管道压降及管径选择-水力计算
支管水力计算
![支管水力计算](https://img.taocdn.com/s3/m/a9cb3543ba68a98271fe910ef12d2af90242a8d0.png)
支管水力计算水力计算是水利工程中非常重要的一部分,它涉及到管道、泵站、水轮机等工程构筑物的设计与运行。
正确进行水力计算可以确保工程的安全稳定运行,因此水力计算是水利工程中一项非常重要的技术。
本文将全面介绍水力计算的内容,包括管道水力计算、泵站水力计算和水轮机水力计算。
一、管道水力计算1.流量计算:根据管道的材质、孔径和坡度等参数,使用雷诺数和曼宁公式等计算方法,确定管道的流量。
2.压力损失计算:根据管道的材质和长度、流量和流速等参数,使用达西公式等计算方法,确定管道的压力损失。
3.防冲击计算:在水力计算中,还需要考虑管道内部的防冲击设计。
因为当管道中的流速发生突变时,会产生压力冲击。
通过伯努利方程和马朝尔方程等计算方法,来设计管道内部的防冲击设施。
二、泵站水力计算1.扬程计算:泵站的扬程是指泵站出水口与进水口之间的水位差。
通过测量进水口和出水口的水位,使用流量守恒公式,结合泵的性能曲线,计算得出泵站的扬程。
2.泵功率计算:泵站的功率是指在不同流量和扬程条件下泵的输出功率。
根据泵的性能曲线和流量扬程计算公式,在给定的流量和扬程条件下,计算得出泵站的功率。
3.变频器调速计算:变频器能够通过调整泵的转速,调整出水量,使之与水的需求相匹配。
通过对泵站的运行情况进行分析,结合流量扬程计算公式,计算出变频器的转速。
三、水轮机水力计算1.入水流速计算:水轮机的入水流速是指水流进入水轮机之前的流速。
根据水轮机型号和水量,使用水力计算方法,计算出水流的流速。
2.转动力矩计算:水轮机的转动力矩是指水轮机在给定的水量和入水流速条件下,转动的力矩。
通过计算水轮机的进水和出水之间的压力差和叶轮半径等参数,利用液力动量守恒定律和转动动力学方程,计算出水轮机的转动力矩。
3.输出功率计算:水轮机的输出功率是指在给定的水量和入水流速条件下,水轮机产生的功率。
通过计算水轮机的转动力矩和转速,使用功率计算公式,计算出水轮机的输出功率。
压力管路的水力计算
![压力管路的水力计算](https://img.taocdn.com/s3/m/34669f4dc281e53a5802ff8d.png)
引言
• 压力管路:在一定压差下,液流充满全管的流动管路。 • 压力管路按照管路结构可以分为:
– 简单管路:等径无分支管路 – 复杂管路:串联、并联、分支及管网等 • 压力管路按照能量比例大小分为:长管和短管
压力管路的水力计算
2
• 长管:长输管线输送距离比较远,两端压差比较大,局部阻力和流速
–
V′
Re Vd
校核流态
验证假设:
– 如由 Q ′及Re ′得出的流态和假设流态一致,则 Q ′为所求Q;
– 如由 Q ′及Re ′得出的流态和假设流态不一致,则重新假设流态 ,重复计算。
压力管路的水力计算
14
• 试算法:
设定Q1,解得hf1。判断:若hf1 >hf,则减小流量,取Q2 <Q1,重新计
压力管路的水力计算
26
5). 在已建成的长输管线上改设串联变径管或并联副管以翻越高点。
O A B
H
C
串联变径或加副管后,Q(不变),OA段hfO-A(不变);主管AB段 经过变径管或加副管, d(↑),v (↓),hfA-B(↓) 。在所需压头不 大的情况下,采用此办法可使管线内液体具有翻阅高点的水头。
即:β= 4.15,m=1
– 紊流流态——水力光滑区:
0.3164 R e0.25
h f 0 .0 2 4 6 Q 1 .d 7 5 4 .7 0 5 .2 5 L 0 .0 2 4 6 Q 2 d 0 .5 2 5 0 .2 0 5 .2 5 L
即:β= 0.0246,m=0.25
压力管路的水力计算
水头所占能量比例较小。和沿程水头损失相比,流速水头和局部水头
损失可以忽略的管路称为长管。有时近似取 hj (5%~10% )hf。
钢管水力计算
![钢管水力计算](https://img.taocdn.com/s3/m/6de467310b4e767f5acfced4.png)
钢管和铸铁管水力计算1 计算公式钢管和铸铁管水力计算沿用甫·阿·舍维列夫著水力计算表。
表中所采用的两种计算水头公式如下:(1)按水力坡降计算水头损失:水管的水力计算,一般采用公式(1-1):(1-1)式中i ――水力坡降;λ ――摩阻系数;d j ――管子的计算内径(m);υ――平均水流速度(m/s);g ――重力加速度,为9.81(m/s2)应用公式(1-1)时,必须先确定求取系数λ值的依据。
对于旧的钢管和铸铁管:当ν/v≥9.2×105/m时,ν――液体的运动粘滞度,(m2/s),则(1-2)当ν/v<9.2×105/m时,则(1-3)或采用ν=1.3×10-6m2/s(水温为10℃)时,则(1-4)管壁如发生锈蚀或沉垢,管壁的粗糙度就增加,从而使系数λ值增大。
公式(1-2)和公式(1-3)适合于旧钢将公式(1-2)和公式(1-4)中求得的λ值,代入(1-1)中,得出的旧钢管和铸铁管的计算公式为:当v≥1.2m/s 时,(1-5)当v<1.2m/s 时,(1-6)钢管和铸铁管水力计算表即按公式(1-5)和公式(1-6)制成。
(2)按比阻计算水头损失:由公式(1-5)求得比阻公式(1-7)为:(1-7)钢管和铸铁管的A 值,按公式(1-7),列表于1-4、5。
由于钢管和铸铁管的计算内径d j 不同,如公称直径DN=50mm 时,钢管的计算内径dj=52mm;铸铁管的计算内径dj=49mm。
因此同一公称直径,钢管2 水力计算表制表和使用说明(1)钢管及铸铁管水力计算表采用管子计算内径内的尺寸,见表2-1。
在确定计算内径d j 时,直径小于300m公称直径外径内径计算内径公称直径外径计算内径公称直径外径DN D d dj DN D dj DN D 813.598125146125400426101712.511.51501681474504781521.2515.7514.751751941735005292026.7521.2420.252002191986006302533.527262252452247007203242.2535.7534.752502732528008204048414027529927990092050605352300325305100010207075.56867325351331120012208088.580.579.5350377357130013201001141061051400142012514013113015001520150165156155160016201800182020002020220022202400242026002620①为壁厚10mm 的管子。
给排水系统中的水力计算与管径选择
![给排水系统中的水力计算与管径选择](https://img.taocdn.com/s3/m/fd1d315d974bcf84b9d528ea81c758f5f61f29c7.png)
给排水系统中的水力计算与管径选择水力计算是设计给排水系统中不可或缺的一项工作。
通过合理的水力计算,可以确定给排水管道的管径大小,以确保系统正常运行并满足设计要求。
本文将介绍给排水系统中的水力计算方法和管径选择准则。
一、给排水系统的水力计算方法在给排水系统中,水力计算通常包括两个关键参数:流量和水力损失。
流量是指液体在管道中的体积流动率,而水力损失则是液体在流动过程中由于阻力而损失的能量。
下面是一些常用的水力计算方法:1. Manning公式Manning公式是用于计算开放渠道中流速和水深之间的关系的经验公式。
在给排水系统中,这个公式可以用于计算自由涌流的流速,从而确定水流在管道中的流量。
2. Hazen-Williams公式Hazen-Williams公式是一种常用的计算给排水系统中水力损失的公式。
它通过管道材料的粗糙度系数、管道长度和流量来估算水力损失。
这个公式适用于中小口径管道和常规流量条件下的水力计算。
3. Darcy-Weisbach公式Darcy-Weisbach公式是一种基于雷诺数的计算方法,更适用于大口径管道和复杂流量条件下的水力计算。
该公式考虑了液体的粘度和摩擦阻力,可以更准确地计算水力损失。
二、管径选择准则正确的管径选择对于给排水系统的正常运行至关重要。
通常情况下,管径的选择应满足以下准则:1. 最小速度准则为了避免给排水系统中的沉积物沉淀,需要保证流速不低于一定的限制值。
通常情况下,给水系统的最小速度为0.6 m/s,排水系统的最小速度为0.9 m/s。
2. 最大速度准则过高的流速会导致水流对管道产生冲击和噪声,并增加管道的磨损和压力损失。
因此,给排水系统的设计速度应控制在一定的范围内,一般为1.5-3 m/s。
3. 总阻力准则给排水系统中的管道总阻力应小于一定的限制值,以确保系统能够正常运行。
总阻力包括管道阻力和局部阻力。
管道阻力可以通过水力计算得出,而局部阻力则包括弯头、三通、阀门等附件带来的额外阻力。
给水管径、流量、压降快速计算
![给水管径、流量、压降快速计算](https://img.taocdn.com/s3/m/992051f76294dd88d1d26b15.png)
按水泵流量、预选管径与长度验算压降 选择参数 3 设计流量m /h 管径mm 管段长度m 70.00 100 10 计算值 2.5 0.18
流速 压力降
m/s kgf/cm2
计算方法: 1、黄色格填入实际要求参数。 2、填入管径,若计算值为红色,请加大管 3、计算值变绿,即为管径合格。
管路直径最大流量限制
最大流速(m/s) 2.04 1.69 2.12 2.01 2.26 2.33 2.44 2.45 2.49 2.69 2.72 2.71 最大流量(m3/h) 3.6 9.0 15.0 24.0 36.0 66.2 108.0 154.8 216.0 299.9 479.9 691.2
实际要求参数。 若计算值为红色,请加大管径规格。 即为管径合格。
给水管径选择
1、支管流速选择范围0..8~1.2m/s。 2、干管流速选择范围1.2~2m/s。 3、管段压力降选择范围0.3~0.5kgf/cm 。【3~5m扬程】 按压降与管段长度选管径 选择参数 流速m/s 压力降kgf/cm2 管段长度m 0.3 2 100 计算值 32.9 mm 0.25 L/s 0.9 m3/h
2
管路直径最大流量
管径mm 25 38 50 65 75 100 125 150 175 200 250 300 最大流量(L/S) 1.00 2.50 4.17 6.67 10.00 18.40 30.00 43.00 60.00 83.30 133.30 192.00
计算管径 计算流量 计算流量
压降的计算公式范文
![压降的计算公式范文](https://img.taocdn.com/s3/m/2023c2b6690203d8ce2f0066f5335a8103d26652.png)
压降的计算公式范文压降是指流体在管道中流动时由于管道摩擦和阻力而造成的压力损失。
在工程实际应用中,压降的计算是非常重要的,可以用来确定管道的尺寸、流速等参数,以提高流体输送的效率。
1.流体在水平管道中的压降计算公式:(1)管道中流体的流速非常小,可以近似为层流情况,此时可以使用普桑流动公式:ΔP=λ×(L/D)×(ρV²/2)其中,ΔP为压降,λ为管道摩阻系数,L为管道的长度,D为管道的内径,ρ为流体的密度,V为流体的流速。
(2)管道中流体的流速较大,属于湍流情况,此时可以使用多种经验公式进行计算,如:ΔP=λ×(L/D)×(ρV²/2)ΔP=K×ρV²/2ΔP=C×γ×V²/2其中,K为经验传输系数,C为经验公式系数,γ为流体的比重,常用值为9810N/m³。
2.流体在垂直管道中的压降计算公式:(1)流体处于静水压力下,可以使用静水压力公式:ΔP=γ×(H1-H2)其中,γ为流体的比重,H1为管道上部液面的高度,H2为管道下部液面的高度。
(2)流体处于自由落体状态,可以使用自由落体公式:ΔP=γ×(H1-H2)+ρ×g×(h1-h2)其中,ρ为流体的密度,g为重力加速度,h1为管道上部液面的高度,h2为管道下部液面的高度。
3.流体在管道中受到局部装置(如阀门、弯头、孔板等)阻力的压降计算公式:ΔP=K×(ρV²/2)其中,K为局部阻力系数,可以根据具体的局部装置形状和流体性质进行选择或查表。
需要注意的是,上述计算公式是理想化假设下的近似计算方法,实际工程中的压降计算常常存在一定的误差,因此需要根据实际情况进行修正和调整。
另外,对于复杂的管网系统,如多支管道串联、并联等情况,压降计算可以通过流体力学分析或数值模拟方法进行求解。
流体管道压降计算公式
![流体管道压降计算公式](https://img.taocdn.com/s3/m/a0a03cdbc9d376eeaeaad1f34693daef5ef713ed.png)
流体管道压降计算公式
与你相见,路途遥远。
希望流体管道压降3的计算公式能很好的解决你要找的问题!大业将与您一起进步,一起成长!
本篇目录全览:
如何计算管道的压力降
根据水力学原理,有达西公式和列宾宗公式都是计算沿程水力摩阻的,局部水利摩阻可以查水利摩阻系数表,然后乘以速度的平方再除以2g。
管道压力降计算有那些方法,不同的流体状态,其计算方法是不同的。
不可压缩流体(如液体)的压力降计算方法主要为阻力系数和当量长度法;可压缩流体(如气体)的压力降计算方法和二相流流体(汽-液、气-固、液-固)的压力降计算方法较为复杂。
具体的计算方法,您可以参看《HG/T 20570.7-95 管道压力降计算》。
扩展资料:
按压力分:
1、低压管道工程压力<1.6MPa;
2、中压管道工程压力1.6-6.4MPa;
3、高压管道工程压力6.4-10MPa;
4、超高压管道工程压力10-20MPa。
① GB5044分为四级(与99容规相同):极度危害(1级)<
0.1mg/m3;高度危害(2级)0.1~1mg/m3;中度危害(3级)
1.0~10mg/m3;轻度危害(4级)>10mg/m3。
② GB5016标准对可燃气体火灾危险性分甲、乙两类,甲类气体为可燃气体与空气混合物的爆炸下限不大于10%(体积),乙类气体为可燃气体与空气混合物的爆炸下限不小于10%(体积)。
管路水力计算
![管路水力计算](https://img.taocdn.com/s3/m/611a3ab3d5d8d15abe23482fb4daa58da0111c1d.png)
一、管路水力计算的基本原理1、一般管段中水的质量流量G,kg/h,为已知;根据G查询热水采暖系统管道水力计算表,查表确定比摩阻R后,该管段的沿程压力损失Py=Rl就可以确定出来;局部压力损失按下式计算1Σξ--------表示管段的局部阻力系数之和,查表可知;可求得各个管段的总压力损失22、也可利用当量阻力法求总压力损失:当量阻力法是在实际工程中的一种简化计算方法;基本原理是将管段的沿程损失折合为局部损失来计算,即34式中ξd——当量局部阻力系数;计算管段的总压力损失ΔP可写成5令ξz h = ξd +Σξ式中ξz h|——管段的这算阻力系数6又7则8设管段的总压力损失9各种不同管径的A值和λ/d值及ξz h可查表;根据公式9编制水力计算表;3、当量长度法当量长度法是将局部损失折算成沿程损失来计算的一种简化计算方法,也就是假设某一管段的局部压力损失恰好等于长度为ld的某段管段的沿程损失,即10式中ld为管段中局部阻力的当量长度,m;管段的总压力损失ΔP可写成ΔP = Py + Pj = Rl + Rld = Rlzh 11式中lzh为管段的折算长度,m;当量长度法一般多用于室外供热管路的水力计算上;二、热水采暖系统水力计算的方法1、热水采暖系统水力计算的任务a、已知各管段的流量和循环作用压力,确定各管段管径;常用于工程设计;b、已知各管段的流量和管径,确定系统所需的循环作用压力;常用于校核计算;c、已知各管段管径和该管段的允许压降,确定该管段的流量;常用于校核计算;2、等温降法水力计算方法2-1 最不利环路计算1最不利环路的选择确定采暖系统是由各循环环路所组成的,所谓最不利环路,就是允许平均比摩阻最小的一个环路;可通过分析比较确定,对于机械循环异程式系统,最不利环路一般就是环路总长度最长的一个环路;2根据已知温降,计算各管段流量式中Q——各计算管段的热负荷,W;tg——系统的设计供水温度,℃;tg——系统的设计回水温度,℃;3根据系统的循环作用压力,确定最不利环路的平均比摩阻Rpj式中Rpj——最不利环路的平均比摩阻,Pa/mΔP——最不利环路的循环作用压力,Paα——沿程压力损失占总压力损失的估计百分数,查表确定其值Σl——环路的总长度,m4根据Rpj和各管段流量,查表选出最接近的管径,确定该管径下管段的实际比摩阻和实际流速v;5确定各管段的压力损失,进而确定系统总的压力损失;2-2 其他环路计算其他环路的计算是在最不利环路计算的基础上进行的;应遵循并联环路压力损失平衡的规律,来进行各环路的计算;应用等温降法进行水力计算时应注意:(1)如果系统位置循环作用压力,可在总压力损失之上附加10%确定;(2)各并联循环环路应尽量做到阻力平衡,以保证各环路分配的流量符合设计要求;但各并联环路的阻力做到绝对平衡是不可能的,允许有一个差额,但不能过大,否则会造成严重失调;(3)散热器的进流系数跨越式热水采暖系统中,由于一部分直接经跨越管流入下层散热器,散热器的进流系数α取决于散热器支管、立管、跨越管管径的组合情况和立管中的流量、流速情况,进流系数可查图4-3确定;等温降法简便,易于计算,但不易使个并联环路阻力达到平衡,运行时易出现近热远冷的水平失调问题;2-3不等温降法的水力计算方法所谓不等温降的水力计算,就是在单管系统中各立管的温度各不相等的前提下进行水力计算;它以并联环路各节点压力平衡的基本原理进行水力计算;这种计算方法对各立管间的流量分配,完全遵守并联环路节点压力平衡的水力学规律,能使设计工况与实际工况基本一致;进行室内热水采暖系统不等温降的水力计算时,一般从循环环路的最远立管开始;(1)首先任意给定最远立管的温降;一般按设计温降增加2-5℃;由此求出最远立管的计算流量Gj ;根据该立管的流量,选用R或v值,确定最远立管管径和环路末端供、回水干管的管径及相应的压力损失值; (2)确定环路最末端的第二根立管的管径;该立管与上述计算管段为并联管路;根据已知节点的压力损失ΔP,选定该立管管径,从而确定通过环路最末端的第二根立管的计算流量及其计算温度降;(3)按照上述方法,由远至近,一次确定出该环路上供、回水干管各管段的管径及其相应附压力损失以及各立管的管径、计算流量和计算温度降;(4)系统中有很多分支循环环路时,按上述方法计算各个分支循环环路;计算得出的各循环环路在节点压力平衡状况下的流量总和,一般都不会等于设计要求的总流量,最后需要根据并联环路流量分配和压降变化的规律,对初步计算的个循环环路的流量、温降和压降进行调整;最后确定各立管散热器所需的面积;。
管径选择与管道压力降计算最新版
![管径选择与管道压力降计算最新版](https://img.taocdn.com/s3/m/68dbd21a8bd63186bcebbcfb.png)
管径选择与管道压力降计算最新版管径选择与管道压力降计算最新版管径选择与管道压力降计算第一部分管径选择1( 应用范围和说明1.0.1 本规定适用于化工生产装置中的工艺和公用物料管道,不包括储运系统的长距离输送管道、非牛顿型流体及固体粒子气流输送管道。
1.0.2 对于给定的流量,管径的大小与管道系统的一次投资费(材料和安装)、操作费(动力消耗和维修)和折旧费等项有密切的关系,应根据这些费用作出经济比较,以选择适当的管径,此外还应考虑安全流速及其它条件的限制。
本规定介绍推荐的方法和数据是以经验值,即采用预定流速或预定管道压力降值(设定压力降控制值)来选择管径,可用于工程设计中的估算。
1.0.3 当按预定介质流速来确定管径时,采用下式以初选管径:0.5-0.5-0.5 d=18.81W u ρ (1.0.3—1)0.5-0.5 或 d=18.81V u (1.0.3—2) 0式中d——管道的内径,mm;W——管内介质的质量流量,kg,h;3 V——管内介质的体积流量,m,h; 03 ρ——介质在工作条件下的密度,kg,m;u——介质在管内的平均流速,m,s。
预定介质流速的推荐值见表2.0.1。
1.0.4 当按每100m计算管长的压力降控制值(?Pf100)来选择管径时,采用下式以初定管径:0.38-0.2070.033–0.207 d,18.16W ρ µ ?P (1.0.4—1) f1000.1730.0330.38 –0.207 或d,18.16V ρ µ ?P (1.0.4—2) 0f100式中µ——介质的动力粘度,Pa?s;?P——100m计算管长的压力降控制值,kPa。
f100推荐的?P值见表2.0.2。
f1001.0.5 本规定除注明外,压力均为绝对压力。
—1—管径选择与管道压力降计算最新版2( 管道内流体常用流速范围和一般工程设计中的压力降控制值 2.0.1 管道内各种介质常用流速范围见表2.0.1。
输水管道水力计算公式
![输水管道水力计算公式](https://img.taocdn.com/s3/m/c0be588c84254b35effd3408.png)
输水管道水力计算公式1.常用的水力计算公式:供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有:达西(DARCY )公式:g d v l h f 22**=λ (1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10d C l Q h h f ***= (3) 式中 h f -----------沿程损失,mλ----------沿程阻力系数l -----------管段长度,md-----------管道计算内径,mg-----------重力加速度,m/s 2C-----------谢才系数i------------水力坡降;R-----------水力半径,mQ-----------管道流量m/s 2v------------流速 m/sC n -----------海澄―威廉系数其中达西公式、谢才公式对于管道和明渠的水力计算都适用。
海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。
三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。
2.规范中水力计算公式的规定3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1:表1 各规范推荐采用的水力计算公式3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。
公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。
舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。
舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用较广.柯列勃洛可公式)Re 51.27.3lg(21λλ+∆*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<108。
燃气管道管径选取方法的探讨(1)
![燃气管道管径选取方法的探讨(1)](https://img.taocdn.com/s3/m/6650ed23b9f3f90f77c61b43.png)
燃气管道管径选取方法的探讨(1)上式中n 、q 根据实际情况选取,关键是同时工作系数K 值需要确定,其物理含义是:实际流量与各类型燃具额定流量之总和的比值,它是随同一类型燃具的数目的增大而减少,反映了多个燃气用具的集中使用程度。
1.2 采暖热指标法采暖热指标是城镇供热规划设计与建筑供热设计中一个重要的经济技术评价和控制指标,是确定集中供热系统热源规模的主要依据,一般多用面积热指标表示,即单位时间内对单位建筑面积的供热量。
在热力网初步设计阶段或建筑物设计热负荷资料不全时,民用建筑的采暖、通风、空调及生活热水热负荷,可按下列方法计算[4]:Qh=qh×A×10-3式中:Qh — 采暖热负荷,kW ;qh — 采暖热指标,住宅楼的采暖热指标qh取64 W/m 2;A — 采暖建筑物的建筑面积,m 2。
2 燃气管道水力计算2.1 低压燃气管道基本计算公式L∆P =6.9×10625.0Q d 2.192d ⎪⎪⎭⎫ ⎝⎛+∆v 52d Q ρ0T T式中: △P ——燃气管道摩擦阻力损失(Pa);l ——燃气管道的计算长度(m); Q ——燃气管道的计算流量(m 3/h);d——管道内径(mm);ρ——燃气的密度(kg/m3);T——设计中所采用的燃气温度(K);T0——273.15(K);v——燃气的运动粘度(m2/s);K——管壁内表面的当量绝对粗糙度,对钢管:输送天然气时取0.1mm。
2.2 燃气管道压力降的分配低压燃气管道允许总压力降的分配按《城镇燃气设计规范》(GB50028-2006)的推荐值,如下表:表1 低压燃气管道允许总压力降的分配一般的民用燃具正常工作可允许其压力在±50%范围内波动,但考虑到高峰期一部分燃具不宜处于过低的负荷,因此,取最小压力系数K2=0.75,最大压力系数K1=1.50。
这样,低压燃气管网(包括庭院和室内管)总的计算压力降可确定为:△Pd=0.75Pn,加上燃气表的压力损失150Pa,燃气低压管道从调压箱到最远燃具的管道允许阻力损失,可按下式计算:△Pd=0.75Pn+150。
管径选择与管道压力降计算
![管径选择与管道压力降计算](https://img.taocdn.com/s3/m/70e978bebdeb19e8b8f67c1cfad6195f312be829.png)
管径选择与管道压力降计算管径选择与管道压力降计算管道在不同领域中扮演着非常重要的角色,如工业制造、建筑、市政环保项目等。
不同的管道系统需要根据设计要求和使用场景选择不同的管径。
正确的管径选择是保证管道系统运行可靠性和效率的首要因素之一。
同时,在管道系统中发生的压力降也需要得到合理的计算和控制,从而避免管道损坏、破裂等安全事故的发生。
本文将从管径的选择和管道压力降的计算两个方面来探讨管道系统中应该如何进行管道设计和优化。
一、管径的选择管道的设计与选择必须以液体或气体的体积和速度作为基础,以确保管道系统的设计遵循良好的流体力学原理。
过大或过小的管径会影响管道系统的流量和速度,引起压力降低或过高,进而影响管道系统的可靠性和效率。
首先,管径的选择应遵循一定的规则和经验。
其中,国际上广泛应用的四种管径选择方法为经验公式法、图表法、数值法和实验法。
1.经验公式法经验公式法是根据经验数据来选定管径的。
它适用于一些应用较广泛的场合,如综合管廊、市政管线、消防系统等。
常用的经验公式有:Manning公式、Hazen-Williams公式、Chezy公式等。
2.图表法图表法是根据已经绘制好的图表或图像进行选择的。
国际上比较有代表性的图表法有来自美国的Darcy-Weisbach图和Colebrook-White图,以及在欧洲和英国使用的Kunzelmann-Kramer(KK)图等。
3.数值法数值法即计算机模拟方法,它可以使用CFD软件(计算流体动力学数值模拟软件)进行模拟,得出管道系统的流体动力学性质。
CFD软件适用于一些较为复杂的管道系统的设计和优化,但同时也需要一定的计算机和数值分析知识。
4.实验法实验法是通过实验测试来获得管道系统的流量和流体速度等参数,进而得到管径的选取。
实验法常用于一些特殊要求或较为复杂的场合,如矿井液力输送系统、流量计校准、液气传输等。
其次,管道系统的管径选择还需要考虑系统的材料、流态、阻力系数等因素。
管径与流量压力的计算公式
![管径与流量压力的计算公式](https://img.taocdn.com/s3/m/d468069cb8f3f90f76c66137ee06eff9aef849e0.png)
管径与流量压力的计算公式管道是工业生产中常见的输送介质的设备,而管道的流量和压力是管道设计和运行中最重要的参数之一。
在管道设计和运行中,正确计算管道的流量和压力是至关重要的。
本文将介绍管径与流量压力的计算公式,并讨论其在工程实践中的应用。
一、管径与流量的计算公式。
1. 管道流量的计算公式。
管道流量是指单位时间内通过管道的液体或气体的体积。
在工程实践中,常用的管道流量计算公式为:Q = A v。
其中,Q为管道流量,单位为m3/s;A为管道横截面积,单位为m2;v为流体的流速,单位为m/s。
2. 管道横截面积的计算公式。
管道横截面积的计算公式为:A = π d2 / 4。
其中,A为管道横截面积,单位为m2;d为管道直径,单位为m;π为圆周率,取3.14。
综合以上两个公式,可以得到管道流量的计算公式为:Q = π d2 / 4 v。
其中,Q为管道流量,单位为m3/s;d为管道直径,单位为m;v为流体的流速,单位为m/s。
二、管径与压力的计算公式。
1. 管道流体的压力损失计算公式。
管道中流体的流动会产生一定的阻力,从而使得流体的压力发生变化。
在工程实践中,常用的管道流体压力损失计算公式为:ΔP = f (L / d) (ρ v2) / 2。
其中,ΔP为管道流体的压力损失,单位为Pa;f为摩阻系数;L为管道长度,单位为m;d为管道直径,单位为m;ρ为流体的密度,单位为kg/m3;v为流体的流速,单位为m/s。
2. 管道流体的压力计算公式。
管道中流体的压力可以通过管道流体的压力损失计算公式得到,同时还需要考虑流体的入口压力和出口压力。
管道流体的压力计算公式为:P = Pin ΔP。
其中,P为管道流体的压力,单位为Pa;Pin为流体的入口压力,单位为Pa;ΔP为管道流体的压力损失,单位为Pa。
综合以上两个公式,可以得到管道流体的压力计算公式为:P = Pin f (L / d) (ρ v2) / 2。
其中,P为管道流体的压力,单位为Pa;Pin为流体的入口压力,单位为Pa;f 为摩阻系数;L为管道长度,单位为m;d为管道直径,单位为m;ρ为流体的密度,单位为kg/m3;v为流体的流速,单位为m/s。
压力管道设计专业管道压降计算
![压力管道设计专业管道压降计算](https://img.taocdn.com/s3/m/4aca26e9b1717fd5360cba1aa8114431b90d8e2d.png)
压力管道设计专业管道压降计算在进行管道压降计算之前,首先需要获得一些基本的管道设计参数,包括流量、流速、管道材质、管道直径、管道长度和管道摩阻系数等。
其中,流量是指单位时间内通过管道的液体或气体的质量或体积,通常以升/分钟或立方米/小时等单位表示;流速是指液体或气体通过管道时流动的速度,通常以米/秒的单位表示;管道材质、管道直径和管道长度则是设计师根据实际情况选择的参数。
在进行管道压降计算时,最常用的方法是使用达西公式或魏金斯公式。
这两个公式都是根据流动的能量原理推导出来的,通过这些公式可以计算出单位长度管道的压力损失。
达西公式是最常用的管道压降计算公式之一,表示为:ΔP=λ(L/D)(V^2/2g),其中ΔP为单位长度压力损失,λ为管道的摩阻系数,L为管道长度,D为管道直径,V为流速,g为重力加速度。
魏金斯公式是针对流量较小、管道直径较大的情况进行的近似计算,表示为:ΔP=λ(L/D^4)(Q^2/2g),其中ΔP为单位长度压力损失,λ为管道的摩阻系数,L为管道长度,D为管道直径,Q为流量,g为重力加速度。
根据以上公式,可以进行压力管道设计中的压降计算。
在计算过程中,需要根据具体的工程条件和管道材质,选择合适的摩阻系数,然后计算出所需的流速、流量和管道的长度和直径,再代入公式中进行计算即可得到单位长度的压力损失。
在进行管道压降计算过程中,还需要注意一些影响压力损失的因素,如管道的粗糙度、管道的弯曲程度、管道的变径和管道的局部阻力等。
这些因素都会对管道的压降产生一定的影响,设计人员需要在计算中合理考虑这些因素。
总之,压力管道设计中的管道压降计算是提高管道设计效率和准确性的重要环节,设计人员需要根据实际情况选择合适的计算方法和参数,并充分考虑影响因素,以确保管道设计的安全性和稳定性。
输气管道的水力计算分析
![输气管道的水力计算分析](https://img.taocdn.com/s3/m/0cbd5bcfa1116c175f0e7cd184254b35eefd1afb.png)
输气管道的水力计算分析输气管道的水力计算分析是指在输气过程中,通过计算输气管道的水力损失、流量、压力等参数,来评估管道输送能力、确定管道尺寸和选择有效的管道设计参数的过程。
本文将介绍输气管道水力计算分析中的基本原理和方法,并对输气管道的流量、水力损失和压力进行详细的计算和分析。
一、流量计算在输气管道的水力计算分析中,首先需要计算流量。
流量是指单位时间内通过输气管道的气体质量或体积。
常用的流量计算公式有以下几种:1.等温式流量计算公式Q=3600*A*V*ρ/Z其中,Q为流量(m³/h),A为管道截面积(m²),V为气体速度(m/s),ρ为气体密度(kg/m³),Z为气体压缩因子。
2.等焓式流量计算公式Q=3600*A*C其中,C为气体流量系数,由气体特性和流量计算方法决定。
根据具体情况选择合适的流量计算公式,并根据管道截面形状和气体流动条件确定管道截面积和气体速度,进而计算出流量。
二、水力损失计算水力损失是指气体在管道中由于摩擦、弯管、阀门、管道直径变化等原因引起的能量损失。
水力损失的计算是衡量输气管道输送能力和选择管道尺寸的重要依据。
常用的水力损失计算方法有以下几种:1.摩擦压降法ΔP=λ*L*(V²/(2gD))其中,ΔP为压降(Pa),λ为摩擦系数,L为管道长度(m),V为气体速度(m/s),g为重力加速度(m/s²),D为管道直径(m)。
2.流量比例法ΔP=K*Q²其中,ΔP为压降(Pa),K为系数,Q为流量(m³/h)。
根据具体情况选择合适的水力损失计算方法,并根据管道长度、摩擦系数、管道直径和流量计算出水力损失。
三、压力计算压力是指气体在输气管道中的压力。
在输气管道的水力计算分析中,需要计算出管道起点和终点的压力,以评估管道输送能力和确定管道参数。
压力的计算方法有以下几种:1.法向压力梯度法ΔP=ρ*g*H其中,ΔP为压降(Pa),ρ为气体密度(kg/m³),g为重力加速度(m/s²),H为管道高度差(m)。
输水管道水力计算公式
![输水管道水力计算公式](https://img.taocdn.com/s3/m/07ae6b1015791711cc7931b765ce050876327593.png)
输水管道水力计算公式1.常用的水力计算公式:供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DARCY )公式:gd v l h f 22**=λ(1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN —WILIAMS )公式:87.4852.1852.167.10d C lQ h h f ***= (3) 式中 h f —-——--——--—沿程损失,mλ——-——-----沿程阻力系数 l ----——-—--—管段长度,md----—--————管道计算内径,mg-——-————-—-重力加速度,m/s 2 C ——-----—---谢才系数i---——-———---水力坡降; R---—---—---水力半径,mQ ——--——--—-—管道流量m/s 2 v —---—--—---—流速 m/sC n -—-—-——----海澄―威廉系数其中达西公式、谢才公式对于管道和明渠的水力计算都适用。
海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。
三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。
2.规范中水力计算公式的规定3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1:表1 各规范推荐采用的水力计算公式3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流.公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出.舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F 。
COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。
舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10—6 m 2/s ,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用较广。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原始数据 局部阻力
过滤器阻力 k1 0 弯头阻力k2 0 三通阻力k3 0 阀门阻力 异径管阻 k4 力k5 0 0 水泵阻力 k6 0
静压头 要求终点压 (位差)m 力MPa
0 0
密度(kg / m 3 )
v 流速(m / s )
中间计算结果
雷诺数Re 207327.50 f=64/Re
管道阻力降计算表 项目名称: 计算管道号:
原始数据 介质参数
流量m3/h 3 密度kg/m3 999.3795 动力粘度cp 0.113713 运动粘度 × 10-6m2/s 0.113784 温度℃ 15 压力MPa 0.7 公称直径 (内径)m 0.045 1
管道参数
管道长度m 管道相对粗糙度 ε /d 0.000889
摩擦系数f 0.0210 0.0210
最终计算结果
流速 m/s 0.5242 沿程阻力MPa 0.0001 局部阻力 MPa 0.0000 静压头 MPa 0.0000 总阻力 MPa 0.0001 要求起点 压力MPa 0.0001
总阻力 1.15 (沿程阻力 局部阻力 静压头)
l v 2 ( Pa ) d 2 P1 沿程阻力损失 P1 f f 摩擦系数 l 管道长度(m) d 管径(m)
动力粘性系数( Pa s ) 运动粘性系数(m 2 / s ) 密度1N S / m 2 1kg ( / m s)
计算摩擦系数的公式选用
f≈0.0055[1+(2.0*10^4*ε /d+10^6/Re)^(1/3)] f≈0.0055+0.15(ε /d)^(1/3)
pa 2 p 2 局部阻力损失
p 2
kv 2
密度(kg / m 3)
k 局部阻力系数 v 流速(m/s)
中间计算结果