线性代数学习知识重点归纳(同济第五版)

合集下载

线性代数公式总结

线性代数公式总结

同济5版 工程数学—线性代数 公式归总第1章、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 逆序数的计算(奇、偶排列);3. 对换:(在排列中,将任意两个元素对调,其余元素不动,称为一次对换.将相邻两个元素对调,叫做相邻对换.)a. 定理1:一个排列中的任意两个元素对换,排列改变奇偶性.推论:奇排列变成标准排列的对换次数为奇数,偶排列变成标准排列的对换次数为偶数. b.4. 如果1个n 阶行列式=0的元素比2n -n 还要多,则此行列式=0;5. 证明两个行列式相等(1.有完全相同的项;2.每一项所带的符号相等);6. 在全部n 阶排列中(n>=2),奇偶排列各占一半;7. D D ,1)T=即式相等行列式与它的转置行列 ;行列式变号列互换行列式的两行),()2;则此行列式等于零完全相同列如果行列式有两行,)()3;. ,)()4乘此行列式等于用数一数中所有的元素都乘以同列行列式的某一行k k面以提到行列式符号的外的所有元素的公因子可列行列式中某一行 )( )5 ., )( )6则此行列式为零元素成比例列行列式中如果有两行 ., )( )7列式之和则此行列式等于两个行的元素都是两数之和行若行列式的某一列 行列式的值不变对应的元素上去行然后加到另一列的各元素乘以同一数行把行列式的某一列, )( , )( )8 8.余子式与代数余子式P16-21;9.一个n 阶行列式,如果其中第i 行所有元素除ija 外都为零,那末这行列式等于ija 与它的代数余子式的乘积,即ijij A a D = ;10.行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即.,02211j i A a A a A a jn in j i j i ≠=+++ ;11. 代数余子式的性质: ①、ijA 和ija 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A;12.代数余子式和余子式的关系:(1)(1)i j i ji j i ji j i jM A A M++=-=-13.设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D-=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D-=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;.,21212121)1(的逆序数为行标排列其中亦可定义为阶行列式p p p t D D n n n p p p p p p ta aa nn∑-=将D 主副角线翻转后,所得行列式为4D ,则4D D =; 14.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( =◥◣):主对角元素的乘积;④、◤和◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C A BCB O B==、(1)m n CA OA A BB OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;15.范德蒙德(V andermonde)行列式∏≥>≥----==1112112222121).(111j i n j i n nn n nnn x x x x x x x x x x x D16.对于n 阶行列式A,恒有:1(1)nnk n kk k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;17.证明0A =的方法:①、A A=-;②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;18.如果1个n 阶行列式=0的元素比2n -n 还要多,则此行列式=0;19.证明两个行列式相等(1.有完全相同的项;2.每一项所带的符号相等);20.计算证明行列式:①、用定义(行排列乱...;列排列乱...;都乱,看行标与列标逆序数之和);②、化三角形行列式;③、降阶法;④、数学归纳法;⑤、递推法;⑥、范得蒙行列式; 21.克拉默法则(以下顺序按照①②③④⑤的顺序)①所得到的行列式,换成常数项列中第)是把系数行列式(其中那么它有唯一解的系数行列式如果线性方程组2b b b x b x a x a x a b x a x a x a b x a x a x a n j jj n n nn n n n n n n j D n j D n j D D D , ,,2,1.,,2,1,,0 .,,122112222212111212111===≠⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++②唯一那么它一定有解,且解的系数行列式如果线性方程组,0.,,22112222212111212111≠⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++D b x a x a x a b x a x a x a b x a x a x a n n nn n n n n n n③必为零解,则它的系数行列式解或有两个不同的如果上述线性方程组无④.,0.0,0,0 221122221*********那么它没有非零解的系数行列式如果齐次线性方程组≠⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++D x a x a x a x a x a x a x a x a x a n nn n n n n n n⑤它的系数行列式必为零组有非零解,则如果上述齐次线性方程第2章、矩阵1 两张表a表矩阵加法数乘矩阵矩阵乘法定义(), ()ij m n ij m n A a B b ⨯⨯==()ij ij m n A B a b ⨯+=+ ()ij m n A a ⨯=,λ是一个数 ()ij m n A A a λλλ⨯==(), ()ij m s ij s n A a B b ⨯⨯== ()ij m n AB C c ⨯==,其中1sij ik kj k c a b ==∑交换律A B B A +=+A A λλ=不一定成立(课本P.35例5)结合律()()A B C A B C ++=++ ()()A A λμλμ=()()AB C A BC = ()()()AB A B A B λλλ==分配律/()A A A λμλμ+=+ ()A B A B λλλ+=+()A B C AB AC +=+()B C A BA CA +=+其它负矩阵与矩阵减法 ()A B A B -=+-/•不能由AB O =推出A O =或B O =• m m n m n m n n E A A A E ⨯⨯⨯==• ()()n n n n n E A A A E λλλ==•方阵的幂b 表矩阵的转置方阵的行列式方阵求逆定义设()ij m n A a ⨯=,则 ()T ij n m A b ⨯=,其中ij jib a = 由n 阶方阵A 的元素所构成的行列式(各元素的位置不变),记作||A 或det An 阶方阵A 的逆矩阵1*1||A A A -=性质 • ()T TA A = • ()TTTA B A B +=+ •()TTA A λλ= •()T T T AB B A =• ||||T A A =• ||||nA A λλ=•||||||AB A B =⋅,其中A 、B必为同阶方阵•**||AA A A A E ==11()A A --=111()A A λλ--=111()AB B A ---=2.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基;⇔A 是n R 中某两组基的过渡矩阵;伴随矩阵T ij nn n n n n A A A A A A A AA A A )(212222111211*=⎪⎪⎪⎪⎪⎭⎫⎝⎛=若 A 是 n 阶矩阵,记ijA 是A 的),(j i 位元素 ij a 的代数余子式,规定A 的伴随矩阵为3.对于n 阶矩阵A :**AA A A A E == 无条件恒成立;4.1**111**()()()()()()T T T T A A A A A A ----===***111()()()T T TAB B A AB B A AB B A ---===5.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;6.关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯)⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 第3章、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-; 6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)第4章、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()T r A A r A =;(101P 例15) 5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)第5章、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

线性代数(同济第五版)第三章复习提纲

线性代数(同济第五版)第三章复习提纲
口诀:左行右列. 性质1 设A是一个 m×n 矩阵, 对 A 施行一次初等行变换,相当于在 A 的左边乘以相应的 m 阶初等矩阵; 对 A 施行一次初等列变换,相当于在 A 的右边乘以相应的 n
阶初等矩阵.
性质2
方阵A可逆的充要条件是存在有限个初等矩阵P1, P2, …,
Pl,使 A = P1 P2 …, Pl . 这表明,可逆矩阵的标准形矩阵是单位阵. 其实,可逆矩阵的 行最简形矩阵也是单位阵. 推论1 推论2 方阵 A 可逆的充要条件是 A ~ E . 方阵 A 与 B 等价的充要条件是存在 m 阶可逆矩阵 P 及
m n 矩阵 A 的秩 R( A) 是 A 中非零 子式的最高阶数 .
注:由秩的定义得到:
(1) (2)
P.66
对于 AT, 显有 R( AT ) R( A).
对Amn,有0 R(A) minm , n
(3) A中有某个 s阶子式不为 0,则R(A) s;
若A中所有 t阶子式全为 0,则R(A) t.
n 阶可逆矩阵 Q ,使 PAQ = B .
初等变换的应用
当 A 0时,由 A P1 P2 Pl,有
性质2
Pl P P A E , 及
1 1 Pl 1 Pl P 1 1 A E
1
1 l 1
1 1
1 1 1 Pl 1 Pl P E A , 1 1
定 义2 设 在 矩 阵A 中 有 一 个 不 等 于 0的 r 阶子 式 D, 且 所 有r 1 阶 子 式 ( 如 果 存 在 的 ) 话全 等 于 0, 那 末 D 称 为 矩 阵 A的 最 高 阶 非 零 子 式 , 数 r 称 为 矩 阵A 的 秩 , 记 作R( A ) .并 规 定 零 矩 阵 的 秩 等 于 零.

线代知识点总结同济

线代知识点总结同济

线代知识点总结同济1. 向量与向量空间在线性代数中,向量是最基本的概念之一。

向量可以用于表示空间中的点、运动方向等物理量,是一种有向线段。

向量有大小和方向两个属性,可以进行加法、数乘等运算。

向量之间的关系以及它们在空间中的性质非常重要。

向量空间是由一组向量构成的集合,它是由满足一定条件的向量组成的线性空间。

向量空间具有一些性质,例如封闭性、交换律等,可以用来描述线性方程组、矩阵等概念。

2. 矩阵与行列式矩阵是线性代数中的另一个重要概念,它由行列元素组成的矩形数组。

矩阵可以用来表示线性变换、方程组等,是线性代数中的一个重要工具。

矩阵有加法、数乘等运算,还有转置、逆矩阵等重要性质。

行列式是一个数,它是一个方阵中元素的一种排列形式。

行列式可以用来判断矩阵的性质,例如是否可逆、是否奇异等。

行列式的计算方法有多种,通常可以使用展开式、矩阵对角化等方法。

3. 线性方程组线性方程组是线性代数中的一个重要内容,它由一组线性方程组成。

线性方程组的解可以用向量表示,可以使用矩阵与行列式的方法来求解。

线性方程组的解有唯一解、无解、有无穷解等情况,这些都与矩阵和行列式的性质有关。

4. 特征值与特征向量对于一个矩阵或者一个线性变换,它的特征值和特征向量是非常重要的概念。

特征值是一个数,它表示一个线性变换的重要性质。

特征向量是一个非零向量,它表示在特征值对应的线性变换下不改变方向的向量。

特征值与特征向量的计算方法有多种,例如可以使用特征多项式、特征分解等方法来求解。

特征值和特征向量可以用来研究矩阵的对角化、相似矩阵等重要性质。

5. 线性变换与线性映射线性变换是线性代数中的一个基本概念,它表示一个向量空间到另一个向量空间的映射。

线性变换有很多重要性质,例如它保持向量空间的运算、保持线性组合等。

线性映射是数学分析中的一个重要概念,它表示一个向量空间到另一个向量空间的映射,并且保持线性关系。

线性映射有一些重要性质,例如它的核和像空间的性质、线性映射的基本定理等。

线性的代数(同济第5版)复习要点

线性的代数(同济第5版)复习要点

线性代数(同济第5版)复习要点以矩阵为工具,以线性方程组问题为主线第一章 行列式基本结论 1.行列式的性质(1) 互换行列式的两行,行列式变号.(2) 行列式中某一行的所有元素的公因子可以提到行列式符号的外面.(3) 把行列式的某一行的各元素乘以同一数然后加到另一行对应的元素上去,行列式不变. 2.行列式按行(按列)展开定理3 行列式等于它的任一行的各元素与其对应的代数余子式乘积之和,即in in i i i i A a A a A a D +++=Λ2211 ),,2,1(n i Λ=3.克拉默法则 如果线性方程组的系数行列式不等于零,即0212222111211≠=nnn n n n a a a a a a a a a D ΛΛΛΛΛΛΛΛΛΛ那末,线性方程组有唯一的解,,,,2211DD x D Dx D D x n n ===Λ 主要计算 计算行列式:1.数字行列式化为上三角形; 2.计算有规律的....n 阶行列式. 例1.(例7)计算行列式 3351110243152113------=D2.(例8)计算行列式 3111131111311113=D第二章 矩阵及其运算基本概念注意:1.矩阵可乘条件、乘法规则 2. 矩阵乘法不满足交换律BA AB ≠3.矩阵乘法有零因子出现:O B O A ≠≠,,但却有O AB = 4.消去律不成立:AC AB =,推不出C B = 基本结论 1.转置 (i) A A T T =)( (ii) T T T B A B A +=+)( (iii) T T kA kA =)( (iv)T T T A B AB =)(2.方阵的行列式 (i) ||||A A T =(行列式性质1); (ii) ||||A A n λλ=; (iii)||||||B A AB =3.A 的伴随矩阵E A A A AA ||==**是初等矩阵可逆i sE E E E A E A nA R A A Λ21~)(0||=⇔⇔=⇔≠⇔推论 若E AB =(或E BA =),则1-=A B 方阵的逆阵满足下述运算规律:(i )若A 可逆,则1-A 亦可逆,且A A =--11)(. (ii )若A 可逆,数0≠λ,则A λ可逆,且111)(--=A A λλ(iii )若B A ,为同阶方阵且均可逆,则AB 亦可逆,且 111)(---=A B AB (iv )若A 可逆,则T A 亦可逆,且T T A A )()(11--= 基本计算用上面基本结论进行简单计算 主要计算求1-A :公式法*-=A A A ||11 基本证明用上面基本结论进行简单证明 例1. (例11)求矩阵的逆矩阵⎪⎪⎪⎭⎫ ⎝⎛=343122321A第三章 矩阵的初等变换与线性方程组线性方程组解的判定:1. n 元非齐次线性方程组b AX =b AX =有解⇔)()(B R A R =. 有解时,(记r B R A R ==)()() (1)n r =时,b AX =有唯一解 (2)n r <时,b AX =有无穷多解2.齐次线性方程组0=AX (0=AX 是b AX =的特殊情形)由于0=AX 永远满足)()(B R A R =,故0=AX 总有解(至少有零解)从而 (1)n r =时,0=AX 有唯一零解 (2)n r <时,0=AX 有(无穷多)非零解 基本计算 1.会求矩阵的秩2.会用矩阵的秩判别线性方程组有没有解,有解时,有多少解 3.会用初等变换求矩阵的逆初等变换)|()|(1-→A E E A 行;(包括求矩阵方程B AX =,用)|()|(1B A E B A -→行;主要计算1. 设非齐次线性方程组b AX =,试问此线性方程组有解吗?若有解,有多少解? 2. 会用初等变换求矩阵的逆 例1.(例5)设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=41461351021632305023A求矩阵A 的秩,并求A 的一个最高阶非零子式2.用初等变换求矩阵⎪⎪⎪⎭⎫ ⎝⎛=343122321A 的逆矩阵3.(例13)设有线性方程组⎪⎩⎪⎨⎧=+++=+++=+++,)1(,3)1(,0)1(321321321λλλλx x x x x x x x x 问λ取何值时,此方程组 (1)有唯一解; (2)无解;(3)有无限多个解?并在有无限多解时求其通解.第四章 向量组的线性相关性基本概念1.向量组的线性相关性向量的线性组合、线性表示、向量组的线性相关与线性无关 向量组的等价 2.向量组的秩极大线性无关组、向量组的秩 3.向量空间向量空间的基的定义、基的求法、向量空间的维数、维数的求法 向量组m ααα,,,21Λ所生成的向量空间为},,,|{),,,(21221121R k k k k k k L m m m m ∈+++=ΛΛΛαααααα4.线性方程组解的结构齐次线性方程组基础解系、非齐次线性方程组解的结构 基本结论 1.线性表出定理1 向量b 能由向量组A 线性表示的充分必要条件是矩阵),,,(21m A αααΛ=的秩等于矩阵),,,,(21b B m αααΛ=的秩.定理2 向量组l B βββ,,,:21Λ能由向量组m A ααα,,,:21Λ线性表示的充分必要条件是矩阵),,,(21m A αααΛ=的秩等于矩阵),,,,,(),(11l m B A ββααΛΛ=的秩. 即),()(B A R A R =.推论 向量组l B βββ,,,:21Λ与向量组m A ααα,,,:21Λ等价的充分必要条件是),()()(B A R B R A R ==定理3 设向量组l B βββ,,,:21Λ能由向量组m A ααα,,,:21Λ线性表示,则),,,(),,,(2121m l R R αααβββΛΛ≤.2. 向量组的线性相关性定理4 向量组m ααα,,,21Λ线性相关的充分必要条件是它所构成的矩阵),,,(21m A αααΛ=秩小于向量个数m ;向量组线性无关的充分必要条件是m A R =)(定理5 (1)若向量组m A ααα,,,:21Λ线性相关,则向量组11,,,:+m m B αααΛ也线性相关. (2) m 个n 维向量组成的向量组,当维数n 小于向量个数m 时一定线性相关.(3) 设向量组m A ααα,,,:21Λ线性无关,而向量组βααα,,,,:21m B Λ线性相关,则向量β必能由向量组A 线性表示,且表示式是唯一的.3.向量组的秩定理6 矩阵的秩等于它的列向量组的秩,也等于它的行向量组的秩.推论 (最大无关组的等价定义)设向量组B 是向量组A 的部分组,若向量组B 线性无关,且向量组A 能由向量组B 线性表示,则向量组B 是向量组A 的一个最大无关组.4.解的结构(1)齐次线性方程组性质1 若21,ξξ为0=Ax 的解, 则21ξξ+也是0=Ax 的解. 性质2 若ξ为0=Ax 的解,k 为实数,则ξk 也是0=Ax 的解.0=Ax 的基础解系:r n -ξξ,,1Λ,通解是r n r n k k X --++=ξξΛ11定理7 设n m ⨯矩阵A 的秩r A R =)(,则n 元齐次线性方程组O AX =的解集S 的秩r n R S -=. (2)非齐次线性方程组性质3 设1η及2η都是b Ax =的解,则21ηη-为导出组0=Ax 的解.性质4 设η是方程b Ax =的解,ξ是方程0=Ax 的解,则ηξ+仍是方程b Ax =的解.b Ax =的通解是:*+++=--ηξξr n r n k k X Λ11 5.向量空间向量组m ααα,,,21Λ所生成的向量空间为},,,|{),,,(21221121R k k k k k k L m m m m ∈+++=ΛΛΛαααααα基本计算1. 一般地,要判别一个向量⎪⎪⎪⎪⎪⎭⎫⎝⎛=n b b b M 21β是否可由向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ns s s s n n a a a a a a a a a M ΛM M 21222122121111,,,ααα线性表出? 设s s k k k αααβ+++=Λ2211按分量形式写出来就是⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++ns ns n n s s s s b k a k a k a b k a k a k a b k a k a k a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ22112222212*********,, (*)定理 β可由向量组s ααα,,,21Λ线性表出⇔(*)有解 2. 一般地,要判别一个向量组⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ns s s s n n a a a a a a a a a M ΛM M 21222122121111,,,ααα是否线性相关? 设02211=+++s s x x x αααΛ按分量写出来就是⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111s ns n n ss s s k a k a k a k a k a k a k a k a k a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ (**)定理 向量组s ααα,,,21Λ线性相关⇔齐次线性方程组(**)有非零解 3. ),,,(21m L αααΛ基和维数的求法 4.线性方程组解的结构(1)齐次线性方程组基础解系r n -ξξ,,1Λ(2)非齐次线性方程组解的结构的求法*+++=--ηξξr n r n k k X Λ11 主要计算1.设矩阵A ,求矩阵A 的列向量组的一个最大无关组,并把不属最大无关组的列向量用最大无关组线性表示.2.设非齐次线性方程组b AX =,试问(1)此线性方程组有解吗?若有解,有多少解?(第三章内容)(2)若有无穷多解,求其通解(要求通过它的导出组的基础解系给出的通解).(第四章内容) 基本证明向量的线性相关与线性无关、向量的组的等价、极大线性无关组、向量组的秩的证明 向量空间的基、维数的证明 基础解系、解的结构的证明 主要证明1.线性无关的证明2.B AB ⇔=0的列是0=AX 的解 例1.(例11)设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛------=97963422644121121112A 求矩阵A 的列向量组的一个最大无关组,并把不属最大无关组的列向量用最大无关组线性表示.2.(例16)设非齐次线性方程组⎪⎩⎪⎨⎧-=+--=-+-=+--2143214321432132130x x x x x x x x x x x x ,试问(1)此线性方程组有解吗?若有解,有多少解?(2)若有无穷多解,求其通解(要求通过它的导出组的基础解系给出的通解).3.(例6) 已知向量组321,,ααα线性无关,211ααβ+=, 322ααβ+=, 133ααβ+=,试证向量组321,,βββ线性无关.(第五章 §1 定理1、§2 定理2)4.(例13)设0=AB ,证明:n B R A R ≤+)()(.第五章 相似矩阵及二次型基本概念 一.内积内积的定义:n n y x y x y x Y X +++=Λ2211],[向量的长度:22221],[n x x x X X X +++==Λ、当1=X 时,称X 为单位向量.向量的夹角:YX Y X ],[arccos=θ向量的正交:0],[=Y X 时,称向量X 与Y 正交 正交向量组、正交基、规范正交基 正交矩阵A :)(1T T A A E A A ==-即 二.矩阵的特征值、特征向量 特征值、特征向量三.相似矩阵,对称阵的对角化四.二次型及其标准形,正定二次型,正定矩阵 基本结论 一.内积(i )],[],[X Y Y X =; (ii )],[],[Y X Y X λλ=(iii )],[],[],[Z Y Z X Z Y X +=+1.非负性:对任意X 都有 0≥X ; 当且仅当O X =时, 0=X2.齐次性: X X ||λλ=;3.三角不等式:Y X Y X +≤+定理1 若n 维向量r ααα,,,21Λ是一组两两正交的非零向量,则r ααα,,,21Λ线性无关.二.特征值、特征向量定理2 设m λλλ,,,21Λ是方阵A 的m 个特征值,m p p p ,,,21Λ依次是与之对应的特征向量.如果m λλλ,,,21Λ各不相同,则m p p p ,,,21Λ线性无关.三.相似矩阵,对称阵的对角化四.二次型及其标准形,正定二次型,正定矩阵 基本计算1.向量的长度:22221],[n x x x X X X +++==Λ 2.向量的夹角的求法:YX Y X ],[arccos=θ 3.正交化方法:设r ααα,,,21Λ线性无关 111122221111222231111333111122211],[],[],[],[],[],[],[],[],[],[],[],[--------=--=-==r r r r r r r r r ββββαββββαββββααβββββαββββααβββββααβαβΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ 4.单位化:r r r e e e ββββββ1,,1,1222111===Λ5.特征值的求法、特征向量的求法6.对称阵的对角化方法7.求正交变换化二次型为标准形例1.(例2) 设⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=014,131,121321ααα,试用施密特正交化过程把这组向量规范正交化。

考研数学线代(同济五版)重点

考研数学线代(同济五版)重点

线代部分(配同济5版)第一章行列式(行列式很少单独考大题,但考大题必然会用到行列式)第一节(了解)第二节(了解)第三节(了解)p6 从中间偏上一行“仿比,可以把行列式……情形”到p7上第三行(例5上面)不用看p7 例6证明不用看,记住上下三角行列式即可四、(不用看)五、(理解)p9 行列式性质1 证明不用看只需举例说明p10.。

2.。

p11 中间从“例如以数k。

”到“以上诸性质请读者证明之”可以不用看p12 例8 经典例题p14 例10证明不用看,记住结论即可p15 例11不用做六、(理解)p16 中间偏下引理及其证明不用看p17 记住定理3 ,证明不用看p18 例12 证明不用看,只需记住范德蒙德行列式p19 中间偏下,定理3的推论证明好好看一下p21 例13 经典例题七、(理解,考大题有时会用到)p22 例14仔细算一下p23 例15 可以不用做p25--28 习题一1(1)(2)、2(2)(5)、3、4(2)(4)、5(重点做一下)、6(2)(3)、8(1)(2)(3)、9(重点做,经典习题)、10(2)、12(重点做)第二章(考小题为主,但毫无疑问考大题必然会用到矩阵及其运算)第一节、(了解)p30 从例1到p31倒数第三行“对应n阶方阵”以上可以不用看p32 可以不用看第二节(理解)p34 定义4上面的均不用看(知道法则即可)p37 中从第五行“上节例1中。

”到p38倒数第四行“等式得证”均可以不用看p40 例8 经典例题p41 例9 经典结论务必会证明p42 六、(不用看)第三节(理解)p45 例12 经典例题(提升计算能力)第四节、(正在变得越来越重要)p51 例17 经典例题p53 克拉默法则的证明重点看一下p54--56 习题二要做的题1(2)(3)(5)、2、4、5(重点做)、6--9、10(2)(3)(4)、11(2)(3)、12(2)、14--17、18--21(均重点做)、22、23--24(重点做)、26、27、28(1)第三章(重要,基本必考大题)第一节(理解)第二节(掌握,基本每年考大题都会用到的概念)p66 第八行定义4重点看p69--70 矩阵秩的性质(1)--(8)与例8、9均要重点看、重点做第三节(重要,每年必考)p73 例10 重点做p74例11 不用做例12重点做p75 例13 重点做p77 定理7.证明重点做p78--80 习题三要做的题1(1)、2、3、4(1)、5--8、9(重点做)、10(2)、11--12(重点做)、13(4)、14(3)、15--16(重点做)、18--21(均要重点做)线代第四章(重要,每年必考,可能考大题,也可能考小题)第一节(重要,考大题为主)p81 从倒数第8行“在解析几何中。

线性代数(同济大学第五版)线性方程组讲义、例题

线性代数(同济大学第五版)线性方程组讲义、例题

第四章 线性方程组本章以矩阵的理论作为工具,研究线性方程组有解的条件及其解法.§1 线性方程组的几种表示一、一般形式n m ⨯的齐次线性方程组的一般形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* (1) 二、向量形式n m ⨯的齐次线性方程组的向量形式为βααα=+++n n x x x 2211,其中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=mi i i i a a a 21α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=m b b b 21β.三、矩阵形式n m ⨯的齐次线性方程组的矩阵形式为β=Ax其中n m ⨯矩阵][ij a A =是方程组的系数矩阵,T n x x x x ],,,[21 =是n 维未知数向量,特别地,当0=β时,0=Ax 称为齐次线性方程组,而当0≠β时,β=Ax 称为非齐次线性方程组,并称0=Ax 为β=Ax 的导出组.§2 齐次线性方程组的解任何一个齐次线性方程组一定有解,因为当021====n x x x 就是它的一个解,通常称为零解或平凡解.一、齐次线性方程组有非零解的充分(或必要)条件(1) 0=Ax 有非零解的充分必要条件是A 的列向量组相性相关 (2) 若方程个数小于未知向量个数,则0=Ax 必有非零解.(3) 当n m =,即A 为方阵时,则0=Ax 有非零解的充分必有条件是.0=A二、齐次线性方程组解的性质性质 1 如果 1ξ=x ,2ξ=x 是方程组0=Ax 的解,那么21ξξ+=x 也是方程组0=Ax 的解.性质 2 如果是1ξ=x 方程组0=Ax 的解,k 为实数,那么也1ξk x =是方程组0=Ax 的解.推论:如果m ξξξ,,,21 都是方程组0=Ax 的解,m k k k ,,,21 是常数,那么m ξξξ,,,21 的线性组合m m k k k ξξξ+++ 2211也是方程组0=Ax 的解.性质3 n 维向量ξ是n 齐次线性方程组0=Ax 的解,ξ一定与A 的每一个行向量均正交.由于0=ξ必是0=Ax 解向量,所以有性质1、2可知0=Ax 全体解向量的集合对于通常意义上的向量加法和数乘运算可构成向量空间,称为解空间.三、齐次线性方程组解的结构设s ξξξ,,,21 是0=Ax 的一组线性无关解向量,如果0=Ax 的任一解向量均可由s ξξξ,,,21 线性表示出,则称s ξξξ,,,21 为0=Ax 的解空间的一个基.亦即是0=Ax 的一个基础解系.对于0=Ax ,若n r A R <=)(,则下面将证明0=Ax 的基础解系,并给出了求基础解系的方法:不妨设A 的前r 个列向量线性无关,则A 经若干初等变换可得行最简形矩阵⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=--000000001001,1,111r n r r r n b b b b B0=Bx 与0=Ax 同解,而0=Bx ,即 ⎪⎪⎩⎪⎪⎨⎧---=---=---=-+-+-+nr n r r r n n r n r n r n r x b x b x x b x b x x b x b x ,11,21212,11111其中n r r x x x ,,,21 ++称为自由未知数,显然任给自由未知数的一组值,由上即可唯一确定r x x x ,,,21 的值,于是就得0=Bx 的一个解,也就是0=Ax 的一个解,现在分别取.100,,010,00121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++ n r r x x x (n r r x x x ,,,21 ++的r n -组取值形式线性无关的向量组)可得0=Ax 的r n -个线性无关的解向量.,0011111⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--= r b b ξ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=0012122 r b b ξ,, ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=-100212 r r n b b ξ下面证明0=Ax 的任一解向量()T n r r ,,1,21,,,,λλλλλξ +=均可由r n -ξξξ,,,21 线性表示.作向量r n n r r -+++++=ξλξλξλη 2211则由于r n -ξξξ,,,21 是0=Ax 的解,所以η也是0=Ax 的解,而η的后面r n -个分量与ξ的刚好对应相等,于是知η与ξ的前r 个分量也对应相等,所以ξη=,即r n n r r -+++++=ξλξλξλξ,2,211所以,r n -ξξξ,,,21 是0=Ax 的一个基础解系,亦即是解空间的一个基,从而知解空间的维数是r n -,此时,0=Ax 的解向量可表示为r n n k k k x -+++=ξξξ 2211,其中r n k k k -,,,21 为任意常数,此式称为=Ax 的通解,而解空间可表示为|{2211r n n k k k x -+++=ξξξ },,,21R k k k r n ∈- .例1 求齐次线性方程组⎪⎩⎪⎨⎧=++=-+=++,0,0,0543321521x x x x x x x x x 的基础解系.解:设系数矩阵为A⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=010001010010011~111000*********A25125545322521,0c x c x x x x x x x x x x x ==⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==--=∴令∴基础解系为:。

线性代数(同济第5版)复习要点

线性代数(同济第5版)复习要点

线性代数(同济第5版)复习要点以矩阵为工具,以线性方程组问题为主线第一章 行列式基本结论1.行列式的性质(1) 互换行列式的两行,行列式变号.(2) 行列式中某一行的所有元素的公因子可以提到行列式符号的外面.(3) 把行列式的某一行的各元素乘以同一数然后加到另一行对应的元素上去,行列式不变. 2.行列式按行(按列)展开定理3 行列式等于它的任一行的各元素与其对应的代数余子式乘积之和,即in in i i i i A a A a A a D +++=Λ2211 ),,2,1(n i Λ=3.克拉默法则 如果线性方程组的系数行列式不等于零,即0212222111211≠=nnn n n n a a a a a a a a a D ΛΛΛΛΛΛΛΛΛΛ那末,线性方程组有唯一的解,,,,2211DD x D Dx D D x n n ===Λ 主要计算计算行列式:1.数字行列式化为上三角形; 2.计算有规律的....n 阶行列式. 例1.(例7)计算行列式 3351110243152113------=D2.(例8)计算行列式 3111131111311113=D第二章 矩阵及其运算基本概念注意:1.矩阵可乘条件、乘法规则 2. 矩阵乘法不满足交换律BA AB ≠3.矩阵乘法有零因子出现:O B O A ≠≠,,但却有O AB = 4.消去律不成立:AC AB =,推不出C B =基本结论 1.转置 (i) A A T T =)( (ii) T T T B A B A +=+)( (iii) T T kA kA =)( (iv)T T T A B AB =)(2.方阵的行列式 (i) ||||A A T =(行列式性质1); (ii) ||||A A n λλ=; (iii)||||||B A AB =3.A 的伴随矩阵E A A A AA ||==**4.逆矩阵是初等矩阵可逆i sE E E E A E A nA R A A Λ21~)(0||=⇔⇔=⇔≠⇔推论 若E AB =(或E BA =),则1-=A B 方阵的逆阵满足下述运算规律:(i )若A 可逆,则1-A 亦可逆,且A A =--11)(. (ii )若A 可逆,数0≠λ,则A λ可逆,且111)(--=A A λλ(iii )若B A ,为同阶方阵且均可逆,则AB 亦可逆,且 111)(---=A B AB (iv )若A 可逆,则T A 亦可逆,且T T A A )()(11--= 基本计算用上面基本结论进行简单计算 主要计算求1-A :公式法*-=A A A ||11 基本证明用上面基本结论进行简单证明 例1. (例11)求矩阵的逆矩阵⎪⎪⎪⎭⎫ ⎝⎛=343122321A第三章 矩阵的初等变换与线性方程组基本结论线性方程组解的判定:1. n 元非齐次线性方程组b AX =b AX =有解⇔)()(B R A R =. 有解时,(记r B R A R ==)()()(1)n r =时,b AX =有唯一解 (2)n r <时,b AX =有无穷多解2.齐次线性方程组0=AX (0=AX 是b AX =的特殊情形)由于0=AX 永远满足)()(B R A R =,故0=AX 总有解(至少有零解)从而 (1)n r =时,0=AX 有唯一零解(2)n r <时,0=AX 有(无穷多)非零解 基本计算1.会求矩阵的秩2.会用矩阵的秩判别线性方程组有没有解,有解时,有多少解 3.会用初等变换求矩阵的逆初等变换)|()|(1-→A E E A 行;(包括求矩阵方程B AX =,用)|()|(1B A E B A -→行; 主要计算1. 设非齐次线性方程组b AX =,试问此线性方程组有解吗?若有解,有多少解? 2. 会用初等变换求矩阵的逆 例1.(例5)设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=41461351021632305023A求矩阵A 的秩,并求A 的一个最高阶非零子式2.用初等变换求矩阵⎪⎪⎪⎭⎫⎝⎛=343122321A 的逆矩阵3.(例13)设有线性方程组⎪⎩⎪⎨⎧=+++=+++=+++,)1(,3)1(,0)1(321321321λλλλx x x x x x x x x 问λ取何值时,此方程组(1)有唯一解; (2)无解;(3)有无限多个解?并在有无限多解时求其通解.第四章 向量组的线性相关性基本概念1.向量组的线性相关性向量的线性组合、线性表示、向量组的线性相关与线性无关 向量组的等价 2.向量组的秩极大线性无关组、向量组的秩 3.向量空间向量空间的基的定义、基的求法、向量空间的维数、维数的求法 向量组m ααα,,,21Λ所生成的向量空间为},,,|{),,,(21221121R k k k k k k L m m m m ∈+++=ΛΛΛαααααα4.线性方程组解的结构齐次线性方程组基础解系、非齐次线性方程组解的结构 基本结论 1.线性表出定理1 向量b 能由向量组A 线性表示的充分必要条件是矩阵),,,(21m A αααΛ=的秩等于矩阵),,,,(21b B m αααΛ=的秩.定理2 向量组l B βββ,,,:21Λ能由向量组m A ααα,,,:21Λ线性表示的充分必要条件是矩阵),,,(21m A αααΛ=的秩等于矩阵),,,,,(),(11l m B A ββααΛΛ=的秩. 即),()(B A R A R =.推论 向量组l B βββ,,,:21Λ与向量组m A ααα,,,:21Λ等价的充分必要条件是),()()(B A R B R A R ==定理3 设向量组l B βββ,,,:21Λ能由向量组m A ααα,,,:21Λ线性表示,则),,,(),,,(2121m l R R αααβββΛΛ≤.2. 向量组的线性相关性定理4 向量组m ααα,,,21Λ线性相关的充分必要条件是它所构成的矩阵),,,(21m A αααΛ=秩小于向量个数m ;向量组线性无关的充分必要条件是m A R =)(定理5 (1)若向量组m A ααα,,,:21Λ线性相关,则向量组11,,,:+m m B αααΛ也线性相关. (2) m 个n 维向量组成的向量组,当维数n 小于向量个数m 时一定线性相关.(3) 设向量组m A ααα,,,:21Λ线性无关,而向量组βααα,,,,:21m B Λ线性相关,则向量β必能由向量组A 线性表示,且表示式是唯一的.3.向量组的秩定理6 矩阵的秩等于它的列向量组的秩,也等于它的行向量组的秩.推论 (最大无关组的等价定义)设向量组B 是向量组A 的部分组,若向量组B 线性无关,且向量组A 能由向量组B 线性表示,则向量组B 是向量组A 的一个最大无关组.4.解的结构(1)齐次线性方程组性质1 若21,ξξ为0=Ax 的解, 则21ξξ+也是0=Ax 的解. 性质2 若ξ为0=Ax 的解,k 为实数,则ξk 也是0=Ax 的解.0=Ax 的基础解系:r n -ξξ,,1Λ,通解是r n r n k k X --++=ξξΛ11定理7 设n m ⨯矩阵A 的秩r A R =)(,则n 元齐次线性方程组O AX =的解集S 的秩r n R S -=. (2)非齐次线性方程组性质3 设1η及2η都是b Ax =的解,则21ηη-为导出组0=Ax 的解.性质4 设η是方程b Ax =的解,ξ是方程0=Ax 的解,则ηξ+仍是方程b Ax =的解.b Ax =的通解是:*+++=--ηξξr n r n k k X Λ11 5.向量空间向量组m ααα,,,21Λ所生成的向量空间为},,,|{),,,(21221121R k k k k k k L m m m m ∈+++=ΛΛΛαααααα基本计算1. 一般地,要判别一个向量⎪⎪⎪⎪⎪⎭⎫⎝⎛=n b b b M 21β是否可由向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ns s s s n n a a a a a a a a a M ΛM M 21222122121111,,,ααα线性表出?设s s k k k αααβ+++=Λ2211按分量形式写出来就是⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++ns ns n n s s s s b k a k a k a b k a k a k a b k a k a k a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ22112222212*********,, (*)定理 β可由向量组s ααα,,,21Λ线性表出⇔(*)有解 2. 一般地,要判别一个向量组⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ns s s s n n a a a a a a a a a M ΛM M 21222122121111,,,ααα是否线性相关?设02211=+++s s x x x αααΛ按分量写出来就是⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111s ns n n ss s s k a k a k a k a k a k a k a k a k a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ (**)定理 向量组s ααα,,,21Λ线性相关⇔齐次线性方程组(**)有非零解 3. ),,,(21m L αααΛ基和维数的求法 4.线性方程组解的结构(1)齐次线性方程组基础解系r n -ξξ,,1Λ(2)非齐次线性方程组解的结构的求法*+++=--ηξξr n r n k k X Λ11主要计算1.设矩阵A ,求矩阵A 的列向量组的一个最大无关组,并把不属最大无关组的列向量用最大无关组线性表示.2.设非齐次线性方程组b AX =,试问(1)此线性方程组有解吗?若有解,有多少解?(第三章内容)(2)若有无穷多解,求其通解(要求通过它的导出组的基础解系给出的通解).(第四章内容) 基本证明向量的线性相关与线性无关、向量的组的等价、极大线性无关组、向量组的秩的证明 向量空间的基、维数的证明 基础解系、解的结构的证明 主要证明1.线性无关的证明2.B AB ⇔=0的列是0=AX 的解例 1.(例11)设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛------=97963422644121121112A 求矩阵A 的列向量组的一个最大无关组,并把不属最大无关组的列向量用最大无关组线性表示.2.(例16)设非齐次线性方程组⎪⎩⎪⎨⎧-=+--=-+-=+--2143214321432132130x x x x x x x x x x x x ,试问(1)此线性方程组有解吗?若有解,有多少解?(2)若有无穷多解,求其通解(要求通过它的导出组的基础解系给出的通解).3.(例6) 已知向量组321,,ααα线性无关,211ααβ+=, 322ααβ+=, 133ααβ+=,试证向量组321,,βββ线性无关.(第五章 §1 定理1、§2 定理2)4.(例13)设0=AB ,证明:n B R A R ≤+)()(.第五章 相似矩阵及二次型基本概念 一.内积内积的定义:n n y x y x y x Y X +++=Λ2211],[向量的长度:22221],[n x x x X X X +++==Λ、当1=X 时,称X 为单位向量.向量的夹角:YX Y X ],[arccos=θ向量的正交:0],[=Y X 时,称向量X 与Y 正交 正交向量组、正交基、规范正交基 正交矩阵A :)(1T T A A E A A ==-即二.矩阵的特征值、特征向量 特征值、特征向量三.相似矩阵,对称阵的对角化四.二次型及其标准形,正定二次型,正定矩阵 基本结论 一.内积(i )],[],[X Y Y X =;(ii )],[],[Y X Y X λλ=(iii )],[],[],[Z Y Z X Z Y X +=+1.非负性:对任意X 都有 0≥X ; 当且仅当O X =时, 0=X 2.齐次性: X X ||λλ=; 3.三角不等式:Y X Y X +≤+ 定理1 若n 维向量 r ααα,,,21Λ是一组两两正交的非零向量,则r ααα,,,21Λ线性无关.二.特征值、特征向量定理2 设m λλλ,,,21Λ是方阵A 的m 个特征值,m p p p ,,,21Λ依次是与之对应的特征向量.如果m λλλ,,,21Λ各不相同,则m p p p ,,,21Λ线性无关.三.相似矩阵,对称阵的对角化四.二次型及其标准形,正定二次型,正定矩阵 基本计算1.向量的长度:22221],[n x x x X X X +++==Λ2.向量的夹角的求法:YX Y X ],[arccos =θ3.正交化方法: 设r ααα,,,21Λ线性无关111122221111222231111333111122211],[],[],[],[],[],[],[],[],[],[],[],[--------=--=-==r r r r r r r r r ββββαββββαββββααβββββαββββααβββββααβαβΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ4.单位化:r rr e e e ββββββ1,,1,1222111===Λ5.特征值的求法、特征向量的求法6.对称阵的对角化方法7.求正交变换化二次型为标准形 例1.(例2) 设⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=014,131,121321ααα,试用施密特正交化过程把这组向量规范正交化。

线性代数的知识点归纳(同济_第五版)

线性代数的知识点归纳(同济_第五版)

行列式的定义
1. 行列式的计算:
① ( 定义法 ) Dn
a11 a12 a21 a22
an1 an 2
a1n a2 n
ann
( 1) a a ( j1j 2
jn ) 1 j1 2 j2
j1 j 2 jn
anj n
② (降阶法) 行列式按行(列)展开定理:
行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和
* *
b11b22 bnn
0
0 bnn
精彩文档
实用标准文案
AO A
=
O B OB ④ 若 A与 B 都是方阵(不必同阶) , 则
OA
A
=
BO BO
AO AB
B ( 1) mn A B
2 -1 0 0
-1 3 0 0
例 计算
0 0 11
0 0 -2 5
2 -1 0 0
-1 3 0 0 2 -1 1 1
? 矩阵的秩的性质:
① A O r ( A) ≥ 1; A O r ( A) 0 ; 0 ≤ r ( Am n ) ≤ min( m, n) ② r ( A) r ( AT ) r ( AT A)
③ r ( kA) r ( A) 其中 k 0
④ 若Am n, Bn s ,若r ( AB) 0
r ( A) r ( B) n B的列向量全部是 Ax 0的解
( 1)齐次线性方程组的解的结构(基础解系与通解的关系)
( 2)非齐次线性方程组的解的结构(通解)
1. 线性表示: 对于给定向量组 , 1, 2, , n ,若存在一组数 k1, k2 , , kn 使得
k1 1 k2 2
则称 是 1, 2, , n 的线性组合,或称称

线性代数第五版复习要点

线性代数第五版复习要点

《线性代数》复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N 阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。

第二部分:基本知识一、行列式1.行列式的定义用n^2个元素aij组成的记号称为n阶行列式。

(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则;N阶(n>=3)行列式的计算:降阶法定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。

特殊情况上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ行列式某行(列)元素全为0;Ⅱ行列式某行(列)的对应元素相同;Ⅲ行列式某行(列)的元素对应成比例;Ⅳ奇数阶的反对称行列式。

二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。

同济版 工程数学-线性代数(第五版)期末复习知识要点(成都大学田晓滨老师作品)

同济版 工程数学-线性代数(第五版)期末复习知识要点(成都大学田晓滨老师作品)

a1 n a2 n K a n1
an1
√ 逆矩阵的求法:
ο
an1
ο
成都大学田晓滨老师作品
共 13 页 第 1 页
同济版 工程数学- 线性代数(第五版)期末复习知识要点
① A −1 =
A∗ A
初等行变换 ② ( AM E ) ⎯⎯⎯⎯ ( E M A− 1 ) → −1
⎡a b ⎤ 1 ③⎢ ⎥ = ad − bc ⎣c d ⎦ ⎡ a1 ⎢ ④⎢ ⎢ ⎢ ⎣ ⎡ A1 ⎢ ⑤⎢ ⎢ ⎢ ⎣
① 若 A与 B 都是方阵(不必同阶),则
A ∗ A ο A ο = = =A B ο B ∗ B ο B
∗ A = ( −1)mn A B B ο
②上三角、下三角行列式等于主对角线上元素的乘积. ∗ ③关于副对角线:
a1 n a2 n −1
N =
ο a2 n −1
N
a1 n
= ( −1)
n (n −1) 2
T
,
则:ri = Aβi , i = 1, 2,L , s ,即 A(β1 , β2 ,⋅⋅⋅ , β s ) = ( Aβ1 , Aβ2 ,L , Aβ s )
√ 用对角矩阵 Λ 左乘一个矩阵,相当于用 Λ 的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵 Λ 右乘一个矩阵,相当于用 Λ 的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,
13
记作: {α1 , α 2 , ⋅⋅⋅, α n } = { β1 , β2 , ⋅⋅⋅, βn } %
记作: A = B %
矩阵 A 与 B 等价 ⇔ r ( A ) = r (B ) ≠> A , B 作为向量组等价,即:秩相等的向量组不一定等价. 矩阵 A 与 B 作为向量组等价 ⇔ r (α1 ,α 2 , ⋅⋅⋅,α n ) = r (β1 , β 2 , ⋅⋅⋅, β n ) = r (α1 ,α 2 , ⋅⋅⋅α n , β1 , β2 , ⋅⋅⋅, βn ) ⇒ 矩阵 A 与 B 等价.

线性代数(同济第5版)复习要点说明

线性代数(同济第5版)复习要点说明

线性代数(同济第5版)复习要点以矩阵为工具,以线性方程组问题为主线第一章 行列式基本结论1.行列式的性质(1) 互换行列式的两行,行列式变号.(2) 行列式中某一行的所有元素的公因子可以提到行列式符号的外面.(3) 把行列式的某一行的各元素乘以同一数然后加到另一行对应的元素上去,行列式不变. 2.行列式按行(按列)展开定理3 行列式等于它的任一行的各元素与其对应的代数余子式乘积之和,即in in i i i i A a A a A a D +++= 2211 ),,2,1(n i =3.克拉默法则 如果线性方程组的系数行列式不等于零,即0212222111211≠=nnn n n n a a a a a a a a a D那末,线性方程组有唯一的解,,,,2211DD x D Dx D D x n n ===主要计算计算行列式:1.数字行列式化为上三角形; 2.计算有规律的....n 阶行列式. 例1.(例7)计算行列式 3351110243152113------=D2.(例8)计算行列式 3111131111311113=D第二章 矩阵及其运算基本概念注意:1.矩阵可乘条件、乘法规则 2. 矩阵乘法不满足交换律BA AB ≠3.矩阵乘法有零因子出现:O B O A ≠≠,,但却有O AB = 4.消去律不成立:AC AB =,推不出C B = 基本结论1.转置 (i) A A T T =)( (ii) T T T B A B A +=+)( (iii) T T kA kA =)( (iv)T T T A B AB =)(2.方阵的行列式 (i) ||||A A T =(行列式性质1); (ii) ||||A A n λλ=; (iii)||||||B A AB =3.A 的伴随矩阵E A A A AA ||==**4.逆矩阵是初等矩阵可逆i sE E E E A E A nA R A A 21~)(0||=⇔⇔=⇔≠⇔推论 若E AB =(或E BA =),则1-=A B 方阵的逆阵满足下述运算规律:(i )若A 可逆,则1-A 亦可逆,且A A =--11)(. (ii )若A 可逆,数0≠λ,则A λ可逆,且111)(--=A A λλ(iii )若B A ,为同阶方阵且均可逆,则AB 亦可逆,且 111)(---=A B AB (iv )若A 可逆,则T A 亦可逆,且T T A A )()(11--= 基本计算用上面基本结论进行简单计算 主要计算求1-A :公式法*-=A A A ||11 基本证明用上面基本结论进行简单证明 例1. (例11)求矩阵的逆矩阵⎪⎪⎪⎭⎫ ⎝⎛=343122321A第三章 矩阵的初等变换与线性方程组基本结论线性方程组解的判定:1. n 元非齐次线性方程组b AX =b AX =有解⇔)()(B R A R =. 有解时,(记r B R A R ==)()()(1)n r =时,b AX =有唯一解 (2)n r <时,b AX =有无穷多解2.齐次线性方程组0=AX (0=AX 是b AX =的特殊情形)由于0=AX 永远满足)()(B R A R =,故0=AX 总有解(至少有零解)从而 (1)n r =时,0=AX 有唯一零解(2)n r <时,0=AX 有(无穷多)非零解 基本计算1.会求矩阵的秩2.会用矩阵的秩判别线性方程组有没有解,有解时,有多少解 3.会用初等变换求矩阵的逆初等变换)|()|(1-→A E E A 行;(包括求矩阵方程B AX =,用)|()|(1B A E B A -→行; 主要计算1. 设非齐次线性方程组b AX =,试问此线性方程组有解吗?若有解,有多少解? 2. 会用初等变换求矩阵的逆 例1.(例5)设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=41461351021632305023A求矩阵A 的秩,并求A 的一个最高阶非零子式2.用初等变换求矩阵⎪⎪⎪⎭⎫⎝⎛=343122321A 的逆矩阵3.(例13)设有线性方程组⎪⎩⎪⎨⎧=+++=+++=+++,)1(,3)1(,0)1(321321321λλλλx x x x x x x x x 问λ取何值时,此方程组(1)有唯一解;(2)无解;(3)有无限多个解?并在有无限多解时求其通解.第四章 向量组的线性相关性基本概念1.向量组的线性相关性向量的线性组合、线性表示、向量组的线性相关与线性无关 向量组的等价 2.向量组的秩极大线性无关组、向量组的秩 3.向量空间向量空间的基的定义、基的求法、向量空间的维数、维数的求法 向量组m ααα,,,21 所生成的向量空间为},,,|{),,,(21221121R k k k k k k L m m m m ∈+++= αααααα4.线性方程组解的结构齐次线性方程组基础解系、非齐次线性方程组解的结构 基本结论 1.线性表出定理1 向量b 能由向量组A 线性表示的充分必要条件是矩阵),,,(21m A ααα =的秩等于矩阵),,,,(21b B m ααα =的秩.定理2 向量组l B βββ,,,:21 能由向量组m A ααα,,,:21 线性表示的充分必要条件是矩阵),,,(21m A ααα =的秩等于矩阵),,,,,(),(11l m B A ββαα =的秩. 即),()(B A R A R =.推论 向量组l B βββ,,,:21 与向量组m A ααα,,,:21 等价的充分必要条件是),()()(B A R B R A R ==定理3 设向量组l B βββ,,,:21 能由向量组m A ααα,,,:21 线性表示,则),,,(),,,(2121m l R R αααβββ ≤.2. 向量组的线性相关性定理4 向量组m ααα,,,21 线性相关的充分必要条件是它所构成的矩阵),,,(21m A ααα =秩小于向量个数m ;向量组线性无关的充分必要条件是m A R =)(定理5 (1)若向量组m A ααα,,,:21 线性相关,则向量组11,,,:+m m B ααα 也线性相关. (2) m 个n 维向量组成的向量组,当维数n 小于向量个数m 时一定线性相关.(3) 设向量组m A ααα,,,:21 线性无关,而向量组βααα,,,,:21m B 线性相关,则向量β必能由向量组A 线性表示,且表示式是唯一的.3.向量组的秩定理6 矩阵的秩等于它的列向量组的秩,也等于它的行向量组的秩.推论 (最大无关组的等价定义)设向量组B 是向量组A 的部分组,若向量组B 线性无关,且向量组A 能由向量组B 线性表示,则向量组B 是向量组A 的一个最大无关组.4.解的结构(1)齐次线性方程组性质1 若21,ξξ为0=Ax 的解, 则21ξξ+也是0=Ax 的解. 性质2 若ξ为0=Ax 的解,k 为实数,则ξk 也是0=Ax 的解.0=Ax 的基础解系:r n -ξξ,,1 ,通解是r n r n k k X --++=ξξ 11定理7 设n m ⨯矩阵A 的秩r A R =)(,则n 元齐次线性方程组O AX =的解集S 的秩r n R S -=. (2)非齐次线性方程组性质3 设1η及2η都是b Ax =的解,则21ηη-为导出组0=Ax 的解.性质4 设η是方程b Ax =的解,ξ是方程0=Ax 的解,则ηξ+仍是方程b Ax =的解.b Ax =的通解是:*+++=--ηξξr n r n k k X 11 5.向量空间向量组m ααα,,,21 所生成的向量空间为},,,|{),,,(21221121R k k k k k k L m m m m ∈+++= αααααα基本计算1. 一般地,要判别一个向量⎪⎪⎪⎪⎪⎭⎫⎝⎛=n b b b 21β是否可由向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ns s s s n n a a a a a a a a a 21222122121111,,,ααα线性表出?设s s k k k αααβ+++= 2211按分量形式写出来就是⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++ns ns n n s s s s b k a k a k a b k a k a k a b k a k a k a 22112222212*********,, (*)定理 β可由向量组s ααα,,,21 线性表出⇔(*)有解 2. 一般地,要判别一个向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ns s s s n n a a a a a a a a a 21222122121111,,,ααα是否线性相关?设02211=+++s s x x x ααα按分量写出来就是⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111s ns n n ss s s k a k a k a k a k a k a k a k a k a (**)定理 向量组s ααα,,,21 线性相关⇔齐次线性方程组(**)有非零解 3. ),,,(21m L ααα 基和维数的求法 4.线性方程组解的结构(1)齐次线性方程组基础解系r n -ξξ,,1(2)非齐次线性方程组解的结构的求法*+++=--ηξξr n r n k k X 11主要计算1.设矩阵A ,求矩阵A 的列向量组的一个最大无关组,并把不属最大无关组的列向量用最大无关组线性表示.2.设非齐次线性方程组b AX =,试问(1)此线性方程组有解吗?若有解,有多少解?(第三章容)(2)若有无穷多解,求其通解(要求通过它的导出组的基础解系给出的通解).(第四章容) 基本证明向量的线性相关与线性无关、向量的组的等价、极大线性无关组、向量组的秩的证明 向量空间的基、维数的证明 基础解系、解的结构的证明 主要证明1.线性无关的证明2.B AB ⇔=0的列是0=AX 的解 例 1.(例11)设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛------=97963422644121121112A求矩阵A 的列向量组的一个最大无关组,并把不属最大无关组的列向量用最大无关组线性表示.2.(例16)设非齐次线性方程组⎪⎩⎪⎨⎧-=+--=-+-=+--2143214321432132130x x x x x x x x x x x x ,试问(1)此线性方程组有解吗?若有解,有多少解?(2)若有无穷多解,求其通解(要求通过它的导出组的基础解系给出的通解).3.(例6) 已知向量组321,,ααα线性无关,211ααβ+=, 322ααβ+=, 133ααβ+=,试证向量组321,,βββ线性无关.(第五章 §1 定理1、§2 定理2)4.(例13)设0=AB ,证明:n B R A R ≤+)()(.第五章 相似矩阵及二次型基本概念 一.积积的定义:n n y x y x y x Y X +++= 2211],[向量的长度:22221],[n x x x X X X +++== 、当1=X 时,称X 为单位向量.向量的夹角:YX Y X ],[arccos=θ向量的正交:0],[=Y X 时,称向量X 与Y 正交 正交向量组、正交基、规正交基 正交矩阵A :)(1T T A A E A A ==-即二.矩阵的特征值、特征向量 特征值、特征向量三.相似矩阵,对称阵的对角化四.二次型及其标准形,正定二次型,正定矩阵 基本结论 一.积(i )],[],[X Y Y X =; (ii )],[],[Y X Y X λλ=(iii )],[],[],[Z Y Z X Z Y X +=+1.非负性:对任意X 都有 0≥X ; 当且仅当O X =时, 0=X 2.齐次性: X X ||λλ=;3.三角不等式:Y X Y X +≤+ 定理1 若n 维向量 r ααα,,,21 是一组两两正交的非零向量,则r ααα,,,21 线性无关.二.特征值、特征向量定理2 设m λλλ,,,21 是方阵A 的m 个特征值,m p p p ,,,21 依次是与之对应的特征向量.如果m λλλ,,,21 各不相同,则m p p p ,,,21 线性无关.三.相似矩阵,对称阵的对角化四.二次型及其标准形,正定二次型,正定矩阵 基本计算1.向量的长度:22221],[n x x x X X X +++==2.向量的夹角的求法:YX Y X ],[arccos =θ3.正交化方法: 设r ααα,,,21 线性无关111122221111222231111333111122211],[],[],[],[],[],[],[],[],[],[],[],[--------=--=-==r r r r r r r r r ββββαββββαββββααβββββαββββααβββββααβαβ4.单位化:r rr e e e ββββββ1,,1,1222111===5.特征值的求法、特征向量的求法6.对称阵的对角化方法7.求正交变换化二次型为标准形 例1.(例2) 设⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=014,131,121321ααα,试用施密特正交化过程把这组向量规正交化。

线性代数(同济大学第五版)第五章

线性代数(同济大学第五版)第五章

十、化二次型为标准形
定理1: 任给可逆矩阵C, 令B=CTAC(A与B为合同 矩阵), 如果A为对称矩阵, 则B也为对称矩阵. 说明1: 若A与B是合同矩阵,则: 1.正(负,零) 特征值的个数相同,2.具有相同的秩. 说明2: 二次型 f 经可逆变换 x=Cy 后, 其秩不变, 但 f 的矩阵由A变为B=CTAC; 用正交变换化二次型为标准形的具体步骤: 1. 将二次型表示成矩阵形式 f = xTAx, 求出A; 2. 求出A的所有特征值1, 2, ·, n ; · · 3. 求出对应特征值i 的正交单位化的特征向量组, 从而有正交规范向量组 1, 2, ·, n ; · · 4. 记P=(1, 2, ·, n ), 作正交变换x=Py, 则得 f 的 · · 标准形: f = 1y12+2y22+·+nyn2 . · ·
十二、正定二次型
如果对任意的 x 0, 都有 f(x)>0, 则称 f 为正定 二次型, 并称对称矩阵A为正定矩阵; 如果对任意的 x 0, 都有 f(x)<0, 则称 f 为负定 二次型, 并称对称矩阵A为负定矩阵. 概念:正惯性指数,负惯性指数 推论: 对称矩阵A为正定的充分必要条件是A的特 征值全为正. 定理3(霍尔维茨定理): (1)对称矩阵A为正定的充 分必要条件是A的各阶主子式为正, 即
七、相似矩阵
P-1AP = B 定理1: 若n阶矩阵A与B相似, 则A与B的特征多项 式相同, 从而A与B的特征值亦相同. 推论: 若n阶方阵A与对角阵=diag(1, 2,·, n ) · · 相似, 则1, 2,·, n 既是A的n个特征值. · · 相似矩阵的性质: 若A与B相似, 则Am与Bm相似(m为正整数). (A)与 (B) 相似 当矩阵A与对角阵=diag(1, 2,·, n )相似时, · · 则 (A)= P()P-1. 而

线性代数(同济大学第五版)矩阵的特征值与特征向量讲义、例题

线性代数(同济大学第五版)矩阵的特征值与特征向量讲义、例题

第五章 矩阵的特征值与特征向量§1矩阵的特征值与特征向量一、矩阵的特征值与特征向量定义1:设A 是n 阶方阵,如果有数λ和n 维非零列向量x 使得x Ax λ=,则称数λ为A 的特征值,非零向量x 称为A 的对于特征值λ的特征向量.由x Ax λ=得0)(=-x E A λ,此方程有非零解的充分必要条件是系数行列式0=-E A λ,此式称为A 的特征方程,其左端是关于λ的n 次多项式,记作)(λf ,称为方阵A 特征多项式.设n 阶方阵)(ij a A =的特征值为n λλλ,,,21 ,由特征方程的根与系数之间的关系,易知:nn n a a a i +++=+++ 221121)(λλλA ii n =λλλ 21)(例1 设3阶矩阵A 的特征值为2,3,λ.若行列式482-=A ,求λ. 解:482-=A 64823-=∴-=∴A Aλ⨯⨯=32A 又 1-=∴λ例2 设3阶矩阵A 的特征值互不相同,若行列式0=A , 求矩阵A 的秩.解:因为0=A 所以A 的特征值中有一个为0,其余的均不为零.所以A 与)0,,(21λλdiag 相似.所以A 的秩为2.定理1对应于方阵A 的特征值λ的特征向量t ξξξ,,,21 ,t ξξξ,,,21 的任意非零线性组合仍是A 对应于特征值λ的特征向量.证明 设存在一组不全为零的数t k k k ,,,21 且存在一个非零的线性组合为t t k k k ξξξ+++ 2211,因为t ξξξ,,,21 为对应于方阵A 的特征值λ的特征向量。

则有),,2,1(1t i k Ak i i i ==ξλξ所以)()(22112211t t t t k k k k k k A ξξξλξξξ+++=+++ 所以t t k k k ξξξ+++ 2211是A 对应于特征值λ的特征向量. 求n 阶方阵A 的特征值与特征向量的方法:第一步:写出矩阵A 的特征多项式,即写出行列式E A λ-.第二步:解出特征方程0=-E A λ的根n λλλ,,,21 就是矩阵A 的特征值.第三步:解齐次线性方程组0)(=-x E A i λ,它的非零解都是特征值i λ的特征向量.例3 求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=201034011A 的特征值和特征向量.解 A 的特征多项式为2)1)(2(201034011λλλλλλ--=-----=-E A 所以,A 的特征值为1,2321===λλλ. 当21=λ时,解方程组0)2(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000010001~2010340112E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛=1001p ,所以特征值21=λ的全部特征向量为11p k ,其中1k 为任意非零数.当132==λλ时,解方程组0)(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000210101~101024012E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛--=1212p ,所以特征值132==λλ的全部特征向量为22p k ,其中2k 为任意非零数. 二、特征值与特征向量的性质与定理性质1 n 阶方阵A 可逆的充分必要条件是矩阵A 的所有特征值均非零. 此性质读者可利用A n =λλλ 21可证明.定理 2 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,则21,p p 线性无关.证明 假设设有一组数21,x x 使得02211=+p x p x (1)成立. 以2λ乘等式(1)两端,得0222121=+p x p x λλ (2) 以矩阵A 左乘式(1)两端,得0222111=+p x p x λλ (3) (3)式减(2)式得0)(1211=-p x λλ 因为21,λλ不相等,01≠p ,所以01=x .因此(1)式变成022=p x . 因为02≠p ,所以只有02=x . 这就证明了21,p p 线性无关.性质2 设)(A f 是方阵A 的特征多项式,若λ是A 的特征值.对应于λ的特征向量为ξ,则)(λf 是)(A f 的特征值,而ξ是)(A f 的对应于)(λf 的特征向量,而且若O A f =)(,则A 的特征值λ满足0)(=λf ,但要注意,反过来0)(=λf 的根未必都是A 的特征值.例4 若λ是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量,证明:1-λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量,证明 λ 是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量λξξ=∴A ξξλ11--=∴Aξξλ11--=∴A A A ξξλ*1A A =∴-1-∴λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量, 1-λA 是*A 的特征值,ξ是*A 对应于特征值1-λA 的特征向量.例5 设3阶矩阵A 的特征值1,2,2,求E A --14.解:A 的特征值为1,2,2,,所以1-A 的特征值为1,12,12, 所以E A--14的特征值为4113⨯-=,41211⨯-=,41211⨯-=所以311341=⨯⨯=--E A .例6 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,证明21p p +一定不是A 的特征向量.证明 假设21p p +是矩阵A 的特征向量,对应的特征值为.λ根据特征值定义可知:)()(2121p p p p A +=+λ …………………(1) 21,λλ 又是n 阶方阵A 的特征值,对应的特征向量分别为21,p p .,111p Ap λ=∴ 222p Ap λ= (2)将(2)带入(1)式整理得:0)()(2211=-+-p p λλλλ因为21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p 线性无关.所以21λλλ==.与21,λλ是n 阶方阵A 的两互不相等的特征值矛盾. 所以假设不成立.例7 若A 为正交矩阵,则1±=A ,证明,当1-=A 时,A 必有特征值1-;当1=A 时,且A 为奇数阶时,则A 必有特征值1.证明 当1-=A 时.TT T A E A A E A AA A E A +=+=+=+)(A E A E T +-=+-=,所以 .0=+A E `所以1-是A 的一个特征值反证法:因为正交阵特征值的行列式的值为1,且复特征值成对出现,所以若1不是A 的特征值,那么A 的特征值只有-1,以及成对出现的复特征值。

线性代数同济第五版

线性代数同济第五版

四、正交矩阵与正交变换
1. 正交矩阵 (1)定义:
若n阶方阵A满足 AT A E 即A1 AT , 则称A为 正交矩阵 .
(2)定理:
A 为正交矩阵 A的列(或行)向量都是单位向量且两两正
交. 注: 正交矩阵A的 n 个列(或行)向量构成向量空 间Rn 的一个规范正交基.
(3)性质:
5. 规范正交基 (1)定义 :
设n维向量e1 , e2 , , er 是ห้องสมุดไป่ตู้量空间 V (V R n )的一个正交 基, 且都是单位向量, 则称e1 , e2 , , er 是 V 的一个规范正交基.
1 0, 如,1 0 2 0 0 0 0 1 0 , , 0 3 4 为R 4的一个规范正交基. 0 1 0 0 0 1
4. n维向量间的夹角
当 x 0, y
x, y 0时, 规定: arccos
x y
称为n维向量x与y的夹角。
如, 1, 2, 2,3, 3,1,5,1
则 与的夹角 arccos [ , ]

18 arccos 3 2 6 4
[b1 , a 3 ] [b2 , a 3 ] b3 a 3 b1 b2 [b1 , b1 ] [b2 , b2 ]
b1 1,1,1,1
b2 0, 2, 1,3
8 14 0,2,1,3 1,1,2,0 3,5,1,1 1,1,1,1 4 14 再单位化, 得规范正交向量组如下:
因为, 如果设x同时是A的属于特征值1 , 2的
Ax 2 x
则x 0,
与定义矛盾 .

线性代数(同济大学第五版)第二章

线性代数(同济大学第五版)第二章
1 0 1 1.( 8分)设A 0 2 0,C 0 0 1 1 0 0 0 2 0,B为一个3阶 1 0 0
可逆矩阵,求(B CT E) T ( AB1 ) T [(B A1 ) T ]1 .
1 0 0 T 答案: CA 0 4 0 1 0 0
0
0 , ( 0) 1 2 n 1 n 1 n , ( 0) 1 2 n 0
逆矩阵的计算方法:
(1)定义法; 1 1 A ; 低阶矩阵 (2)伴随矩阵法: A | A| (3)初等变换法 (4)分块矩阵法; 待定系数
X ( E C 1 B)T C T E , 求X.
1 0 1 A 0 2 0 , AB E A2 B, 求B. 设 2 0 1 1 0 1 答案:B A E 0 3 0 1 0 2
三、计算方阵行列式(逆矩阵、伴随矩阵)
k 1
( i=1,2,·, m; j=1,2,·, n ). 并把此乘积记作C=AB. · · · ·
注意:矩阵相乘不满足交换律
7. 转置矩阵
把矩阵A 的行列互换, 所得到的新矩阵, 叫做矩阵 A 的转置矩阵, 记作AT. 转置矩阵的运算性质 (1) (AT)T = A; (2) (A+B)T = AT + BT; (3) (A)T = AT; (4) (AB)T = BTAT;
3 1
A A 1 , C 1 存在,则 , 且 0
A2
3. 已知A E , 则A
6. 若n阶矩阵A满足方程A2 2 A 3 E 0, 则A1 1 A 2E 课后题22题: 3

《线性代数》同济大学第五版-重点难点

《线性代数》同济大学第五版-重点难点

线性代数重点、难点
(教材:《线性代数》同济大学第五版)学时:40+8
第一章行列式
重点:n阶行列式的定义、性质与计算. n阶行列式的展开定理. 矩阵秩的概念,特性,求秩的方法.,克拉默法则。

难点:n阶行列式的展开定理,行列式按行列展开,行列式的计算。

第二章矩阵及其运算
重点:矩阵的概念,单位矩阵、对角矩阵、对称矩阵及分块矩阵. 矩阵的线性运算、乘法运算、转置运算,方阵的行列式,逆矩阵。

.
难点:逆矩阵。

第三章矩阵的初等变换与线性方程组
重点:矩阵的初等变换,矩阵秩的概念,求秩的方法;用初等变换的方法求线性方程组的解。

难点:矩阵的初等变换,用初等变换的方法求线性方程组的解。

第四章向量组的线性相关性
重点:向量组的线性相关性及其判定方法;向量组的极大线性无关组及秩的概念;极大线性无关组的求法,线性方程组的解的结构,线性方程组的通解。

难点:向量组的线性相关性及其判定方法,线性方程组的解的结构.
第五章相似矩阵及二次型
重点:.向量的正交性及正交化方法;特征值与特征向量的概念与性质,正交矩
阵、相似矩阵以及矩阵对角化的条件和方法;实对称矩阵的对角化方法;二次型标准化的正交变换法和配方法,二次型的正定性及其判别。

难点:矩阵的对角化方法及二次型标准化的正交变换法。

线性代数同济五版

线性代数同济五版
特征值
设A是n阶方阵,如果存在数λ和非零n 维列向量x,使得Ax=λx成立,则称λ是
A的一个特征值。
特征多项式
设A是n阶方阵,则行列式|λE-A|称为 A的特征多项式。
特征向量
对应于特征值λ的非零向量x称为A的 对应于特征值λ的特征向量。
特征方程
特征多项式|λE-A|=0的根称为A的特 征根(或特征值)。
04
CATALOGUE
向量
向量的概念与运算
向量的定义
向量是具有大小和方向的量,常用有向线段 表示。
向量的数乘
实数与向量的乘法满足分配律、结合律和数 乘的消去律。
向量的加法
满足平行四边形法则或三角形法则。
向量的线性运算
向量的加法和数乘统称为向量的线性运算。
向量的线性相关性
线性组合
若干个向量通过线性运算得到的结果向量称为这些向量的 线性组合。
线性相关与线性无关
如果存在不全为零的实数,使得一组向量的线性组合为零 向量,则这组向量称为线性相关;否则称为线性无关。
极大线性无关组
在线性相关的向量组中,如果存在一个部分组是线性无关的,且从向量组中任 意添上一个向量后都变为线性相关,则称该部分组为向量组的一个极大线性无 关组。
向量组的秩
向量组的秩的定义
向量组的极大线性无关组所含向量的个数称为该向量组的秩。
向量组的秩的性质
向量组的秩等于其行秩或列秩;两个等价的向量组具有相同的秩; 若向量组线性无关,则其秩等于向量组中向量的个数。
向量组的秩的计算方法
通过初等行变换将向量组构成的矩阵化为行阶梯形矩阵,行阶梯形 矩阵中非零行的个数即为向量组的秩。
05
CATALOGUE
工程应用

线性代数(同济五版)第五章第三节

线性代数(同济五版)第五章第三节
式来求解方程。
04
消元法是通过对方程进行初等变换,将系数矩阵化为 阶梯形矩阵或行最简形矩阵,从而求解方程的方法。
04
矩阵的特征值与特征向量
特征值与特征向量的概念
01
02
03
特征值
设A是n阶方阵,如果存在 数λ和非零n维列向量x, 使得Ax=λx成立,则称λ 是A的一个特征值。
特征向量
对应于特征值λ的非零n维 列向量x称为A的对应于特 征值λ的特征向量。
向量组的线性相关性
线性相关
如果向量组A中存在不全为零的实数k1, k2, ··· , km,使得k1a1 + k2a2 + ··· + kmam = 0,则称向量组A是线性相关的。
线性无关
如果向量组A中不存在不全为零的实数k1, k2, ··· , km,使得k1a1 + k2a2 + ··· + kmam = 0,则称向量组A是线性无关的。
注意事项
在化阶梯形矩阵的过程中,只能实施 行初等变换,不能实施列初等变换。 同时,要确保每一步变换都是可逆的 ,以便在需要时可以恢复出原矩阵。
02
向量组的线性相关性
向量组及其线性组合
向量组
由若干个同维数的列向量(或行向量)所组成的集合叫做向量组。
线性组合
给定向量组A: a1, a2, ··· , am,对于任何一组实数k1, k2, ··· , km,表达式k1a1 + k2a2 + ··· + kmam称为向量组A的一个线性组合。
对于齐次线性方程组,可以通过求解对应齐次方程的 基础解系,再线性组合得到通解。
输标02入题
对于非齐次线性方程组,首先判断其是否有解,若有 解则可通过消元法、克拉默法则等方法求解特解,再 结合对应齐次方程的基础解系得到数个数与方程个数相等的非齐 次线性方程组,通过计算系数矩阵和增广矩阵的行列
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数复习要点第一部分行列式1. 排列的逆序数2. 行列式按行(列)展开法则3. 行列式的性质及行列式的计算行列式的定义1.行列式的计算:①(定义法)1212121112121222()1212()nnnnn j j jn j j njj j jn n nna a aa a aD a a aa a aτ==-∑LLLLLM M ML1②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.1122,,0,.i j i j in jnA i ja A a A a Ai j⎧=⎪++=⎨≠⎪⎩L③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.11221122***0**0*00nnnnbbA b b bb==LM OL④ 若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO BO BBO A AAB B O B O*==**=-1例 计算2-100-130000110-25解2-100-130000110-25=2-1115735-13-25⋅=⨯= ⑤ 关于副对角线:(1)211212112111()n n nnn n n n n n n a O a a a a a a a Oa O---*==-K N N1⑥ 范德蒙德行列式:()1222212111112n i j nj i nn n n nx x x x x x x x x x x ≤<≤---=-∏L L L M M M L111 例 计算行列式⑦ a b -型公式:1[(1)]()n a b b bb a b ba nb a b b b a b b b b a-=+--LLLM M M O M L⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法.(拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算.⑩(数学归纳法)2. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;3. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值.4. 代数余子式和余子式的关系:(1)(1)i j i j ij ijij ij M A A M ++=-=-.\第二部分 矩阵1. 矩阵的运算性质2. 矩阵求逆3. 矩阵的秩的性质4. 矩阵方程的求解1. 矩阵的定义 由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪=⎪⎪⎝⎭L L M M M L称为m n ⨯矩阵. 记作:()ijm nA a ⨯=或m n A ⨯① 同型矩阵:两个矩阵的行数相等、列数也相等. ② 矩阵相等: 两个矩阵同型,且对应元素相等. ③ 矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数λ与矩阵A 的乘积记作A λ 或A λ,规定为()ij A a λλ=.c. 矩阵与矩阵相乘:设()ij m s A a ⨯=, ()ij s n B b ⨯=,则()ij m n C AB c ⨯==, 其中12121122(,,,)j j ij i i is i j i j is sj sj b b c a a a a b a b a b b ⎛⎫ ⎪ ⎪==+++ ⎪ ⎪ ⎪⎝⎭L L M 注:矩阵乘法不满足:交换律、消去律, 即公式00AB BAAB A ==⇒=或B=0不成立.a. 分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫= ⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭b. 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量;11112111111211221222221222221212000000n n n n m m m mn m m m m m mn a b b b a b a b a b a b b b a b a b a b B a b b b a b a b a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥Λ==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦L L L L L L M M O M M M O M M M O M LLLc. 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量.11121111121212122221212222121122000000n m n n m n m m mn m m m m mn b b b a a b a b a b b b b a a b a b a b B b b b a a b a b a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥Λ==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦L L L L L L M M O M M M O M M M O M LLLd. 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘. ④ 方阵的幂的性质:mnm nA A A+=, ()()m n mnA A =⑤ 矩阵的转置:把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作TA . a. 对称矩阵和反对称矩阵: A 是对称矩阵TA A =.A 是反对称矩阵T A A =-.b. 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⑥ 伴随矩阵: ()1121112222*12n Tn ijn n nn A A A A A A A A A A A ⎛⎫ ⎪ ⎪== ⎪⎪⎝⎭LL M M M L,ij A 为A 中各个元素的代数余子式. **AA A A A E ==,1*n A A-=, 11AA --=.分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ *(1)(1)mn mn A A B BB A**⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭2. 逆矩阵的求法 方阵A 可逆0A ≠.①伴随矩阵法 1A A A *-= ○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 L L 主换位副变号 ② 初等变换法 1()()A E E A -−−−−→MM 初等行变换例 求122212221⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦的逆矩阵. 解32322121232313213219221210203312210012210021212010036210012033221001033011009221122100999212010999221001999r r r r r r r r r r r r r r ------+⎡⎤--⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-→---→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦-⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦1122999122212,212999221221999-⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎢⎥⎣⎦所以③ 分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B B A---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭ 1111A O A O C B B CAB ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭ ④1231111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 3211111213a a a a a a -⎛⎫⎛⎫⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⑤ 配方法或者待定系数法 (逆矩阵的定义1AB BA E A B -==⇒=)例 设方阵A 满足矩阵方程220E --=A A , 证明A 及2E +A 都可逆, 并求1-A 及()12E -+A . 解 由220E --=A A 得()12E E -=A A , 故A 可逆, 且()112E -=-A A . 由220E --=A A 也可得(2)(3)4E E E +-=-A A 或1(2)(3)4E E E ⎡⎤+--=⎢⎥⎣⎦A A , 故2E +A 可逆, 且()12E -+A 1(3)4E =--A .3.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖 线后面的第一个元素非零. 当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0时, 4. 初等变换与初等矩阵 对换变换、倍乘变换、倍加(或消法)变换☻矩阵的初等变换和初等矩阵的关系:① 对A 施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A ; ② 对A 施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A .注意: 初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.5.关于A 矩阵秩的描述:①、()=r A r ,A 中有r 阶子式不为0,1+r 阶子式 (存在的话) 全部为0; ②、()<r A r ,A 的r 阶子式全部为0; ③、()≥r A r ,A 中存在r 阶子式不为0; ☻矩阵的秩的性质:① ()A O r A ≠⇔≥1; ()0A O r A =⇔=;0≤()m n r A ⨯≤min(,)m n② ()()()TTr A r A r A A ==③ ()()r kA r A k =≠ 其中0④ ()(),,()0m n n s r A r B n A B r AB B Ax ⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤ ()r AB ≤{}min (),()r A r B⑥ 若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===; 即:可逆矩阵不影响矩阵的秩.⑦ 若()()()m n Ax r AB r B r A n AB O B OA AB AC B C ο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩ 只有零解在矩阵乘法中有左消去律;若()()()n s r AB r B r B n B ⨯=⎧=⇒⎨⎩在矩阵乘法中有右消去律.⑧ ()rrE O E O r A r A A O O O O ⎛⎫⎛⎫=⇒⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型. ⑨ ()r A B ±≤()()r A r B +, {}max (),()r A r B ≤(,)r A B ≤()()r A r B + ⑩ ()()A O O A r r A r B O B B O ⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭, ()()A C r r A r B O B ⎛⎫≠+ ⎪⎝⎭☻求矩阵的秩:定义法和行阶梯形阵方法6 矩阵方程的解法(0A≠):设法化成AX B XA B ==(I) 或 (II)A B E X −−−−→MM 初等行变换(I)的解法:构造()() A E B X ⎛⎫⎛⎫ ⎪ ⎪−−−−→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭L L 初等列变换(II)的解法:构造T T T TA XB X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得第三部分 线性方程组1. 向量组的线性表示2. 向量组的线性相关性3. 向量组的秩4. 向量空间5.线性方程组的解的判定6. 线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系) (2)非齐次线性方程组的解的结构(通解)1.线性表示:对于给定向量组12,,,,n βαααL ,若存在一组数12,,,n k k k L 使得1122n n k k k βααα=+++L , 则称β是12,,,n αααL 的线性组合,或称称β可由12,,,n αααL 的线性表示.线性表示的判别定理:β可由12,,,n αααL 的线性表示由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L L 有解②、1112111212222212⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M O M M M Ln n m m mn m m a a a x b a a a x b Ax a a a x b β③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭LM (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M ); ④、1122n n a x a x a x β+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)2. 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b b b c c c b b b ααα⎛⎫ ⎪ ⎪⋅⋅⋅= ⎪⎪⎝⎭L LL M M M L ⇔i i A c β= ,(,,)i s =L 1,2 ⇔i β为i Ax c =的解⇔()()()121212,,,,,,,,,s s s A A A A c c c ββββββ⋅⋅⋅=⋅⋅⋅=L ⇔12,,,s c c c L 可由12,,,n ααα⋅⋅⋅线性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵. 同理:C 的行向量能由B 的行向量线性表示,A 为系数矩阵.即:1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M M M M L ⇔11112212121122222211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L3.线性相关性判别方法:法1法2法3推论♣线性相关性判别法(归纳)♣ 线性相关性的性质① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一.4. 最大无关组相关知识向量组的秩 向量组12,,,n αααL 的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r αααL 矩阵等价 A 经过有限次初等变换化为B .向量组等价 12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅% ① 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.② 矩阵的初等变换不改变矩阵的秩,且不改变行(列)向量间的线性关系③ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .④ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价; ⑤ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑥ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑦ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑧ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关; 5. 线性方程组理论线性方程组的矩阵式Ax β= 向量式 1122n n x x x αααβ+++=L1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M M M M L其中 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭L M 1 (1)解得判别定理(2)线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-=L L 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212),(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪+++=⇔+++=⎪⎪+++=⇔+++=⎩L L L L L 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解(3) 判断12,,,s ηηηL 是Ax ο=的基础解系的条件: ① 12,,,s ηηηL 线性无关;②12,,,sηηηL都是Axο=的解;③ ()s n r A=-=每个解向量中自由未知量的个数.(4) 求非齐次线性方程组Ax = b的通解的步骤12112(1()(2)()()(3)(4)10,,...,(5)A br A b r A r nn rAx bAxAx bx k kααααααα==<-====++n-r) 将增广矩阵通过初等行变换化为;当时,把不是首非零元所在列对应的个变量作为自由元;令所有自由元为零,求得的一个;不计最后一列,分别令一个自由元为,其余自由元为零,得到的{};写出非齐次线性方程组的阶梯形矩阵特解基础解系通解212...,,...,n r n rn rkk k kα---++其中为任意常数.例 求下述方程组的解123451234523457,3232,22623x x x x x x x x x x x x x x ++++=⎧⎪+++-=-⎨⎪+++=⎩解 19100222111117123(,)3121320113220212623001000A A b ⎛⎫-- ⎪⎛⎫ ⎪⎪ ⎪==--−−→ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭%, 由于()()25r A r A==<%,知线性方程组有无穷多解. 原方程组等价于方程组1354234519222123322x x x x x x x x ⎧=----⎪⎪⎨⎪=---+⎪⎩,令3451000,1,0.001x x x ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭求得等价方程组对应的奇次方程组的基础解系 12312021213,,.100010001ξξξ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭求特解: 令3450x x x ===,得12923,.22x x =-=故特解为92232.000η*-⎛⎫⎪- ⎪ ⎪= ⎪⎪ ⎪⎝⎭所以方程组的通解为 1231202921213232100000000010x k k k --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,(123,,k k k 为任意常数).(5)其他性质一个齐次线性方程组的基础解系不唯一.√ 若η*是Ax β=的一个解,1,,,s ξξξL 是Ax ο=的一个解⇒1,,,,s ξξξη*L 线性无关√ Ax ο=与Bx ο=同解(,A B 列向量个数相同)⇔()()A r r A r B B ⎛⎫== ⎪⎝⎭, 且有结果:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组Ax ο=与Bx ο=同解⇔PA B =(左乘可逆矩阵P ); 矩阵m n A ⨯与l n B ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ).第四部分 方阵的特征值及特征向量1. 施密特正交化过程2. 特征值、特征向量的性质及计算3. 矩阵的相似对角化,尤其是对称阵的相似对角化1.①n 个n 维线性无关的向量,两两正交,每个向量长度为1. ②1(,)ni i i a b αβ===∑③(,)0αβ=. 记为:αβ⊥④21ni i a α====∑⑤1α==. 即长度为1的向量.2. 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 线性性:1212(,)(,)(,)ααβαβαβ+=+ (,)(,)k k αβαβ=3. ① 设A 是一个n 阶方阵, 若存在数λ和n 维非零列向量x , 使得 Ax x λ=,则称λ是方阵A 的一个特征值,x为方阵A 的对应于特征值λ的一个特征向量. ②0E A λ-=(或0A E λ-=).③()E A λϕλ-=(或()A E λϕλ-=).④ ()ϕλ是矩阵A 的特征多项式⇒()A O ϕ= ⑤ 12n A λλλ=L1ni A λ=∑tr ,A tr 称为矩阵A ⑥ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.⑦ 若0A =,则λ=0为A 的特征值,且Ax ο=的基础解系即为属于λ=0的线性无关的特征向量.⑧ ()1r A =⇔A 一定可分解为A =()1212,,,n n a a b b b a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L M 、21122()n n A a b a b a b A =+++L ,从而A 的特征值为:11122n n A a b a b a b λ==+++L tr , 23n λλλ====L 0.○注()12,,,Tn a a a L 为A 各行的公比,()12,,,nb b b L 为A 各列的公比. ⑨ 若A 的全部特征值12,,,n λλλL ,()f A 是多项式,则:① 若A 满足()f A O =⇒A 的任何一个特征值必满足()i f λ=0②()f A 的全部特征值为12(),(),,()n f f f λλλL ;12()()()()n f A f f f λλλ=L .⑩ A 与TA 有相同的特征值,但特征向量不一定相同. 4. 特征值与特征向量的求法(1) 写出矩阵A 的特征方程0A E λ-=,求出特征值i λ. (2) 根据()0i A E x λ-=得到 A 对应于特征值i λ的特征向量.设()0i A E x λ-=的基础解系为 12,,,i n r ξξξ-L 其中()i i r r A E λ=-. 则A 对应于特征值i λ的全部特征向量为1122,i i n r n r k k k ξξξ--+++L 其中12,,,i n r k k k -L 为任意不全为零的数.例 求211020413A -⎛⎫⎪= ⎪ ⎪-⎝⎭的特征值和全部特征向量.解 第一步:写出矩阵A 的特征方程,求出特征值.221121020(2)(2)(1)043413A E λλλλλλλλλ-----=-=-=--+=---- 解得特征值为1231, 2.λλλ=-==第二步:对每个特征值λ代数齐次线性方程组()0A E x λ-=,求其非零解,即对应于特征值λ的全部特征向量. 当1λ=- 时,齐次线性方程组为()0A E x +=,系数矩阵111101030010414000A E --⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭得基础解系:1101P ⎛⎫⎪= ⎪ ⎪⎝⎭,故对应于特征值1λ=-的全部特征向量为11(0)k P k ≠. 当2λ= 时,齐次线性方程组为(2)0A E x -=,系数矩阵4114112000000411000A E ---⎛⎫⎛⎫ ⎪ ⎪-=→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭得基础解系:2011P ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,3104P ⎛⎫⎪= ⎪ ⎪⎝⎭.故对应于特征值2λ=的全部特征向量为 2233k P k P +, 其中23,k k 不全为零. 5. ①1P AP B -= (P 为可逆矩阵)②1P AP B -= (P 为正交矩阵)③A 与对角阵Λ相似.(称Λ是A 6. 相似矩阵的性质: ①E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.○注α是A 关于0λ的特征向量,1P α-是B 关于0λ的特征向量. ②A B =tr tr③A B = 从而,A B 同时可逆或不可逆 ④ ()()r A r B =⑤若A 与B 相似, 则A 的多项式()f A 与B 的多项式()f A 相似. 7. 矩阵对角化的判定方法① n 阶矩阵A 可对角化 (即相似于对角阵) 的充分必要条件是A 有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值. 设i α为对应于i λ的线性无关的特征向量,则有:121n P AP λλλ-⎛⎫⎪⎪= ⎪ ⎪⎝⎭O .② A 可相似对角化⇔()i i n r E A k λ--=,其中i k 为i λ的重数⇔A 恰有n 个线性无关的特征向量.○注:当iλ=0为A 的重的特征值时,A 可相似对角化⇔i λ的重数()n r A =-=Ax ο=基础解系的个数.③ 若n 阶矩阵A 有n 个互异的特征值⇒A 可相似对角化. 8. 实对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 不同特征值对应的特征向量必定正交;○注:对于普通方阵,不同特征值对应的特征向量线性无关; ③ 一定有n 个线性无关的特征向量. 若A 有重的特征值,该特征值i λ的重数=()i n r E A λ--; ④ 必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形; ⑤ 与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形; ⑥ 两个实对称矩阵相似⇔有相同的特征值. 9. 正交矩阵 TAA E =正交矩阵的性质:① 1T A A -=;② T TAA A A E ==;③ 正交阵的行列式等于1或-1;④ A 是正交阵,则TA ,1A -也是正交阵; ⑤ 两个正交阵之积仍是正交阵;⑥ A 的行(列)向量都是单位正交向量组.10.例 实对称阵120222023A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,求正交阵Q ,使得AQ Q 1-为对角阵.解 120222(1)(2)(5)0023A E λλλλλλλ---=---=-+--=-- 所以A 的特征值为11λ=-,22λ=,35λ=,当11λ=-时,解()0A E x +=,得基础解系为1(2,2,1)Tx = 当22λ=时,解(2)0A E x -=,得基础解系为2(2,1,2)Tx =-- 当35λ=时,解(5)0A E x -=,得基础解系为3(1,2,2)Tx =-令111221(,,)333T x y x ==222212(,,)333T x y x ==--333122(,,)333T x y x ==- 令123221333212(,,)333122333Q y y y ⎛⎫ ⎪ ⎪⎪==-- ⎪ ⎪ ⎪- ⎪⎝⎭,则⎪⎪⎪⎭⎫ ⎝⎛==-1000500021AQ Q AQ Q T11.123,,ααα线性无关,112122111313233121122(,)(,)(,)(,)(,)(,)βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化:111βηβ=222βηβ=333βηβ=技巧:取正交的基础解系,跳过施密特正交化。

相关文档
最新文档