函数导数中的恒成立问题解题技巧
第10讲 恒成立能成立3种常见题型(解析版)-2024高考数学常考题型
第10讲恒成立能成立3种常见题型【考点分析】考点一:恒成立问题若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则不等式()f x a >在区间D 上恒成立()min f x a ⇔>;不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥;不等式()f x b <在区间D 上恒成立()max f x b ⇔<;不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;考点二:存在性问题若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<;不等式()a f x ≤在区间D 上有解()max a f x ⇔≤;不等式()a f x >在区间D 上有解()min a f x ⇔>;不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;考点三:双变量问题①对于任意的[]1,x a b ∈[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤;②对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥;③若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤;④若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥;⑤对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤;⑥对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥;⑦若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤⑧若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥.【题型目录】题型一:利用导数研究恒成立问题题型二:利用导数研究存在性问题题型三:利用导数处理恒成立与有解问题【典型例题】题型一:利用导数研究恒成立问题【例1】(2022·福建省福安市第一中学高二阶段练习)对任意正实数x ,不等式ln 1x x a -+>恒成立,则a 的取值范围是()A .1a <B .2a <C .1a >D .2a >【答案】B【详解】令()ln 1f x x x =-+,其中0x >,则()min a f x <,()111x f x x x-'=-=,当01x <<时,()0f x '<,此时函数()f x 单调递减,当1x >时,()0f x '>,此时函数()f x 单调递增,所以,()()min 12f x f ==,2a ∴<.故选:B.【例2】【2022年全国甲卷】已知函数()a x x xe xf x-+-=ln .(1)若≥0,求a 的取值范围;【答案】(1)(−∞,+1]【解析】(1)op 的定义域为(0,+∞),'(p =(1−12)e −1+1=1(11)e +(1−1)=K1(e+1)令op =0,得=1当∈(0,1),'(p <0,op 单调递减,当∈(1,+∞),'(p >0,op 单调递增o )≥o1)=e +1−,若op ≥0,则e +1−≥0,即≤e +1,所以的取值范围为(−∞,+1]【例3】已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R .(1)讨论函数的单调性;(2)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.【答案】(1)答案见解析;(2)0a ≤.【解析】【分析】(1)求()'f x ,分别讨论a 不同范围下()'f x 的正负,分别求单调性;(2)由(1)所求的单调性,结合()10f =,分别求出a 的范围再求并集即可.【详解】解:(1)由已知定义域为()0,∞+,()211'()x a a f x x x x-++=-=当10a +≤,即1a ≤-时,()'0f x >恒成立,则()f x 在()0,∞+上单调递增;当10a +>,即1a >-时,x =或x =所以()f x在(上单调递减,在)+∞上单调递增.所以1a ≤-时,()f x 在()0,∞+上单调递增;1a >-时,()f x在(上单调递减,在)+∞上单调递增.(2)由(1)可知,当1a ≤-时,()f x 在()1,+∞上单调递增,若()0f x ≥对任意的[1,)x ∈+∞恒成立,只需(1)0f ≥,而(1)0f =恒成立,所以1a ≤-成立;当1a >-1≤,即10a -<≤,则()f x 在()1,+∞上单调递增,又(1)0f =,所以10a -<≤成立;若0a >,则()f x在(上单调递减,在)+∞上单调递增,又(1)0f =,所以(0x ∃∈,()0()10f x f <=,不满足()0f x ≥对任意的[1,)x ∈+∞恒成立.所以综上所述:0a ≤.【例4】已知函数()ln f x x ax =-(a 是正常数).(1)当2a =时,求()f x 的单调区间与极值;(2)若0x ∀>,()0f x <,求a 的取值范围;【答案】(1)()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,()f x 的极大值是ln 21--,无极小值;(2)1,e ⎛⎫+∞ ⎪⎝⎭.【解析】【分析】(1)求出函数的导函数,解关于导函数的不等式即可求出函数的单调区间;(2)依题意可得maxln x a x ⎛⎫< ⎪⎝⎭,设()ln xg x x =,利用导数研究函数的单调性,求出函数的最大值,即可得解;【详解】解:(1)当2a =时,()ln 2f x x x =-,定义域为()0,∞+,()1122x f x x x-'=-=,令()0f x '>,解得102x <<,令()0f x '<,解得12x >,所以函数()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,所以()f x 的极大值是1ln 212f ⎛⎫=-- ⎪⎝⎭,无极小值.(2)因为0x ∀>,()0f x <,即ln 0x ax -<恒成立,即maxln x a x ⎛⎫< ⎪⎝⎭.设()ln x g x x =,可得()21ln xg x x -'=,当0x e <<时()0g x '>,当x e >时()0g x '<,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减,所以()()max 1e e g x g ==,所以1a e >,即1,a e ⎛⎫∈+∞ ⎪⎝⎭.【例5】已知函数()xf x xe=(1)求()f x 的极值点;(2)若()2f x ax ≥对任意0x >恒成立,求a 的取值范围.【答案】(1)1x =-是()f x 的极小值点,无极大值点;(2)a e ≤.【解析】【分析】(1)利用导数研究函数的极值点.(2)由题设知:xe a x≤在0x >上恒成立,构造()x e g x x =并应用导数研究单调性求最小值,即可求a 的范围.【详解】(1)由题设,()(1)xf x e x '=+,∴1x <-时,()0<'x f ,()f x 单调递减;1x >-时,()0>'x f ,()f x 单调递增减;∴1x =-是()f x 的极小值点,无极大值点.(2)由题设,()2xx f x xe a =≥对0x ∀>恒成立,即x ea x≤在0x >上恒成立,令()x e g x x =,则2(1)()x e x g x x '-=,∴01x <<时,()0g x '<,()g x 递减;1x >时,()0g x '>,()g x 递增;∴()(1)e g x g ≥=,故a e ≤.【题型专练】1.(2022·四川广安·模拟预测(文))不等式ln 0x kx -≤恒成立,则实数k 的取值范围是()A .[)0,e B .(],e -∞C .10,e ⎡⎤⎢⎥⎣⎦D .1,e ∞⎡⎫+⎪⎢⎣⎭【答案】D 【解析】【分析】由题可得ln xk x ≥在区间(0,)+∞上恒成立,然后求函数()()ln 0x f x x x=>的最大值即得.【详解】由题可得ln xk x≥在区间(0,)+∞上恒成立,令()()ln 0x f x x x =>,则()()21ln 0xf x x x-'=>,当()0,e x ∈时,()0f x '>,当()e,x ∈+∞时,()0f x '<,所以()f x 的单调增区间为()0,e ,单调减区间为()e,+∞;所以()()max 1e ef x f ==,所以1ek ≥.故选:D.2.(2022·北京·景山学校模拟预测)已知函数()ln 2f x x x ax =++.(1)当0a =时,求()f x 的极值;(2)若对任意的21,e x ⎡⎤∈⎣⎦,()0f x ≤恒成立,求实数a 的取值范围.【答案】(1)极小值是11+2e e f ⎛⎫=- ⎪⎝⎭,无极大值.(2)222,e ⎡⎫--+∞⎪⎢⎣⎭【解析】【分析】(1)由题设可得()ln 1f x x '=+,根据()f x '的符号研究()f x 的单调性,进而确定极值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,转化为:2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,通过求导求()g x 的单调性进而求得()g x 的最大值,即可求出实数a 的取值范围.(1)当0a =时,()ln 2f x x x =+,()f x 的定义域为()0+∞,,()ln 1=0f x x '=+,则1ex =.令()0f x '>,则1,e x ⎛⎫∈+∞ ⎪⎝⎭,令()0f x '<,则10,e ⎛⎫∈ ⎪⎝⎭x ,所以()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1e x =时,()f x 取得极小值且为1111ln 2+2e e ee f ⎛⎫=+=- ⎪⎝⎭,无极大值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,则2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,()222120x g x x x x -+'=-+==,所以2x =,则()g x 在[)1,2上单调递减,在(22,e ⎤⎦上单调递增,所以()12g =,()222e2e g =+,所以()()22max2e 2e g x g ==+,则222e a -≥+,则222e a ≤--.实数a 的取值范围为:222,e ⎡⎫--+∞⎪⎢⎣⎭.3.(2022·新疆克拉玛依·三模(文))已知函数()ln f x x x =,()()23g x x ax a R =-+-∈.(1)求函数()f x 的单调递增区间;(2)若对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,求a 的取值范围.【答案】(1)1,e ⎛⎫+∞ ⎪⎝⎭,(2)(],4-∞【解析】【分析】(1)求函数()f x 的单调递增区间,即解不等式()0f x '>;(2)参变分离得32ln a x x x≤++,即求()()()32ln 0,h x x x x x =++∈+∞的最小值.(1)()ln f x x x =定义域为(0,)+∞,(ln +1f x '=()0f x '>即ln +10x >解得1e x >,所以()f x 在1,)e∞+(单调递增(2)对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,即()21ln 32x x x ax ≥-+-恒成立,分离参数得32ln a x x x≤++.令()()()32ln 0,h x x x x x =++∈+∞,则()()()231x x h x x +-'=.当()0,1∈x 时,()0h x '<,()h x 在()0,1上单调递减;当()1,x ∈+∞时,()0h x '>,()h x 在()1,+∞上单调递增.所以()()min 14h x h ==,即4a ≤,故a 的取值范围是(],4-∞.4.(2022·内蒙古赤峰·三模(文))已知函数()()ln 1f x x x =+.(1)求()f x 的最小值;(2)若()()212-++-≥x m x x f 恒成立,求实数m 的取值范围.【答案】(1)min 21()e f x =-(2)(],3-∞【解析】【分析】(1)求出函数的导数,利用导数求函数在定义域上的最值即可;(2)由原不等式恒成立分离参数后得2ln m x x x ++,构造函数()2ln h x x x x=++,利用导数求最小值即可.(1)由已知得()ln 2f x x '=+,令()0f x '=,得21ex =.当210,e x ⎛⎫∈ ⎪⎝⎭时,()()0,f x f x '<在210,e ⎛⎫ ⎪⎝⎭上单调递减;当21,e x ⎡⎫∈+∞⎪⎢⎣⎭时,()()0,f x f x '在21,e ⎡⎫+∞⎪⎢⎣⎭上单调递增.故min 2211()e e f x f ⎛⎫==- ⎪⎝⎭.(2)()()212-++-≥x m x x f ,即2ln 2++≤x x x mx ,因为0x >,所以xx x m 2ln ++≤在()+∞,0上恒成立.令()2ln h x x x x =++,则()()()min 222112(),1x x m h x h x x x x +-=+-'=,令()0h x '=,得1x =或2x =-(舍去).当()0,1x ∈时,()()0,h x h x '<在()0,1上单调递减;当[)1,x ∞∈+时,()0>'x h ,()x h 在[)1,+∞上单调递增.故()min ()13h x h ==,所以3≤m ,即实数m 的取值范围为(],3-∞.5.【2020年新高考1卷(山东卷)】已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积;(2)若不等式()1f x ≥恒成立,求a 的取值范围.【答案】(1)21e -(2)[1,)+∞【解析】【分析】(1)利用导数的几何意义求出在点()()1,1f 切线方程,即可得到坐标轴交点坐标,最后根据三角形面积公式得结果;(2)方法一:利用导数研究函数()f x 的单调性,当a =1时,由()10f '=得()()11min f x f ==,符合题意;当a >1时,可证1()(1)0f f a''<,从而()f x '存在零点00x >,使得01001()0x f x ae x -'=-=,得到m in ()f x ,利用零点的条件,结合指数对数的运算化简后,利用基本不等式可以证得()1f x ≥恒成立;当01a <<时,研究()1f .即可得到不符合题意.综合可得a 的取值范围.【详解】(1)()ln 1x f x e x =-+Q ,1()xf x e x'∴=-,(1)1k f e '∴==-.(1)1f e =+Q ,∴切点坐标为(1,1+e ),∴函数()f x 在点(1,f (1)处的切线方程为1(1)(1)y e e x --=--,即()12y e x =-+,∴切线与坐标轴交点坐标分别为2(0,2),(,0)1e --,∴所求三角形面积为1222||=211e e -⨯⨯--.(2)[方法一]:通性通法1()ln ln x f x ae x a -=-+Q ,11()x f x ae x-'∴=-,且0a >.设()()g x f x =',则121()0,x g x ae x -'=+>∴g(x )在(0,)+∞上单调递增,即()f x '在(0,)+∞上单调递增,当1a =时,()01f '=,∴()()11min f x f ==,∴()1f x ≥成立.当1a >时,11a <,111a e <∴,111()(1)(1)(1)0a f f a e a a -''∴=--<,∴存在唯一00x >,使得01001()0x f x ae x -'=-=,且当0(0,)x x ∈时()0f x '<,当0(,)x x ∈+∞时()0f x '>,0101x ae x -∴=,00ln 1ln a x x ∴+-=-,因此01min 00()()ln ln x f x f x ae x a-==-+001ln 1ln 2ln 12ln 1a x a a a x =++-+≥-+=+>1,∴()1,f x >∴()1f x ≥恒成立;当01a <<时,(1)ln 1,f a a a =+<<∴(1)1,()1f f x <≥不是恒成立.综上所述,实数a 的取值范围是[1,+∞).[方法二]【最优解】:同构由()1f x ≥得1e ln ln 1x a x a --+≥,即ln 1ln 1ln a x e a x x x +-++-≥+,而ln ln ln x x x e x +=+,所以ln 1ln ln 1ln a x x e a x e x +-++-≥+.令()m h m e m =+,则()10m h m e +'=>,所以()h m 在R 上单调递增.由ln 1ln ln 1ln a x x e a x e x +-++-≥+,可知(ln 1)(ln )h a x h x +-≥,所以ln 1ln a x x +-≥,所以max ln (ln 1)a x x ≥-+.令()ln 1F x x x =-+,则11()1xF x x x-'=-=.所以当(0,1)x ∈时,()0,()F x F x '>单调递增;当(1,)x ∈+∞时,()0,()F x F x '<单调递减.所以max [()](1)0F x F ==,则ln 0a ≥,即1a ≥.所以a 的取值范围为1a ≥.[方法三]:换元同构由题意知0,0a x >>,令1x ae t -=,所以ln 1ln a x t +-=,所以ln ln 1a t x =-+.于是1()ln ln ln ln 1x f x ae x a t x t x -=-+=-+-+.由于()1,ln ln 11ln ln f x t x t x t t x x ≥-+-+≥⇔+≥+,而ln y x x =+在,()0x ∈+∞时为增函数,故t x ≥,即1x ae x -≥,分离参数后有1x x a e -≥.令1()x x g x e -=,所以1112222(1)()x x x x x e xe e x g x e e -------=='.当01x <<时,()0,()'>g x g x 单调递增;当1x >时,()0,()g x g x '<单调递减.所以当1x =时,1()x x g x e -=取得最大值为(1)1g =.所以1a ≥.[方法四]:因为定义域为(0,)+∞,且()1f x ≥,所以(1)1f ≥,即ln 1a a +≥.令()ln S a a a =+,则1()10S a a='+>,所以()S a 在区间(0,)+∞内单调递增.因为(1)1S =,所以1a ≥时,有()(1)S a S ≥,即ln 1a a +≥.下面证明当1a ≥时,()1f x ≥恒成立.令1()ln ln x T a ae x a -=-+,只需证当1a ≥时,()1T a ≥恒成立.因为11()0x T a ea-=+>',所以()T a 在区间[1,)+∞内单调递增,则1min [()](1)ln x T a T e x -==-.因此要证明1a ≥时,()1T a ≥恒成立,只需证明1min [()]ln 1x T a e x -=-≥即可.由1,ln 1x e x x x ≥+≤-,得1,ln 1x e x x x -≥-≥-.上面两个不等式两边相加可得1ln 1x e x --≥,故1a ≥时,()1f x ≥恒成立.当01a <<时,因为(1)ln 1f a a =+<,显然不满足()1f x ≥恒成立.所以a 的取值范围为1a ≥.【整体点评】(2)方法一:利用导数判断函数()f x 的单调性,求出其最小值,由min 0f ≥即可求出,解法虽稍麻烦,但是此类题,也是本题的通性通法;方法二:利用同构思想将原不等式化成ln 1ln ln 1ln a x x e a x e x +-++-≥+,再根据函数()m h m e m =+的单调性以方法三:通过先换元,令1x ae t -=,再同构,可将原不等式化成ln ln t t x x +≥+,再根据函数ln y x x =+的单调性以及分离参数法求出;方法四:由特殊到一般,利用(1)1f ≥可得a 的取值范围,再进行充分性证明即可.题型二:利用导数处理存在性问题【例1】(2022·河北秦皇岛·三模)函数()3233f x x x a =-+-,若存在[]01,1x ∈-,使得()00f x >,则实数a的取值范围为()A .(),1-∞-B .(),1-∞C .()1,3-D .(),3-∞【答案】D【分析】根据题意,将问题转化为求解函数()f x 的最大值问题,先通过导数方法求出函数()f x 的最大值,进而求出答案.【详解】因为()3233f x x x a =-+-,所以()()[]23632,1,1f x x x x x x =-∈-'-=.由题意,只需max ()0f x >.当x ∈[1,0)-时,()0f x '>,当(0,1]x ∈时,()0f x '<,所以()f x 在[1,0)-上单调递增,在(0,1]上单调递减,所以()max 0()30f f x a ==->,故实数a 的取值范围为(),3-∞.故选:D.【例2】已知函数()326f x ax bx x c =+++,当1x =-时,()f x 的极小值为5-,当2x =时,()f x 有极大值.(1)求函数()f x ;(2)存在[]013x ∈,,使得()202f x t t ≤-成立,求实数t 的取值范围.【答案】(1)()3233622f x x x x =-++-;(2)(,1][3,)-∞-+∞ .【解析】【分析】(1)求导后,根据()()120f f ''-==和()15f -=-,解得,,a b c 即可得解;(2)转化为()2min 2f x t t ≤-,再利用导数求出函数()f x 在[]13,上的最小值,然后解不等式223t t -≥可得结果.(1)∵()2326f x ax bx '=++,由()()120f f ''-==,得3260a b -+=且12460a b ++=,解得1a =-,32b =,又()15f -=-,∴32c =-,经检验1a =-,32b =时,()3233622f x x x x =-++-满足题意,∴()3233622f x x x x =-++-;(2)存在[]013x ∈,,使得()202f x t t ≤-,等价于()2min 2f x t t ≤-,∵()()()2336321f x x x x x '=-++=--+,当[1,2)x ∈时,()0f x '>,当(2,3]x ∈时,()0f x '<,∴()f x 在(2,3]上递减,在[1,2)上递增,又()15f =,()33f =,∴()f x 在[]13,上的最小值为()33f =,∴223t t -≥,解得1t ≤-或3t ≤,所以t 的取值范围是(,1][3,)-∞-+∞ .【例3】(2022·辽宁·高二阶段练习)已知0a >,若在(1,)+∞上存在x 使得不等式e ln x a x x a x -≤-成立,则a 的最小值为______.【题型专练】1.已知函数()()222ln f x x a x =++.(1)当5a =-时,求()f x 的单调区间;(2)若存在[]2,e x ∈,使得()2242a f x x x x+->+成立,求实数a 的取值范围.【答案】(1)单调递减区间为()0,2,单调递增区间为()2,+∞;(2)2e e 2,e 1∞⎛⎫-++⎪-⎝⎭.【解析】【分析】(1)当5a =-时,()28ln f x x x =-,得出()f x 的定义域并对()f x 进行求导,利用导数研究函数的单调性,即可得出()f x 的单调区间;(2)将题意等价于()24222ln 0a x a x x ++-+<在[]2,e 内有解,设()()24222ln a h x x a x x+=+-+,即在[]2,e 上,函数()min 0h x <,对()h x 进行求导,令()0h x '=,得出2x a =+,分类讨论2a +与区间[]2,e 的关系,并利用导数研究函数()h x 的单调和最小值,结合()min 0h x <,从而得出实数a 的取值范围.(1)解:当5a =-时,()28ln f x x x =-,可知()f x 的定义域为()0,+∞,则()28282,0x f x x x x x-'=-=>,可知当()0,2x ∈时,()0f x ¢<;当()2,x ∈+∞时,()0f x ¢>;所以()f x 的单调递减区间为()0,2,单调递增区间为()2,+∞.(2)解:由题可知,存在[]2,e x ∈,使得()2242a f x x x x+->+成立,等价于()24222ln 0a x a x x++-+<在[]2,e 内有解,可设()()24222ln a h x x a x x+=+-+,即在[]2,e 上,函数()min 0h x <,()()()()()()()22222122422222242x x a a a x a x a h x x xx x ⎡⎤+-+++-+-+⎣⎦∴=--==',令()0h x '=,即()()120x x a ⎡⎤+-+=⎣⎦,解得:2x a =+或1x =-(舍去),当2e a +≥,即e 2a ≥-时,()0h x '<,()h x 在[]2,e 上单调递减,()()min24e 2e+220e a h x h a +∴==--<,得2e e 2e 1a -+>-,又2e e 2e 2e 1-+>-- ,所以2e e 2e 1a -+>-;当22a +≤时,即0a ≤时,()0h x '>,()h x 在[]2,e 上单调递增,()()()min 2622ln 20h x h a a ∴==+-+<,得6ln 40ln 41a ->>-,不合题意;当22e a <+<,即0e 2a <<-时,则()h x 在[]2,2a +上单调递减,在[]2,e a +上单调递增,()()()()min 22622ln 2h x h a a a a ∴=+=+-++,()ln 2ln 2ln e 1a <+<= ,()()()22ln 222ln 2222a a a a ∴+<++<+,()()()22622ln 226224h a a a a a a ∴+=+-++>+--=,即()min 4h x >,不符合题意;综上得,实数a 的取值范围为2e e 2,e 1∞⎛⎫-++⎪-⎝⎭.【点睛】思路点睛:本题考查利用导数研究函数的单调性,以及利用导数解决不等式成立的综合问题:(1)利用导数解决单调区间问题,应先确定函数的定义域,否则,写出的单调区间易出错;利用导数解决含有参数的单调性问题,要注意分类讨论和化归思想的应用;(2)利用导数解决不等式的综合问题的一般步骤是:构造新函数,利用导数研究的单调区间和最值,再进行相应证明.2.(2022·河北深州市中学高三阶段练习)已知函数()ln 21f x x ax =-+.(1)若1x =是()f x 的极值点,确定a 的值;(2)若存在0x >,使得()0f x ≥,求实数a 的取值范围.所以,函数()f x 在1x =处取得极大值,合乎题意,故2a =.(2)解:存在0x >,使得()ln 210f x x ax =-+≥可得ln 12x a x+≤,构造函数()ln 1x g x x+=,其中0x >,则()2ln x g x x '=-,当01x <<时,()0g x '>,此时函数()g x 单调递增,当1x >时,()0g x '<,此时函数()g x 单调递减,则()()max 11g x g ==,所以,21a ≤,解得12a ≤,因此,实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.3.已知函数()ln xf x x=,设()f x 在点()1,0处的切线为m (1)求直线m 的方程;(2)求证:除切点()1,0之外,函数()f x 的图像在直线m 的下方;(3)若存在()1,x ∈+∞,使得不等式()()1f x a x >-成立,求实数a 的取值范围【答案】(1)y =x ﹣1;(2)见详解;(3)(﹣∞,1).【解析】【分析】(1)求导得21ln ()xf x x -'=,由导数的几何意义k 切=f ′(1),进而可得答案.(2)设函数h (x )=f (x )﹣(x ﹣1)=ln xx﹣x +1,求导得h ′(x ),分析h (x )的单调性,最值,进而可得f (x )﹣(x ﹣1)≤0,则除切点(1,0)之外,函数f (x )的图象在直线的下方.(3)若存在x ∈(1,+∞),使得不等式a <ln (1)x x x -成立,令g (x )=ln (1)xx x -,x >1,只需a <g (x )max .【详解】(1)221ln 1ln ()x xx x f x x x ⋅--'==,由导数的几何意义k 切=f ′(1)=1,所以直线m 的方程为y =x ﹣1.(2)证明:设函数h (x )=f (x )﹣(x ﹣1)=ln xx﹣x +1,2221ln 1ln ()1x x x h x x x ---'=-=,函数定义域为(0,+∞),令p (x )=1﹣lnx ﹣x 2,x >0,p ′(x )=﹣1x﹣2x <0,所以p (x )在(0,+∞)上单调递减,又p (1)=0,所以在(0,1)上,p (x )>0,h ′(x )>0,h (x )单调递增,在(1,+∞)上,p (x )<0,h ′(x )<0,h (x )单调递减,所以h (x )max =h (1)=0,所以h (x )≤h (1)=0,所以f (x )﹣(x ﹣1)≤0,若除切点(1,0)之外,f (x )﹣(x ﹣1)<0,所以除切点(1,0)之外,函数f (x )的图象在直线的下方.(3)若存在x ∈(1,+∞),使得不等式f (x )>a (x ﹣1)成立,则若存在x ∈(1,+∞),使得不等式()1f x x ->a 成立,即若存在x ∈(1,+∞),使得不等式a <ln (1)xx x -成立,令g (x )=ln (1)xx x -,x >1,g ′(x )=221(1)(21)ln (1)x x x xxx x ⋅----=221(21)ln (1)x x xx x ----,令s (x )=x ﹣1﹣(2x ﹣1)lnx ,x >1s ′(x )=1﹣2lnx ﹣(2x ﹣1)•1x 2ln 212ln 1x x x x x x x x x--+--+==,令q (x )=﹣x ﹣2xlnx +1,x >1q ′(x )=﹣1﹣2lnx ﹣2=﹣3﹣2lnx <0,所以在(1,+∞)上,q (x )单调递减,又q (1)=0,所以在(1,+∞)上,q (x )<0,s ′(x )<0,s (x )单调递减,所以s (x )≤s (1)=0,即g ′(x )≤0,g (x )单调递减,又111ln lim lim 1(1)21x x x x x x x →→==--,所以a <1,所以a 的取值范围为(﹣∞,1).4.已知函数()ln 1f x x x ax =-+.(1)若()f x 在点(1,(1))A f 处的切线斜率为2-.①求实数a 的值;②求()f x 的单调区间和极值.(2)若存在0(0,)x ∈+∞,使得()00f x <成立,求a 的取值范围.【答案】(1)①3a =;②减区间为2(0,)e ,增区间为2(,)e +∞,极小值为21e -,无极大值;(2)(1,)+∞.【解析】【分析】(1)求得函数的导数()ln 1f x x a '=+-,①根据题意得到()2f x '=-,即可求得a 的值;②由①知()ln 2,0f x x x '=->,结合导数的符号,以及极值的概念与计算,即可求解;(2)设()1ln g x x x=+,根据存在0(0,)x ∈+∞,使得()00f x <成立,得到()min a g x >成立,结合导数求得函数()g x 的单调性与最小值,即可求解.【详解】(1)由题意,函数()ln 1f x x x ax =-+的定义域为(0,)+∞,且()ln 1f x x a '=+-,①因为()f x 在点(1,(1))A f 处的切线斜率为2-,可得()12f x a '=-=-,解得3a =.②由①得()ln 2,0f x x x '=->,令()0f x '>,即ln 20x ->,解得2x e >;令()0f x '<,即ln 20x -<,解得20x e <<,所以函数()f x 在2(0,)e 上单调递减,在2(,)e +∞上单调递增,当2x e =时,函数()f x 取得极小值,极小值为()221f e e =-,无极大值,综上可得,函数()f x 的减区间为2(0,)e ,增区间为2(,)e +∞,极小值为21e -,无极大值.(2)因为()ln 1f x x x ax =-+,由()00f x <,即000ln 10x x ax -+<,即00000ln 11ln x x a x x x +>=+,设()1ln ,0g x x x x=+>根据题意知存在0(0,)x ∈+∞,使得()00f x <成立,即()min a g x >成立,由()1ln ,0g x x x x =+>,可得()22111x g x x x x-'=-=,当01x <<时,()0g x '<,()g x 单调递减;当1x >时,()0g x '>,()g x 单调递增,所以当1x =时,函数()g x 取得最小值,最小值为()11g =,所以1a >,即实数a 的取值范围是(1,)+∞.5.已知函数()ln (R)f x x ax a =+∈.(1)当a =1时,求曲线()y f x =在x =1处的切线方程;(2)求函数()f x 的单调区间;(3)若存在0x ,使得()00f x >,求a 的取值范围.【答案】(1)210x y --=;(2)0a ≥时,()f x 在()0,∞+单增;0a <,()f x 在10,a ⎛⎫- ⎪⎝⎭单增,在1,a ⎛⎫-+∞ ⎪⎝⎭单减;(3)1a e>-.【解析】【分析】(1)求出函数导数,将切线横坐标代入得到斜率,再求出切点纵坐标,最后写出切线方程;(2)求导后,通分,分0,0a a ≥<两种情况讨论得到单调区间;(3)当0a ≥时,代特值验证即可,当0a <时,函数最大值大于0,解出即可.【详解】由题意,()1(1)1,1,f f x x'==+所以()12,f '=所以切线方程为:()121210y x x y -=-⇒--=.(2)110,()ax x f x a x x+'>=+=,若0a ≥,则()0f x '>,()f x 在()0,∞+单增;若0a <,则10,x a ⎛⎫∈- ⎪⎝⎭时,()0f x '>,()f x 单增;1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0f x '<,()f x 单减.(3)由(2),若0a ≥,则(2)ln 220f a =+>,满足题意;若0a <,()max 111(ln 10f x f a a a e ⎛⎫=-=-->⇒>- ⎪⎝⎭,则10a e -<<,综上:1a e>-.题型三:利用导数处理恒成立与有解问题【例1】(2022·福建省福安市第一中学高三阶段练习)设函数()()()()1e e ,e 1x xf x xg x ax =--=--,其中R a ∈.若对[)20,x ∀∈+∞,都1R x ∃∈,使得不等式()()12f x g x ≤成立,则a 的最大值为()A .0B .1eC .1D .e【例2】已知函数2()ln (R),()22f x ax x a g x x x =+∈=-+.(1)当12a =-时,求函数()f x 在区间[1,e]上的最大值和最小值;(2)若对任意的1[1,2]x ∈-,均存在2(0,)x ∈+∞,使得()()12g x f x <,求a 的取值范围.【答案】(1)最大值为ln 21-,最小值为12-;(2)61(,)e -+∞.【解析】【分析】(1)利用导数研究()f x 的区间单调性,进而确定端点值和极值,比较它们的大小,即可得最值;(2)将问题转化为1[1,2]x ∈-、2(0,)x ∈+∞上1max 2max ()()g x f x <,利用二次函数性质及导数求函数最值,即可得结果.(1)由题设()ln 2x f x x =-,则2()2x f x x-'=,所以在[1,2)上()0f x '>,()f x 递增,在(2,e]上()0f x '<,()f x 递减,则1(1)2f =-<e (e)12f =-,极大值(2)ln 21f =-,综上,()f x 最大值为ln 21-,最小值为12-.(2)由22()22(1)1g x x x x =-+=-+在[1,2]x ∈-上max ()(1)5g x g =-=,根据题意,只需max max ()()g x f x <即可,由1()f x a x'=+且,()0x ∈+∞,当0a ≥时,()0f x '>,此时()f x 递增且值域为R ,所以满足题设;当0a <时,1(0,)a-上()0f x '>,()f x 递增;1(,)a -+∞上()0f x '<,()f x 递减;所以max 1()()1ln()f x f a a =-=---,此时1ln()5a --->,可得61ea >-,综上,a 的取值范围61(,)e -+∞.【点睛】关键点点睛:第二问,将问题转化为1[1,2]x ∈-、2(0,)x ∈+∞上1max 2max ()()g x f x <求参数范围.【例3】已知函数()sin cos f x x x x =+.(1)当()0,πx ∈时,求函数()f x 的单调区间;(2)设函数2()2=-+g x x ax .若对任意[]1π,πx ∈-,存在2[0,1]x ∈,使得()()1212πf xg x ≤成立,求实数a 的取值范围.【答案】(1)当x ()0,π∈时,函数()f x 的单调递增区间为π0,2⎛⎫⎪⎝⎭,函数()f x 的单调递减区间为π,π2⎛⎫ ⎪⎝⎭;(2)1[,)2+∞.【解析】【分析】(1)首先对函数求导,根据x 的取值情况判断()f x '的正负情况,进而得到()f x 的增减情况;(2)对任意[]1π,πx ∈-,存在2[0,1]x ∈,使得12()()h x g x ≤成立,等价于max max ()()h x g x ≤,然后对a 进行讨论,分别求函数的最值,进而得到结论.(1)因为()sin cos f x x x x =+,所以()sin cos sin cos f x x x x x x x '=+-=.当x ()0,π∈时,()'f x 与()f x 的变化情况如表所示:xπ0,2⎛⎫ ⎪⎝⎭π2π,π2⎛⎫ ⎪⎝⎭()'f x +0-()f x 单调递增π2单调递减所以当x ()0,π∈时,函数()f x 的单调递增区间为π0,2⎛⎫⎪⎝⎭,函数()f x 的单调递减区间为π,π2⎛⎫⎪⎝⎭.(2)当[]π,πx ∈-时,()()f x f x -=,所以函数()f x 为偶函数.所以当[]π,πx ∈-时,函数()f x 的单调递增区间为ππ,2⎛⎫-- ⎪⎝⎭,π0,2⎛⎫ ⎪⎝⎭,函数()f x 的单调递减区间为π,02⎛⎫- ⎪⎝⎭,π,π2⎛⎫⎪⎝⎭,所以函数()f x 的最大值为πππ222f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭.设()()12πh x f x =,则当[]π,πx ∈-时,()max 1π12π24h x =⋅=.对任意[]1π,πx ∈-,存在2[0,1]x ∈,使得12()()h x g x ≤成立,等价于max max ()()h x g x ≤.当0a ≤时,函数()g x 在区间[0,1]上的最大值为(0)0g =,不合题意.当01a <<时,函数()g x 在区间[0,1]上的最大值为2()g a a =,则214a ≥,解得12a ≥或12a ≤-,所以112a ≤<.当1a ≥时,函数()g x 在区间[0,1]上的最大值为(1)21g a =-,则1214a -≥,解得58a ≥,所以1a ≥.综上所述,a 的取值范围是1[,)2+∞.【例4】(2022·黑龙江·哈尔滨三中高二期末)已知函数()ln xf x x=,2()ln(1)2g x x ax =++,若211,e x ∀⎡⎤∈⎣⎦,()20,1x ∃∈使得12()()f x g x >成立,则实数a 的取值范围是()A .ln 2,2⎛⎫-∞- ⎪B .ln 2,2⎛⎤-∞-⎥C .1,e⎛⎫-∞- ⎪⎝⎭D .ln 2,e 2⎛⎤-∞- ⎥故选:A【例5】(2023·全国·高三专题练习)已知函数()3331,0422112,122x x x f x x x ⎧-+≤≤⎪⎪=⎨⎪+<≤⎪⎩,()e xg x ax =-()R a ∈,若存在[]12,0,1x x ∈,使得()()12f x g x =成立,则实数a 的取值范围是()A .(],1-∞B .(],e 2-∞-C .5,e4⎛⎤-∞- ⎥D .(],e -∞≤【题型专练】1.(2022·河南·南阳中学高三阶段练习(理))已知函数()33f x x x a =-+,()211x g x x +=-.若对任意[]12,2x ∈-,总存在[]22,3x ∈,使得()()12f x g x ≤成立,则实数a 的最大值为()A .7B .5C .72D .32.(2022·福建宁德·高二期末)已知()()11e x f x x -=-,()()21g x x a =++,若存在1x ,2R x ∈,使得()()21f x g x ≥成立,则实数a 的取值范围为()A .1,e ∞⎡⎫+⎪⎢⎣⎭B .1,e ∞⎛⎤- ⎥⎝⎦C .()0,e D .1,0e ⎡⎫-⎪⎢3.(2022·河南安阳·高二阶段练习(理))已知函数ln ()x f x x=,2()ln(1)2g x x ax =++,若211,e x ∀⎡⎤∈⎣⎦,2(0,1]x ∃∈使得()()12f x g x >成立,则实数a 的取值范围是()A .ln 2,2⎛⎫-∞- ⎪B .ln 2,2⎛⎤-∞-⎥C .1,e⎛⎫-∞- ⎪⎝⎭D .ln 2,e 2⎛⎤-∞- ⎥4.已知函数2()21)2ln ()2f x ax a x x a R =-++∈((1)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值与函数()f x 的单调区间;(2)设2()(2)e =-x g x x x ,若对任意(]10,2x ∈,均存在(]20,2x ∈,使得12()()f x g x <,求a 的取值范围.【答案】(1)2=3a ,单调递增区间为3(0,),(2,)2+∞,单调递减区间为3(,2)2(2)ln 21a >-【解析】【分析】(1)求出()'f x ,由(1)(3)f f ''=得a ,再利用由()0f x '>、()0f x '<可得答案;(2)转化为(]0,2x ∈时,max max ()()f x g x <,容易求出max ()(0)(2)0g x g g ===,所以只须max ()0f x <,()()12()ax x f x x='--,讨论12a ≤、12a >可得答案.(1)21()(21),(1)1,(3)3f x ax a f a f a x '''=-++=-+=-,由(1)(3)f f ''=得23a =,()()232272()333x x f x x x x--=-+=',由()0f x '>得()30,2,2x ∞⎛⎫∈⋃+ ⎪⎝⎭,由()0f x '<得3,22x ⎛⎫∈ ⎪⎝⎭,所以函数()f x 的单调递增区间为()30,,2,2∞⎛⎫+ ⎪⎝⎭,单调递减区间为3,22⎛⎫⎪⎝⎭.(2)若要命题成立,只须当(]0,2x ∈时,max max ()()f x g x <,由()()22e xg x x '=-可知当(]0,2x ∈时max ()(0)(2)0g x g g ===,所以只须max ()0f x <对()f x 来说,()()122()(21)ax x f x ax a x x--=-++'=,(1)当12a ≤时,在(]0,2上有10-≤ax ,∴()0f x '≥这时max ()(2)222ln 2f x f a ==--+,由max ()0f x <得1ln 212a -<≤;(2)当12a >时,max 11()2ln 22f x f a a a ⎛⎫==--- ⎪⎝⎭,设1()2ln 22h a a a =---,则2221214()022a h a a a a -'=-=<,∴()h a 在1,2⎛⎫+∞ ⎪⎝⎭递减,1()2ln 2302h a h <=-<⎝⎭,∴当12a >时,max ()0f x <,综上所述,满足题意的ln 21a >-.【点睛】本题考查了对任意1x D ∈,均存在2x E ∈,使得12()()f x g x <,转化为max max ()()f x g x <求参数的取值范围的问题,考查了学生的思维能力、运算能力.5.已知函数()()ln xf x ax a x=-+∈R ,'为()f x 的导函数.(1)求()f x 的定义域和导函数;(2)当2a =时,求函数()f x 的单调区间;(3)若对21e,e x ⎡⎤∀∈⎣⎦,都有()11f x ≥成立,且存在32e,e x ⎡⎤∈⎣⎦,使()2102f x a '+=成立,求实数a 的取值范围.【答案】(1)()()0,11,+∞ ,()()2ln 1ln x f x a x -'=-+(2)()f x 在()0,1单减,()1,+∞也单减,无增区间(3)2110,2e a ⎡⎤∈-⎢⎥⎣⎦【解析】【分析】(1)根据分母不等于0,对数的真数大于零即可求得函数的定义域,根据基本初等函数的求导公式及商的导数公式即可求出函数的导函数;(2)求出函数的导函数,再根据导函数的符号即可得出答案;(3)若对21e,e x ⎡⎤∀∈⎣⎦,都有()11f x ≥成立,即1111ln x ax x -+≥,即1111ln a x x ≤-+,令()11ln h x x x=-+,2e,e x ⎡⎤∈⎣⎦,只要()min a h x ≤即可,利用导数求出函数()11ln h x x x=-+的最小值即可求出a 的范围,()()2222ln 11122ln x f x a a x -'+=-,()()2ln 112ln x g x a x -=-,求出函数()g x 的值域,根据存在32e,e x ⎡⎤∈⎣⎦,使()2102f x a '+=成立,则0在函数()g x 的值域中,从而可得出a 的范围,即可得解.(1)解:()f x 的定义域为()()0,11,+∞ ,()()2ln 1ln x f x a x -'=-+;(2)解:当2a =时,()()()()()22222172ln 2ln ln 1ln 1482ln ln ln x x x x f x x x x ⎛⎫-+⎪-+-⎝⎭'=-+=-=-,()0f x ¢<恒成立,所以()f x 在()0,1和()1,+∞上递减;(3)解:若对21e,e x ⎡⎤∀∈⎣⎦,都有()11f x ≥成立,即1111ln x ax x -+≥,即1111ln a x x ≤-+,令()11ln h x x x =-+,2e,e x ⎡⎤∈⎣⎦,则()()()()22222ln 11ln ln x x h x x x x x x -'=-=,对于函数())ln 0x x x ϕ=>,()122x x xϕ'==,当04x <<时,()0ϕ'>x ,当4x >时,()0ϕ'<x ,所以函数()ln x x ϕ=()0,4上递增,在()4,+∞上递减,所以()()ln 4204x ϕϕ≤=-<,当2e,e x ⎡⎤∈⎣⎦时,ln 0x >,所以ln x <()2ln x x <,故()0h x '<恒成立,()h x 在2e,e x ⎡⎤∈⎣⎦为减函数,所以()()2min e h x h ==211e 2-+,所以211e 2a ≤-+,由(1)知,()()2ln 1ln x f x a x -'=-+,所以()()2222ln 11122ln x f x a a x -'+=-,记()()2ln 112ln x g x x -=-,令1ln t x =,1,13t ⎡⎤∈⎢⎥⎣⎦,则原式()211,123g x t t a t ⎛⎫⎡⎤=-+-∈ ⎪⎢⎥⎣⎦⎝⎭的值域为1,242a a ⎡⎤--⎢⎥⎣⎦,因为存在32e,e x ⎡⎤∈⎣⎦,使()2102f x a '+=成立,所以02a -≤,1042a -≥,所以102a ≤≤,综上,2110,2a e ⎡⎤∈-⎢⎥⎣⎦.【点睛】本题考查了函数的定义域及导数的四则运算,考查了利用导数求函数的单调区间,考查了不等式恒成立问题,考查了计算能力及数据分析能力,对不等式恒成立合理变形转化为求最值是解题关键.。
解答恒成立问题的常规思路
知识导航恒成立问题在近几年的高考数学试题中占据了一席之地,是同学们需要重视并学习的重点内容.恒成立问题是一类综合性较强的问题,常与不等式、函数、导数、数列等知识相结合,重点考查了同学们分析、解决问题的能力.本文重点介绍三种常见的求解思路.一、分离参数分离参数法是解答含参恒成立问题的基本方法,主要通过变形把不等式中的参数和变量分离,然后运用导数法、函数的单调性等求得不含参数式子的最值,进而构造出满足不等式恒成立的条件,使问题获解.例1.已知函数f()x=ln x-a x,若f()x<x2在()1,+∞上恒成立,求a的取值范围.解:∵ln x-a x<x2,x>0,∴a>x ln x-x3,令g()x=x ln x-x3,则g'()x=1+ln x-3x2,令h()x=g'()x=1+ln x-3x2,∴h'()x=1x-6x=1-6x2x,∵h()x在[)1,+∞单调递减,h()x<h()1=-2,即g'()x<0,∴g()x在[)1,+∞单调递减,g()x<g()1=-1,∴a≥g()1=-1,f()x<x2在()1,+∞上恒成立时,a≥-1.解答本题的基本思路是,首先将不等式变形,使参数分离,然后对不含有参数的式子进行求导,通过分析其导函数的正负来讨论函数的单调性,进而求得不含有参数式子的最值,得到a的取值范围.二、数形结合数形结合法是解答恒成立问题的重要方法.在解题时,需首先将不等式变形,构造出一个或者两个简单的基本函数,然后绘制出函数的图象,通过分析函数的图象找出临界的位置关系,从而建立使不等式恒成立的关系式,使问题得解.在解答恒成立问题时灵活运用数形结合法,能快速找到解题的思路,显著提升解题的效率.例2.若存在正数x使2x(x-a)<1成立,则a的取值范围是.解:不等式2x(x-a)<1可变形为x-a<(12)x.在同一平面直角坐标系内作出直线y=x-a与y=(12)x的图象.由题意可得,在(0,+∞)上,直线有一部分在曲线的下方.由图象可知-a<1,所以a>-1.运用数形结合法能使解题过程变得更加直观、简洁,是求解恒成立问题经常采取的方法之一.在运用数形结合法解题时还应注意正确绘制函数的图象.三、利用函数的单调性虽然恒成立问题较为复杂,但我们可以结合不等式的结构特点构造合适的函数,将问题转化为函数问题,再讨论函数的单调性,建立使不等式恒成立的关系式,从而解题.我们可以利用函数单调性的定义,也可以利用导数来讨论函数的单调性.例3.已知函数f(x)=1-22x+1为奇函数.若对任意的t∈R,不等式f[t2-(m-2)t]+f(t2-m+1)>0恒成立,求实数m的取值范围.解:设任意x1,x2∈R,且x1<x2,∴f(x1)-f(x2)=1-22x1+1-1+22x2+1=2(2x1-2x2)(2x1+1)(2x2+1).∵x1<x2,∴2x1-2x2<0,(2x1+1)(2x2+1)>0,∴f(x1)<f(x2),∴f(x)为R上的单调递增函数.∵f(x)=1-22x+1为奇函数,且在R上为增函数,由f[t2-(m-2)t]+f(t2-m+1)>0恒成立可得f[t2-(m-2)t]>-f(t2-m+1)=f(m-t2-1),化简得2t2-(m-2)t-m+1>0,∴Δ=(m-2)2+8(m-1)<0,解得-2-22<m<-2+22,∴m的取值范围为(-2-22,-2+22).本题主要是利用函数单调性的定义来确定函数的单调性,然后利用函数的单调性建立关于t的不等式,再利用方程的判别式建立关于m的不等式,求得m的取值范围.解答恒成立问题的方法还有很多,如函数最值法、判别式法、导数法等,而以上三种方法是解答恒成立问题的常用方法.无论运用上述哪种方法解题,同学们都要注意首先将不等式合理进行变形,构造适当的函数模型,灵活运用导数、不等式、函数等知识,以及转化思想、数形结合思想解题.(作者单位:江苏省江阴市第一中学)37。
高考数学导数恒成立问题的解法及例题
高考数学导数恒成立问题的解法
对于恒成立问题,一般采取的方法有两种:一是利用函数的单调性,二是利用函数的最值。
1. 利用函数的单调性
如果函数f(x)在区间D上单调,可以根据函数的单调性来解决问题。
例如,不等式f(x) > 0在区间D上恒成立,那么只需要找到满足f(x)min > 0的x值即可。
2. 利用函数的最值
如果函数f(x)在区间D上不是单调的,那么可以转化为求函数的最值问题。
例如,不等式f(x) > 0在区间D上恒成立,可以转化为求f(x)的最小值,只要最小值大于0,那么不等式就恒成立。
例题:已知函数f(x) = x2 + ax + 4在区间[-1,2]上都不小于2,求a的取值范围。
解法:首先根据题意得到函数f(x) = x2 + ax + 4在区间[-1,2]上的最小值为2,然后根据二次函数的性质得到对称轴为x=-b/2a=-a/2。
我们需要分三种情况讨论:
1. 当-a/2≤-1时,即a≥2时,函数在[-1,2]上是增函数,只需要满足f(-1)=1-a+4≥2即可,解得a≤3,所以2≤a≤3;
2. 当-a/2≥2时,即a≤-4时,函数在[-1,2]上是减函数,只需要满足
f(2)=4+2a+4≥2即可,解得a≥-4,但是此时a没有合适的取值,故舍去;
3. 当-1<-a/2<2时,即-4<a<2时,函数在对称轴左侧是减函数,右侧是增函数,只需要满足f(-a/2)=(-a/2)2-a2/4+4≥2即可,解得-4<a≤-2。
综上可得a的取值范围为:[-4,-2]∪[2,3]。
函数导数中地恒成立问题解题技巧
临沂市高三二轮会材料函数导数中的恒成立问题解题技巧函数导数中的恒成立问题解题技巧新课标下的高考越来越重视考查知识的综合应用,恒成立问题涉及方程、不等式、函数性质与图象及它们之间的综合应用,同时渗透换元、转化与化归、数形结合、函数与方程等思想方法,考查综合解题能力,尤其是在函数、导数中体现的更为明显,也是历年高考的热点问题,根据本人的体会,恒成立问题主要有以下几种.一、利用函数的性质解决恒成立问题例1 已知函数32=+--++(,)()(1)(2)f x x a x a a x ba b∈R.(1)若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值;(2)若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围. 解:(1)由题意得)2()1(23)(2+--+='a a x a x x f又⎩⎨⎧-=+-='==3)2()0(0)0(a a f b f ,解得0=b ,3-=a 或1=a (2)函数)(x f 在区间)1,1(-不单调,等价于导函数)(x f '在)1,1(-既能取到大于0的实数,又能取到小于0的实数 即函数)(x f '在)1,1(-上存在零点,根据零点存在定理,有0)1()1(<'-'f f , 即:0)]2()1(23)][2()1(23[<+---+--+a a a a a a 整理得:0)1)(1)(5(2<-++a a a ,解得15-<<-a所以a 的取值范围是{}15-<<-a a .【方法点评】利用函数的性质解决恒成立问题,主要是函数单调性的应用,函数在给定的区间上不单调意味着导函数在给定的区间上有零点,利用函数零点的存在性定理即可解决问题.二、利用数形结合思想解决恒成立问题例2 已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点.(1)求a ;(2)求函数()f x 的单调区间;(3)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.【方法指导】(1)在极值点处导数为零,可以求a 的值;(2)求函数的单调区间借助()0f x '>可以求出单调递增区间,()0f x '<可以求出单调递减区间;(3)根据函数()f x 的单调性可以求出其极大值和极小值,画出图象,数形结合可以求出b 的取值范围.解:(1)因为()'2101a f x x x =+-+,所以()'361004a f =+-=,因此16a =. (2)由(1)知,()()()216ln 110,1,f x x x x x =++-∈-+∞,()()2'2431x x f x x -+=+ 当()()1,13,x ∈-+∞时,()'0f x >;当()1,3x ∈时,()'0f x <.所以()f x 的单调增区间是()()1,1,3,-+∞,()f x 的单调减区间是()1,3.(3)由(2)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29=-f ,极小值为()332ln 221f =-因此()()21616101616ln291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<因此,b 的取值范围为()32ln221,16ln29--.【方法点评】数形结合是高中数学中常考的思想方法之一,在有关取值范围问题、单调性问题、最值问题中体现较明显,同时方程的根及函数零点也可转化为交点问题解决.三、分离参数解决恒成立问题例3 已知函数()ln a f x x x=-, (1)当0a >时,判断()f x 在定义域上的单调性;(2)若2()f x x <在(1,)+∞上恒成立,求a 的取值范围.【方法指导】(1)通过判断导数的符号解决;(2)由于参数a 是“孤立”的,可以分离参数后转化为一个函数的单调性或最值等解决.解:(1)由题意:()f x 的定义域为(0,)+∞,且221()a x a f x x x x+'=+=. 0,()0a f x '>∴>,故()f x 在(0,)+∞上是单调递增函数. (2)322ln ,0.ln ,)(x x x a x x x a x x x f ->∴><-∴<又 令232116()ln ,()()1ln 3,()6x g x x x x h x g x x x h x x x x-''=-==+-=-=, ()h x 在[1,)+∞上是减函数,()(1)2h x h ∴<=-,即()0g x '<,()g x ∴在[1,)+∞上也是减函数,()(1)1g x g ∴<=-.令1a ≥-得()a g x >,∴当2()f x x <在(1,)+∞恒成立时,a 的取值范围是{}1-≥a a .【方法点评】分离参数是恒成立问题中的一种重要解题方法,分离参数后,构造新函数,求新函数的最值即可解决恒成立问题中的参数取值范围.四、利用两个函数的最值解决恒成立问题例4 [2014·新课标全国卷Ⅰ] 设函数f (x )=a e x ln x +b e x -1x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ;(2)证明:f (x )>1.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b x e x -1.由题意可得f (1)=2,f ′(1)=e ,故a =1,b =2.(2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e .设函数g (x )=x ln x ,则g ′(x )=1+ln x ,所以当x ∈)1,0(e 时,g ′(x )<0;当x ∈),1(+∞e时,g ′(x )>0. 故g (x )在)1,0(e 上单调递减,在),1(+∞e上单调递增,从而g (x )在(0,+∞)上的最小值为)1(eg =-1e . 设函数h (x )=x e -x -2e,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e .因为g min (x )=)1(eg =h (1)=h max (x ), 所以当x >0时,g (x )>h (x ),即f (x )>1.五、不等式中的恒成立问题例5 (2016•山东)已知221()(ln ),x f x a x x a R x-=-+∈. (1)讨论()f x 的单调性;(2)当1a =时,证明3()()2f x f x '>+对于任意的[1,2]x ∈恒成立. 解:(1)()f x 的定义域为(0,)+∞,223322(2)(1)()a ax x f x a x x x x --'=--+= 当0a ≤时,若(0,1)x ∈,则()0,()f x f x '>单调递增,若(1,)x ∈+∞,则()0,()f x f x '<单调递减.当0a >时,3(1)()(a x f x x x x -'=-+.(i)当02a <<1>.当(0,1)x ∈或)x ∈+∞时,()0,()f x f x '>单调递增.当x ∈时,()0,()f x f x '<单调递减.(ii)当2a =1=,在区间(0,)+∞内,()0,()f x f x '≥单调递增.(iii)当2a >时,01<<.当x ∈或(1,)x ∈+∞时,()0,()f x f x '>单调递增,当x ∈时,()0,()f x f x '<单调递减. 综上所述,当0a ≤时,()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;当02a <<时,()f x 在(0,1)上单调递增,在上单调递减,在)+∞上单调递增;当2a =时,()f x 在(0,)+∞上单调递增;当2a >时,()f x 在(0,2a )上单调递增,在(2a,1)上单调递减,在(1,+∞)上单调递增.(2)证明:由(1)知,当1a =时,22321122()()ln (1)x f x f x x x x x x x -'-=-+---+23312ln 1x x x x x=-++--,[1,2]x ∈ 设()ln ,()g x x x h x =-=233121,[1,2]x x x x=+--∈,则()()()()f x f x g x h x '-=+.由1()0x g x x-'=≥,可得()(1)1g x g ≥=,当且仅当1x =时取得等号. 又24326()x x h x x--+'=.设2()326x x x ϕ=--+,则()x ϕ在[1,2]上单调递减. 因为(1)1,(2)10ϕϕ==-,所以0(1,2)x ∃∈,使得当0(1,)x x ∈时,()0x ϕ>,0(,2)x x ∈时,()0x ϕ<.所以()h x h (x )在0(1,)x 上单调递增,在0(,2)x 上单调递减. 由1(1)1,(2)2h h ==,可得1()(2)2h x h ≥=, 当且仅当2x =时取得等号. 所以3()()(1)(2)2f x f xgh '-=+=, 即3()()2f x f x '>+对于任意的[1,2]x ∈成立. 六、利用恒成立问题求参数的取值范围 例6 (2015·北京)已知函数 。
导数恒成立解答题的几种处理方法
等号两边无法求导的导数恒成立求参数范围几种处理方法 常见导数恒成立求参数范围问题有以下常见处理方法: 1、求导之后,将参数分离出来,构造新函数,计算例:已知函数1ln ()xf x x+=. (Ⅰ)若函数在区间1(,)2a a +(其中0a >)上存在极值,求实数a 的取值范围;(Ⅱ)如果当1x ≥时,不等式()1kf x x ≥+恒成立,求实数k 的取值范围;解:(Ⅰ)因为1ln ()x f x x +=,0x > ,则ln ()xf x x'=-, … 1分 当01x <<时,()0f x '>;当1x >时,()0f x '<. 所以()f x 在(0,1)上单调递增;在(1,)+∞上单调递减, 所以函数()f x 在1x =处取得极大值.… 2分因为函数()f x 在区间1(,)2a a +(其中0a >)上存在极值, 所以1,112a a <⎧⎪⎨+>⎪⎩ 解得1 1.2a << … 4分(Ⅱ)不等式()1k f x x ≥+,即为(1)(1ln ),x x k x ++≥ 记(1)(1ln )(),x x g x x++= 所以22[(1)(1ln )](1)(1ln )ln (),x x x x x x xg x x x '++-++-'==… 6分令()ln ,h x x x =-则1()1h x x'=-,1,()0.x h x '≥∴≥()h x ∴在[1,)+∞上单调递增,min [()](1)10h x h ∴==>,从而()0g x '>故()g x 在[1,)+∞上也单调递增,min [()](1)2g x g ∴==,所以2k ≤ …8分2、直接求导后对参数展开讨论,然后求出含参最值,从而确定参数范围 例题:设,其中.(1)若有极值,求的取值范围; (2)若当,恒成立,求的取值范围.解:(1)由题意可知:,且有极值,则有两个不同的实数根,故,解得:,即(4分)(2)由于,恒成立,则,即(6分)由于,则① 当时,在处取得极大值、在处取得极小值, 则当时,,解得:; (8分)② 当时,,即在上单调递增,且,则恒成立; (10分)③ 当时,在处取得极大值、在处取得极小值, 则当时,,解得:综上所述,的取值范围是:但是对于导数部分的难题,上述方法不能用时,我们得另辟蹊径:一、分开求左右最值:1、已知函数x x x f ln )(=。
导数中恒成立问题的几种解法
j一
: —— 一
分开, 化 为 求 g( 转 )=二 _ 在 区 间 _ =
由厂( )< , 0 得 < < ’. . .
为 ( ,2 . 1 )
3
) 的递 减 区 问
[ 一 】的 值 可 一 上 最 即 . ,
解法 二 : 数形 结合
・ .
解法. 问题 : 已知 函数
. ‘ .
. . .
. 2 ’ 一a≥ . .
.
( ), 一 ≤ 0
)= 。+a + +1 a∈R, x ,
・ .
‘
若 数 (在 间 一 ,了内 减 数求口 函 , ) 区 【了 一 ]是 函 , 2 1
的取值 范 围. 解 法一 : 分离 参变 量
画厂 ( 的 草 图 ( 右 ) 如 图 ) 由数形 结合得 : ,
・
【了 一 ]成 , 的僦 匦(转 7页 一 ,3 立 】 2 都 求 汉 下 第4 )
7 ・ 2
《 数学之友》
21 0 0年第 8期
分析 : 本题 只有 注 意到 已知条 件 与 根 的判 别式
2 2 利 用判 别式 , 断三 角形 的形状 . 判
应 用
23 利 用判 别式 , 明几何 不等 式 . 证
例 8 如 图 , T切 o0 于 P
,
直线 P Ⅳ交 oD于 点 , Ⅳ,
P
2 1 结合 三 角形 三边 关 系 , 明一元二 次方程根 的 . 证
情 况
求证 : +P 肼 Ⅳ> P . 2T
证 明 :由 切 割 线 定 理 得 P ・ N =P , 是 P P 是 方 程 一( M + M P 于 , Ⅳ P P ) P = Ⅳ + 0的两 实 根 , 为 删 ≠P 即方 程 有 因 N,
解决导数中恒成立问题的三大“法宝”——例谈2013年高考数学中导数恒成立问题
若 当 ≥2 时, 式①恒成 立 , 则 ) 的图像恒在G ( ) 图
像 的下方.
x+ 2 又F , ( ) : — : 0 得 :
一 l , 。 :
( i i ) 若k = e : , 贝 0 ( ) = 2 e ( + 2 ) ( e x - e ) , 从 而 当 > 一 2 时, F ( ) > 0 ,  ̄ O F ( x ) 在( 一 2 , + ∞) 上单调 递增. 而F ( 一 2 ) = 0 ,
解析: ( 1 ) 易得a = 4 , b = 2 , c = 2 , d = 2 ( 解答 略 ) . ( 2 ) 易看 出是 导数 中的一类 常规题 型 : 恒 成 立 问题 . 并且解决 方案就是用到了我们 平时解决恒成立 问题常用
的三种方 法.
当 ∈( 一 1 , 0 ) 时, F ( ) > 0 , F ( x ) 单调递增 , 当 ∈
由题设 可得F ( 0 ) >0 I , 即 ≥1 , 令F ( ) = 0 得 l = 一 l n k ,
x 2 = -2 .
荔 ≥一 2 时, , ( ) ≤ g ( ) , 即
-
≤2 ( + 1 ) . ①
x +2  ̄F / ( ) : — x 2 + 4
解法1 : 先构造 函数 , 再分类讨论.
由( 1 ) 可 ̄ 4 1 f ( x ) = x 2 + 4 x + 2 , g ( ) = 2 C ( x + 1 ) ,
所 以r ( x ) 的最小值为 一 2 ) = e , 所 以 ≤e 2
综 上所述 : 1 ≤ e 2 .
X 2 + 4 X+ 2 2 x + 4 l i a r — — =l l m — — = :” hm — —=U =0 .
导数综合不等式恒成立问题主参换位法
导数综合不等式恒成立问题主参换位法
当我们在解题时,经常会遇到需要证明一些不等式的问题。
而对于仅包含导数的不等式,我们可以使用主参换位法来进行求解。
主参换位法是一种基于函数的单调性来推导不等式的方法。
它的基本思想是通过构造一个合适的函数作为主参,在这个函数上进行主参换位,然后通过对比这个函数与原函数的大小关系,来得到原不等式的结论。
具体的步骤如下:
1. 将原不等式表示成导数的形式,即将不等式两边求导。
2. 构造一个主参函数,使其在有关区间上的导数始终大于等于原函数的导数。
3. 对主参函数进行主参换位,即将主参函数表示出关于原函数的形式。
4. 比较主参函数与原函数的大小关系,得到原不等式的结论。
下面以一个例子来说明主参换位法的应用:
例:证明对于任意实数x,有x^2 + 3 >= 4x。
解:首先将原不等式表示成导数的形式,即求导。
导数的形式为:2x >= 4。
然后我们构造主参函数,使其在有关区间上的导数始终大于等于原函数的导数。
主参函数的形式为:2x。
接下来我们对主参函数进行主参换位,即将主参函数表示出关于原函数的形式。
主参换位得到:2x - 4 >= 0。
最后我们比较主参函数与原函数的大小关系,得到原不等式的结论。
原不等式的结论为:2x - 4 >= 0,即 x^2 + 3 >= 4x。
导数的应用二——恒成立问题的解题策略
导数的应用--恒成立问题的解题策略例1.若不等式()x a x -≥+312,对任意的0>x 恒成立,求实数a 的取值范围。
变式训练1.若不等式013222≥-+-a ax x 对任意的]1,1[-∈x 恒成立,求实数a 的取值范围。
2.若不等式223221c c x x x <+--对任意的]2,1[-∈x 恒成立,求实数c 的取值范围。
3.若不等式322231x b ax x ≥+≥+对任意的),0[+∞∈x 恒成立,求实数b 的取值范围以及a 与b 满足的关系式。
二.考题训练 形成能力1.设函数.0ln 22>+-=a ax x x a x f ,)( (I)求)(x f 的单凋区间:(Ⅱ)求所有实数a ,使e ,2)(1e x f ≤≤对[]e x ,1∈恒成立。
注;e 为自然对数的底数。
2.设函数()()()1ln 1++=x x x f ,若对所有的0.≥x 都有()ax x f ≥成立,求实数a 的取值范围.3.设函数1)(2-=x x f 对任意),23[+∞∈x ,)(4)1()(4)(2m f x f x f m mx f +-≤-恒成立,则实数m 的取值范围是___________4.已知函数0,11)1(1)(≥+-++=x xx ax n x f 其中0>a (I)若()x f 在1=x 处取得极值,求a 的值.(Ⅱ)求()x f 的单凋区间.(Ⅲ)若()x f 的最小值为1.求a 的取值范围.三.反馈练习 总结提升1.设())1(2++=x ax e x f x ,且曲线)(x f y =在1=x 处的切线与x 轴平行. (I)求a 的值,并讨论)(x f 的单调性:(II)证明:对]2,0[πθ∈∀,不等式2|)(sin )(cos |<-θθf f 恒成立。
2.设函数1)1(233)(23+++-=x a x x a x f ,其中a 为实数. (I)已知函数)(x f ,在1=x 处取得极值,求a 的值:(Ⅱ)已知不等式1)(2+-->'a x x x f 对任意),0(+∞∈a 都成立,求实数x 的取值范围.3.已知函数)(11ln )(R a x a ax x x f ∈--+-= (I)当21≤a 时,讨论)(x f 的单调性 (II)设42)(2+-=bx x x g .当41=a 时,若对任意)2,0(1∈x ,存在]2,1[2∈x ,使)()(21x g x f ≥,求实数b 取值范围.4.已知函数.1ln )1()(2+++=ax x a x f(I)讨论函数)(.x f 的单调性:(II)设2-≤a ,证明:对任意()+∞∈,0,21x x ,||4|)()(|2121x x x f x f -≥-5.设函数)10(ln 1)(=/>=x x xx x f 且 (I)求函数)(x f 的单调区间;(II)已知a x x >12,对任意)1,0(∈x 成立,求实数a 的取值范围。
高考数学复习考点知识与题型专题讲解11--- 导数-恒成立问题(解析版)
1 / 31高考数学复习考点知识与题型专题讲解专题11导数-恒成立问题1.高考对本部分的考查一般有三个层次:(1)主要考查求导公式,求导法则与导数的几何意义; (2)导数的简单应用,包括求函数的单调区间、极值、最值等;(3)综合考查,如零点、证明不等式、恒成立问题、求参数等,包括解决应用问题,将导数内容和传统内容中有关不等式、数列及函数单调性有机结合,设计综合题. 2.恒成立问题的解法(1)若()f x 在区间D 上有最值,则恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<; (2)若能分离常数,即将问题转化为()a f x >(或()a f x <),则 恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.1.已知函数()sin ,[0,],0x f x ae x x x a π=++∈<. (1)证明:当1a =-时,函数()f x 有唯一的极大值; (2)当()21f x x <-恒成立,求实数a 的取值范围.【试题来源】百师联盟2020-2021学年高三下学期开年摸底联考考试卷(全国Ⅰ卷) 【答案】(1)证明见解析;(2)1a <-.【分析】(1)对函数求导,讨论函数的单调区间,进而可证明结果.(2)构造函数()e sin 10=+-+<x h x a x x ,只需函数最大值小于0即可得出结果.【解析】(1)证明:()e cos 1x f x a x '=++, 因为[]0,x π∈,所以1cos 0x +≥, 当1a =-时,()cos 1x f x e x '=-++, 令()e cos 1,()e sin 0x x g x x g x x '=-++=--<,()g x 在区间[]0,π上单调递减;(0)121,()e 0g g ππ=-+==-<, 存在()00,π∈x ,使得()00f x '=,所以函数()f x 递增区间是[]00,x ,递减区间是[]0,x π. 所以函数()f x 存在唯一的极大值()0f x . (2)由()21f x x <-,即令()e sin 10,0,()e cos 10'=+-+<<∴=+-<x x h x a x x a h x a x ,()h x ∴在区间[]0,π上单调减函数,()(0)1≤=+h x h a ,只要10a +<即可,即1a <-.2.已知函数()()2112f x x alnx a x =-+-. (1)讨论函数()f x 的单调性;(2)若()22a f x >恒成立,求正实数a 的取值范围、【试题来源】吉林省长春市2021届高三质量监测(二)【答案】(1)当0a ≤时,()f x 在定义域(0,)+∞上单调递增;当0a >时,()f x 在()0,a 上单调递减,在(,)a +∞上单调递增;(2)01a <<. 【分析】(1)求出导函数()()()1x x a f x x+-'=,讨论0a ≤或0a >,利用函数的单调性与导数之间的关系即可求解.(2)令()()2 2a g x f x =-,结合(1)不等式等价于()0g a >,只需10lna a +-<,令()1h x lnx x =+-,根据函数为增函数即可求解.3 / 31【解析】()1定义域为()0,-∞, ()()()()2111x a x a x x a af x x a x x x+--+-'=-+-==当0a ≤时,在(0,)+∞上()0,f x '≥所以()f x 在定义域(0,)+∞上单调递增; 当0a >时,令()'0f x >有,x a >令()'0f x <有0,x a << 所以()f x 在()0,a 上单调递减,在(,)a +∞上单调递增.()2令()()2 2a g x f x =-,由()1及a 为正数知,()()22ag x f x =-在x a =处取最小值,所以()22a f x >恒成立等价于()0g a >,即()10alna a a -+->,整理得10lna a +-<,令()1h x lnx x =+-, 易知()h x 为增函数,且()10,h =所以10lna a +-<的a 的取值范围是01a <<.3.已知函数1()ln ()f x a x a R x=+∈.(1)讨论函数()f x 在区间[1,2]上的最小值;(2)当1a =时,求证:对任意(0,)x ∈+∞,恒有cos ()x e xf x x+<成立.【试题来源】河北省张家口市2021届高三一模 【答案】(1)答案见解析;(2)证明见解析. 【解析】(1)函数1()ln =+f x a x x的定义域是(0,)+∞, 2211()a ax f x x x x-'=-=.当0a 时,2110,0ax ax x --<<,则()0f x '<,则函数()f x 在(0,)+∞上单调递减,即函数()f x 在区间[1,2]上单调递减, 故函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+. 当0a >时,令()0f x '<,得10x a <<;令()0f x '>,得1x a>;故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.当11a,即1a 时,函数()f x 在区间[1,2]上单调递增, 故函数()f x 在区间[1,2]上的最小值为(1)1f =; 当12a,即102a <时,函数()f x 在区间[1,2]上单调递减,故函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+; 当112a <<,即112a <<时,函数()f x 在11,a ⎡⎫⎪⎢⎣⎭上单调递减,在1,2a ⎛⎤ ⎥⎝⎦上单调递增, 此时函数()f x 在区间[1,2]上的最小值为11ln f a a a a ⎛⎫=+ ⎪⎝⎭.综上,当12a时,函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+;当112a <<时,函数()f x 在区间[1,2]上的最小值为11ln f a a a a ⎛⎫=+ ⎪⎝⎭;当1a 时,函数()f x 在区间[1,2]上的最小值为(1)1f =. (2)当1a =时,1()ln f x x x=+, 要证cos ()x e x f x x +<,即证1cos ln x e xx x x++<,因为0x >,所以两边同时乘x ,得ln 1cos x x x e x +<+, 即证ln cos 1x x x e x <+-.当01x <时,ln 0x x ,而cos 11cos11cos10x e x +->+-=>,所以ln cos 1xx x e x <+-成立,即cos ()x e xf x x+<成立.当1x >时,令()cos ln 1(1)x h x e x x x x =+-->, 则()sin ln 1x h x e x x '=---.5 / 31设()sin ln 1(1)xg x e x x x =--->,,则因为1()cos x g x e x x'=--.因为1x >,所以1()cos 110xg x e x e x'=-->-->,所以当1x >时,()g x 单调递增,所以()sin110g x e >-->,即()0h x '>,所以()h x 在(1,)+∞上单调递增,所以()cos110h x e >+->,即cos ()x e xf x x +<成立.综上,对任意(0,)x ∈+∞,恒有cos ()x e xf x x+<成立.【名师点睛】此题考查导数的应用,利用导数求函数的最值,考查分类讨论的数学思想,第2问解题的关键是把cos ()x e x f x x+<等价转化为ln cos 1x x x e x <+-,然后构造函数,利用导数证明即可,属于中档题 4.已知函数f (x )=ax -ln x -1. (1)若f (x )≥0恒成立,求a 的最小值;(2)求证:xe x-+x +ln x -1≥0;(3)已知k (x e -+x 2)≥x -x ln x 恒成立,求k 的取值范围. 【试题来源】2021年高考二轮复习讲练测(浙江专用) 【答案】(1)1;(2)证明见解析;(3)[1,+∞).【解析】(1)f (x )≥0等价于a ≥ln 1x x+. 令g (x )=ln 1x x+ (x >0),则g ′(x )=2ln xx -,所以当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0,则g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以g (x )max =g (1)=1,则a ≥1, 所以a 的最小值为1.(2)证明:当a =1时,由(1)得x ≥ln x +1,即t ≥ln t +1(t >0).令x e x -=t ,则-x -ln x =ln t ,所以x e x -≥-x -ln x +1,即x e x -+x +ln x -1≥0.(3)因为k (xe -+x 2)≥x -x ln x 恒成立,即k x e x x -⎛⎫+ ⎪⎝⎭≥1-ln x 恒成立, 所以k ≥1ln xx e x x--+=-ln 1xx e x x x e x x--++-++1,由(2)知x e x-+x +ln x -1≥0恒成立,所以-+ln 1x x ex x x ex x--+-++1≤1,所以k ≥1.故k 的取值范围为[1,+∞).【名师点睛】不等式证明问题是近年高考命题的热点,利用导数证明不等主要方法有两个,一是比较简单的不等式证明,不等式两边作差构造函数,利用导数研究函数的单调性,求出函数的最值即可;二是较为综合的不等式证明,要观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简或者进一步利用导数证明. 5.已知函数()()1ln 2f x x mx m R =-∈,()()0ag x x a x=->. (1)求函数()f x 的单调区间. (2)若212m e=,对2122,2,x x e ⎡⎤∀∈⎣⎦都有()()12g x f x ≥成立,求实数a 的取值范围. 【试题来源】2021年高考数学二轮复习讲练测 【答案】(1)答案见解析;(2)(]0,3.【分析】(1)函数的定义域为()0,∞+,求导得()1'2f x m x=-,再分0m ≤和0m >两种情况讨论求解即可;(2)根据题意,问题转化为对2122,2,x x e ⎡⎤∀∈⎣⎦都满足()()min max g x f x ≥,再根据导数研究函数的最值即可. 【解析】(1)()()1ln ,02f x x mx m R x =-∈>,所以()1'2f x m x=-, 当0m ≤时,()0f x >′,()f x 在()0,∞+上单调递增.7 / 31当0m >时,由()0f x '=得12x m=; 由()'00f x x ⎧>⎨>⎩得102x m <<;由()'00f x x ⎧<⎨>⎩得12x m >.综上所述,当0m ≤时,()f x 的单调递增区间为()0,∞+;当0m >时,()f x 的单调递增区间为10,2m ⎛⎫ ⎪⎝⎭,单调递减区间为1,2m ⎛⎫+∞⎪⎝⎭. (2)若212m e =,则()211ln 22f x x x e =-. 对2122,2,x x e ⎡⎤∀∈⎣⎦都有()()12g x f x ≥成立,等价于对2122,2,x x e ⎡⎤∀∈⎣⎦都()()min max g x f x ≥,由(1)知在22,e ⎡⎤⎣⎦上单调递增,在22,2e e ⎡⎤⎣⎦上单调递减,所以()f x 的最大值为()212f e =, ()()2'100a g x a x=+>>,22,2x e ⎡⎤∈⎣⎦, 函数()g x 在22,2e ⎡⎤⎣⎦上是增函数,()()222mina g x g -==, 所以1222a -≥,解得3a ≤,又0a >,所以(]0,3a ∈.所以实数a 的取值范围是(]0,3.【名师点睛】本题考查利用导数研究函数单调区间,不等式恒成立问题,考查运算求解能力,回归转化思想,分类讨论思想,是中档题.本题第二问解题的关键在于根据已知将问题转化为对2122,2,x x e ⎡⎤∀∈⎣⎦都满足()()min max g x f x ≥,再研究函数的最值求解.6.已知函数()axf x e x =-.(1)若曲线()y f x =在点()()0,0f 处切线的斜率为1,求()f x 的单调区间;(2)若不等式()2ln ax f x e x ax ≥-对(]0,x e ∈恒成立,求a 的取值范围.【试题来源】云南西南名校2021届高三下学期联考【答案】(1)单调递减区间为ln 2,2⎛⎫-∞- ⎪⎝⎭,单调递增区间为ln 2,2⎛⎫-+∞ ⎪⎝⎭;(2)1,e ⎡⎫+∞⎪⎢⎣⎭.【分析】(1)由题设()1axf x ae '=-,根据导数的几何意义有()01f '=,可求a ,即()221x f x e '=-,进而可求()f x 的单调区间;(2)由题意,函数不等式恒成立可转化为(]0,x e ∈上ln 1ln 1ax ax xe e x --≥恒成立,构造函数()ln 1x g x x -=,应用导数研究其单调性可得ln x a x ≥在(]0,x e ∈上恒成立,即在(]0,x e ∈上max ln ()xa x≥即可求a 的取值范围. 【解析】(1)()1axf x ae '=-,则()011f a '=-=,即2a =. 所以()221xf x e '=-,令0fx ,得ln 22x =-. 当ln 22x <-时,0f x ;当ln 22x >-时,0f x .故()f x 的单调递减区间为ln 2,2⎛⎫-∞- ⎪⎝⎭,单调递增区间为ln 2,2⎛⎫-+∞ ⎪⎝⎭.(2)由()2ln ax f x e x ax ≥-,即()2ln 1ax ax x e x -≥-,有1ln 1ax a x e x x --≥,故仅需ln 1ln 1ax axxe e x --≥即可. 设函数()ln 1x g x x -=,则ln 1ln 1ax axxe e x --≥等价于()()axg e g x ≥. 因为()22ln x g x x -'=, 所以当(]0,x e ∈时,0g x ,则()g x 在(]0,e 上单调递增,所以当(]0,x e ∈时,()()axg e g x ≥等价于当(]0,x e ∈时,()()ax g e g x ≥,ax e x ≥,即ln xa x≥恒成立. 设函数()ln x h x x =,(]0,x e ∈,则()21ln 0xh x x -'=≥, 即()h x 在(]0,x e ∈递增,所以()()max 1h x h e e==,则1a e ≥即可,所以a 的取值范围为1,e ⎡⎫+∞⎪⎢⎣⎭.【名师点睛】(1)应用导数的几何意义求参数值,进而讨论对应函数的单调性确定单调9 / 31区间;(2)构造函数()ln 1x g x x-=,将不等式恒成立问题转化为利用函数()g x 单调性得ax e x ≥,应用参变分离判断(]0,x e ∈上max ln ()xa x≥,确定参数范围. 7.设函数()1()x xa a f x e -=+>. (1)求证:()f x 有极值点;(2)设()f x 的极值点为0x ,若对任意正整数a 都有()0,x m n ∈,其中,m n Z ∈,求n m -的最小值.【试题来源】江苏省盐城市、南京市2021届高三下学期第一次模拟考试 【答案】(1)证明见解析;(2)2.【解析】(1)由题意得()ln x xf x a a e -'=-,所以()()2ln 0x x f x a a e -''=+>,所以函数()f x '单调递增,由()0f x '=,得()()ln 1,1ln xxae a ae a==. 因为1a >,所以1ln 0a>,所以1log ln ae x a =.当1log ln aex a >时,()()0,f x f x '>单调递增; 当1log ln ae x a<时,()()0,f x f x '<单调递减.因此,当1log ln ae x a=时函数()f x 有极值.(2)由(1)知,函数()f x 的极值点0x (即函数()f x '的零点)唯一, 因为ln (1)af e a'-=-.令()ln a g a a =,则()21ln 0a a g a '-==,得a e =. 当a e >时,()()0,g a g a '<单调递减;当0a e <<时,()()0,g a g a '>单调递增, 所以()()1g a g e e ≤=,所以()ln 10af ae '-=-<. 而()0ln 1f a '=-,当2a =时,()00f '<,当3a ≥时,()00f '>.又()1ln 1a ef a '=-.因为a 为正整数且2a ≥时,所以ln 2ln 121a a e≥>>. 当2a ≥时,()10f '>.即对任意正整数1a >,都有()10f '-<,()10f '>,所以()01,1x ∈-恒成立, 且存在2a =,使()00,1x ∈,也存在3a =,使()01,0x ∈-. 所以n m -的最小值为2.【名师点睛】本题考查导数的应用,解题的关键是利用导数结合零点存在性定理得出()10f '-<,()10f '>,得出,m n 的可能值. 8.已知函数2()2ln 43()f x x ax ax a a =+-+∈R . (1)讨论函数()f x 的单调性;(2)对(1,)x ∈+∞,都有()0f x >成立,求实数a 的取值范围. 【试题来源】山西省晋中市2021届高三下学期二模 【答案】(1)答案见解析;(2)01a .【分析】(1)求出函数的导数,令2()21(0)g x ax ax x =-+>,分段讨论a 的值,判断()g x 的正负情况可得出单调性;(2)可得当01a 时,()f x 在(1,)+∞上单调递增,所以()(1)0f x f >=成立;当0a <时,可得存在x ,使得()(1)0f x f <=,即可得出结论.【解析】(1)()22212()24(0)ax ax f x ax a x x x'-+=+-=>,令2()21(0)g x ax ax x =-+>, ①当0a =时,()10g x =>,在(0,)+∞上,()0f x '>,所以()f x 单调递增.②当0a <时,2444(1)0a a a a ∆=-=->,令()0g x =,得12x x ==,且120x x >>,11 / 31所以当()10,x x ∈时,()0f x '>,所以()f x 单调递增; 当()1,x x ∈+∞时,()0f x '<,所以()f x 单调递减. ③当0a >时,4(1)a a ∆=-, 当01a <时,4(1)0a a ∆=-,在(0,)+∞上,()0f x '>,所以()f x 单调递增. 当1a >时,2444(1)0a a a a ∆=-=->,令()0g x =,得12a a x x a a==,且120x x <<, 所以当()10,x x ∈或()2,x x ∈+∞时,()0f x '>,所以()f x 单调递增; 当()12,x x x ∈时,()0f x '<,所以()f x 单调递减.综上可得当0a <时,()f x 在()10,x 上单调递增,在()1,x +∞上单调递减; 当01a 时,()f x 在(0,)+∞上单调递增;当1a >时,()f x 在()()120,,,x x +∞上单调递增,在()12,x x 上单调递减.(2)因为(1)0f =,根据(1)的讨论可知,当01a 时,()f x 在(0,)+∞上单调递增,所以()f x 在(1,)+∞上单调递增,所以()(1)0f x f >=成立. 当0a <时,()f x 在()1,x +∞上单调递减,x →+∞时,()f x →-∞, 所以存在()1,x x ∈+∞使得()0f x <,故此时不成立.当1a >时,()f x 在()()120,,,x x +∞上单调递增;在()12,x x 上单调递减,而121x x =<<=,所以当()21,x x ∈时,()f x 单调递减,此时()(1)0f x f <=,不合题意.综上可得01a .【名师点睛】本题考查利用导数讨论含参函数的单调性问题,解题的关键是根据导数情况观察参数,对参数进行分段讨论,便于得出导数正负. 9.已知函数()e ln ax f x x x =-,其中e 是自然对数的底数,0a >.(1)若曲线()y f x =在点(1,(1))f 处的切线斜率为21e -,求a 的值; (2)对于给定的常数a ,若()1f x bx ≥+对(0,)x ∈+∞恒成立,求证:b a ≤. 【试题来源】江苏省苏州市2021届高三下学期期初 【答案】(1)1a =;(2)证明见解析.【分析】(1)求出()'f x ,根据导数的几何意义可得(1)21k f e '==-建立方程,求解方程即可得到答案.(2)不等式()1f x bx ≥+对(0,)x ∈+∞恒成立,即ln 1ln 1ax axx xe x b e x x x--≤--=对(0,)x ∈+∞恒成立,先证明1t e t ≥+恒成立,由此结论可得ln ln 1ln 1ax ax x xe x e x a x x+----=≥,从而可证明.【解析】(1)因为1()(1)axf x ax e x'=+-,所以切线斜率为(1)(1)121a k f a e e '==+-=-,即(1)20a a e e +-=.设()(1)2x h x x e e =+-, 由于()(2)0xh x x e '=+>,所以()h x 在(0,)+∞上单调递增,又(1)0h =,由(1)()02a a e h a e +-==可得1a =. (2)设()1t u t e t =--,则()1t u t e '=-, 当0t >时,()0u t '>,当0t <时,()0u t '<,所以()u t 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 所以min()(0)0u t u ==,即()0u t ≥,所以1(*)t e t ≥+.若()1f x bx ≥+对(0,)x ∈+∞恒成立,即ln 1ax xe x bx --≥对(0,)x ∈+∞恒成立,即ln 1ln 1ax axx xe x b e x x x--≤--=对(0,)x ∈+∞恒成立.13 / 31设ln 1()ax xe x g x x--=,由(*)可知ln ln 1ln 1ln 1ln 1()ax ax x xe x e x ax x x g x a x x x+----++--==≥=,当且仅当()ln 0x ax x ϕ=+=时等号成立. 由()1()00x a x xϕ'=+>>,所以()ϕx 在()0+∞,上单调递增, 又()()1aaa eaea a e ϕ---=-=-,由0a >,所以10a e --<,即()0a e ϕ-<()10a ϕ=>,则存在唯一()0,1a x e -∈使得0()=0x ϕ即方程()ln 0x ax x ϕ=+=有唯一解()0,1ax e -∈,即()g x a ≥(对于给定的常数a ,当0x x =,()0,1ax e -∈时取等号)由ln 1ln 1ax axx xe x b e x x x--≤--=对(0,)x ∈+∞恒成立, 所以b a ≤.【名师点睛】本题考查根据切线的斜率求参数和利用导数证明不等式,解答本题的关键是先证明辅助不等式1te t ≥+,然后将问题转化为由ln 1ln 1ax axx xe x b e x x x--≤--=对(0,)x ∈+∞恒成立,由辅助不等式可得ln ln 1ln 1ln 1ln 1ax ax x xe x e x ax x x a x x x+----++--=≥=,从而使得问题得证,属于难题.10.已知函数3()2x f x e x mx =+++.(1)若x 轴为曲线()y f x =的切线,试求实数m 的值;(2)已知()()xg x f x e =-,若对任意实数x ,均有()1e ()x g g x +,求m 的取值范围.【试题来源】福建省名校联盟优质校2021届高三大联考 【答案】(1)e 3m =--;(2)[1,)m ∈-+∞ 【解析】(1)由2()e 3x f x x m '=++,设曲线()y f x =与x 轴相切于()0,0P x ,则()00f x =,()00f x '=.所以0030020e 20e 30x x x mx x m ⎧+++=⎪⎨++=⎪⎩,代入整理得()()020001e 210x x x x ⎡⎤-+++=⎣⎦, 由0e 0x >,22000131024x x x ⎛⎫++=++> ⎪⎝⎭,所以01x =,此时e 3m =--.经检验,当e 3m =--时,x 轴为曲线()y f x =的切线.(2)由3()()e 2x g x f x x mx =-=++,记1()e x h x x +=-,1()e 1x h x +'=-(,1)x ∈-∞-时,()0h x '<;(1,)x ∈-+∞时,()0h x '>,故()y h x =在(,1)-∞-上单调递减,在(1,)-+∞上单调递增. 所以()(1)2h x h ≥-=,不妨设1e x x t +-=(2t ≥),则()1e ()()()x g g x g x t g x +-=+-()33()()22x t m x t x mx ⎡⎤=++++-++⎣⎦221324t t x t m ⎡⎤⎛⎫=+++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦因为[2,)t ∈+∞时,要满足()()g x t g x +≥恒成立,则2222121331212424t x t ⎛⎫⎛⎫++≥⨯-++⨯= ⎪ ⎪⎝⎭⎝⎭(2t =时,1x =-,能同时取等号).即10m +≥即可,解得[1,)m ∈-+∞. 综上,[1,)m ∈-+∞时符合题意.【名师点睛】本题考查根据曲线的切线方程求参数值及根据不等式恒成立求参数的取值范围问题,难度较大,解答的主要思路如下:(1)当已知曲线的切线方程时,可先设切点的坐标为()00,x y ,然后格据导数的几何意义使()0f x '与所给切线的斜率相等,使点()00,x y 在所给切线上,列出方程组求解即可;(2)当已知不等式恒成立求解参数的取值范围时,可直接构造函数,利用导数分析函数的最值,使其最值符合条件即可;也可以15 / 31采用参数分离法,将问题转化为讨论不含参函数的最值问题求解. 11.已知实数0a ≠,设函数()e ax f x ax =-. (1)当1a =时,求函数()f x 的极值; (2)当12a >时,若对任意的[1,)x ∈-+∞,均有()2()12a f x x ≥+,求a 的取值范围. 【试题来源】广西桂林、崇左市2021届高三联合调研考试(二模) 【答案】(1)极小值(0)1f =,无极大值;(2)122a <≤. 【分析】(1)由1a =,求导()1x f x e =-',再利用极值的定义求解; (2)将()2()12a f x x ≥+,转化为2(1)2axa e x ≥+,易知0x =,1x =-时,a 的范围,当(1,)x ∈-+∞时,两边取对数,转化为2ln(1)ln 2aax x ≥++恒成立,令()2ln(1)ln 2aF x x ax =+-+,用导数法由()0F x ≤在(1,)-+∞内恒成立求解即可.【解析】(1)当1a =时,由()10x f x e '=-=,解得0x =. 当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞内单调递增; 当(,0)x ∈-∞时,()0f x '<,故()f x 在(,0)-∞内单调递减.∴函数()f x 在0x =取得极小值(0)1f =,无极大值. (2)由()2()12a f x x ≥+,则有2(1)2axa e x ≥+. 令0x =,得11,222a a ≥<≤.当1x =-时,不等式2(1)2ax a e x ≥+显然成立,当(1,)x ∈-+∞时,两边取对数,即2ln(1)ln 2aax x ≥++恒成立. 令函数()2ln(1)ln2a F x x ax =+-+, 即()0F x ≤在(1,)-+∞内恒成立.由22(1)()011a x F x a x x '-+=-==++,得211x a =->-.故当21,1x a ⎛⎫∈-- ⎪⎝⎭时,()0,()F x F x '>单调递增;当21,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0,()F x F x '<单调递减.因此22()12ln 2ln 2ln 22a a F x F a a a a ⎛⎫≤-=-++=-- ⎪⎝⎭.令函数()2ln 2ag a a =--,其中122a <≤, 则11()10a g a a a='-=-=,得1a =, 故当1,12a ⎛⎫∈ ⎪⎝⎭时,()0,()g a g a '<单调递减;当(1,2]a ∈时,()0,()g a g a '>单调递增.又13ln 40,(2)022g g ⎛⎫=-<= ⎪⎝⎭,故当122a <≤时,()0g a ≤恒成立,因此()0F x ≤恒成立, 即当122a <≤时,对任意的[1,)x ∈-+∞,均有()2()12a f x x ≥+成立. 12.已知函数()2()2ln 1f x x x =--,()()21g x k x =-.(1)当1k =时,求函数()()()F x f x g x =-的极值;(2)若存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立,求实数k 的取值范围. 【试题来源】云南省昆明市第一中学2021届高三第六次复习检测 【答案】(1)()0F x =极大值,()F x 无极小值;(2)(),1-∞. 【分析】(1)2()2ln 1F x x x =-+,求导得22(1)(1)()2x x F x x x x-+-'=-=,显然()0,1x ∈时,()F x 为增函数,()1,x ∈+∞时,()F x 为减函数,所以()F x 在1x =处取得极大值,无极小值,然后计算()1F 即可;(2)()()f x g x >恒成立即()()0f x g x ->恒成立,也即()0F x >恒成立,结合(1)的结论对k 分类讨论,当1k 时,不存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立;当1k <时,22(1)1()x k x F x x⎡⎤-+--⎣⎦'=,令()0F x '=,得211(1)40k k x ---+=<,17 /3121x =>,可证得函数()F x 在()21,x 上是增函数,所以存在021x x <≤,使得当()01,x x ∈时,()()10F x F >=.【解析】(1)当1k =时,22()2ln (1)2(1)2ln 1F x x x x x x =----=-+,()F x 的定义域为()0,∞+,22(1)(1)()2x x F x x x x-+-'=-=, 当()0,1x ∈时,()0F x '>,()F x 为增函数, 当()1,x ∈+∞时,()0F x '<,()F x 为减函数, 所以()()10F x F ==极大值,()F x 无极小值;(2)由(1)可知,若1k =,则当1x >时,()()10F x F <=,即()()f x g x <, 所以不存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立,若1k >,则当1x >时,22()2ln (1)2(1)2ln (1)2(1)0F x x x k x x x x =----<----<, 即不存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立; 若1k <,2()2ln (1)2(1)F x x x k x =----,22(1)12()222x k x F x x k x x⎡⎤-+--⎣⎦'=-+-=, 令()0F x '=,得10x =<,21x =>,所以当()20,x x ∈时,()0F x '>,()F x 为增函数, 即函数()F x 在()21,x 上是增函数,所以存在021x x <≤,使得当()01,x x ∈时,()()10F x F >=, 即()()f x g x >成立,综上,所以实数k 的取值范围是(),1-∞.13.已知函数()ln a ef x x x-=+,其中e 是自然对数的底数. (1)设直线22y x e=-是曲线()()1y f x x =>的一条切线,求a 的值;(2)若a R ∃∈,使得()0f x ma +≥对()0x ∀∈+∞,恒成立,求实数m 的取值范围. 【试题来源】备战2021年高考数学全真模拟卷(山东高考专用)【答案】(1)0a =;(2)1m e≥-.【分析】(1)设切点坐标为()()00,x f x ,根据题意只需满足()02f x e'=,()00002ln 2a e f x x x x e-=+=-,然后求解方程组得出a 的值及0x 的值; (2)记()()ln a eg x f x ma x ma x-=+=++,求导讨论函数()g x 的单调性,确定最值,使()min 0g x ≥成立,得到关于参数m 的不等式,然后利用参数分离法求解参数m 的取值范围.【解析】(1)设切点为()()00,x f x ,其中01x >, 有()020012a e f x x x e -'=-=,且()00002ln 2a e f x x x x e-=+=- 得0021x a e x e -=-,所以004ln 30x x e+-=,易解得0x e =,则0a =; (2)记()()ln a e g x f x ma x ma x -=+=++,有()2x a eg x x -+'=, 当a e ≤,()20x a eg x x -+'=>恒成立,则函数()g x 在()0,∞+上递增,无最小值,不符合题意;当a e >时,当(),x a e ∈-+∞时,()0g x '>,当()0,x a e ∈-时,()0g x '<,所以函数()g x 在()0,a e -上递减,在(),a e -+∞上递增,所以()g x 在x a e =-处取得最小值,()()()min ln 10g x g a e a e ma =-=-++≥, 则有()1ln a e m a +--≤,记()()()1ln a e h a a e a+-=>,19 / 31有()()2ln ea e a e h a a ---'=, 易知()h a 在(),2e e 单调递增,在()2,e +∞单调递减,则()()max 12h a h e e ==,所以1m e-≤,得1m e ≥-.【名师点睛】本题考查导数的几何意义,考查根据不等式恒成立问题求参数的取值范围,求解的一般方法如下:(1)直接构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;(2)采用参数分离法,然后构造函数,直接将问题转化为函数最值的求解即可.14.已知函数()()2ln 21f x x mx m x =+++,其中0m <.(1)若()f x 在区间()2,+∞上单调递减,求m 的取值范围; (2)若不等式()f x n ≤对0x >恒成立,证明:30n m ->.【试题来源】“超级全能生”2021届高三全国卷地区1月联考试题(丙卷)【答案】(1)14m ≤-;(2)证明见解析.【分析】(1)对函数求导,求出单调减区间,列不等式,即可的出结果.(2)求出函数求导,求出单调减区间,求出函数的最大值,列不等式12f n m ⎛⎫-≤ ⎪⎝⎭,211111ln 222222⎛⎫⎛⎫⇒-≥--+-+ ⎪ ⎪⎝⎭⎝⎭n m m m m m ,记102t m=->,构造函数()21ln 2g t t t t t =+-, 求出()g t 最小值()200012=--g t t t ,()0 2n g t m -≥,()()0312g t g >=-,即可得出结果. 【解析】(1)函数()()2ln 21f x x mx m x =+++,其中0m <,0x >,()()()211122?1mx x f x mx m x x++'=+++=. 令()0f x '<得12x m>-.令122m -≤,解得14m ≤-. (2)函数()()2ln 21f x x mx m x =+++,其中0m <,0x >,()()()121x mx f x x++'=.令()0f x '=得12x m=-, 当102x m<<-时,()0f x '>,()f x 是增函数: 当12x m>-时,()0f x '<,()f x 是减函数,. 所以当12x m=-时,()f x 既是极大值也是最大值,11121ln 2242m f m m m m +⎛⎫⎛⎫-=-+- ⎪ ⎪⎝⎭⎝⎭11ln 124m m⎛⎫=--- ⎪⎝⎭. 令12f n m ⎛⎫-≤ ⎪⎝⎭,所以211111ln 222222n m m m m m⎛⎫⎛⎫-≥--+-+ ⎪ ⎪⎝⎭⎝⎭成立. 记102t m=->,()21ln 2g t t t t t =+-,()ln g t t t '=+,当0t >时,()g t '是增函数,1110g e e ⎛⎫'=-+< ⎪⎝⎭,()110g '=>,所以存在()00,1t ∈使000()ln 0g t t t '=+=. 当00t t <<时,()0g t '<,()g t 是减函数: 当0t t >时,()0g t '>,()g t 是增函数,所以当t t =0时,()g t 既是极小值也是最小值,()000001ln 2g t t t t t =+-. 又00ln t t =-,所以()200012=--g t t t ,则()0 2ng t m-≥成立, 当001t <<时,()0g t 是减函数, 所以()()0312g t g >=-,则322n m ->-,所以30n m ->. 【名师点睛】12f n m ⎛⎫-≤ ⎪⎝⎭211111ln 222222⎛⎫⎛⎫⇒-≥--+-+ ⎪ ⎪⎝⎭⎝⎭n m m m m m ,记102t m=->,构造函数()21ln 2g t t t t t =+-是解题的关键.本题考查了运算求解能力和逻辑推理能力,属于难题.15.已知函数()()()2(ln ,)xf x x kx k Rg x x e =-∈=-.(1)若()f x 有唯一零点,求k 的取值范围;21 / 31(2)若()()1g x f x -≥恒成立,求k 的取值范围. 【试题来源】山东省菏泽市2021届高三下学期3月一模【答案】(1)1k e=或0k ≤;(2)1k .【分析】(1)转化为ln x k x =有唯一实根,构造函数()ln x h x x=,利用导数研究函数的性质,得到函数的图象,根据图象可得结果;(2)转化为1ln 2xx k e x+≥-+恒成立,构造函数()1ln 2x xx e xϕ+=-+,利用导数求出其最大值,利用最大值可得解. 【解析】(1)由()ln f x x kx =-有唯一零点,可得方程ln 0x kx -=,即ln xk x=有唯一实根, 令()ln x h x x =,则()21ln ,xh x x -'=由()0h x '>,得0,x e <<由()0h x '<,得,x e >()h x ∴在()0,e 上单调递增,在(,)e +∞上单调递减.()()1h x h e e∴≤=, 又()10,h =所以当01x <<时,()0h x <; 又当x e >时,()ln 0,xh x x=>由()ln x h x x =得图象可知,1k e=或0k ≤. (2)()2ln 1()xx e x kx ---≥恒成立,且0x >,1ln 2xx k e x+∴≥-+恒成立, 令()1ln 2xx x e xϕ+=-+,则()22221(l l n n 1)x x x x e x x x e x x ϕ--'⋅==-+-,令()2ln x x x x e μ=--,则211()(2)(2)0x x xx xe x e xe x x xμ'=--+=--+<(0)x >,()x μ∴在(0,)+∞单调递减,又()12110,10e e e e μμ-⎛⎫=->=-< ⎪⎝⎭,由零点存在性定理知,存在唯一零点01,1x e ⎛⎫∈ ⎪⎝⎭,使()0,o x μ=即0200ln xx x e -=,两边取对数可得()000ln ln 2ln ,x x x -=+即()()0000ln ln ln ln ,x x x x -+-=+ 由函数ln y x x =+为单调增函数,可得00ln x x =-,所以当00x x <<时,()0x μ>,()0x ϕ'>,当0x x >时,()0x μ<,()0x ϕ'<, 所以()x ϕ在()00,x 上单调递增,在0(,)x +∞上单调递减,()()00000001ln 11221x x x x x e x x x ϕϕ+-∴≤=-+=-+=, 所以()1,o k x ϕ≥=即k 的取值范围为1k .16.已知函数f (x )=2e x +a ln(x +1)-2.(1)当a =-2时,讨论f (x )的单调性;(2)当x ∈[0,π]时,f (x )≥sin x 恒成立,求a 的取值范围.【试题来源】2021年高考数学二轮复习热点题型精选精练(新高考地区专用) 【答案】(1)函数()f x 在(-1,0)单调递减,在()0,∞+单调递增;(2)[)1,-+∞. 【分析】(1)将2a =-代入,求出导函数,利用导数与函数单调性之间的关系即可求解.(2)令()()()[]sin 2ln 12sin ,0,xg x f x x e a x x x π=-=++--∈,等价于()()00g x g ≥=恒成立,求出()g x ',讨论0a ≥或0a <,判断函数的单调性,其中0a <时,可得()0211g a a '=+-=+,讨论10a +≥或10+<a ,证明函数的单调性即可证明.【解析】(1)当2a =-时()(),22ln 12,1x f x e x x =-+->-.23 / 31()()22,1x f x e f x x '+'=-在()1,-+∞单调递增,且()00.f '= 当()1,0x ∈-时,()0f x '<;当()0,x ∈+∞时(),0f x '>. 所以函数()f x 在(-1,0)单调递减,在()0,∞+单调递增.(2)令()()()[]sin 2ln 12sin ,0,xg x f x x e a x x x π=-=++--∈当[]0,x π∈时,()sin f x x ≥恒成立等价于()()00g x g ≥=恒成立.由于()()[]cos 2cos ,0,1xag x f x x e x x x π=-=+-∈+'', 所以(1)当0a ≥时,()210,xg x e '≥->函数()y g x =在[]0,π单调递增,所以()()00g x g ≥=,在区间[]0,π恒成立,符合题意.(2)当0a <时,()2cos 1xag x e x x =+-+'在[]0,π单调递增,()0211g a a '=+-=+. ①当10a +即10a -≤<时,()()010,g x g a ≥=+≥''函数()y g x =在[]0,π单调递增,所以()()00g x g =在[]0,π恒成立,符合题意.②当10+<a 即1a <-时()(),010,211ag a g e πππ=+<=++'+', 若()0g π'≤,即()()121a e ππ≤-++时(),g x '在()0,π恒小于0则()g x 在()0,π单调递减,()()00g x g <=,不符合题意.若()0,g π'>即()()1211e a ππ-++<<-时,存在()00,x π∈使得()00.g x '=所以当()00,x x ∈时,()0,g x '<则()g x 在()00,x 单调递减,()()00,g x g <=不符合题意. 综上所述,a 的取值范围是[)1,.∞-+【名师点睛】本题考查了利用导数研究函数的单调性,利用导数研究不等式恒成立,解题的关键是构造函数()()[]2ln 12sin ,0,xg x e a x x x π=++--∈,不等式等价转化为()()00g x g ≥=恒成立,考查了分析能力、计算能力以及分类讨论的思想. 17.设()()ln a f x ax x =+,()11ln xg x b e x x-=⋅+,其中,a b ∈R ,且0a ≠.(1)试讨论()f x 的单调性;(2)当1a =时,()()ln f x xg x x -≥恒成立,求实数b 的取值范围. 【试题来源】广西玉林市2021届高三下学期第一次适应性测试 【答案】(1)答案见解析;(2)(],e -∞.【分析】(1)分别在0a <和0a >两种情况下,结合定义域,根据导函数的正负可确定原函数的单调性;(2)将不等式化为11ln xbxex x-≤-,利用导数和复合函数单调性可确定min 11ln 1x x ⎛⎫-= ⎪⎝⎭,进而转化为x e b x≤,利用导数可求得()x em x x =的最小值,由()min b m x ≤可得结果.【解析】(1)()221a x af x x x x'-=-=, ①当0a <时,由0ax >得0x <,即()f x 定义域为(),0-∞;∴当(),x a ∈-∞时,()0f x '<;当(),0x a ∈时,()0f x '>;()f x ∴在(),a -∞上单调递减,在(),0a 上单调递增; ②当0a >时,由0ax >得0x >,即()f x 定义域为()0,∞+;∴当()0,x a ∈时,()0f x '<;当(),x a ∈+∞时,()0f x '>;()f x ∴在()0,a 上单调递减,在(),a +∞上单调递增;综上所述:当0a <时,()f x 在(),a -∞上单调递减,在(),0a 上单调递增;当0a >时,()f x 在()0,a 上单调递减,在(),a +∞上单调递增.(2)由()()ln f x xg x x -≥得11ln ln ln x x bxe x x x -+--≥,即11ln x bxe x x -≤-, 设()ln h t t t =-,则()111t h t t t-'=-=,∴当()0,1t ∈时,()0h t '>;当()1,t ∈+∞时,()0h t '<;()h t ∴在()0,1上单调递增,在()1,+∞上单调递减;25 / 31又1t x=在()0,∞+上单调递减, 11ln y x x ∴=-在()0,1上单调递减,在()1,+∞上单调递增,min 11ln 1ln11xx ⎛⎫∴-=-= ⎪⎝⎭;1xbxe -∴≤在()0,∞+上恒成立,xe b x ∴≤;设()xe m x x =,则()()21x e x m x x-'=, ∴当()0,1x ∈时,()0m x '<;当()1,x ∈+∞时,()0m x '>;()m x ∴在()0,1上单调递减,在()1,+∞上单调递增, ()()min 1m x m e ∴==,b e ∴≤, 即实数b 的取值范围为(],e -∞.【名师点睛】本题考查恒成立问题的求解,解题关键是能够通过分离变量的方式,将问题转化为函数最值的求解问题,进而利用导数求解函数最值得到结果.18.已知函数()()1ln x af x x e x -=--.(1)当1a =时,求()f x 的最小值;(2)证明:当01a <≤时,()ln f x a ≥恒成立.【试题来源】湖北省武汉市2021届高三下学期3月质量检测 【答案】(1)0;(2)证明见解析. 【分析】(1)1a =时,1()(1)ln x f x x ex -=--,求导1)1(x xe xf x -'=-,利用导函数研究函数的单调区间,从而求出函数的最小值;(2)要证当01a <≤时,()ln f x a ≥恒成立,即证(1)ln ln 0x a x e x a ----≥,构造函数()(1)ln ln x a h a x e x a -=---,即证()0h a ≥恒成立,研究该函数在(0,)+∞上单调区间,求函数()0h a ≥.【解析】(1)1a =时,1()(1)ln x f x x e x -=--,定义域为(0,)+∞,求导1)1(x xe x f x -'=-,设()()g x f x '=, 121(1)0()x g x x e x-+=+'>,()f x '∴在(0,)+∞单调递增.又()10f '=,故当01x <<时,()0f x '<,()f x ∴单调递减; 当1x >时,'()0f x >,()f x 单调递增. 故()f x 在1x =处取得最小值()10f =. (2)设()(1)ln ln x a h a x e x a -=---,求导()(1)11(1)x a xaa x e e x e e a e h a a '⎡⎤-=-=--⎢⎥⎣⎦. 设()()1xs x x e =-,()xe t x x=,()0x s x xe '=-<,所以0x >时,()s x 单调递减,()()01s x s <=.21()xx t x e x-'=,令()0t x '=,得1x =, 当01x <<时,()0t x '<,()t x 单调递减;当1x >时,()0t x '>,()t x 单调递增,()()1t x t e ∴≥=,故0a >,0x >时,()11axe x e e a-<<≤.即()0h a '<,()h a ∴在(0,)+∞上单调递减, 则01a <≤时,()()()111ln x h a h x e x -≥=--.由(1)知,()11ln 0x x e x ---≥,故01a <≤时,()0h a ≥.即()1ln ln x ax ex a ---≥恒成立.【名师点睛】本题考查利用导数研究函数的最小值及利用导数证明不等式,利用导数证明不等式的方法:证明()()),,(f x g x x a b <∈,可以构造函数()()()F x f x g x =-,如果()0F x '<,则()F x 在(,)a b 上是减函数,同时若()0F a ≤,由减函数的定义可知,(,)x a b ∈时,有()0F x <,即证明了()()f x g x <.19.已知函数()()22x f x xe ax ax a =--∈R .27 / 31(1)当0a >时,讨论()f x 的单调性;(2)若关于x 的不等式()()f x f x ≥--在(),-∞+∞上恒成立,求实数a 的取值范围. 【试题来源】2021年高考二轮复习讲练测(浙江专用) 【答案】(1)答案见解析;(2)(],1-∞【分析】(1)先求出()f x ',令()0f x '=,比较两根大小,结合二次函数图象,即可判断()f x 的单调性;(2)将()f x 代入化简得到()220x x x e e ax ---≥,对x 进行分类讨论,易知0x =,a R ∈,0x ≠,令x e t =,根据()()0,1g t t ≥≠恒成立,对a 进行分类讨论即可求解. 【解析】(1)()()22x f x xe ax ax a =--∈R ,()()()2212x x x f x e xe ax a x e a '∴=+--=+-,x ∈R ,当0a >时,令()0f x '=,解得ln 2x a =或1x =-, 当ln 21a <-,即102a e<<, 则当(),ln 2x a ∈-∞时,()0f x '>,()f x 单调递增; 当()ln 2,1x a ∈-时,()0f x '<,()f x 单调递减; 当()1,x ∈-+∞时,()0f x '>,()f x 单调递增; 当ln 21a =-,即12a e=, 则()0f x '≥,等号不恒成立,()f x 在R 上单调递增; 当ln 21a >-,即12a e>, 则当(),1x ∈-∞-时,()0f x '>,()f x 单调递增; 当()1,ln 2x a ∈-时,()0f x '<,()f x 单调递减; 当()ln 2,x a ∈+∞时,()0f x '>,()f x 单调递增. 综上所述:当102a e<<时,()f x 在(),ln2a -∞上单调递增,在()ln 2,1a -上单调递减,在()1,-+∞上单调递增;当12a e=时,()f x 在R 上单调递增; 当12a e>时,()f x 在(),1-∞-上单调递增,在()1,ln 2a -上单调递减,在()ln2,a +∞上单调递增;(2)()()f x f x ≥--,即()2222x x xe ax ax xe a x ax -⎡⎤--≥----+⎣⎦, 即()220x x x e e ax ---≥,即()22x x x e e ax --≥①, 当0x =时,①式恒成立,a ∈R ; 当0x >时,x x e e ->,()0x x x e e -->, 当0x <时,x x e e -<,()0x x x e e -->, 故当0a ≤时,①式恒成立,;以下求当0x ≠时,不等式20x x e e ax ---≥恒成立时正数a 的取值范围, 令x e t =,则()()0,11,t ∈+∞,()12ln g t t a t t=--, 则()22212211a t at g t t t t -+'=+-=,令()221h t t at =-+,则244a ∆=-,当01a <≤时,0∆≤,()2210h t t at =-+≥,()0g t '≥,等号不恒成立,故()g t 在()0,∞+上单调递增,又()10g =,故1t >,()()10g t g >=,01t <<时,()()10g t g <=, 即当01a <≤时,①式恒成立;当1a >时,0∆>,()010h =>,()1220h a =-<, 故()h t 的两个零点,即()g t '的两个零点()10,1t ∈和()21,t ∈+∞,在区间()12,t t 上,()0h t <,()0g t '<,()g t 是减函数,。
函数的恒成立问题
函数的恒成立问题函数的恒成立问题是一个重要的数学概念,它涉及到函数的性质和不等式的解法。
这类问题在数学高考和数学竞赛中经常出现,是考察学生数学思维和解题能力的重要题型。
函数的恒成立问题是指对于某个区间内的所有x值,函数f(x)都满足某个条件或不等式,即f(x)恒成立。
解决这类问题通常需要运用函数的性质、导数、参数分离等多种方法。
具体来说,解决函数的恒成立问题可以通过以下几种方法:1. 函数性质法:利用函数的性质,如单调性、奇偶性、周期性等,来证明函数恒成立。
2. 导数法:通过求函数的导数,研究函数的单调性和最值,进而证明函数恒成立。
3. 参数分离法:将参数与变量分离,转化为求函数的最值问题,再证明该最值满足条件。
4. 数形结合法:将函数与图形结合,通过观察图形的性质来证明函数恒成立。
举个例子,假设我们要求证函数f(x) = x^2 - 2x在区间[0,3]上恒成立。
我们可以采用以下步骤:1. 首先求出函数f(x)的导数f'(x),得到f'(x) = 2x - 2。
2. 然后通过分析f'(x)的符号,确定函数的单调性。
当f'(x) > 0时,f(x)单调递增;当f'(x) < 0时,f(x)单调递减。
由此可知,f(x)在区间[0,1]上单调递减,在区间[1,3]上单调递增。
3. 接下来求出函数在区间端点的值,即f(0)、f(1)、f(3)。
计算得到f(0) = 0,f(1) = -1,f(3) = 3。
4. 最后比较这些值,发现f(0)、f(1)、f(3)都满足条件,因此可以证明函数f(x)在区间[0,3]上恒成立。
以上是解决函数恒成立问题的一种基本思路和方法,当然具体的解题过程可能因题目的不同而有所差异。
在解决这类问题时,需要灵活运用数学知识,注重思维方法的训练和解题技巧的提升。
导数中含参数问题与恒成立问题的解题技巧
函数、导数中含参数问题与恒成立问题的解题技巧与方法 含参数问题及恒成立问题方法小结:1、分类讨论思想2、判别法3、别离参数法4、构造新函数法一、别离讨论思想:例题1: 讨论以下函数单调性:1、()x f =();1,0,≠>-a a a a x2、()x f =)0,11(12≠<<--b x x bx二、判别法例2:不等式04)2(2)2(2<--+-x a x a 对于x ∈R恒成立,求参数a 的取值范围. 解:要使04)2(2)2(2<--+-x a x a 对于x ∈R恒成立,那么只须满足: 〔1〕⎩⎨⎧<-+-<-0)2(16)2(4022a a a 或 〔2〕⎪⎩⎪⎨⎧<-=-=-040)2(202a a 解〔1〕得⎩⎨⎧<<-<222a a ,解〔2〕a =2 ∴参数a 的取值范围是-2<a ≤2.练习1. 函数])1(lg[22a x a x y +-+=的定义域为R ,求实数a 的取值范围。
三、别离法参数:别离参数法是求参数的取值范围的一种常用方法,通过别离参数,用函数观点讨论主变量的变化情况,由此我们可以确定参数的变化范围.这种方法可以防止分类讨论的麻烦,从而使问题得以顺利解决.别离参数法在解决有关不等式恒成立、不等式有解、函数有零点、函数单调性中参数的取值范围问题时经常用到. 解题的关键是别离出参数之后将原问题转化为求函数的最值或值域问题.即:〔1〕对任意x 都成立()min x f m ≤ 〔2〕对任意x 都成立。
例3.函数]4,0(,4)(2∈--=x x x ax x f 时0)(<x f 恒成立,求实数a 的取值范围。
解: 将问题转化为xx x a 24-<对]4,0(∈x 恒成立,令x x x x g 24)(-=,那么min )(x g a <由144)(2-=-=xx x x x g 可知)(x g 在]4,0(上为减函数,故0)4()(min ==g x g ∴0<a 即a 的取值范围为)0,(-∞。
高考复习-利用导数研究函数的存在与恒成立问题
利用导数研究函数的存在与恒成立问题知识集结知识元利用导数研究函数的恒成立与存在问题知识讲解“恒成立”问题与“存在性”问题是高中数学中的常见问题,它不仅考查了函数、不等式等传统知识和方法,而且导数的加入更是极大的丰富了该类问题的表现形式,充分体现了能力立意的原则,越来越受到命题者的青睐,成为高中数学的一个热点问题。
本文仅从以下九方面总结一下有关这类问题的不同的表现形式及解决方法,希望能对大家高考复习起到一定的帮助作用。
一、若对,恒成立,则只需即可;若对,恒成立,则只需即可;二、若,满足不等式,则只需即可;若,满足不等式,则只需即可;三、若对,使得不等式(为常数)恒成立,则只需即可四、若,满足方程,则只需两函数值域交集不空即可.五、若对总使得成立,则只需值域值域即可六、若对,使得不等式恒成立,则只需即可七、若对,满足不等式,则只需即可八、若对,总,使得成立,则只需即可九、若对,总,使得成立,则只需即可例题精讲利用导数研究函数的恒成立与存在问题例1.已知不等式e x-1≥kx+lnx,对于任意的x∈(0,+∞)恒成立,则k的最大值_____例2.设函数y=f(x)图象上在不同两点A(x1,y1),B(x2,y2)处的切线斜率分别是k A,k B,规定φ(A,B)=(|AB|为A与B之间的距离)叫作曲线y=f(x)在点A与点B之间的“弯曲度”.若函数y=x2图象上两点A与B的横坐标分别为0,1,则φ(A,B)=___;设A(x1,y1),B(x2,y2)为曲线y=e x上两点,且x1-x2=1,若m∙φ(A,B)<1恒成立,则实数m的取值范围是________.例3.已知函数f(x)=ax+lnx,若f(x)≤1在区间(0,+∞)内恒成立,实数a的取值范围为_________.当堂练习单选题练习1.”a>b”是”log7a>log7b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件练习2.已知命题p:x>m,q:2+x-x2<0,如果命题p是命题q的充分不必要条件,则实数m的取值范围是()A.(-∞,-1]B.(2,+∞)C.[1,+∞)D.[2,+∞)练习3.a<0,b<0的一个必要条件是()A.a-b<0B.a+b<0C.>1D.<1练习4.直线x+y+a=0与圆x2+y2-2x+4y+3=0有两个不同交点的一个必耍不充分条件是()A.-2<a<3B.-1<a<3C.-2<a<0D.0<a<3练习5.“”是“(1+tanα)(1+tanβ)=2”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分亦不必要条件填空题练习1.已知函数.若存在x∈[1,2],使得,则实数b 的取值范围是________.练习2.已知函数.若存在x∈[1,2],使得f(x)+xf'(x)>0,则实数b 的取值范围是________.练习3.若函数f(x)=x2+1与g(x)=2alnx+1的图象存在公共切线,则实数a的最大值为___练习4.设函数f(x)=e x(2x-1)-2ax+2a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是_______.练习5.设函数f(x)在R上存在导数f'(x),∀x∈R,有f(-x)+f(x)=x2,在(0,+∞)上,f'(x)<x,若f(6-m)-f(m)-18+6m≥0,则实数m的取值范围是________.解答题练习1.'设函数f(x)=xlnx-ae x,其中a∈R,e是自然对数的底数.(1)若f(x)在(0,+∞)上存在两个极值点,求a的取值范围;(2)若,证明:f(x)<0.'练习2.'已知函数,e为自然对数的底数.(1)求函数f(x)的定义域和单调区间;(2)试比较e2x-1与(2x-1)e的大小,其中;(3)设函数,0<a<e,求证:函数g(x)存在唯一的极值点t,且.(极值点是指函数取极值时对应的自变量的值)'练习3.'已知函数f(x)=ax-lnx-a,a∈R.(1)若a=1,求方程f(x)=0的根;(2)已知函数g(x)=-x∙f(x)+ax2-2ax+a在区间(1,+∞)上存在唯一的零点,求实数a的取值范围;(3)当a=0时,是否存在实数m,使不等式在(1,+∞)上恒成立?若存在,求出m的最小值;若不存在,说明理由.'练习4.'已知函数f(x)=x-,g(x)=2ln(x+1).(1)求最大正整数n,使得对任意n+1个实数x i(i=1,2,…,n+1),当x i∈[e-1,2]时,都有恒成立;(2)设H(x)=xf(x)+g(x),在H(x)的图象上是否存在不同的两点A(x1,y1),B(x2,y2)(x1>x2>-1),使得成立.'练习5.'已知函数.(1)当a≥2时,求函数f(x)的单调区间;(2)设g(x)=e x+mx2-3,当a=e2+1时,对任意x1∈[1,+∞),存在x2∈[1,+∞),使,证明:m≤e2-e.'。
专题 导数恒成立问题中的端点效应法-学生版
导数恒成立问题中的端点效应法恒成立问题中,我们常常能见到类似的命题:“对于任意的],[b a x ∈,都有0)(≥x f 恒成立”()(x f 中包含参数),这里的端点b a ,往往是使结论成立的临界条件,这种观察区间端点值来解决问题的方法,我们称之为端点效应.1.适用类型①不便于参变分离;②参变分离后的函数形式比较复杂.2.解题步骤①移项,将所有变量移到一边,使不等式右侧为0;②计算端点处的函数值,验证端点处函数值是否为0,若为0,则可继续处理,否则此题不适合端点分析法.注:区间端点处的函数值恰好是不等式恒成立时的临界值是这类问题的显著特征!题型一指数型端点效应例1.1设函数2()(1)x f x x e ax =--.若当0x ≥时()0f x ≥,求实数a 的取值范围.练1.11已知函数)1(ln )(--=x m x x f ,当),1[+∞∈x 时,e x ef e x≥+)(,求实数m 的取值范围.*练1.12已知R ∈λ,函数)1ln ()(+---=x x x ex e x f xλ,若1≥x 时,0)(≥x f 恒成立,求λ的最大值.题型二对数型端点效应例2.1已知关于x 的不等式xx a 11ln ->对任意),1(+∞∈x 恒成立,求实数a 的取值范围.练2.11已知函数()(1)ln (1)f x x x a x =+--,若当()1,x ∈+∞时,0)(>x f ,求a 的取值范围.练2.12已知函数()()1ln --=x a x x f ,若当1≥x 时,不等式()1ln +≤x x x f 恒成立,求实数a 的取值范围;题型三三角型端点效应例3.1已知函数x x x f sin )(+=,设1)()(-'=x f x g ,若21)(ax x g +≥在),0[+∞上恒成立,求实数a 的取值范围.练3.11已知函数)(cos sin )(R a x x a xe x f x ∈-=,若对任意的]2,0[π∈x ,0)(≥x f 恒成立,求实数a 的取值范围.练3.12已知函数x x x x x f --=cos sin 2)(,)(x f '为)(x f 的导数.(1)证明:)(x f '在区间),0(π存在唯一零点;(2)若],0[π∈x 时,ax x f ≥)(,求实数a 的取值范围.。
【一题一课 难点突破】导数中的恒成立问题
1 1 2当a 0时,f x 在 0, 上递增, 在 , 上递减, f x max a a 1 1 f ln 0, 即恒成立。 a a
转化手段
单变量恒成立问题 方法3:参变量半分离法解恒成立问题
例题: f (x)=lnx+ax+1,若f (x)<0恒成立,求a的取值 范围? 可以半分离:lnx<-ax-1,构造f (x)=lnx与g(x)=-ax-1 由图像得:a<-1
转化手段
单变量恒成立问题 方法4:端点值代入法解恒成立问题
例题:设函数f (x)=(x+1)ln(x+1),若对于所有的x≥0, 都有f (x)≥ax,求a的问题 方法4:端点值代入法解恒成立问题
例题:设函数f (x)=(x+1)ln(x+1),若对于所有的x≥0, 都有f (x)≥ax,求a的取值范围?
f x f a 1若x a且f x f a , f x 在x a处可导,则f a xlim 0 a xa f x f a 2若x a且f x f a , f x 在x a处可导,则f a xlim 0 a xa
例题: f (x)=lnx+ax+1,若f (x)<0恒成立,求a的取值 范围? 可以直接讨论:
求导:f x
这与f x 0恒成立矛盾。
1 a, x 1当a 0时,f x 0, f x 在0, 讨论: 恒增,找到f 1 a 1 0
转化手段
单变量恒成立问题 方法1:参变量分离法解恒成立问题
例题: f (x)=lnx+ax+1,若f (x)<0恒成立,求a的取值 范围? 可以转化为:
破解恒成立问题 高考数学【解析版】
专题16 破解恒成立问题从高考命题看,方程有解问题、无解问题以及不等式的恒成立问题,也是高考命题的热点.而此类问题的处理方法较为灵活,用导数解决不等式“恒成立”“存在性”问题的常用方法是分离参数,或构造新函数分类讨论,将不等式问题转化为函数的最值问题.也可以结合题目的条件、结论,采用数形结合法等.【重点知识回眸】(一)参变参数法1.参变分离:顾名思义,就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式.然后可利用其中一个变量的范围求出另一变量的范围2.一般地,若a >f (x )对x ∈D 恒成立,则只需a >f (x )max ;若a <f (x )对x ∈D 恒成立,则只需a <f (x )min .若存在x 0∈D ,使a >f (x 0)成立,则只需a >f (x )min ;若存在x 0∈D ,使a <f (x 0)成立,则只需a <f (x 0)max .由此构造不等式,求解参数的取值范围.3.参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行.但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法.例如:()21log a x x -<,111axx e x-+>-等 (2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题.(可参见”恒成立问题——最值分析法“中的相关题目)(二)构造函数分类讨论法有两种常见情况,一种先利用综合法,结合导函数零点之间大小关系的决定条件,确定分类讨论的标准,分类后,判断不同区间函数的单调性,得到最值,构造不等式求解;另一种,直接通过导函数的式子,看出导函数值正负的分类标准,通常导函数为二次函数或者一次函数.1.构造函数时往往将参数与自变量放在不等号的一侧,整体视为一个函数,其函数含参2.参数往往会出现在导函数中,进而参数不同的取值会对原函数的单调性产生影响——可能经历分类讨论 (三)数形结合法1.函数的不等关系与图象特征:(1)若,均有的图象始终在的下方 (2)若,均有的图象始终在的上方2.在作图前,可利用不等式的性质对恒成立不等式进行变形,转化为两个可作图的函数x D ∀∈()()()f x g x f x <⇔()g x x D ∀∈()()()f x g x f x >⇔()g x3.作图时可“先静再动”,先作常系数的函数的图象,再做含参数函数的图象(往往随参数的不同取值而发生变化).作图要突出“信息点”.4.利用数形结合解决恒成立问题,往往具备以下几个特点:(1)所给的不等式运用代数手段变形比较复杂,比如分段函数,或者定义域含参等,而涉及的函数便于直接作图或是利用图象变换作图(2)所求的参数在图象中具备一定的几何含义 (3)题目中所给的条件大都能翻译成图象上的特征【典型考题解析】热点一 参变分离法解决不等式恒成立问题【典例1】(2019·天津·高考真题(理))已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为( ) A .[]0,1 B .[]0,2 C .[]0,e D .[]1,e【答案】C【解析】先判断0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立;若ln 0x a x -≥在(1,)+∞上恒成立,转化为ln xa x≤在(1,)+∞上恒成立. 【详解】∵(0)0f ≥,即0a ≥,(1)当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->, 当1a >时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 若ln 0x a x -≥在(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立, 令()ln xg x x=,则2ln 1'()(ln )x g x x -=,当,x e >函数单增,当0,x e <<函数单减,故()()min g x g e e ==,所以a e ≤.当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 综上可知,a 的取值范围是[0,]e , 故选C .【典例2】(2020·全国·高考真题(理))已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.【答案】(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)27e ,4∞⎡⎫-+⎪⎢⎣⎭【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可. (2)方法一:首先讨论x =0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a 的取值范围.【详解】(1)当1a =时,()2e xf x x x =+-,()e 21x f x x ='+-,由于()''e 20xf x =+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减, 当()0,x ∈+∞时,()()0,f x f x '>单调递增. (2) [方法一]【最优解】:分离参数 由()3112f x x ≥+得,231e 12x ax x x +-+,其中0x ≥, ①.当x =0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,321e 12x x x a x ----, 记()321e 12x x x g x x ---=-,()()2312e 12x x x x g x x ⎛⎫---- ⎪⎝⎭'=-, 令()()21e 102xh x x x x =---≥,则()e 1xh x x ='--,()''e 10x h x =-≥,故()'h x 单调递增,()()00h x h ''≥=, 故函数()h x 单调递增,()()00h x h ≥=,由()0h x ≥可得:21e 102xx x ---恒成立, 故当()0,2x ∈时,()0g x '>,()g x 单调递增;当()2,x ∈+∞时,()0g x '<,()g x 单调递减; 因此,()()2max7e 24g x g -⎡⎤==⎣⎦, 综上可得,实数a 的取值范围是27e ,4∞⎡⎫-+⎪⎢⎣⎭. [方法二]:特值探路当0x ≥时,31()12f x x ≥+恒成立27e (2)54-⇒⇒f a .只需证当274e a -≥时,31()12f x x ≥+恒成立.当274e a -≥时,227e ()e e 4-=+-≥+x xf x ax x 2⋅-x x .只需证明2237e 1e 1(0)42-+-≥+≥xx x x x ⑤式成立.⑤式()223e74244e-+++⇔≤xx x x ,令()223e 7424()(0)e-+++=≥xx x x h x x ,则()()222313e 2e 92()e -+--=='xxx x h x ()()222213e 2e 9e⎡⎤-----⎣⎦=xx x x ()2(2)2e 9e⎡⎤--+-⎣⎦xx x x ,所以当29e 0,2⎡⎤-∈⎢⎥⎣⎦x 时,()0,()h x h x '<单调递减; 当29e ,2,()0,()2⎛⎫-∈> ⎪⎝⎭'x h x h x 单调递增; 当(2,),()0,()∈+∞<'x h x h x 单调递减.从而max [()]max{(0),(2)}4==h x h h ,即()4h x ≤,⑤式成立.所以当274e a -≥时,31()12f x x ≥+恒成立.综上274e a -≥.[方法三]:指数集中当0x ≥时,31()12f x x ≥+恒成立323211e1(1)e 122x x x ax x x ax x -⇒+-+⇒-++≤, 记()32(1(1)e 0)2xg x x ax x x -=-++≥,()2231(1)e 22123x g x x ax x x ax -'=--+++--()()()2112342e 212e 22xx x x a x a x x a x --⎡⎤=--+++=----⎣⎦,①.当210a +≤即12a ≤-时,()02g x x '=⇒=,则当(0,2)x ∈时,()0g x '>,()g x 单调递增,又()01g =,所以当(0,2)x ∈时,()1g x >,不合题意;②.若0212a <+<即1122a -<<时,则当(0,21)(2,)x a ∈+⋃+∞时,()0g x '<,()g x 单调递减,当(21,2)x a ∈+时,()0g x '>,()g x 单调递增,又()01g =,所以若满足()1g x ≤,只需()21g ≤,即()22(7e 14)g a --≤=27e 4a -⇒,所以当27e 142a -⇒≤<时,()1g x ≤成立;③当212a +≥即12a ≥时,()32311(1)e (1)e 22x xg x x ax x x x --=++≤-++,又由②可知27e 142a -≤<时,()1g x ≤成立,所以0a =时,31()(1)e 21xg x x x -=+≤+恒成立,所以12a ≥时,满足题意. 综上,27e 4a-. 【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有:方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性; 方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性! 【总结提升】利用分离参数法来确定不等式f (x ,λ)≥0(x ∈D ,λ为实参数)恒成立问题中参数取值范围的基本步骤: (1)将参数与变量分离,化为f 1(λ)≥f 2(x )或f 1(λ)≤f 2(x )的形式. (2)求f 2(x )在x ∈D 时的最大值或最小值.(3)解不等式f 1(λ)≥f 2(x )max 或f 1(λ)≤f 2(x )min ,得到λ的取值范围. 热点二 构造函数分类讨论法解决不等式恒成立问题【典例3】(2019·全国·高考真题(文))已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数. (1)证明:f′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围. 【答案】(1)见解析; (2)(],0a ∈-∞.【分析】(1)求导得到导函数后,设为()g x 进行再次求导,可判断出当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>,当,2x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '<,从而得到()g x 单调性,由零点存在定理可判断出唯一零点所处的位置,证得结论;(2)构造函数()()h x f x ax =-,通过二次求导可判断出()()min 2h x h a π''==--,()max 222h x h a ππ-⎛⎫''==- ⎪⎝⎭;分别在2a ≤-,20a -<≤,202a π-<<和22a π-≥的情况下根据导函数的符号判断()h x 单调性,从而确定()0h x ≥恒成立时a 的取值范围.【详解】(1)()2cos cos sin 1cos sin 1f x x x x x x x x '=-+-=+- 令()cos sin 1g x x x x =+-,则()sin sin cos cos g x x x x x x x '=-++= 当()0,x π∈时,令()0g x '=,解得:2x π=∴当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>;当,2x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '<()g x ∴在0,2π⎛⎫ ⎪⎝⎭上单调递增;在,2ππ⎛⎫⎪⎝⎭上单调递减又()0110g =-=,1022g ππ⎛⎫=-> ⎪⎝⎭,()112g π=--=-即当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x >,此时()g x 无零点,即()f x '无零点()02g g ππ⎛⎫⋅< ⎪⎝⎭0,2x ππ⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x =又()g x 在,2ππ⎛⎫ ⎪⎝⎭上单调递减 0x x ∴=为()g x ,即()f x '在,2ππ⎛⎫⎪⎝⎭上的唯一零点综上所述:()f x '在区间()0,π存在唯一零点(2)若[]0,x π∈时,()f x ax ≥,即()0f x ax -≥恒成立 令()()()2sin cos 1h x f x ax x x x a x =-=--+ 则()cos sin 1h x x x x a '=+--,()()cos h x x x g x '''==由(1)可知,()h x '在0,2π⎛⎫ ⎪⎝⎭上单调递增;在,2ππ⎛⎫⎪⎝⎭上单调递减且()0h a '=-,222h a ππ-⎛⎫'=- ⎪⎝⎭,()2h a π'=-- ()()min 2h x h a π''∴==--,()max 222h x h a ππ-⎛⎫''==- ⎪⎝⎭①当2a ≤-时,()()min 20h x h a π''==--≥,即()0h x '≥在[]0,π上恒成立()h x ∴在[]0,π上单调递增()()00h x h ∴≥=,即()0f x ax -≥,此时()f x ax ≥恒成立 ②当20a -<≤时,()00h '≥,02h π⎛⎫'> ⎪⎝⎭,()0h π'<1,2x ππ⎛⎫∴∃∈ ⎪⎝⎭,使得()10h x '=()h x ∴在[)10,x 上单调递增,在(]1,x π上单调递减又()00h =,()()2sin cos 10h a a ππππππ=--+=-≥()0h x ∴≥在[]0,π上恒成立,即()f x ax ≥恒成立③当202a π-<<时,()00h '<,2022h a ππ-⎛⎫'=-> ⎪⎝⎭20,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()20h x '=()h x ∴在[)20,x 上单调递减,在2,2x π⎛⎫⎪⎝⎭上单调递增()20,x x ∴∈时,()()00h x h <=,可知()f x ax ≥不恒成立④当22a π-≥时,()max 2022h x h a ππ-⎛⎫''==-≤ ⎪⎝⎭()h x ∴在0,2π⎛⎫⎪⎝⎭上单调递减 00h xh可知()f x ax ≥不恒成立 综上所述:(],0a ∈-∞【点睛】本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题.对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值.【典例4】(2022·重庆巴蜀中学高三阶段练习)已知函数()()ln 20f x a x x a =-≠. (1)讨论()f x 的单调性;(2)当0x >时,不等式()()22cos eax x f x f x ⎡⎤-≥⎣⎦恒成立,求a 的取值范围. 【答案】(1)答案见解析 (2)(]0,2e【分析】(1)求出函数()f x 的定义域,求得()2a xf x x-'=,分析导数的符号变化,由此可得出函数()f x 的单调递增区间和递减区间;(2)令()t f x =,()e 2cos tg t t t =--,利用导数分析函数()g t 的单调性,对实数a 的取值进行分类讨论,求出()t f x =的取值范围,结合函数()g t 的图象可得出关于实数a 的不等式,即可求得实数a 的取值范围. (1)解:函数()()ln 20f x a x x a =-≠的定义域为()0,∞+,且()22a a x f x x x-'=-=.当0a <时,因为0x >,则()0f x '<,此时函数()f x 的单调递减区间为()0,∞+;当0a >时,由()0f x '<可得2ax >,由()0f x '>可得02ax <<.此时,函数()f x 的单调递增区间为0,2a ⎛⎫ ⎪⎝⎭,单调递减区间为,2a ⎛⎫+∞ ⎪⎝⎭.综上所述,当0a <时,函数()f x 的单调递减区间为()0,∞+;当0a >时,函数()f x 的单调递增区间为0,2a ⎛⎫⎪⎝⎭,单调递减区间为,2a ⎛⎫+∞ ⎪⎝⎭. (2)解:()()()()()()()ln 222cos e 2cos 0e 2cos 0eaf x a x x x x f x f x f x f x f x f x -⎡⎤⎡⎤⎡⎤-≥⇔--≥⇔--≥⎣⎦⎣⎦⎣⎦,设()e 2cos tg t t t =--,其中()t f x =,则()e 2sin t g t t '=-+,设()e sin 2th t t =+-,则()e cos th t t '=+,当0t ≤时,e 1t ≤,sin 1t ≤,且等号不同时成立,则()0g t '<恒成立,当0t >时,e 1t >,cos 1t ≥-,则()0h t '>恒成立,则()g t '在()0,∞+上单调递增,又因为()01g '=-,()1e 2sin10g '=-+>,所以,存在()00,1t ∈使得()00g t '=,当00t t <<时,()0g t '<;当0t t >时,()0g t '>.所以,函数()g t 在()0,t -∞上单调递减,在()0,t +∞上单调递增,且()00g =,作出函数()g t 的图象如下图所示:由(1)中函数()f x 的单调性可知,①当0a <时,()f x 在()0,∞+上单调递增,当0x +→时,()f x →+∞,当x →+∞时,()f x →-∞,所以,()t f x =∈R ,此时()00g t <,不合乎题意;②当0a >时,()max ln 22a a f x f a a ⎛⎫==- ⎪⎝⎭,且当0x +→时,()f x →-∞,此时函数()f x 的值域为,ln 2a a a ⎛⎤-∞- ⎥⎝⎦,即,ln 2a t a a ⎛⎤∈-∞- ⎥⎝⎦.(i )当ln 02a a a -≤时,即当02e a <≤时,()0g t ≥恒成立,合乎题意;(ii )当ln 02a a a ->时,即当2e a >时,取10min ln ,2a t a a t ⎧⎫=-⎨⎬⎩⎭,结合图象可知()10g t <,不合乎题意.综上所述,实数a 的取值范围是(]0,2e . 【规律方法】对于f (x )≥g (x )型的不等式恒成立问题,若无法分离参数,一般采用作差法构造函数h (x )=f (x )-g (x )或h (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或h (x )max ≤0即可. 热点三 利用数形结合法解决不等式恒成立问题【典例5】(2013·全国·高考真题(文))已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞C .[2,1]-D .[2,0]-【答案】D【解析】作出函数()y f x =的图像,和函数y ax =的图像,结合图像可知直线y ax =介于l 与x 轴之间,利用导数求出直线l 的斜率,数形结合即可求解.【详解】由题意可作出函数()y f x =的图像,和函数y ax =的图像.由图像可知:函数y ax =的图像是过原点的直线, 当直线介于l 与x 轴之间符合题意,直线l 为曲线的切线,且此时函数()y f x =在第二象限的部分的解析式为 22y x x =-,求其导数可得22y x '=-,因为0x ≤,故2y '≤-, 故直线l 的斜率为2-,故只需直线y ax =的斜率a []2,0∈-. 故选:D【典例6】(2015·全国·高考真题(理))设函数()(21)xf x e x ax a =--+,其中1a < ,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭C .33,2e 4⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭【答案】D【分析】设()()21xg x e x =-,()1y a x =-,问题转化为存在唯一的整数0x 使得满足()()01g x a x <-,求导可得出函数()y g x =的极值,数形结合可得()01a g ->=-且()312g a e-=-≥-,由此可得出实数a 的取值范围.【详解】设()()21xg x e x =-,()1y a x =-,由题意知,函数()y g x =在直线y ax a =-下方的图象中只有一个点的横坐标为整数,()()21x g x e x '=+,当12x <-时,()0g x '<;当12x >-时,()0g x '>.所以,函数()y g x =的最小值为12122g e -⎛⎫-=- ⎪⎝⎭.又()01g =-,()10g e =>.直线y ax a =-恒过定点()1,0且斜率为a ,故()01a g ->=-且()31g a a e -=-≥--,解得312a e≤<,故选D.【典例7】(2020·全国高二)若关于x 的不等式0x x e ax a ⋅-+<的解集为()m n ,(0n <),且()m n ,中只有一个整数,则实数a 的取值范围是( ). A .211[)e e, B .221[)32e e, C .212[)e e, D .221[)3e e, 【答案】B 【解析】不等式0x x e ax a ⋅-+<有唯一整数解,即不等式()1xx e a x ⋅<-有唯一整数解,设()xg x x e =⋅,y ax a =-,求出()g x 的单调区间,作出其大致图像,y ax a =-恒过定点()10,P ,数形结合可得答案.【详解】设()xg x x e =⋅,y ax a =-,()()1xg x x e '=+⋅,由()0g x '>,解得1x >-,由()0g x '<解得1x <-所以()xg x x e =⋅在(]1-∞-,上单调递减,在[)1-+∞,上单调递增. 又当x →-∞ ,()0g x <且()0g x →,又()00g =,则()xg x x e =⋅的大致图象如下由题意由不等式0x x e ax a ⋅-+<有唯一整数解,即不等式()1xx e a x ⋅<-有唯一整数解即()xg x x e =⋅在直线y ax a =-下方的部分,故min 1()(1)g x g e=-=-,y ax a =-恒过定点()10,P , 结合函数图像得PA PB k a k ≤<,即22132a e e≤<, 故选:B .【点睛】本题考查根不等式的解集中整数的个数求参数范围的问题,解答本题的关键的根据题意转化为不等式()1x x e a x ⋅<-有唯一整数解,即()x g x x e =⋅在直线y ax a =-下方的部分中唯一整数x ,讨论出()xg x x e =⋅的单调区间,得出其大致图象,属于中档题.【精选精练】一、单选题1.(2022·湖北·黄冈中学模拟预测)对任意的(]12,1,3x x ∈,当12x x <时,1122ln 03x a x x x -->恒成立,则实数a的取值范围是( ) A .[)3,+∞ B .()3,+∞ C .[)9,+∞ D .()9,+∞【答案】C【分析】将不等式等价变形,构造函数()ln 3af x x x =-,再借助函数单调性、最值求解作答.【详解】依题意,11211222ln 0ln (ln )0333x a a ax x x x x x x -->⇔--->,令()ln 3a f x x x =-,(1,3]x ∈, 则对任意的12,(1,3]x x ∈,当12x x <时,12()()f x f x >,即有函数()f x 在(1,3]上单调递减, 因此,(1,3]x ∀∈,()1033af x a x x'=-≤⇔≥,而max (3)9x =,则9a ≥, 所以实数a 的取值范围是[9,)+∞. 故选:C2.(2021·青海·西宁市海湖中学高三开学考试(文))若函数()2ln f x x x=-,满足() f x a x ≥-恒成立,则a 的最大值为( ) A .3 B .4 C .3ln 2- D .3ln 2+【答案】C【分析】由题意,分离参数可得min 2ln a x x x ⎛⎫≤+- ⎪⎝⎭,令2()ln g x x x x=+-,然后利用导数求出()g x 的最小值即可求解.【详解】解:因为()2ln f x x x=-,满足() f x a x ≥-恒成立, 所以min2ln a x x x ⎛⎫≤+- ⎪⎝⎭,令2()ln g x x x x =+-,则()()()222221212()10x x x x g x x x x x x -+--'=--==>,令()0g x '>,得2x >,令()0g x '<,得02x <<, 所以()g x 在()0,2上单调递减,在()2,+∞上单调递增, 所以min ()(2)3ln 2g x g ==-, 所以3ln 2a ≤-,所以a 的最大值为3ln 2-, 故选:C.3.(2023·全国·高三专题练习)已知函数12ln ,(e)ey a x x =-≤≤的图象上存在点M ,函数21y x =+的图象上存在点N ,且M ,N 关于x 轴对称,则a 的取值范围是( )A .21e ,2⎡⎤--⎣⎦B .213,e ∞⎡⎫--+⎪⎢⎣⎭C .213,2e ⎡⎤---⎢⎥⎣⎦D .2211e ,3e ⎡⎤---⎢⎥⎣⎦【答案】A【详解】因为函数21y x =+与函数21y x =--的图象关于x 轴对称,根据已知得函数12ln ,(e)e y a x x =-≤≤的图象与函数21y x =--的图象有交点,即方程22ln 1a x x -=--在1,e e x ⎡⎤∈⎢⎥⎣⎦上有解,即22ln 1a x x =--在1,e e x ⎡⎤∈⎢⎥⎣⎦上有解.令()22ln 1g x x x =--,1,e e x ⎡⎤∈⎢⎥⎣⎦,则()()22212222xx g x x x x x--'=-==,可知()g x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,在[]1,e 上单调递减,故当1x =时,()()max 12g x g ==-,由于21e e 13g ⎛⎫=-- ⎪⎝⎭,()2e e 1g =-,且2211e 3e -->-,所以212e a -≤≤-. 故选:A .4.(2021·青海·大通回族土族自治县教学研究室高三开学考试(文))已知函数1()e 2xf x =,直线y kx =与函数()f x 的图象有两个交点,则实数k 的取值范围为( )A .1e 2⎛ ⎝B .(e,)+∞C .(e,)+∞D .1e,2⎛⎫+∞ ⎪⎝⎭【答案】D【分析】首先考查临界情况,利用导数求得切线的斜率,据此可求得实数k 的取值范围【详解】当过原点的直线y kx =与函数()f x 的图象相切时,设切点为1,e 2m P m ⎛⎫⎪⎝⎭,由()1e 2x f x '=,可得过点P 的切线方程为()11e e 22m my x m -=-,代入点()0,0可得11e e 22m mm -=-,解得1m =,此时切线的斜率为1e 2,由函数()f x 的图象可知,若直线y kx =与函数()f x 的图象有两个交点,直线的斜率k 的取值范围为1e,2⎛⎫+∞ ⎪⎝⎭. 故答案选:D5.(2022·福建省福安市第一中学高三阶段练习)设函数()()()()1e e ,e 1x x f x x g x ax =--=--,其中R a ∈.若对[)20,x ∀∈+∞,都1R x ∃∈,使得不等式()()12f x g x ≤成立,则a 的最大值为( ) A .0 B .1eC .1D .e【答案】C【分析】由题意易知()0f x ≥恒成立,则可等价为对[)20,x ∀∈+∞,()20g x ≥恒成立,利用参变分离,可变形为e 1,(0)x a x x -≤>恒成立,易证e 11,(0)x x x->>,则可得1a ≤,即可选出答案.【详解】对[)20,x ∀∈+∞,都1R x ∃∈,使得不等式()()12f x g x ≤成立, 等价于()()12min min f x g x ≤,当1x <时,10,e e<0x x -<-,所以()0f x >, 当1≥x 时,10,e e 0x x -≥-≥,所以()0f x ≥, 所以()0f x ≥恒成立,当且仅当1x =时,min ()0f x =, 所以对[)20,x ∀∈+∞,()20g x ≥恒成立,即e 10x ax --≥, 当0x =,e 100x ax --=≥成立,当0x >时,e 1e 10x xax a x---≥⇒≤恒成立.记()e 1,0x h x x x =-->, 因为()e 10x h x '=->恒成立,所以()h x 在(0,)+∞上单调递增,且(0)0h =,所以()e 10xh x x =-->恒成立,即e 1e 11,(0)x xx x x-->⇒>>所以1a ≤.所以a 的最大值为1. 故选:C.【点睛】本题考查导数在不等式的恒成立与有解问题的应用,属于难题, 此类问题可按如下规则转化:一般地,已知函数[](),,=∈y f x x a b ,[](),,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有12()()f x g x <成立,故max 12min ()()f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有12()()f x g x <成立,故1max 2max ()()f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有12()()f x g x <成立,故1min 2max ()()f x g x <; (4)若[]1,x a b ∃∈,[]2,x c d ∀∈,有12()()f x g x <成立,故1min 2min ()()f x g x <; (5)若[]1,x a b ∀∈,[]2,x c d ∃∈,有12()()f x g x =,则()f x 的值域是()g x 值域的子集. 二、多选题6.(2022·重庆南开中学高三阶段练习)已知定义在R 上函数()g x 满足:()()2g x g x =+,且()[)[)3,0,124,1,2x x x g x x x ⎧-∈⎪=⎨-+∈⎪⎩,设函数()()f x x g x =+,则下列正确的是( ) A .()f x 的单调递增区间为()()2,21,Z k k k +∈ B .()f x 在()2022,2024上的最大值为2025 C .()f x 有且只有2个零点 D .()f x x ≥恒成立. 【答案】ABD【分析】由题可知函数()g x 为周期函数,根据导数判断函数的单调性,进而可得函数的值域可判断D ,结合条件可得函数()[)[)232,2,2144,21,22x kk x k k f x x k x k k -⎧+∈+⎪=⎨-++∈++⎪⎩可判断AB ,利用数形结合可判断C.【详解】由题可得函数()g x 为周期函数,当[)0,1x ∈时,()3x g x x =-,则()3ln31ln310xg x '=-≥->,函数单调递增,()[)31,2xg x x =-∈,当[)1,2x ∈时,()(]240,2g x x =-+∈, 故可得函数()g x 的值域为(]0,2,因为()[)[)3,0,124,1,2x x x g x x x ⎧-∈⎪=⎨-+∈⎪⎩,()()2g x g x =+,所以()()[)[)232,2,212244,21,22x kx k x k k g x g x k x k x k k -⎧-+∈+⎪=-=⎨-++∈++⎪⎩(Z k ∈), 故()()f x x g x =+[)[)232,2,2144,21,22x k k x k k x k x k k -⎧+∈+⎪=⎨-++∈++⎪⎩,所以函数()f x 的单调递增区间为()()2,21,Z k k k +∈,单调减区间为()()21,22,Z k k k ++∈,故A 正确; 所以函数()f x 在()2022,2023上单调递增,在()2023,2024上单调递减, 故()f x 在()2022,2024上的最大值为()()()202320232023202312025f g g =+=+=,故B 正确;由()()0f x x g x =+=可得()g x x =-,所以函数()y g x =与函数y x =-交点的个数即为函数()f x 的零点数, 作出函数()y g x =与函数y x =-的大致图象,由图可知函数()y g x =与函数y x =-有一个交点, 即函数()f x 有且只有1个零点,故C 错误;由()f x x ≥,即()0g x ≥,因为()g x ∈(]0,2,故()f x x ≥恒成立,故D 正确. 故选:ABD. 三、填空题7.(2022·湖北·黄冈中学模拟预测)函数2()2e x f x a bx =++,其中a ,b 为实数,且(0,1)a ∈.已知对任意24e b >,函数()f x 有两个不同零点,a 的取值范围为___________________.【答案】)8e ,1-⎡⎣【分析】将函数有两个不同零点转化为方程有两个不等实根;再将方程变形构造新函数,求导并研究新函数的单调性,求其最小值,得到22ln ba-≥e ,再由已知条件求得)8,1a -⎡∈⎣e 即可. 【详解】因为()f x 有两个不同零点()0f x ⇔=有两个不相等的实根 即220x a bx ++=e 有两个不相等的实根; 所以ln 220x a bx ++=e e ,令ln t x a = ,则220ln tbta++=e e ,t 显然不为零,所以22ln t b a t+-=e e ,因为()0,1a ∈ ,24e b > , 所以20ln ba-> ,所以0t > ; 令()()20t g t t t+=>e e ,则()()22t t t g t t-+'=e e e ;令()()()20t t h t t t =-+>e e e ,则()0t t t t h t t t '=+-=>e e e e ,所以()h t 在()0,∞+上单调递增,又()20h = ,所以当()0,2t ∈时,()0h t < ;当()2,t ∈+∞ 时,()0h t > ; 所以当()0,2t ∈时,()0g t '< ;当()2,t ∈+∞ 时,()0g t '> ; 故()g t 在()0,2上单调递减,在()2,+∞上单调递增;所以()()2min 2g t g ==e ,所以22ln ba-≥e ; 又24e b >,所以24b >e ,所以ln 42a -≤ 即ln 8a ≥- ,8a -≥e , 又()0,1a ∈ ,所以)8,1a -⎡∈⎣e ; 故答案为:)8,1-⎡⎣e .8.(2023·江苏·南京市中华中学高三阶段练习)若关于x 的不等式()()ee ln mxmx m x x mx x x +≤+-恒成立,则实数m 的最小值为________ 【答案】e e 1- 【分析】将不等式两边同时除以m x ,进而转化为()()ln e eln m x x xx m x x -+≤+-,令()e x f x x =+,进而将原不等式转化为()()()ln f x f m x x ≤-恒成立,再根据单调性转化为ln xm x x≥-恒成立,进而构造函数()()0ln xg x x x x=>-,求导分析最大值即可. 【详解】∵0x >,∴不等式两边同时除以mx ,得:()e e ln mxxm x m x x x+≤+-∴()1lne eln mmx xx x m x x ++≤+- ∴()ln e eln x mx m xx m x x -+≤+- ∴()()ln e eln m x x xx m x x -+≤+- ①令()e xf x x =+,可知()f x 单调递增.①式等价于()()()ln f x f m x x ≤-恒成立 ∴()ln x m x x ≤-恒成立.构造()()ln 0x x x x ϕ=->,则()1x x xϕ-'=,故当()0,1x ∈时()0x ϕ'<, 当()1,x ∈+∞时()0x ϕ'>,所以()()ln 0x x x x ϕ=->在1x =时取得最小值. 即()()ln 010x x x ϕϕ=-≥=>,∴ln 0x x -> ∴ln xm x x≥-恒成立 令()()0ln xg x x x x=>- ∴()g x '()()221ln 11ln ln ln x x x x x x x x x ⎛⎫--- ⎪-⎝⎭==-- ∴当()0e x ∈,时,()0g x '>,∴()g x 单调递增;当()e x +∞,时,()0g x '< ∴()g x 单调递减; ∴()g x 的最大值为()e e e 1g =- ∴ee 1m ≥-,故实数m 的最小值为e e 1-. 故答案为:e e 1- 【点睛】关键点点睛:本题关键是将已知不等式转化为()()ln e eln m x x xx m x x -+≤+-,构造()e x f x x =+,进而将原不等式转化为()()()ln f x f m x x ≤-恒成立,再根据单调性即可得到.9.(2022·全国·长垣市第一中学高三开学考试(理))已知不等式e ln x a a x x x +≥+对任意()1,x ∈+∞恒成立,则正实数a 的取值范围是___________. 【答案】(]0,e【分析】将题目所给不等式进行变形,然后利用构造函数法,结合导数来求得a 的取值范围. 【详解】不等式e ln x a a x x x +≥+可变形为ln e ln e ln x a a x x x a x a x --=-. 因为0a >且1x >,所以ln 0a x >.令()e (0)u f u u u =->,则()e 10uf u ='->.所以函数()f u 在()0,∞+上单调递增.不等式ln e e ln x a x x a x -≥-等价于()()ln f x f a x ≥,所以ln x a x ≥. 因为1x >,所以ln x a x≤. 设()(1)ln xg x x x=>,则()2ln 1(ln )x g x x -'=.当()1,e x ∈时,()0g x '<,函数()g x 在()1,e 上单调递减; 当()e,x ∈+∞时,()0g x '>,函数()g x 在()e,+∞上单调递增. 所以()min ()e e g x g ==,所以0e a <≤. 故正实数a 的取值范围是(]0,e .10.(2022·重庆南开中学高三阶段练习)已知函数124e ,1()(2)2,1x ax a x f x x a x a x -⎧+->=⎨+--≤⎩,若关于x 的不等式()0≤f x 的解集为[)2,-+∞,则实数a 的取值范围是___________. 【答案】[]1,2【分析】将不等式()0≤f x 的解集为[)2,-+∞转化为21(2)20x x a x a ≤⎧⎨+--≤⎩的解为[]2,1-及当1x >时,14e 0x ax a -+-≤恒成立,从而可求得12a ≤≤.【详解】不等式()0≤f x 等价于21(2)20x x a x a ≤⎧⎨+--≤⎩或114e 0x x ax a ->⎧⎨+-≤⎩, 而()0≤f x 的解集为[)2,-+∞,故21(2)20x x a x a ≤⎧⎨+--≤⎩的解为[]2,1-且14e 0x ax a -+-≤对任意的1x >恒成立. 又21(2)20x x a x a ≤⎧⎨+--≤⎩即为()()120x x x a ≤⎧⎪⎨+-≤⎪⎩,若2a <-,则()()120x x x a ≤⎧⎪⎨+-≤⎪⎩即为12x a x ≤⎧⎨≤≤-⎩,这与解为[]2,1-矛盾;若2a =-,则()()120x x x a ≤⎧⎪⎨+-≤⎪⎩即为12x x ≤⎧⎨=-⎩,这与解为[]2,1-矛盾;若2a >-,则()()120x x x a ≤⎧⎪⎨+-≤⎪⎩即为12x x a ≤⎧⎨-≤≤⎩,因为21(2)20x x a x a ≤⎧⎨+--≤⎩的解为[]2,1-,故1a ≥.当1x >时,14e0x ax a -+-≤恒成立即为14e 1x a x -≤+恒成立, 令()14e ,11x s x x x -=>+,则()()()()111224e 14e 4e 011x x x x x s x x x ---+-'==>++, 故()s x 在()1,+∞为增函数,故()()02s x s >=, 故2a ≤. 综上,12a ≤≤ 故答案为:[]1,2.【点睛】思路点睛:与分段函数有关的不等式解的问题,应该就不同解析式对应的范围分类讨论,讨论时注意结合解析式的形式确定分类讨论还是参变分离.四、解答题11.(2022·全国·高一课时练习)已知函数,()()e 1e x xf x a -=++.(1)若0是函数()2=-y f x 的零点,求a 的值;(2)若对任意,()0x ∈+∞,不等式()1f x a ≥+恒成立,求a 的取值范围. 【答案】(1)0 (2)(,3]-∞【分析】(1)0是函数()2=-y f x 的零点代入可得a ;(2)由题意知e (1)e 1-++≥+xxa a 在(0,)+∞上恒成立,转化为2e e 1e 1x xxa -+≤-在(0,)+∞上恒成立,化简可得11≤++a t t,利用均值不等式求最值可得答案.(1)因为0是函数()2=-y f x 的零点,所以00e (1)e 20a -++-=,解得a =0; (2)由题意知e (1)e 1-++≥+x x a a 在(0,)+∞上恒成立,则()2e 1e e 1x x xa -≤-+,又因为,()0x ∈+∞,所以e 1x>,则2e e 1e 1x x xa -+≤-, 令e 1(0)-=>x t t ,则e 1x t =+,可得22(1)(1)1111+-++++≤==++t t t t a t t t t, 又因为111123t t t t ++≥+⋅=,当且仅当1t t =即1t =时,等号成立,所以3a ≤,即a 的取值范围是(],3-∞.12.(2021·河南·高三开学考试(文))已知函数()()()ln 12f x a x x a =+-∈R . (1)讨论函数()f x 的单调性;(2)若函数()3f x 在()1,+∞上恒成立,求证:2e a <.(注:3e 20≈)【答案】(1)当0a 时,()f x 在()0,∞+上单调递;当0a >时,数()f x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增;在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减; (2)证明见解析.【分析】(1)对函数求导,讨论0a 和0a >两种情况,即可得出函数的单调性; (2)利用分类参数的方法,先得到23ln 1x a x +≤+,构造新的函数()()231ln 1x h x x x +=>+,用导数的方法求其最小值,即可证明结论成立.【详解】(1)由题知函数()f x 的定义域为()0,∞+,()22a a xf x x x-'=-= ①当0a ≤时,()0f x '<,此时函数()f x 在()0,∞+上单调递; ②当0a >时,令()0f x '>,得02ax <<;令()0f x '<,得2a x >, 所以函数()f x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增;在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减;综上,当0a 时,()f x 在()0,∞+上单调递;当0a >时,数()f x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增;在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减;(2)由题意,()()ln 123f x a x x =+-在()1,+∞上恒成立, 可化为23ln 1x a x +≤+在()1,x ∈+∞上恒成立, 设()()231ln 1x h x x x +=>+, 则()()()()()22132ln 1232ln ln 1ln 1x x x x x h x x x +-+⨯-'==++设()()32ln 1x x x x ϕ=->,则()2230x x xϕ'=+>, 所以()x ϕ在()1,+∞上单调递增,又()3ln16322ln 2022ϕ-=-=<,()3e 20eϕ=-> 所以方程()0h x '=有且只有一个实根0x ,且02e x <<,0032ln x x =, 所以在()01,x 上,()0h x '<,()h x 单调递减, 在()0,x +∞上,()0h x '>,()h x 单调递增, 所以函数()h x 的最小值为()000000232322e 3ln 112x x h x x x x ++===<++, 从而022e a x ≤<. 【点睛】思路点睛:求解不等式在给定区间内恒成立求参数的问题时,优先考虑分离参数的方法,分离出所求参数,构造新的函数,利用导数的方法求解函数的最值,进而即可求解.13.(2022·云南省下关第一中学高三开学考试)已知函数()ln (1)f x x x a x a =-++. (1)求函数()f x 的极值;(2)若不等式(1)()(2)e x f x x a a -≤--+对任意[1,)x ∈+∞恒成立,求实数a 的取值范围. 【答案】(1)极小值为e a a -;无极大值 (2)a 的取值范围为(,0]-∞【分析】(1)先判断函数定义域,再求导结合函数单调性求出极值即可;(2)对函数进行同构变形,令()(1)e x g x x a =--,则(ln )(1)g x g x ≤-对任意[1,)x ∈+∞恒成立,首先可以证明0ln 1x x ≤≤-对[1,)x ∈+∞恒成立,原题转化为求()g x 在[0,)+∞上单调递增时a 的取值范围即可. (1)由题意得:()ln (1)f x x x a x a =-++,,()0x ∈+∞, 所以()ln f x x a '=-,令()0f x '=,解得e (0,)a x =∈+∞,当0e a x <<时()0f x '<;当e a x >时,()0f x '>.所以()f x 在()0,e a 上单调递减,在()e ,a+∞上单调递增. 所以()f x 有极小值,为()e e a af a =-;无极大值.(2)由已知得,(1)ln (1)(2)e x x x a x x a --+≤--对任意[1,)x ∈+∞恒成立, 即ln (1)(ln 1)e [(1)1]e x x x a x a ---≤---对任意[1,)x ∈+∞恒成立, 令()(1)e x g x x a =--,则(ln )(1)g x g x ≤-对任意[1,)x ∈+∞恒成立, 下证:0ln 1x x ≤≤-对任意[1,)x ∈+∞恒成立, 令()ln (1)h x x x =--,[1,)x ∈+∞. 则()10xh x x-'=≤在[1,)+∞上恒成立,且仅当1x =时取"=". 所以()h x 在[1,)+∞上单调递减,()(1)0h x h ≤=, 即0ln 1x x ≤≤-,[1,)x ∈+∞所以(ln )(1)g x g x ≤-对任意[1,)x ∈+∞恒成立,只需()g x 在[0,)+∞上单调递增,即()()e 0xg x x a '=-≥在[0,)+∞上恒成立,即a x ≤在[0,)+∞上恒成立, 所以0,a ≤即a 的取值范围为(,0]-∞.【点睛】导数求参问题要善于运用转化的手法,本题先运用同构方法对原不等式变形,最终转化为函数单调性问题,结合函数的单调性与导数的关系,即可解答.14.(2022·甘肃定西·高二开学考试(理))已知函数()ln f x x x =,()23g x x ax =-+-(1)求()f x 在()()e,e f 处的切线方程(2)若存在[]1,e x ∈时,使()()2f x g x ≥恒成立,求a 的取值范围. 【答案】(1)2e y x =- (2)32eea【分析】(1)求出函数()f x 的导函数,确定切线的斜率,即可求()f x 在()()e,e f 处的切线方程;(2)先把不等式()()2f x g x ≥成立转化为32ln a x x x≤++成立,设32ln x x xx,[]1,e x ∈,利用导函数求出()x ϕ在[]1,e x ∈上的最大值,即可求实数a 的取值范围.(1)由()ln f x x x =,可得()ln 1f x x '=+, 所以切线的斜率()e 2k f '==,()e e f =.所以()f x 在()()e,e f 处的切线方程为()e 2e y x -=-,即2e y x =-; (2) 令20l 223n h x xf xg x x ax x ,则max 32ln a x x x ⎡⎤≤++⎢⎥⎣⎦,令32ln x x xx ,[]1,e x ∈, 在[]1,e x ∈上,2130x xxx ,()x ϕ∴在[]1,e 上单调递增,max3e 2e +ex , 32eea. 15.(2016·四川·高考真题(理))设函数f (x )=ax 2-a -ln x ,其中a ∈R. (I )讨论f (x )的单调性;(II )确定a 的所有可能取值,使得11()xf x e x->-在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数). 【答案】(I ) 见解析(II ) 1[,)2a ∈+∞.【详解】试题分析:本题考查导数的计算、利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力.第(Ⅰ)问,对()f x 求导,再对a 进行讨论,从而判断函数()f x 的单调性;第(Ⅱ)问,利用导数判断函数的单调性,从而证明结论. 试题解析:(Ⅰ)2121()2(0).ax f x ax x x x --=>'=0a ≤当时,()'f x <0,()f x 在0+∞(,)内单调递减. 0a >当时,由()'f x =0,有12x a=. 此时,当x ∈10,)2a(时,()'f x <0,()f x 单调递减; 当x ∈1+)2a(,∞时,()'f x >0,()f x 单调递增. (Ⅱ)令()g x =111ex x --,()s x =1e x x --.则()s x '=1e 1x --. 而当1x >时,()s x '>0,所以()s x 在区间1+)∞(,内单调递增. 又由(1)s =0,有()s x >0, 从而当1x >时,()f x >0.当0a ≤,1x >时,()f x =2(1)ln 0a x x --<.故当()f x >()g x 在区间1+)∞(,内恒成立时,必有0a >. 当102a <<时,12a>1. 由(Ⅰ)有1()(1)02f f a <=,从而1()02g a>, 所以此时()f x >()g x 在区间1+)∞(,内不恒成立. 当12a ≥时,令()()()(1)h x f x g x x =-≥, 当1x >时,3212222111112121()20xx x x x h x ax e x x x x x x x x --+-+=-+->-+-=>>', 因此,()h x 在区间(1,)+∞单调递增.又因为(1)=0h ,所以当1x >时,()()()0h x f x g x =->,即()()f x g x >恒成立. 综上,1[,)2a ∈+∞.【考点】导数的计算,利用导数求函数的单调性,解决恒成立问题【名师点睛】本题考查导数的计算,利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力.求函数的单调性,基本方法是求'()f x ,解方程'()0f x =,再通过'()f x 的正负确定()f x 的单调性;要证明不等式()()f x g x >,一般证明()()f x g x -的最小值大于0,为此要研究函数()()()h x f x g x =-的单调性.本题中注意由于函数()h x 的极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到,有一定的难度.16.(2020·河南开封市·高三一模(理))已知函数()()ln 0af x ax x a =>.(1)当1a =时,求曲线()y f x =在x e =处的切线方程; (2)若()xf x xe ≤对于任意的1x >都成立,求a 的最大值.【答案】(1)2y x e =-;(2)最大值为e . 【解析】(1)先由1a =,得到()ln f x x x =,对其求导,根据导数的几何意义,即可求出切线方程;(2)先由不等式恒成立,得到ln ln a a x x x x e e ≤⋅,构造函数()ln g x x x =,利用导数的方法判定其单调性,得到a x x e ≤对于任意的1x >都成立,分离参数,得到ln xa x≤对于任意的1x >都成立,再由导数的方法求出ln xx的最小值,即可得出结果. 【详解】(1)当1a =时,()ln f x x x =,得()ln 1f x x '=+, 则()f e e =,()2f e '=,所以()y f x =在x e =处的切线方程为:2y x e =-. (2)当0a >且1x >时,由于()ln ln ln ln xaxaaxaaxxf x xe ax x xe x x xe x x e e ≤⇔≤⇔≤⇔≤⋅, 构造函数()lng x x x =,得()ln 10g x x '=+>在1x >上恒成立,所以()ln g x x x =在()1,+∞上单调递增,()()()ln ln x a a x x a x f x xe x x e e g x g e ≤⇔≤⋅⇔≤,由于()xf x xe ≤对任意的1x >都成立,又1a x >,e 1x >,再结合()g x 的单调性知道:。
导数恒成立问题3种基本方法
导数恒成立问题3种基本方法
这种方法是根据导数定义和基本求导公式来求导数的,需要掌握一些基本公式,如:
1.导数的定义:f'(x) = lim(h→0) [f(x+h) - f(x)]/h
2.常数的导数:(c)' = 0
3.幂函数的导数:(x^n)' = nx^(n-1)
4.指数函数的导数:(a^x)' = a^xlna
5.对数函数的导数:(loga x)' = 1/(xlna)
6.三角函数的导数:(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec^2x
二、运算法则法
这种方法是根据导数的运算法则来求导数的,需要掌握一些基本运算法则,如:
1.加减法则:(f+g)' = f' + g'
2.乘法法则:(fg)' = f'g + fg'
3.除法法则:(f/g)' = [f'g - fg']/g^2
4.复合函数法则:(f(g(x)))' = f'(g(x))g'(x)
三、对数微分法
这种方法是使用对数微分法来求导数的,需要掌握以下公式:
1.对数微分法:y = f(x),y' = [ln(y)]'
2.求导公式:[ln(f(x))]′ = f′(x)/f(x)
3.应用:可以将y = f(x)转化为lny = lnf(x),再求导。
以上就是求导的三种基本方法,掌握它们可以更好地理解导数的概念和作用。
函数导数中的恒成立问题解题技巧
函数导数中的恒成立问题解题技巧函数导数中的恒成立问题解题技巧随着新课标下的高考越来越重视考查知识的综合应用,恒成立问题成为了考试中的热点问题。
这种问题涉及方程、不等式、函数性质与图象及它们之间的综合应用,同时渗透换元、转化与化归、数形结合、函数与方程等思想方法,考查综合解题能力。
在函数、导数中,这种问题更为明显。
本文将介绍两种解题技巧。
一、利用函数的性质解决XXX成立问题利用函数的性质解决恒成立问题,主要是函数单调性的应用。
例如,对于已知函数$f(x)=x^3+(1-a)x^2-a(a+2)x+b(a,b\in R)$,若函数$f(x)$的图象过原点,且在原点处的切线斜率是$-3$,求$a,b$的值。
我们可以先求出$f'(x)$,然后令$f(0)=b=0$,$f'(-1)$和$f'(1)$的乘积小于$0$,解出$a=-3$或$a=1$。
再比如,若函数$f(x)$在区间$(-1,1)$上不单调,求$a$的取值范围。
我们可以利用导函数$f'(x)$在给定的区间上有零点这一性质,根据函数零点的存在性定理解出$a$的取值范围。
二、利用数形结合思想解决恒成立问题利用数形结合思想解决恒成立问题,可以通过画图来求出函数的单调区间、极值点等信息,再结合数学方法解决问题。
例如,对于已知$x=3$是函数$f(x)=a\ln(1+x)+x^2-10x$的一个极值点,求$a$。
我们可以求出$f'(x)$,然后令$f'(3)=0$,解出$a=16$。
再比如,若直线$y=b$与函数$y=f(x)$的图象有$3$个交点,求$b$的取值范围。
我们可以根据函数$f(x)$的单调性来求出其极大值和极小值,画出图象,数形结合可以求出$b$的取值范围。
这些技巧可以帮助我们更好地解决函数导数中的恒成立问题,提高我们的解题能力。
方法点评:分离参数是解决恒成立问题的一种重要方法,通过构造新函数并求其最值,可以得到参数取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数导数中的恒成立问题解题技巧函数导数中的恒成立问题解题技巧新课标下的高考越来越重视考查知识的综合应用,恒成立问题涉及方程、不等式、函数性质与图象及它们之间的综合应用,同时渗透换元、转化与化归、数形结合、函数与方程等思想方法,考查综合解题能力,尤其是在函数、导数中体现的更为明显,也是历年高考的热点问题,根据本人的体会,恒成立问题主要有以下几种.一、利用函数的性质解决恒成立问题例1 已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R .(1)若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值;(2)若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围. 解:(1)由题意得)2()1(23)(2+--+='a a x a x x f又⎩⎨⎧-=+-='==3)2()0(0)0(a a f b f ,解得0=b ,3-=a 或1=a (2)函数)(x f 在区间)1,1(-不单调,等价于导函数)(x f '在)1,1(-既能取到大于0的实数,又能取到小于0的实数 即函数)(x f '在)1,1(-上存在零点,根据零点存在定理,有0)1()1(<'-'f f , 即:0)]2()1(23)][2()1(23[<+---+--+a a a a a a 整理得:0)1)(1)(5(2<-++a a a ,解得15-<<-a所以a 的取值范围是{}15-<<-a a .【方法点评】利用函数的性质解决恒成立问题,主要是函数单调性的应用,函数在给定的区间上不单调意味着导函数在给定的区间上有零点,利用函数零点的存在性定理即可解决问题.二、利用数形结合思想解决恒成立问题例2 已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点.(1)求a ;(2)求函数()f x 的单调区间;(3)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.【方法指导】(1)在极值点处导数为零,可以求a 的值;(2)求函数的单调区间借助()0f x '>可以求出单调递增区间,()0f x '<可以求出单调递减区间;(3)根据函数()f x 的单调性可以求出其极大值和极小值,画出图象,数形结合可以求出b 的取值范围.解:(1)因为()'2101a f x x x =+-+,所以()'361004a f =+-=,因此16a =. (2)由(1)知,()()()216ln 110,1,f x x x x x =++-∈-+∞,()()2'2431x x f x x -+=+ 当()()1,13,x ∈-+∞时,()'0f x >;当()1,3x ∈时,()'0f x <.所以()f x 的单调增区间是()()1,1,3,-+∞,()f x 的单调减区间是()1,3.(3)由(2)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29=-f ,极小值为()332ln 221f =-因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<因此,b 的取值范围为()32ln 221,16ln 29--.【方法点评】数形结合是高中数学中常考的思想方法之一,在有关取值范围问题、单调性问题、最值问题中体现较明显,同时方程的根及函数零点也可转化为交点问题解决.三、分离参数解决恒成立问题例3 已知函数()ln a f x x x=-, (1)当0a >时,判断()f x 在定义域上的单调性;(2)若2()f x x <在(1,)+∞上恒成立,求a 的取值范围.【方法指导】(1)通过判断导数的符号解决;(2)由于参数a 是“孤立”的,可以分离参数后转化为一个函数的单调性或最值等解决.解:(1)由题意:()f x 的定义域为(0,)+∞,且221()a x a f x x x x+'=+=. 0,()0a f x '>∴>,故()f x 在(0,)+∞上是单调递增函数. (2)322ln ,0.ln ,)(x x x a x x x a x x x f ->∴><-∴<又 令232116()ln ,()()1ln 3,()6x g x x x x h x g x x x h x x x x-''=-==+-=-=, ()h x 在[1,)+∞上是减函数,()(1)2h x h ∴<=-,即()0g x '<,()g x ∴在[1,)+∞上也是减函数,()(1)1g x g ∴<=-.令1a ≥-得()a g x >,∴当2()f x x <在(1,)+∞恒成立时,a 的取值范围是{}1-≥a a .【方法点评】分离参数是恒成立问题中的一种重要解题方法,分离参数后,构造新函数,求新函数的最值即可解决恒成立问题中的参数取值范围.四、利用两个函数的最值解决恒成立问题例4 [2014·新课标全国卷Ⅰ] 设函数f (x )=a e x ln x +b e x -1x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ;(2)证明:f (x )>1.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b x e x -1.由题意可得f (1)=2,f ′(1)=e ,故a =1,b =2.(2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e .设函数g (x )=x ln x ,则g ′(x )=1+ln x ,所以当x ∈)1,0(e 时,g ′(x )<0;当x ∈),1(+∞e时,g ′(x )>0. 故g (x )在)1,0(e 上单调递减,在),1(+∞e上单调递增,从而g (x )在(0,+∞)上的最小值为)1(eg =-1e . 设函数h (x )=x e -x -2e ,则h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e .因为g min (x )=)1(eg =h (1)=h max (x ), 所以当x >0时,g (x )>h (x ),即f (x )>1.五、不等式中的恒成立问题例5 (2016•山东)已知221()(ln ),x f x a x x a R x -=-+∈. (1)讨论()f x 的单调性;(2)当1a =时,证明3()()2f x f x '>+对于任意的[1,2]x ∈恒成立. 解:(1)()f x 的定义域为(0,)+∞,223322(2)(1)()a ax x f x a x x x x--'=--+= 当0a ≤时,若(0,1)x ∈,则()0,()f x f x '>单调递增,若(1,)x ∈+∞,则()0,()f x f x '<单调递减.当0a >时,3(1)()(a x f x x x x -'=-+.(i)当02a <<1.当(0,1)x ∈或)x ∈+∞时,()0,()f x f x '>单调递增.当x ∈时,()0,()f x f x '<单调递减.(ii)当2a =1=,在区间(0,)+∞内,()0,()f x f x '≥单调递增.(iii)当2a >时,01<.当x ∈或(1,)x ∈+∞时,()0,()f x f x '>单调递增,当x ∈时,()0,()f x f x '<单调递减. 综上所述,当0a ≤时,()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;当02a <<时,()f x 在(0,1)上单调递增,在上单调递减,在)+∞上单调递增;当2a =时,()f x 在(0,)+∞上单调递增;当2a >时,()f x 在(0,2a )上单调递增,在(2a,1)上单调递减,在(1,+∞)上单调递增.(2)证明:由(1)知,当1a =时,22321122()()ln (1)x f x f x x x x x x x -'-=-+---+23312ln 1x x x x x =-++--,[1,2]x ∈ 设()ln ,()g x x x h x =-=233121,[1,2]x x x x =+--∈,则()()()()f x f x g x h x '-=+. 由1()0x g x x-'=≥,可得()(1)1g x g ≥=,当且仅当1x =时取得等号. 又24326()x x h x x--+'=.设2()326x x x ϕ=--+,则()x ϕ在[1,2]上单调递减. 因为(1)1,(2)10ϕϕ==-,所以0(1,2)x ∃∈,使得当0(1,)x x ∈时,()0x ϕ>,0(,2)x x ∈时,()0x ϕ<.所以()h x h (x )在0(1,)x 上单调递增,在0(,2)x 上单调递减.由1(1)1,(2)2h h ==,可得1()(2)2h x h ≥=, 当且仅当2x =时取得等号.所以3()()(1)(2)2f x f xgh '-=+=, 即3()()2f x f x '>+对于任意的[1,2]x ∈成立. 六、利用恒成立问题求参数的取值范围 例6 (2015·北京)已知函数 。