算措施:加装散热片以及增大散热面积、在蜗杆轴端加装风扇以加速空气流动、在传动箱内装循环冷却管路33.形成液体动力润滑的条件:相对滑动的两表面必须形成收敛的锲形间隙;被油膜分开的两表面必须有足够的相对滑动速度,其运动必须使润滑油由大口流进小口流出;润滑油必须有一定的粘度,供油要充分34.滚动轴承的基本结构:内圈、外圈、液动体、保持架35. 3圆锥滚子轴承、5推力球轴承、6深沟球轴承、7角接触轴承、N圆柱滚子轴承00、01、02、03分别d=10mm、12mm、15mm、17mm 04表示d=20mm,12表示d=60mm 36.基本额定寿命:一组轴承中百分之十的轴承发生点蚀破坏,而百分之九十的不发生点蚀破坏的转速或工作小时数作为轴承的寿命37.基本额定动载荷:使轴承的基本额定寿命恰好为106转时,轴承所能承受的载荷38.轴承配置方法:双支点各单向固定、一支点双向固定另一端支点游动、两端游动支承39.轴承按载荷分:转轴(弯矩和扭矩)、心轴(弯矩)、传动轴(扭矩)。
机械零件的失效与选材
![机械零件的失效与选材](https://img.taocdn.com/s3/m/89d652cdd5d8d15abe23482fb4daa58da1111c70.png)
陶瓷材料硬而脆、加工性能差,也不能用作重要的受力零件 ;目前主要应用领域是建筑陶瓷和功能材料。
废气排放少 材料回收及降解
重要金属的世界储量
可用年数 再生率(%)
Fe 128
31.7
Al
35
16.9
Cu 32
40.9
Байду номын сангаасZn 24
21.2
W
47
Ag 15
41.0
Mn 14
Ni
49
第二 节 典型零部件选材及工艺分析
一、工程材料的应用概况 金属材料、高分子材料、陶瓷材料及复合材料是目前最主要
的四大类工程材料。 高分子材料的强度与刚度低、尺寸稳定性较差且易老化,在
金属材料,尤其是钢铁材料,与其它工程材料相比,在力学 性能、工艺性能和生产成本这三者之间保持着最佳的平衡,具 有最强的竞争力,故金属材料仍然是机械工程材料的主力军。 从这个意义上来讲,人类仍然生活在以钢铁材料为主的“铁器 时代”。以载重汽车用材的重量为例,钢占65%、铸铁占20 %、有色金属占3%、非金属材料约占12%。在轻型汽车和轿 车中,非金属材料的用量虽有所增加,但金属材料仍占主体。
2、断裂失效 机械零件因断裂而产生的失效。
(1)韧性断裂失效 断裂前有明显的塑性变形。 宏观变形方式为颈缩,典型断口呈韧窝状,韧窝是由于空洞
的形成、长大并连接而导致韧性断裂产生的。 (2)脆性断裂失效
断裂前无塑性变形。疲劳断裂、应力腐蚀断裂、腐蚀疲劳断 裂和蠕变断裂等均属于脆性断裂。
机械零件的主要失效形式
![机械零件的主要失效形式](https://img.taocdn.com/s3/m/0686419d52d380eb63946d7e.png)
失效:在规定的工作条件下不能正常的工作叫做失效。
失效形式有:
断裂:占总失效的5%
零件在(拉、压、弯、扭)付载荷作用下,σ> σB(材料的强度极限)就可能发生断裂。
疲劳断裂过载
例如:
齿轮
传动
(轮
齿断
裂)
东风
4牵
动齿
轮断
裂
东风
型垂
直齿
轮断
裂
螺栓
断裂
车辆
切轴
过大的残余变形
在付载荷的作用下σ> σS则产生残余变形。
例如:
重载轮齿面齿轮传动,齿面塑性变形
轮齿面在冲击载荷下倒牙。
零件的表面破坏:占74%
磨损表面物质的转移或丧失
表面磨损:牵引齿轮
轮承磨损:拖拉机25%
轮滚钢轨
接触疲劳:在接触变应力长期作用下
齿面点蚀轴承点蚀
腐蚀:在有害介质中
柴油机缸套生锈
正常工作条件破坏引起的失效
动压滑动轴承:缺油、轴承油膜破坏
带传动:过载打滑
高速回转零件:共振
一般:每一种零件在不同的工作条件下有不同的失效形式。
主要失效形式:磨损疲劳(点蚀、断裂)腐蚀
讲失效是为了防止失效,可以从材料、热处理工艺、结构润滑等方面采取措施防止失效。
机械结构的失效模式与原因分析
![机械结构的失效模式与原因分析](https://img.taocdn.com/s3/m/a1e4fd945122aaea998fcc22bcd126fff7055dcd.png)
机械结构的失效模式与原因分析导言机械结构在工程领域起着重要的作用,其可靠性直接关系到设备的使用寿命和安全性。
然而,随着机械结构的长期使用和外界环境的变化,失效问题也不可避免地出现。
本文将探讨机械结构的失效模式和其潜在的原因,为工程师和设计者提供有益的信息和指导。
一、疲劳失效疲劳失效是机械结构最常见的失效模式之一。
在长期的工作过程中,机械结构会不断地受到振动和应力的作用,导致材料的微观变形和疲劳破坏。
这种破坏方式通常是逐渐发展,不易察觉,直到最终发生失效。
疲劳失效的原因可以归结为两个方面:一是结构设计的不合理,包括应力集中、材料选择不当等;二是运行工况的变化以及外界环境的影响,如温度、湿度、腐蚀等因素。
为了避免疲劳失效,设计者应该合理选择材料和结构形式,减少应力集中,加入过载或阻尼装置等。
此外,定期进行结构检测和维护工作也是必不可少的。
二、磨损和腐蚀失效除了疲劳失效之外,磨损和腐蚀失效也是机械结构常见的失效模式。
磨损失效是指机械零件在摩擦和磨削作用下逐渐丧失其原有形状和尺寸的现象。
而腐蚀失效则是机械零件因为受到化学物质或者电化学作用而逐渐腐蚀和破坏。
磨损失效的原因主要是由于工作面之间的相对运动产生的摩擦力和应力,这些力和应力会逐渐磨损机械零件表面,导致失效。
而腐蚀失效则是由于工作环境中存在的腐蚀介质,如酸、碱、盐等,侵蚀了机械零件的表面,导致破坏。
为了防止磨损和腐蚀失效,设计者可以采用耐磨涂层、选择抗腐蚀材料等方法。
此外,定期进行机械零件的维护和润滑也能够有效延长结构的使用寿命。
三、断裂失效断裂失效是机械结构最严重的一种失效模式,其通常由于结构的强度不足或者材料的质量问题导致。
在受到剧烈的负荷作用下,机械结构会发生脆性断裂或韧性断裂。
脆性断裂是指材料在受到应力集中和高应力的情况下,发生不可逆的、迅速的、无伸长的断裂。
这种断裂方式通常是突然发生的,极易引起严重的事故。
而韧性断裂则是材料在受到高应力情况下,发生可逆的、有塑性伸长的断裂。
机械零件失效形式1
![机械零件失效形式1](https://img.taocdn.com/s3/m/f685581aa2161479171128c6.png)
机械零件失效形式1、整体断裂2、过大的弹性变形或残余变形3、零件表面的破坏4、不能满足工作条件所导致的失机械零件设计计算准则1、强度准则2、刚度准则3、寿命准则4、振动稳定性准则5、可靠性准则螺纹联接的主要失效形式有(1)螺栓联接的松动。
(2)螺栓杆的拉断。
(3)螺栓杆或螺栓孔的压溃。
(4)螺栓杆的剪断。
(5)因经常拆卸而发生滑扣现象。
其中,(1)(2)为静载时的主要失效形式;(3)(4)为铰制孔用联接时的主要失效形式。
螺纹联接的设计准则:考虑螺纹联接要有适当的拧紧力矩和放松措施,通过强度计算来确定螺栓的直径;对受剪螺栓,还要进行剪切强度和挤压强度校核平键的失效形式:压溃(静联接)、磨损(动联接)、剪短带传动的失效形式:打滑和疲劳破坏带传动设计准则:在保证不打滑的条件下,带传动具有一定的疲劳强度和寿命链传动失效形式:1、链板滚子与套筒疲劳破坏2、销轴与套筒间的磨损3、销轴与套筒的搅合4、链条静强度破断对于中高速链传动,通常按许用功率进行设计计算。
而低速链传动则按其静强度进行设计计算齿轮失效的主要形式有轮齿折断、齿面磨损、齿面点蚀、齿面胶合、塑性变形对于闭式软齿面齿轮传动,其失效形式主要是齿面点蚀,其次是轮齿折断,故通常先按齿面接触疲劳强度进行设计,确定齿轮的主要几何参数后,再校核齿根弯曲疲劳强度。
对于闭式硬齿面齿轮传动,其失效形式主要是轮齿折断,其次是齿面点蚀,故通常先按齿根弯曲疲劳强度进行设计,确定齿轮的主要几何参数后,再校核齿面接触疲劳强度。
对于高速重载齿轮传动,可能出现齿面胶合,故还需校核齿面胶合强度闭式蜗杆传动失效形式:齿面胶合、点蚀和磨损设计准则:按齿面接触疲劳强度条件计算蜗杆传动的承载能力,在选择许用应力时,适当考虑胶合和磨损的影响,同时应进行热平衡计算轴的形式有断裂、磨损、震动、变形。
轴设计要求设有:具有足够的强度和刚度、良好的振动稳定性和合理的结构。
转轴的失效形式为交变应力下的疲劳断裂,工作性能取决于疲劳强度轴的结构设计原则①轴应便于加工,轴上零件应便于装拆和调整(制造安装要求);②轴和轴上零件要有准确的工作位置(定位);③各零件要牢固而可靠地相对固定(固定);④改善受力状况,减小应力集中联轴器的基本功用是:连接轴与轴、轴与其他回转零件一起转动,并传递运动和动力。
机械零件的失效分析
![机械零件的失效分析](https://img.taocdn.com/s3/m/6b22de4d1fd9ad51f01dc281e53a580216fc506e.png)
如机床主轴、大型立式车床横梁、镗 床镗杆,机床导轨等。为了保证加工精度,要 求立式车床横梁因刀架重力产生的弹性变形要 小。若横梁刚度不够,则会造成车削的工件端 面中间凸的平面度误差,外圆有锥度。
接触疲劳磨损是零件表面在接触压应力的长期不断 反复作用下引起的一种表面疲劳剥落破坏现象。表现为在 接触表面上出现许多针状或痘状的凹坑称麻点。如长期工 作的齿轮的齿表面产生大量麻点后其啮合情况恶化,引起 噪声增大,振动增加,甚至齿根折断。
1.1 机械零件常见的失效形式
高温下工作零件的失效
对于许多在高温下工作的零件,只考虑室温下的 力学性能是不够的,因为高温下材料的强度随温度升高和 加载时间的延长而降低。
1.1 机械零件常见的失效形式
断裂失效
韧性断裂1.1 机械零件常见的失效形式
断裂失效
脆性断裂
脆性断裂实物
河流花样
1.1 机械零件常见的失效形式
断裂失效
疲劳断裂
疲劳断裂实物
疲劳断裂显微形貌
1.1 机械零件常见的失效形式
断裂失效
断裂是最危险的一种失效形式,在 机械零件设计时,认真考虑如何防止断裂 事故发生是非常重要的。
1.2 机械零件失效的原因
•零件选材
选材错误或不合理会造成成批 零件报废,另外,材料的杂质、组织 状态对零件性能有显著的影响,因此 选材时应充分考虑并做认真检查。
1.2 机械零件失效的原因
•零件加工与装配
因零件的冷热加工或热处理不当 而产生的质量缺陷,也会构成引发零件 失效的危险源。机器装配或安装过程中, 由于装配不良,对中性较差等问题,使 机器在运转时产生附加应力及振动,就 会使零件过早失去应有功能。
机械零部件失效机理与分析
![机械零部件失效机理与分析](https://img.taocdn.com/s3/m/bdcb42632e60ddccda38376baf1ffc4ffe47e28b.png)
机械零部件失效机理与分析引言机械零部件是构成机械设备重要组成部分,其失效可能导致设备无法正常运行,给生产和工作带来不利影响。
因此,理解机械零部件失效的机理并能进行合理的分析和预防措施对于保障设备的稳定运行至关重要。
本文将探讨机械零部件失效的机理和分析方法。
一、机械零部件失效的机理机械零部件失效的机理主要包括以下几个方面。
1.疲劳失效在机械装置中,通常会不断受到交变的载荷作用,使得零部件产生应力和应变的变化。
长时间内反复交替的应力作用会导致疲劳失效。
疲劳裂纹的产生和扩展是疲劳失效的重要原因。
2.磨损失效磨损失效是机械零部件常见的一种失效形式,主要包括磨粒磨损、磨磨损和疲劳磨损等。
机械零部件由于长时间的摩擦会出现表面变得粗糙,导致零部件之间的相互接触面积增大,从而加速磨损过程。
3.材料腐蚀机械零部件在工作过程中,可能会受到一些介质的侵蚀,导致材料表面的腐蚀和损害。
腐蚀会使材料表面产生裂纹和孔隙,降低其强度和耐久性,最终导致失效。
4.过载失效过载失效是指机械零部件在超出其正常工作范围的载荷作用下发生力学性能的突然变化,从而导致零部件失常甚至破裂。
过载失效通常发生在突发事件或设计错误等情况下。
二、机械零部件失效的分析为了准确分析机械零部件失效的原因,可以采取以下方法。
1.外观检查首先进行外观检查,检查零部件的外观是否有裂纹、变形或腐蚀等情况。
通过观察表面痕迹和形貌,可以初步判断零部件可能的失效原因。
2.材料分析通过对零部件材料的成分分析和显微组织观察,可以判断材料的性能是否符合要求,是否有明显的缺陷或异物存在。
这对于进一步了解零部件失效的原因非常重要。
3.断裂分析如果零部件发生断裂,可以进行断裂分析,分析其断口的形貌和特征。
通过断口分析,可以了解断裂发生的形式,如韧性断裂、脆性断裂等,从而进一步判断失效原因。
4.力学性能测试针对机械零部件的失效,可以通过力学性能测试来检测零部件的强度、硬度和韧性等参数。
机械零件的失效形式有哪些?
![机械零件的失效形式有哪些?](https://img.taocdn.com/s3/m/7e5d2981370cba1aa8114431b90d6c85ec3a88d0.png)
机械设备中各种零件或构件都具有一定的功能,如传递运动、力或能量,实现规定的动作,保持一定的几何形状等等。
当机件在载荷(包括机械载荷、热载荷、腐蚀及综合载荷等)作用下丧失最初规定的功能时,即称为失效。
一个机件处于下列三种状态之一就认为是失效,这三个条件可以作为机件失效与否的判断原则:1.完全不能工作。
2.不能按确定的规范完成规定功能。
3.不能可靠和安全地继续使用。
机械零件失效的基本形式一般机械零件的失效形式是按失效件的外部形态特征来分类的,大体包括:磨损失效、断裂失效、腐蚀失效和畸变失效。
在生产实践中,最主要的失效形式是零件工作表面的磨损失效,而最危险的失效形式是瞬间出现裂纹和破断,统称为断裂失效。
1.零件的磨损失效摩擦与磨损是自然界的一种普遍现象。
当零件之间或零件与其他物质之间相互接触,并产生相对运动时,就称为摩擦。
零件的摩擦表面上出现材料耗损的现象称为零件的磨损。
材料磨损包括两个方面:一是材料组织结构的损坏,二是尺寸、形状及表面质量(粗糙度)的变化。
如果零件的磨损超过了某一限度,就会丧失其规定的功能,引起设备性能下降或不能工作,这种情形即称为磨损失效。
根据摩擦学理论,零件磨损按其性质可以分为磨料磨损、粘着磨损、微动磨损、冲蚀磨损和腐蚀磨损。
①磨料磨损:零件表面与磨料相互摩擦,而引起表层材料损失的现象称为磨料磨损或磨粒磨损。
磨料也包括对零件表面上硬的微凸体。
在磨损失效中,磨料磨损失效是最常见、危害最为严重的一种。
②粘着磨损:粘着磨损是指两个作相对滑动的表面,在局部发生相互焊合,使一个表面的材料转移到另一个表面所引起的磨损。
③疲劳磨损:当摩擦副两接触表面做相对滚动或滑动时,周期性的载荷使接触区受到很大的交变接触应力,使金属表层产生疲劳裂纹并不断扩展、引起表层材料脱落,造成点蚀和剥落,这一现象称为表面疲劳磨损。
④微动磨损:微动磨损是两固定接触面上出现相对小幅振动而造成的表面损伤,主要发生在宏观相对静止的零件结合面上。
机械零件失效的四种形式
![机械零件失效的四种形式](https://img.taocdn.com/s3/m/1b9314e0e009581b6bd9ebda.png)
①选择 合 适 的材 料 和 构 件 结 构 , 采 用 如
E值高的材料或者增加承载面积
②准确 确 定 构 件 的工 作 载 荷 , 确 进 行 正
应 力计 算 。
③严格 工艺 流程 , 减少残 余应 力 等 。
2 断 裂
断裂是 金属 构件 在应 力 作 用 下 材料 分 离 为互 不 相 连 的 两 个 或 两 个 以 上 的 部 分 的 现
期存放 不用 , 必须 按 以下 要 求 进 行保 养 和检
查:
() 5 放净燃油及冷却水 ( 如加注的防锈 防 冻液 , 则不要放) 。 () 6 门架降到最低位置。
() 7 刹住停 车制 动 。 () 后轮 胎用楔 块 垫好 。 8前
一
l 叉车长期存放注意事项
除按《 使用维护说明书》 司机手册》 和《 中 关于“ 存放” 要求的“ 日常存放” 基础外 , 还应 做下列保养和检查 :
进行 后处 理工 艺 。即 表面 强 化工 艺 如感 应 热 处理 、 化学 热处 理 、 丸 等 。③ 对 于 承受 热 疲 喷
性、 单质性、 变形量小 等特点 , 以造成 的危 所
害性不 大 。而塑性变 形 是 不 可逆 的变 形 即卸 去 外载 荷后 变形不会 消失 。这 样 的过 量 变形 就会 影 响构件 使用功 能 。
() 季需停放 在 较高 且 干燥 的地 方 , 1雨 夏 季避免将 车辆 停 放在 软 质 地 面 上 , 沥 青 地 如
() 9 即使长期不使用时, 也应每星期开动 次车辆 。开动时 , 装上电瓶 , 擦掉油缸活塞
杆上的防锈剂 , 加满燃油及冷却水( 冷却水 已 排掉)启动发动机 , , 使其完全预热。操作时, 应将车辆 前后开几 趟 , 同时将 门架、 液压 系 统、 各操作件运动几次 , 检查是否有渗漏等异 常现象 , 使其保持 良好状态。 (0若叉车储存半 年以上不用 , 1) 则应对 车辆全面检查一次。检查各种橡胶 件、 密封