人教培优二次函数辅导专题训练含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、二次函数 真题与模拟题分类汇编(难题易错题)
1.如图,在平面直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA =1,tan ∠BAO =3,将此三角形绕原点O 逆时针旋转90°,得到△DOC ,抛物线y =ax 2+bx +c 经过点A 、B 、C .
(1)求抛物线的解析式;
(2)若点P 是第二象限内抛物线上的动点,其横坐标为t ,设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求以C 、E 、F 为顶点三角形与△COD 相似时点P 的坐标. 【答案】(1)抛物线的解析式为y=﹣x 2﹣2x+3;(2)当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3). 【解析】 【分析】
(1)根据正切函数,可得OB ,根据旋转的性质,可得△DOC ≌△AOB ,根据待定系数法,可得函数解析式;
(2)分两种情况讨论:①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点;②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,得到△EFC ∽△EMP ,根据相似三角形的性质,可得PM 与ME 的关系,解方程,可得t 的值,根据自变量与函数值的对应关系,可得答案. 【详解】
(1)在Rt △AOB 中,OA =1,tan ∠BAO OB
OA
=
=3,∴OB =3OA =3. ∵△DOC 是由△AOB 绕点O 逆时针旋转90°而得到的,∴△DOC ≌△AOB ,∴OC =OB =3,OD =OA =1,∴A ,B ,C 的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为
09303a b c a b c c ++=⎧⎪-+=⎨⎪=⎩
,解得:123a b c =-⎧⎪
=-⎨⎪=⎩,抛物线的解析式为y =﹣x 2﹣2x +3;
(2)∵抛物线的解析式为y =﹣x 2﹣2x +3,∴对称轴为l 2b
a
=-=-1,∴E 点坐标为(﹣1,0),如图,分两种情况讨论:
①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点,P
(﹣1,4);
②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,∵∠CFE=∠PME=90°,
∠CEF=∠PEM ,∴△EFC ∽△EMP ,∴
1
3
EM EF OD MP CF CO ===,∴MP =3ME . ∵点P 的横坐标为t ,∴P (t ,﹣t 2﹣2t +3).
∵P 在第二象限,∴PM =﹣t 2﹣2t +3,ME =﹣1﹣t ,t <0,∴﹣t 2﹣2t +3=3(﹣1﹣t ),解得:t 1=﹣2,t 2=3(与t <0矛盾,舍去).
当t =﹣2时,y =﹣(﹣2)2﹣2×(﹣2)+3=3,∴P (﹣2,3).
综上所述:当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3). 【点睛】
本题是二次函数综合题.解(1)的关键是利用旋转的性质得出OC ,OD 的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP =3ME .
2.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。

(Ⅰ)当121,3x x =-=时,求点A ,点E 的坐标;
(Ⅱ)若顶点E 在直线y x =上,当点A 位置最高时,求抛物线的解析式; (Ⅲ)若11,
0x b =->,当(1,0)P 满足PA PE +值最小时,求b 的值。

【答案】(Ⅰ)()0,3A ,(1,4)E ;(Ⅱ)2
1
4
y x x =-++;(Ⅲ)317b = 【解析】 【分析】
(Ⅰ)将(-1,0),(3,0)代入抛物线的解析式求得b 、c 的值,确定解析式,从而求出抛物线与y 轴交于点A 的坐标,运用配方求出顶点E 的坐标即可;
(Ⅱ)先运用配方求出顶点E 的坐标,再根据顶点E 在直线y x =上得出吧b 与c 的关系,利用二次函数的性质得出当b=1时,点A 位置最高,从而确定抛物线的解析式; (Ⅲ)根据抛物线经过(-1,0)得出c=b+1,再根据(Ⅱ)中顶点E 的坐标得出E 点关于x 轴的对称点E '的坐标,然后根据A 、P 两点坐标求出直线AP 的解析式,再根据点在直线AP 上,此时PA PE +值最小,从而求出b 的值. 【详解】
解:(Ⅰ)把点(-1,0)和(3,0)代入函数2y x bx c =-++,
有10930b c b c --+=⎧⎨-++=⎩。

解得2,3b c ==
2223(1)4y x x x ∴=-++=--+ (0,3),(1,4)A E ∴
(Ⅱ)由222424b c b y x bx c x +⎛⎫=-++=--+ ⎪⎝⎭,得24,24b c b E ⎛⎫+ ⎪⎝⎭
∵点E 在直线y x =上,2
424b c b +∴=
221111
(1)4244c b b b ∴=-+=--+
2110,(1)44A b ⎛
⎫∴--+ ⎪⎝

当1b =时,点A 是最高点此时,2
1
4
y x x =-++
(Ⅲ):抛物线经过点(1,0)-,有10b c --+=
1c b ∴=+
24,,(0,)2
4b c b E A c ⎛⎫+ ⎪⎝⎭
2(2),,(0,1)2
4b b E A b ⎛⎫
+∴+ ⎪⎝⎭
∴E 关于x 轴的对称点E '
为2(2),24b b ⎛⎫
+- ⎪⎝⎭
设过点A ,P 的直线为y kx t =+.把(0,1),(1,0)A b P +代入y kx t =+,得
(1)(1)y b x =-+-
把点2(2),2
4b b E '
⎛⎫
+- ⎪⎝⎭代入(1)(1)y b x =-+-.

2(2)(1)142b b b +⎛⎫
=-+- ⎪⎝⎭
,即2680b b --=
解得,3b =
0,3b b >∴=.
3b ∴=+【点睛】
本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次的解析式、最短距离,数形结合思想及待定系数法的应用是解题的关键,属于中考压轴题.
3.如图所示,已知平面直角坐标系xOy ,抛物线过点A(4,0)、B(1,3)
(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;
(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.
【答案】(1)y=-22
4(2)4y x x x =-+=--+,对称轴为:x=2,顶点坐标为:(2,4)
(2)m 、n 的值分别为 5,-5 【解析】
(1) 将点A(4,0)、B(1,3) 的坐标分别代入y =-x 2+bx +c ,得: 4b+c-16=0,b+c-1="3" , 解得:b="4" , c=0.
所以抛物线的表达式为:2
4y x x =-+. y=-224(2)4y x x x =-+=--+,
所以 抛物线的对称轴为:x=2,顶点坐标为:(2,4). (2) 由题可知,E 、F 点坐标分别为(4-m ,n ),(m-4,n ). 三角形POF 的面积为:1/2×4×|n|= 2|n|, 三角形AOP 的面积为:1/2×4×|n|= 2|n|,
四边形OAPF 的面积= 三角形POF 的面积+三角形AOP 的面积=20, 所以 4|n|=20, n=-5.(因为点P(m,n)在第四象限,所以n<0) 又n=-2m +4m ,
所以2m -4m-5=0,m=5.(因为点P(m,n)在第四象限,所以m>0) 故所求m 、n 的值分别为 5,-5.
4.如图,已知二次函数的图象过点O (0,0).A (8,4),与x 轴交于另一点B ,且对称轴是直线x =3.
(1)求该二次函数的解析式;
(2)若M 是OB 上的一点,作MN ∥AB 交OA 于N ,当△ANM 面积最大时,求M 的坐标;
(3)P 是x 轴上的点,过P 作PQ ⊥x 轴与抛物线交于Q .过A 作AC ⊥x 轴于C ,当以O ,P ,Q 为顶点的三角形与以O ,A ,C 为顶点的三角形相似时,求P 点的坐标.
【答案】(1)213
42
y x x =
-;(2)当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【解析】 【分析】
(1)先利用抛物线的对称性确定B (6,0),然后设交点式求抛物线解析式;
(2)设M (t ,0),先其求出直线OA 的解析式为1
2
y x =直线AB 的解析式为y=2x-12,
直线MN 的解析式为y=2x-2t ,再通过解方程组12
22y x y x t
⎧=⎪
⎨⎪=-⎩得N (42t,t 33),接着利用三角形面积公式,利用S △AMN =S △AOM -S △NOM 得到AMN 112
S 4t t t 223
∆=⋅⋅-⋅⋅然后根据二次函数的性质解决问题; (3)设Q 213m,
m m 42⎛
⎫- ⎪⎝⎭,根据相似三角形的判定方法,当PQ PO OC AC
=时,△PQO ∽△COA ,则
213m m 2|m |42-=;当PQ PO
AC OC
=时,△PQO ∽△CAO ,则2131
m m m 422
-=,然后分别解关于m 的绝对值方程可得到对应的P 点坐标. 【详解】
解:(1)∵抛物线过原点,对称轴是直线x =3, ∴B 点坐标为(6,0),
设抛物线解析式为y =ax (x ﹣6), 把A (8,4)代入得a•8•2=4,解得a =1
4
, ∴抛物线解析式为y =14x (x ﹣6),即y =14x 2﹣32
x ; (2)设M (t ,0),
易得直线OA 的解析式为y =
12
x , 设直线AB 的解析式为y =kx+b ,
把B (6,0),A (8,4)代入得6084k b k b +=⎧⎨+=⎩,解得k 2
b 12=⎧⎨=-⎩

∴直线AB 的解析式为y =2x ﹣12, ∵MN ∥AB ,
∴设直线MN 的解析式为y =2x+n , 把M (t ,0)代入得2t+n =0,解得n =﹣2t , ∴直线MN 的解析式为y =2x ﹣2t ,
解方程组12
22y x y x t ⎧=⎪⎨⎪=-⎩得43
23x t y t ⎧
=⎪⎪⎨⎪=⎪⎩
,则42N t,t 33⎛⎫ ⎪⎝⎭, ∴S △AMN =S △AOM ﹣S △NOM
112
4t t t 223
=
⋅⋅-⋅⋅ 21
t 2t 3
=-+
21
(t 3)33
=--+,
当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0); (3)设213m,
m m 42⎛⎫- ⎪⎝⎭
, ∵∠OPQ =∠ACO , ∴当
PQ PO OC AC =时,△PQO ∽△COA ,即PQ PO 84
=, ∴PQ =2PO ,即213
m m 2|m |42
-=, 解方程213
m m 2m 42-=得m 1=0(舍去),m 2=14,此时P 点坐标为(14,0); 解方程213
m m 2m 42
-=-得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,0); ∴当
PQ PO AC OC =时,△PQO ∽△CAO ,即PQ PO 48=, ∴PQ =
1
2
PO ,即2131m m m 422-=,
解方程2131
m m m 422
=
-=得m 1=0(舍去),m 2=8,此时P 点坐标为(8,0);
解方程2131
m m m 422
=
-=-得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0); 综上所述,P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.
5.已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;
(2)在抛物线的对称轴上,是否存在点P ,使PA +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;
(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.
【答案】(1)2
23y x x =-++;(2)当PA PC +的值最小时,点P 的坐标为()1,2;
(3)点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,3⎛⎫- ⎪⎝⎭
. 【解析】 【分析】
()1由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;
()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,利用二次函数图象上点的坐
标特征可求出点B 的坐标,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;
()3设点M 的坐标为()1,m ,则22CM (10)(m 3)=
-+-,
()22AC [01](30)10=--+-=()22AM [11](m 0)=--+-AMC 90∠=、ACM 90∠=和CAM 90∠=三种情况,利用勾股定理可得出关于m 的一元二次方程或一元一次方程,解之可得出m 的值,进而即可得出点M 的坐标. 【详解】
解:()1将()1,0A -、()0,3C 代入2
y x bx c =-++中,
得:{
10
3b c c --+==,解得:{
2
3b c ==,
∴抛物线的解析式为223y x x =-++.
()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,如图1所示.
当0y =时,有2230x x -++=, 解得:11x =-,23x =,
∴点B 的坐标为()3,0.
抛物线的解析式为2
2
23(1)4y x x x =-++=--+,
∴抛物线的对称轴为直线1x =.
设直线BC 的解析式为()0y kx d k =+≠, 将()3,0B 、()0,3C 代入y kx d =+中, 得:{
30
3k d d +==,解得:{
1
3k d =-=,
∴直线BC 的解析式为3y x =-+.
当1x =时,32y x =-+=,
∴当PA PC +的值最小时,点P 的坐标为()1,2.
()3设点M 的坐标为()1,m ,
则22(10)(3)CM m =-+-,()22[01](30)10AC =--+-=()22[11](0)AM m =--+-
分三种情况考虑:
①当90AMC ∠=时,有222AC AM CM =+,即22101(3)4m m =+-++,
解得:11m =,22m =,
∴点M 的坐标为()1,1或()1,2;
②当90ACM ∠=时,有222AM AC CM =+,即224101(3)m m +=++-,
解得:83
m =

∴点M 的坐标为81,3⎛⎫
⎪⎝⎭

③当90CAM ∠=时,有222CM AM AC =+,即221(3)410m m +-=++,
解得:23
m =-
, ∴点M 的坐标为21,.3⎛
⎫- ⎪⎝

综上所述:当MAC 是直角三角形时,点M 的坐标为()1,1、()1,2、81,3⎛⎫
⎪⎝⎭或21,.3⎛⎫- ⎪⎝⎭
【点睛】
本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:()1由点的坐标,利用待定系数法求出抛物线解析式;()2由两点之间线段最短结合抛物线的对称性找出点P 的位置;()3分AMC 90∠=、ACM 90∠=和CAM 90∠=三种情况,列出关于m 的方程.
6.综合与探究
如图,抛物线2
6y ax bx =++经过点A(-2,0),B(4,0)两点,与y 轴交于点C ,点D 是抛物
线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC . (1)求抛物线的函数表达式; (2)△BCD 的面积等于△AOC 的面积的
3
4
时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.
【答案】(1)233
642
y x x =-++;(2)3;(3)1234(8,0),(0,0),(14,0),(14,0)M M M M -. 【解析】 【分析】
(1)利用待定系数法进行求解即可;
(2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F ,先求出S △OAC =6,再根据
S △BCD =
34S △AOC ,得到S △BCD =92
,然后求出BC 的解析式为3
62y x =-+,则可得点G 的坐
标为3(,6)2m m -+,由此可得2
334
DG m m =-+,再根据
S △BCD =S △CDG +S △BDG =1
2
DG BO ⋅⋅,可得关于m 的方程,解方程即可求得答案;
(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图,以BD 为边时,有3种情况,由点D 的坐标可得点N 点纵坐标为±154,然后分点N 的纵坐标为154
和点N 的纵坐标为15
4
-
两种情况分别求解;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合,根据平行四边形的对边平行且相等可求得BM 1=N 1D=4,继而求得OM 1= 8,由此即可求得答案. 【详解】
(1)抛物线2y ax bx c =++经过点A(-2,0),B(4,0),
∴426016460a b a b -+=⎧⎨++=⎩
, 解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩

∴抛物线的函数表达式为233
642
y x x =-
++; (2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F , ∵点A 的坐标为(-2,0),∴OA=2,
由0x =,得6y =,∴点C 的坐标为(0,6),∴OC=6,
∴S △OAC =1126622OA OC ⋅⋅=⨯⨯=, ∵S △
BCD =34
S △AOC , ∴S △BCD =39642
⨯=, 设直线BC 的函数表达式为y kx n =+,
由B ,C 两点的坐标得406k n n +=⎧⎨=⎩,解得326
k n ⎧=-⎪⎨⎪=⎩, ∴直线BC 的函数表达式为362y x =-
+, ∴点G 的坐标为3(,6)2m m -
+, ∴2233336(6)34224
DG m m m m m =-++--+=-+, ∵点B 的坐标为(4,0),∴OB=4,
∵S △BCD =S △CDG +S △BDG =
1111()2222DG CF DG BE DG CF BE DG BO ⋅⋅+⋅⋅=⋅+=⋅⋅, ∴S △BCD =22133346242m m m m -
+⨯=-+(), ∴239622
m m -+=, 解得11m =(舍),23m =,
∴m 的值为3;
(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图, 以BD 为边时,有3种情况,
∵D 点坐标为15(3,)4
,∴点N 点纵坐标为±154, 当点N 的纵坐标为
154时,如点N 2,
此时233156424x x -++=,解得:121,3x x =-=(舍), ∴215(1,
)4N -,∴2(0,0)M ; 当点N 的纵坐标为154-
时,如点N 3,N 4, 此时233156424
x x -++=-,解得:12114,114x x =-=+ ∴315(114,)4N +-
,415(114,)4N --, ∴3(14,0)M ,4(14,0)M -;
以BD 为对角线时,有1种情况,此时N 1点与N 2点重合,
∵115(1,
)4
N -,D(3,154), ∴N 1D=4,
∴BM 1=N 1D=4,
∴OM 1=OB+BM 1=8,
∴M 1(8,0), 综上,点M 的坐标为:1234(80)(00)(140)(140)M M M M -,,,,,,,.
【点睛】
本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.
7.如图:在平面直角坐标系中,直线l :y=
13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32

(1)求抛物线的解析式;
(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;
(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.
【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).
【解析】
【分析】
(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=
32列出关于a 、c 的方程组求解即可;
(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;
(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22
y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.
【详解】
(1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩
, 解得14
a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4;
(2)∵平移直线l 经过原点O ,得到直线m ,
∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点, ∴设P (3a ,a ),则PC=3a ,PB=a .
又∵PE=3PF , ∴PC PB PF PE
=. ∴∠FPC=∠EPB . ∵∠CPE+∠EPB=90°,
∴∠FPC+∠CPE=90°,
∴FP ⊥PE .
(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .
∵CF=3BE=18﹣3a ,
∴OF=20﹣3a .
∴F (0,20﹣3a ).
∵PEQF 为矩形,

22x x x x Q P F E ++=,22
y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,
∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去).
∴Q (﹣2,6).
如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.
∵CF=3BE=3a ﹣18,
∴OF=3a ﹣20.
∴F (0,20﹣3a ).
∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22
y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,
∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).
∴Q (2,﹣6).
综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).
【点睛】
本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.
8.在平面直角坐标系xOy 中(如图).已知抛物线y=﹣
12x 2+bx+c 经过点A (﹣1,0)和点B (0,52
),顶点为C ,点D 在其对称轴上且位于点C 下方,将线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处.
(1)求这条抛物线的表达式;
(2)求线段CD 的长;
(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M 在y 轴上,且以O 、D 、E 、M 为顶点的四边形面积为8,求点M 的坐标.
【答案】(1)抛物线解析式为y=﹣
12x 2+2x+52;(2)线段CD 的长为2;(3)M 点的坐标为(0,
72)或(0,﹣72
). 【解析】 【分析】(1)利用待定系数法求抛物线解析式;
(2)利用配方法得到y=﹣
12(x ﹣2)2+92
,则根据二次函数的性质得到C 点坐标和抛物线的对称轴为直线x=2,如图,设CD=t ,则D (2,92﹣t ),根据旋转性质得∠PDC=90°,DP=DC=t ,则P (2+t ,
92﹣t ),然后把P (2+t ,92﹣t )代入y=﹣12x 2+2x+52
得到关于t 的方程,从而解方程可得到CD 的长; (3)P 点坐标为(4,92),D 点坐标为(2,52
),利用抛物线的平移规律确定E 点坐标为(2,﹣2),设M (0,m ),当m >0时,利用梯形面积公式得到
12•(m+52+2)•2=8当m <0时,利用梯形面积公式得到
12•(﹣m+52+2)•2=8,然后分别解方程求出m 即可得到对应的M 点坐标.
【详解】(1)把A (﹣1,0)和点B (0,52)代入y=﹣12
x 2+bx+c 得 10252b c c ⎧--+=⎪⎪⎨⎪=⎪⎩,解得252b c =⎧⎪⎨=⎪⎩, ∴抛物线解析式为y=﹣
12x 2+2x+52
; (2)∵y=﹣12(x ﹣2)2+92, ∴C (2,
92
),抛物线的对称轴为直线x=2, 如图,设CD=t ,则D (2,92﹣t ), ∵线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处,
∴∠PDC=90°,DP=DC=t ,
∴P (2+t ,92
﹣t ),
把P(2+t,9
2
﹣t)代入y=﹣
1
2
x2+2x+
5
2
得﹣
1
2
(2+t)2+2(2+t)+
5
2
=
9
2
﹣t,
整理得t2﹣2t=0,解得t1=0(舍去),t2=2,∴线段CD的长为2;
(3)P点坐标为(4,9
2
),D点坐标为(2,
5
2
),
∵抛物线平移,使其顶点C(2,9
2
)移到原点O的位置,
∴抛物线向左平移2个单位,向下平移9
2
个单位,
而P点(4,9
2
)向左平移2个单位,向下平移
9
2
个单位得到点E,
∴E点坐标为(2,﹣2),设M(0,m),
当m>0时,1
2
•(m+
5
2
+2)•2=8,解得m=
7
2
,此时M点坐标为(0,
7
2
);
当m<0时,1
2
•(﹣m+
5
2
+2)•2=8,解得m=﹣
7
2
,此时M点坐标为(0,﹣
7
2
);
综上所述,M点的坐标为(0,7
2
)或(0,﹣
7
2
).
【点睛】本题考查了二次函数的综合题,涉及到待定系数法、抛物线上点的坐标、旋转的性质、抛物线的平移等知识,综合性较强,正确添加辅助线、运用数形结合思想熟练相关知识是解题的关键.
9.如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.
(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范围;
(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.
【答案】(1)抛物线的解析式为y=x2﹣4x,自变量x的取值范图是0≤x≤4;(2)△PAB的面积=15.
【解析】
【分析】
(1)将函数图象经过的点B坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a和b;
(2)如图,过点B作BE⊥x轴,垂足为点E,过点P作PE⊥x轴,垂足为F,设P(x,x2-4x),证明△PFA∽△AEB,求出点P的坐标,将△PAB的面积构造成长方形去掉三个三角形的面积.
【详解】
(1)由题意得,
3 2
2
a b
b
a
+-



-⎪




解得
1
4
a
b-






∴抛物线的解析式为y=x2-4x,
令y=0,得x2-2x=0,解得x=0或4,
结合图象知,A的坐标为(4,0),
根据图象开口向上,则y≤0时,自变量x的取值范围是0≤x≤4;
(2)如图,过点B作BE⊥x轴,垂足为点E,过点P作PE⊥x轴,垂足为F,
设P(x,x2-4x),
∵PA⊥BA
∴∠PAF+∠BAE=90°,
∵∠PAF+∠FPA=90°,
∴∠FPA=∠BAE
又∠PFA=∠AEB=90°
∴△PFA ∽△AEB, ∴PF AF AE BE =,即244213
x x x --=-, 解得,x= −1,x=4(舍去)
∴x 2-4x=-5
∴点P 的坐标为(-1,-5),
又∵B 点坐标为(1,-3),易得到BP 直线为y=-4x+1
所以BP 与x 轴交点为(
14,0) ∴S △PAB=
115531524
⨯⨯+= 【点睛】
本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.
10.空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,已知木栏总长为100米.
(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD 的长;
(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD 的面积最大,并求面积的最大值.
【答案】(1)利用旧墙AD 的长为10米.(2)见解析.
【解析】
【分析】
(1)按题意设出AD ,表示AB 构成方程;
(2)根据旧墙长度a 和AD 长度表示矩形菜园长和宽,注意分类讨论s 与菜园边长之间的数量关系.
【详解】
(1)设AD=x 米,则AB=
1002x 米 依题意得,(100)2
x x -=450
解得x 1=10,x 2=90
∵a=20,且x≤a
∴x=90舍去
∴利用旧墙AD 的长为10米.
(2)设AD=x 米,矩形ABCD 的面积为S 平方米
①如果按图一方案围成矩形菜园,依题意
得: S=2(100)1(50)125022
x x x ---+=,0<x <a ∵0<a <50
∴x <a <50时,S 随x 的增大而增大 当x=a 时,S 最大=50a-12a 2
②如按图2方案围成矩形菜园,依题意得
S=22(1002)[(25)](25)244x a x a a x =+---+++,a≤x <50+2a 当a <25+
4a <50时,即0<a <1003时, 则x=25+4a 时,S 最大=(25+4a )2=2
1000020016
a a ++, 当25+4a ≤a ,即1003
≤a <50时,S 随x 的增大而减小 ∴x=a 时,S 最大=
(1002)2a a a +-=21502a a -, 综合①②,当0<a <1003时,21000020016a a ++-(21502a a -)=2
(3100)16
a ->0 2
1000020016
a a ++>21502a a -,此时,按图2方案围成矩形菜园面积最大,最大面积为2
1000020016
a a ++平方米 当1003≤a <50时,两种方案围成的矩形菜园面积最大值相等.
∴当0<a <1003
时,围成长和宽均为(25+4a )米的矩形菜园面积最大,最大面积为2
1000020016
a a ++平方米; 当
1003
≤a <50时,围成长为a 米,宽为(50-2a )米的矩形菜园面积最大,最大面积为(21502
a a -)平方米. 【点睛】 本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.。

相关文档
最新文档