第七章 多元统计分析(3)

合集下载

《多元统计分析》课件

《多元统计分析》课件

数据预处理和清洗
1
数据清洗
解决缺失值、异常值和重复数据问题。
2
标准化处理
对数据进行标准化、归一化和正态化处理。
3
变量选择
学习如何选择影响结果的重要变量。
描述性统计分析
1 中心趋势分析
运用平均值、中位数和众数等指标揭示数据的集中情况。
2 离散程度分析
探索数据的离散程度,如标准差和方差。
3 分布形态分析
识别数据分布的形态,如正态分布和偏态分布。
相关分析
线性相关
学习如何评估变量之间的 线性关系。
非线性相关
探索变量之间的非线性关 系,如曲线和曲面拟合。
相关系数
了解相关系数的计算方法 及其解释。
统计显著性检验
1
假设检验
学习如何根据样本数据推断总体参数。
2
置信区间
了解如何估计总体参数的范围。
3
显著性水平
确定显著性水平及其对推断的影响。
回归分析
线性回归
构建线性回归模型来预测因变量。
回归诊断
评估回归模型用。
多元方差分析
单因素设计
比较多个组之间的差异。
多重比较
确定组之间的具体差异。
二因素设计
考虑两个自变量对因变量的 影响。
《多元统计分析》PPT课件
探索多元统计分析的定义、概念和应用。从数据预处理到分析模型选择,帮 助解决实际问题。了解多元统计软件和未来发展方向。
数据结构和类型
结构
探索多元数据的各种结 构,包括矩阵、向量和 表格。
类型
了解多元数据的分类, 如连续型、离散型、定 类型和定序型。
示例
使用实际案例来展示多 元数据的结构和类型。

《多元统计分析》课件

《多元统计分析》课件

采用L1正则化,通过惩罚项来选择最重要 的自变量,实现特征选择和模型简化。
比较
应用场景
岭回归适用于所有自变量都对因变量有影 响的情况,而套索回归更适用于特征选择 和模型压缩。
适用于数据集较大、自变量之间存在多重 共线性的情况,如生物信息学数据分析、 市场细分等。
主成分回归与偏最小二乘回归
主成分回归
适用于自变量之间存在多重 共线性的情况,同时要求高 预测精度,如金融市场预测 、化学计量学等。
06 多元数据的典型相关分析
典型相关分析的基本思想
01
典型相关分析是一种研究多个 随机变量之间相关性的多元统 计分析方法。
02
它通过寻找一对或多个线性组 合,使得这些线性组合之间的 相关性达到最大或最小,从而 揭示多个变量之间的关系。
原理
基于最小二乘法原理,通过最小化预 测值与实际值之间的平方误差来估计 回归系数。
应用场景
适用于因变量与自变量之间存在线性 关系的情况,如预测房价、股票价格 等。
注意事项
需对自变量进行筛选和多重共线性诊 断,以避免模型的不稳定性和误差。
岭回归与套索回归
岭回归
套索回归
是一种用于解决多重共线性的回归方法, 通过引入一个小的正则化项来稳定系数估 计。
层次聚类
01
步骤
02
1. 将每个数据点视为一个独立的集群。
2. 计算任意两个集群之间的距离或相似度。
03
层次聚类
01 3. 将最相近的两个集群合并为一个新的集群。 02 4. 重复步骤2和3,直到满足终止条件(如达到预
设的集群数量或最大距离阈值)。
03 应用:适用于探索性数据分析,帮助研究者了解 数据的分布和结构。

多元统计分析的重点和内容和方法

多元统计分析的重点和内容和方法

一、什么是多元统计分析❖多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广。

❖多元统计分析是研究多个随机变量之间相互依赖关系以及内在统计规律的一门统计学科。

二、多元统计分析的内容和方法❖1、简化数据结构(降维问题)将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。

(1)主成分分析(2)因子分析(3)对应分析等❖2、分类与判别(归类问题)对所考察的变量按相似程度进行分类。

(1)聚类分析:根据分析样本的各研究变量,将性质相似的样本归为一类的方法。

(2)判别分析:判别样本应属何种类型的统计方法。

例5:根据信息基础设施的发展状况,对世界20个国家和地区进行分类。

考察指标有6个:1、X1:每千居民拥有固定电话数目2、X2:每千人拥有移动电话数目3、X3:高峰时期每三分钟国际电话的成本4、X4:每千人拥有电脑的数目5、X5:每千人中电脑使用率6、X6:每千人中开通互联网的人数❖3、变量间的相互联系一是:分析一个或几个变量的变化是否依赖另一些变量的变化。

(回归分析)二是:两组变量间的相互关系(典型相关分析)❖4、多元数据的统计推断点估计参数估计区间估计统 u检验计参数 t检验推 F检验断假设相关与回归检验卡方检验非参秩和检验秩相关检验❖1、假设检验的基本原理小概率事件原理❖ 小概率思想是指小概率事件(P<0.01或P<0.05等)在一次试验中基本上不会发生。

反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立;反之,则认为假设成立。

❖ 2、假设检验的步骤 (1)提出一个原假设和备择假设❖ 例如:要对妇女的平均身高进行检验,可以先假设妇女身高的均值等于 160 cm (u=160cm )。

这种原假设也称为零假设( null hypothesis ),记为 H 0 。

《多元统计分析》目录

《多元统计分析》目录

《多元统计分析》目录前言第一章基本知识﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5 §1·1总体,个体与样本﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5 §1·2样本数字特征与统计量﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍6 §1·3一些统计量的分布﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍9 第二章统计推断﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍15 §2·1参数估计﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍15 §2·2假设检验﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍19 第三章方差分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍32 §3·1一个因素的方差分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍32 §3·2二个因素的方差分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍37 §3·3用方差分析进行地层对比﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍44 第四章回归分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍49 §4·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍49 §4·2回归方程的确定﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍49 §4·3相关系数及其显着性检验﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍52 §4·4回归直线的精度﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍55 §4·5多元回归分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍56 §4·6应用实例﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍60 第五章逐步回归分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍65 §5·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍65 §5·2“引入”和“剔除”变量的标准﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍66 §5·3矩阵变换法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍67 §5·4回归系数,复相关系数和剩余标准差的计算﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍69 §5·5逐步回归计算方法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍70§5·6实例﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍74 第六章趋势面分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍80 §6·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍80 §6·2图解汉趋势面分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍81 §6·3计算法趋势面分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍83 第七章判别分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍90 §7·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍90 §7·2判别变量的选择﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍91 §7·3判别函数﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍92 §7·4判别方法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍96 §7·5多类判别分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍104 第八章逐步判别分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍110 §8·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍110 §8·2变量的判别能力与“引入”变量的统计量﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍110 §8·3矩阵变换与“剔除”变量的统计量﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍113 §8·4计算步聚与实例﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍115 第九章聚类分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 125 §9·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍125 §9·2数据的规格化(标准化)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍125 §9·3相似性统计量﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍126 §9·4聚类分析方法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍131 §9·5实例﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍134 §9·6最优分割法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍134 第十章因子分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍142 §10·1概述﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍142 §10·2因子的几何意义﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍143 §10·3因子模型﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍145§10·4初始因子载荷矩阵的求法﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍147 §10·5方差极大旋围﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍152 §10·6计算步聚﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍156 §10·7实例﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍157 附录﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍162 附录1标准正态分布函数量﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍162 附录2正态分布临界值u a表﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍164 附录3t分布临界值t a表﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍165 附录4(a)F分布临界值Fa表(a=0·1)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍附录4(b)F分布临界值Fa表 (a=0·05) ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍附表4(c)F分布临界值Fa表(a=0·01)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍附表5 x2分布临界值xa2表﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍第一章基本知识§1·1总体、个体与样本总体(母体)、个体一(样本点)和样本(子样)是统计分析中常用的名词。

第七章多元统计分析

第七章多元统计分析
第六章
多元统计分析
研究多个随机变量——随机向量 多元统计分析是数理统计学中一个重 要的分支,它是研究高维数据之间相 互依赖关系以及内在规律性的一门统 计学科,是一元统计学的推广.
1
随着计算机的发展和普及,多元统 计分析的理论和方法也不断发展和完 善,并已应用到农业、工业、生物、 医学、考古学、教育学、文学以及气 象学等领域中.
2
0
所以,DX非负定,即 DX 0.
9
定义3 : 设X ( X 1 , X 2 , , X p )


和Y (Y1 , Y2 , , Yq ) 是随机向量, 若X i与Y j的协方差Cov ( X i , Y j ) (i 1, 2, , p; j 1, 2, , q )存在, 则称
22
性质7 设X N p (, ), 0,则
Y ( X ) 1 ( X ) 2 ( p) 证明:
X AU , AA , U (U1 ,U 2 ,,U p ) U i N (0,1),
定义5
A可逆


A
1


1
n
样本离差阵为 A X X X X aij
n n

1
p p
其中aij x i xi x j x j
1
i, j 1, 2, , p
29
样本协方差阵为 1 S A sij p p n 1 样本相关系数阵为
协方差阵已知时选用统计量
n X 0
2

1 0
X
0
H0
~
2
p
36

多元统计分析第七章主成分分析习题答案

多元统计分析第七章主成分分析习题答案

7.1 设随机变量12X(X ,X )'=的协差阵为21,12⎡⎤∑=⎢⎥⎣⎦试求X的特征根和特征向量,并写出主成分。

解:先求X的特征根λ,λ满足方程:21012-λ=-λ,即2(2)10-λ-=,因此两个特征根分别为123, 1.λ=λ=设13λ=对应的单位特征向量为()1121a ,a ',则()1121a ,a '满足:1121a 110a 110-⎛⎫⎡⎤⎛⎫= ⎪ ⎪⎢⎥-⎣⎦⎝⎭⎝⎭,故可以取1121a a ⎛⎛⎫ = ⎪ ⎝⎭ ⎝,其对应主成分为:112F X X 22=+;设21λ=对应的单位特征向量为()1222a ,a ',则()1222a ,a '满足:1222a 110a 110⎛⎫⎡⎤⎛⎫=⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,故可以取1222a a ⎛⎫⎛⎫ ⎪= ⎪ ⎝⎭- ⎝,其对应的主成分为:212F 22=-.7.2设随机变量123X (X ,X ,X )'=的协差阵为120250,002-⎡⎤⎢⎥∑=-⎢⎥⎢⎥⎣⎦试求X的主成分及主成分对变量X的贡献率。

解:先求X的特征根λ,λ满足方程:12025002-λ---λ=-λ,即()2(2)610-λλ-λ+=,因此三个特征根分别为1235.8284,2,0.1716λ=λ=λ=设1 5.8284λ=对应的单位特征向量为()112131a ,a ,a ',则它满足:1121314.828420a 020.82840a 000 3.8284a 0--⎡⎤⎛⎫⎛⎫⎪ ⎪⎢⎥--=⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥-⎣⎦⎝⎭⎝⎭,故可以取 112131a 10.38271a 2.41420.92392.6131a 00⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其对应主成分为: 112F 0.3827X 0.9239X =-,其贡献率为5.828472.86%5.828420.1716=++;设22λ=对应的单位特征向量为()122232a,a ,a ',则它满足:122232120a 0230a 0000a 0--⎡⎤⎛⎫⎛⎫ ⎪ ⎪⎢⎥-= ⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,故可以取122232a 0a 0a 1⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其对应主成分为: 23F X =,其贡献率为225%5.828420.1716=++;设30.1716λ=对应的单位特征向量为()132333a ,a ,a ',则它满足:1323330.828420a 02 4.82840a 000 1.8284a 0-⎡⎤⎛⎫⎛⎫⎪ ⎪⎢⎥-=⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,故可以取132333a 10.92391a 0.41420.38271.0824a 00⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其对应主成分为: 312F 0.9239X 0.3827X =+,其贡献率为0.17162.14%5.828420.1716=++.7.3 设随机变量12X (X ,X )'=的协差阵为14,4100⎡⎤∑=⎢⎥⎣⎦试从∑和相关阵R出发求出总体主成分,并加以比较。

应用多元统计分析习题解答 第七章讲解学习

应用多元统计分析习题解答 第七章讲解学习

应用多元统计分析习题解答第七章第七章 因子分析7.1 试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。

7.2 因子分析主要可应用于哪些方面?答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。

7.3 简述因子模型中载荷矩阵A 的统计意义。

答:对于因子模型1122i i i ij j im m i X a F a F a F a F ε=++++++ 1,2,,i p =因子载荷阵为11121212221212(,,,)m m m p p pm a a a aa a A A A a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Ai X 与j F 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mik k j i j k a F F F ε=+∑=ij a若对iX作标准化处理,=ija,因此ija一方面表示iX对jF的依赖程度;另一方面也反映了变量i X对公共因子jF的相对重要性。

应用多元统计分析课后习题答案高惠璇第七章习题解答

应用多元统计分析课后习题答案高惠璇第七章习题解答
其中ρ为X1和X2的相关系数(ρ>0). (1) 试从Σ出发求X

1
1

(2) 求X
(3) 试问当ρ取多大时才能使第一主成分的贡献率达95%以上.
解:
5
第七章 主成分分析
6
第七章 主成分分析
7-3 设p维总体X的协差阵为
21

1

1
应用多元统计分析
第七章习题解答
第七章 主成分分析
7-1 设X=(X1, X2)′的协方差阵 试从Σ和相关阵R出发求出总体主成分,
14
1040,
并加以比较.
Байду номын сангаас解:
2
第七章 主成分分析
3
第七章 主成分分析
4
第七章 主成分分析
7-2 设X=(X1, X2)′~N2(0,Σ),协方差Σ=
(01).
(1)
Z1 1p(X1X2Xp);
(2) 试求第一主成分的贡献率.
7
第七章 主成分分析
解:
1
8
第七章 主成分分析
7-4 设总体X=(X1,…,Xp)′~Np(μ,Σ) (Σ>0),等概率密度
椭球为
(X-μ)′Σ-1(X-μ)=C2(C为常数).
试问椭球的主轴方向是什么?
第七章 主成分分析
17
第七章 主成分分析
7-10
18
第七章 主成分分析
77--1112
19
解:
9
第七章 主成分分析
7-5 设3维总体X的协差阵为

试求总体主成分.

4 0 0
0 4 0
0 0 2

解:总体主成分为

多元统计分析——对应分析 ppt课件

多元统计分析——对应分析 ppt课件
描述两个定性变量之间的相关性是指广义的相关性, 称为关联性。两个定性变量的关联程度在某种意义 上就是指的“不独立”,它与独立的情形差距越大, 就表明彼此的关系越密切,这种关系不一定是线性 关系。在实际问题中,重要的是判断变量之间是否 独立,因为不独立就意味着关联。最常用的检验办 法是列联表独立性检验。
行轮廓矩阵为:
p11/ p1. N(R)p21/ p2.
p12/ p1.
p22/ p2.
pn1/ pn. pn2/ pn.
p1p/ p1. p2p/ p2.
pnp/ pn.
由此,我们可以将属性变量A的n个取值可 以用P维空间的n个点来表示。n个点的坐 标即为该行轮廓矩阵。
但是,因为原始变量的数量等级可能不同,所以 为了尽量减少各变量尺度差异,将行轮廓中的各列 元素均除以其期望的平方根。得矩阵D(R)
在着的简单对应关系。由特征根和特征向量的性质, A和B有相同的非零特征根。
设 k 是A=Z’Z的非零特征根,则 Z Zku ku k
在上式的两边都左乘Z,则
Z Z ( Z k ) u k ( Z u k )
可见 k 也是ZZ’的特征根,相应的特征向量是Zu k
三、对应图
设12… l(0<i<min(n,p))为矩阵A和B的 非零特征根,其相应的特征向量为
多元统计分析——对应分析
3
列联表
B1 B2
Bj
A1 n11 n12 … n1j

A2 n21 n22
n2j
Bp n1p n1. n2p n2.
Ai ni1 ni2
nij
nip ni.
An nn1 nn2
nnj
nnp nn.
n.1

第3讲 多元统计分析

第3讲  多元统计分析

第3讲多元统计分析主要讲解内容:以复习和总结为主第1节回归分析一、概述二、多元线性回归分析三、逐步回归分析第2节趋势分析一、概述二、计算原理第3节聚类分析一、概述二、解题原理第4节判别分析一、概述二、二类判别分析三、多类判别分析四、逐步判别分析第5节最优分割分析一、概述二、单元有序数据的最优分割三、多元有序数据的最优分割四、最优分割计算步骤五、最优分割分析实例六、问题讨论第6节因子分析一、概述二、因子模型三、因子模型与相关矩阵间的关系四、主因子解五、正交因子解六、四次幂极大法七、方差极大法八、因子的估计九、因子分析计算步骤十、因子分析实例第7节对应分析一、概述二、数据预处理三、确定主因子轴四、绘制因子图五、地质解释六、问题讨论七、对应分析计算步骤第1节回归分析一、概述地质科学已经由过去的定性研究迈向了定量化研究阶段,为了量化研究,针对不同研究目的,往往需要确定一些定量评价指标,其实就是数学上的变量,这些变量之间往往存在着千丝万缕的联系。

例如:断层(断层延伸长度、断距、断层带宽度);岩浆岩(各种氧化物的含量);水文地质学含水层的涌水量(降雨量)。

变量间的关系有两种:函数关系,即确定性关系,例如圆面积计算公式,物理学上的好多公式,矿床的储量;相关关系:即不确定性关系。

例如斜坡稳定性(岩性、岩石力学性质、地质构造、水文地质、人工开挖、植被覆盖),应该注意“不确定性关系”并不是没有关系,但从统计意义上来讲是这样的规律。

研究变量间的相关关系(对于函数关系根本不需要这样做),并用一近似方程(回归方程)表达这种关系的统计分析方法,称之为回归分析,其中间结果为相关分析(相关系数)。

尽管回归分析已经诞生近120年(1885年)了,但是今天仍不失它的实用性,并且还有很强的生命力,其数学模型还在不断的更新,其分类更多:1、一元线性回归分析:正态分布,最小二乘法,不稳健,计算过程简单。

2、多元线性回归分析:正态分布,最小二乘法,不稳健,计算过程简单。

应用多元统计分析习题解答_因子分析

应用多元统计分析习题解答_因子分析

第七章因子分析7.1试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、 简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇, 将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标 变换到变异程度大的方向上为止,突出数据变异的方向, 归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因 子模型。

7.2 因子分析主要可应用于哪些方面?答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子 分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对 空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判 断各自的影响和变化规律。

7.3 简述因子模型、一 m 卜中载荷矩阵A 的统计意义。

答:对于因子模型X i PF W2F 2• O j Fj •… WmF m;ii =1,2,…,pX i 与F j 的协方差为:mCov(X i , F j ) =Cov(' a ik F k 「F j )kTm= Cov(' a ik F k ,F j ) Cov( ;i ,F j )k d=a ij若对X i 作标准化处理,=a 0 ,因此a jj —方面表示X i 对F j 的依赖程度;另一方面也反映了 变量X i 对公共因子F j 的相对重要性。

第七章多元统计分析资料

第七章多元统计分析资料

17
性质1 设X N p (, ), 0,则 E(X ) , D(X )
性质2:正态随机变量的线性变换仍为正态变量 正态随机向量的线性变换仍为正态向量
即,设随机向量X Np (, ),C是任一r p
阶矩阵,b是r 1常数向量,记Y CX b,则
Y Nr (C b,CC )
18
性质3:设随机向量
X
X1 X2
N
p
1 2
,
11 21
12 22
其中X1是k维随机向量,X 2是p k维随机向量,
1是k 1常数向量,2是( p k)1常数向量,
11为k阶方阵,12为k ( p k)阵,21为( p k) k 阵,22为p k阶方阵,且 | 22 | 0,则
19
(1)E(AX ) AE(X )
(2)E(AXB) AE(X )B
(3)D( AX ) AD( X ) A (4)Cov( AX , BY ) ACov( X ,Y )B
14
一元:X~N(μ,σ2),密度函数
1
2
exp{
1
2 2
(x
)2}
15
定义5:设U (U1,U2, ,Uq ) 是随机向量,且 Ui (i 1, 2, , q)独立同分布,其中Ui N(0,1),
4
众所周知,一元正态分布在数理统计的 理论及应用中都占据着重要的地位,主 要因为 (1)很多随机变量服从正态分布;
(2)根据中心极限定理,当样本容量很 大时,许多统计量的极限分布往往都 与正态分布有关.
5
多元统计分析中,多元正态分布也占据 着重要的地位. 原因也是相当多的实际 问题中,高维数据服从或近似服从正态 分布.

第七章 调查数据的多元统计分析

第七章  调查数据的多元统计分析

第七章调查数据的多元统计分析在调查数据的分析中,人们经常要研究多个随机变量之间的相互依赖关系以及内在统计规律,有时还要对复杂的研究现象进行分类和简化,进行此类分析就需要借助多元统计分析方法。

本章主要介绍聚类分析、判别分析、主成分分析和因子分析的基本原理及其应用。

第一节聚类分析一、聚类分析方法概述(一)聚类分析的含义聚类分析是一种分类的方法,主要用于辨认具有相似性的事物,并根据彼此不同的特性加以“聚类”使同一类的事物具有高度的相同性,而类与类之间却有着显著的差异。

聚类分析可以对变量进行聚类,即R型聚类;也可以对样本进行聚类,即Q型聚类。

实际中遇到较多的聚类问题是Q型聚类,例如:在对各个企业的产值、利润、设备、技术力量、资金、产品质量、新品种种类等各指标进行调查测定后,可将企业分成几类,如可能是“先进”、“一般”、“后进”等几类。

这属于对样品进行分类。

另外还可以对变量进行分类,比如在评定企业优劣时,一些指标可能测量的是企业的规模,另一些指标测的是企业的效益,还有一些指标可能测量的是企业潜在的力量,等等。

(二)聚类分析在市场调查中的应用(1)市场细分。

例如,可以根据消费者购买某产品的各种目的将消费者分类,这样,每个类别内的消费者在购买目的方面是相似的。

(2)了解购买行为。

聚类分析可以把购买者分类,这样有助于分别研究各类购买行为。

162163 (3)开发新产品。

对产品和品牌进行聚类分析,把他们分为不同类别的竞争对手。

在同一类别的品牌比其他类的品牌更具有竞争性时,还可以通过比较现有的竞争对手,明确新产品的潜在机遇。

(4)选择实验性市场。

通过把城市分类,选择具有可比性的城市检验不同的营销策略的效果。

二、相似性测度为了得到比较合理的分类,首先要采用适当的指标来定量地描述研究对象(样品或变量)之间的联系的紧密程度。

主要有以下三种:(1)距离测度。

(2)相关测度。

(3)关联测度。

其中相关测度和距离测度适用于间距测度等级及以上的数据,关联测度适用于名义测度和顺序测度。

【应用数理统计】7多元统计分析

【应用数理统计】7多元统计分析
◼ 此时,只需要用长轴方 向的变量就可以代表原 来两个变量的信息。这 样也就把原来的两个变 量降维成了一个变量。 长短轴相差越大,降维 也就越合理
主成分分析的基本思想
(以两个变量为例)
◼ 多维变量的情形类似,只不过是一个高维椭球,无法 直观地观察
◼ 每个变量都有一个坐标轴,所以有几个变量就有几主 轴。首先把椭球的各个主轴都找出来,再用代表大多 数数据信息的最长的几个轴作为新变量,这样,降维 过程也就完成了
◼ 主成分分析和因子分子正式解决这类问题的有效方 法。它们能够提取信息,使变量简化降维,从而使 问题更加简单直观
因子分析得到的是什么?
因子分析方法在部分领域应用的一些例子 ⚫ 心理学:心理学家瑟斯登对56项测验的得分进行因子分
析,得出了7中主要智利因子:词语理解能力,语言流畅 能力、计数能力、空间能力、记忆力、知觉速度和推理 能力 ⚫ 教育学:某师范大学在对以幼儿园3~6岁幼儿为对象, 通过33个项目的正式问卷,对1000名幼儿的评价结果进 行验证性因子分析,结果表明:教师评价的3~6岁幼儿 好奇心结构包括敏感、对未知事物的关注、好问、喜欢 摆弄、探索持久和好奇体验6个因子
(以两个变量为例)
◼ 椭圆中有一个长轴和一个短轴,称为主轴。在长轴方向,数据 的变化明显较大,而短轴方向变化则较小
◼ 如果沿着长轴方向设定一个新的坐标系,则新产生的两个变量 和原始变量间存在一定的数学换算关系,同时这两个新变量之 间彼此不相关,而且长轴变量携带了大部分的数据变化信息,而
短轴变量只携带了一小 部分变化的信息(变异)
0.5769
x8_s
0.4209
0.2938
0.1495
⚫ 表中的每一列表示一个主成分作为原来变量线性组合的系数,也 就是主成分分析模型中的系数aij

《多元统计分析》PPT课件

《多元统计分析》PPT课件

类别 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
.38
.11
3.27
.55
2
.19
.05
2.25
.33
2
.32
.07
4.24
.63
2
.31
.05
4.45
.69
2
.12
.05
2.52
.69
2
-.02
.02
2.05
.35
2
.22
.08
2.35
.40
2
.17
.07
1.80
待判, 如d 2 ( y,G1) d 2 ( y,G2 )
d 2 (y,G2 ) d 2 (y,G1)
(y 2 ) 1(y 2 ) (y 1) 1(y 1)
y1y 2y12 212

(y1y

2y
(2)计算
ˆ S1 S2 n1 n2 2
(3)计算类的均值 1, 2
(4)计算
ˆ
1,
1


2
,
1
2

2
(5)计算 判别函数的系数 1(1 2 )
判别函数的常数项(
1
2
2)
1 ( 1

2
)
(6)生成判别函数,将检验样本代入,得分,判类。
变量
均值向量 优秀 一般
资金利润率 13.5 5.4 劳动生产率 40.7 29.8 产品净值率 10.7 6.2
协方差矩阵
68.39 40.24 21.41
40.24 54.58 11.67

应用多元统计分析课后习题答案高惠璇第七章习题解答

应用多元统计分析课后习题答案高惠璇第七章习题解答
= 0$。 • 因此,$E(X^2) = 0$。
04
习题4解答
题目
• 题目:在多元线性回归中,如果 一个自变量与其他自变量高度相 关,那么这个自变量是否应该被 包括在回归模型中?为什么?
解答
01
解答:在多元线性回归中,如果一个自变量与其他自变量 高度相关,那么这个自变量是否应该被包括在回归模型中 ,需要视具体情况而定。
解答
• 当$x < 0$时,$P(X \leq x) = \frac{1}{2}e^{x}$,所以$p(x) = \frac{1}{2}e^{x}$。
解答
• 接下来,我们计算期望值
• 当$x \geq 0$时,$E(X) = \int{0}^{\infty}xp(x)dx = \int{0}^{\infty}\frac{1}{2}xe^{-xdx} = \frac{1}{2}e^{-x}|_{0}^{\infty} = 0$。
• 因此,$E(X) = 0$。
01
03 02
解答
• 当$x \geq 0$时,$P(X^2 \leq x) = P(X \leq \sqrt{x}) = \frac{1}{2}e^{-\sqrt{x}}$,所以 $p_1(x) = \frac{1}{2}\sqrt{x}e^{\sqrt{x}}$。
答案
证明过程如上所述,结论 正确。
证明过程如上所述,结论 正确。
证明过程如上所述,结论 正确。
答案1
答案2
答案3
03
习题3解答
题目
题目:设随机变量$X$的 分布函数为$F(x) = begin{cases}
0 & x notin mathbf{R}
frac{1}{2}e^{-|x|} & x in mathbf{R}

应用多元统计分析习题解答第七章

应用多元统计分析习题解答第七章

第七章因子分析7.1试述因子分析与主成分分析的联系与区别。

答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、 简化数据的技术。

②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。

因子分析可以说是主成分分析的姐妹篇, 将主成分分析向前推进一步便导致因子分析。

因子分析也可以说成是主成分分析的逆问题。

如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。

因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标 变换到变异程度大的方向上为止,突出数据变异的方向, 归纳重要信息。

而因子分析是从显在变量去提炼潜在因子的过程。

此外,主成分分析不需要构造分析模型而因子分析要构造因 子模型。

7.2 因子分析主要可应用于哪些方面?答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。

目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。

具体来说,①因子 分析可以用于分类。

如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对 空气的优劣予以分类等等②因子分析可以用于探索潜在因素。

即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。

对我们进一步研究与探讨指示方向。

在社会调查分析中十分常用。

③因子分析的另一个作用是用于时空分解。

如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判 断各自的影响和变化规律。

7.3简述因子模型、一 m 卜中载荷矩阵A 的统计意义。

答:对于因子模型X i =a i 1F 1 - mF ?a j F j I" a m F m•;ii =1,2,Hl , pX i 与F j 的协方差为:mCov(X i , F j ) =Cov(' a ik F k °F j )k=im= Cov(' a ik F k ,F j ) Cov(「F j )k d= a ij若对X i 作标准化处理,=a j ,因此a ij 一方面表示X i 对F j 的依赖程度;另一方面也反映了 变量X i 对公共因子F j的相对重要性。

数理统计课件 多元统计分析

数理统计课件 多元统计分析

7 知,给定 X 2 = x2 , X1 的条件分布为 N1(µ1,2 , Σ11,2 ) ,其中
, , µ1,2 ⎜⎜⎝⎛
σ2 σ1
⎟⎟⎠⎞( x2

µ2 )
Σ11,2
=
σ
2 1
(1

ρ
2)
同理可得,在给定 X1 = x1 时 X 2 的条件分布为 N (µ2,1,Σ22,1 ) , 其中
知, X ~ N p (µ, ∑)
性质
7

X
=
⎡ ⎢ ⎣
X1 X2
⎤ ⎥ ⎦
,
X
~
N p (µ, ∑), X1, X 2
分别是 m
维和
p − m 维向量,且| ∑ |≠ 0, µ 和 ∑ 也有相应的分块表示
µ
def
=
⎡ µ1 ⎢⎣µ2
⎤ ⎥⎦
,

def
=
⎡ ∑11 ⎢⎣∑21
∑12 ⎤ ∑22 ⎥⎦
性质 3 若 C 为 m × p 矩阵, b 为 m × 1 向量,Y = CX + b , 且 X 服 从 Np(µ,Σ) 分 布 , 则 Y 服 从 m 维 正 态 分 布 , 且
E(Y ) = Cµ + b ,Cov(Y ,Y ) = C ∑C T ,即 Y 服从 N m (Cµ + b,CΣC T ) 分布. 性质 3 说明,多维正态分布在线性变换下仍为多维
y = Q( x − µ) ,则 ( x − µ)T Σ−1( x − µ) = ( x − µ)T QT Q( x − µ) = yT y .这个变






《多元统计分析讲义》第七章对应分析

《多元统计分析讲义》第七章对应分析

*
XXX
*
目录 上页 下页 返回 结束
§7.2 对应分析的基本理论
7.2.2 对应分析的基本理论 经过以上数据变换,在引入加权距离函数之后,或是 对行剖面集的各点进行式(7.8)的变换,对列剖面的各 点进行类似变换之后,就可以直接计算属性变量各状 态之间的距离,通过距离的大小来反映各状态之间的 接近程度,同类型的状态之间距离应当较短,而不同 类型的状态之间的距离应当较长,据此可以对各种状 态进行分类以简化数据结构。但是,这样做不能对两 个属性变量同时进行分析,因此不计算距离,代之求 协方差矩阵,进行因子分析,提取主因子,用主因子 所定义的坐标轴作为参照系,对两个变量的各状态进 行分析。
*
XXX
*
目录 上页 下页 返回 结束
§7.4对应分析的上机实现
打开GSS93 subset.sav数据,对变量Degree与变量Race进行对 应分析,依次点选Analyze→Data Reduction→Correspondence Analysis…进入Correspondence Analysis对话框。数据集中所 有的变量名(标签)均已出现左边的窗口中,将Degree变量 选入右侧行变量(Row)的小窗口中,此时该窗口显示的Degree 变量形如:Degree(? ?),同时,其下方的Define Range按钮被 击活,点击该按钮,进入Define Row Range对话框,在该对 话框中需要确定Degree变量的取值范围,此处我们不研究缺 失值,最小值(minimum value)与最大值(maximum value)处分 别填上0和4,按右侧的update(更新)按钮,可以看到Degree的 取值0—4已出现在Category Constraints框架左侧的窗口中,该 框架的作用是对Degree的各状态加以限定条件的,保持默认 值none不变,即对Degree的取值不加以限定条件。

多元统计分析ppt课件

多元统计分析ppt课件

dij xik x jk
k 1
❖ 当各变量的单位不同或测量值范围相差很大时,应
先对各变量的数据作标准化处理。最常用的标准化
处理是,令
xi*j
xij
xj s jj
,
i 1, 2,
, n,
j 1, 2,
,p
变其量中的xj样 本1n i均n1 x值ij 和和样s jj 本 n方1差1 i。n1 xij xj
则可求得第一主成分为
y1 t11x1 t21x2 t p1xp t1x
它的方差具有最大值 1 。
❖ 如果第一主成分所含信息不够多,还不足以代表原 始的 p 个变量,则需考虑再使用一个综合变
量 y2 a2x ,为使 y2所含的信息与y1 不重叠,应要求
Cov y1, y2 0
我们在此条件和约束条件 a2a2 1 下寻求向量a2 ,使
❖ 主成分分析的目的就是为了减少变量的个数,因而 一般是不会使用所有 p个主成分的,忽略一些带有
较小方差的主成分将不会给总方差带来大的影响。
❖ 前 m个主成分的贡献率之和
称为主成分 y1, y2,
m
p
i i
i 1
i 1
, ym 的累计贡献率,它表明
y1, y2, , ym解释 x1, x2, , xp的能力。
动态聚类法
❖ 动态聚类法的基本思想是,选择一批凝聚点或给出 一个初始的分类,让样品按某种原则向凝聚点凝聚, 对凝聚点进行不断的修改或迭代,直至分类比较合 理或迭代稳定为止。类的个数k可以事先指定,也可 以在聚类过程中确定。选择初始凝聚点(或给出初始 分类)的一种简单方法是采用随机抽选(或随机分割) 样品的方法。
最短距离法
❖ 定义类与类之间的距离为两类最近样品间的距离, 即
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、最长距离 D(Gp ,Gq ) max (dij x(i) Gp ,x( j) Gq )
类与类之间的最长距离有如下的递推公式,设 Gr 为由 Gp 和 Gq 合并所得,则 Gr 与其它类 Gk (k p, q) 的最长 距离为
D(Gr , Gk ) max {D(G p , Gk ), D(Gq ,Gk )}
§7.3
聚类分析
在科学研究、生产实践、社会生活中,经常会遇到分 类的问题。例如:
根据学生考试成绩的高低将学生的学习情况分成几个 档次;
在考古学中,要将某些古生物化石进行科学的分类; 在生物学中,要根据各生物体的综合特征进行分类; 在经济学中,要考虑哪些经济指标反映的是同一种经 济特征; 在产品质量管理中,要根据各产品的某些重要指标而 将其合理地分为几个等级等等。
其中 nr n p nq 。
以上类与类之间的距离,不但适用于 Q 型聚类,同 样也适合于 R 型聚类,这只要将 dij 用变量间的相似系数 rij 代替就行了。为简单起见以下均记成 dij 。
二、系统聚类法
系统聚类法是目前最流行的方法。
有了样品间的距离(或变量间的相似系数)以及类
与类之间的距离后,便可进行系统聚类,基本步骤如下:
x(i) (xi1, xi2 ,, xip ), i 1,2,, n
一、样品间的距离
下面介绍在聚类分析中常用的几种定义样品 x(i) 与
样品 x( j) 间的距离。
1、 Minkowski 距离
p
m1
d (x(i) , x( j) ) [ xik x jk ]m
k 1
2、 绝对值距离
p
d (x(i) , x( j) ) xik x jk k 1
3、类平均距离
D(Gp ,Gq )
1 n p nq
xi G p
d ij
x jGq
类与类之间的类平均距离有如下的递推公式,设 Gr
为由 Gp 和 Gq 合并所得,则 Gr 与其它类 Gk (k p, q) 的类平均
距离为
D(Gr ,Gk
)
np nr
D(Gp ,Gk )
nq nr
D(Gq ,Gk )
12.80
23.54
3.51
2.21
0
下面给出采用最短距离法的聚类过程:首先将 5 个省各看成一类,即令 Gi {i}, (i 1,2,3,4,5) 。从 D0 可以看 出,其中最小的元素是 D({4},{3}) d43 2.20 ,故将 G3 和 G4 合并成一类 G6 ,然后利用递推公式计算 G6 与 G1 ,G2 ,G5 之间的最短距离。 D({3,4},{1}) min{ d31, d41} min{13.80,13.12) 13.12 D({3,4},{2}) min{ d32 , d42} min{ 24.63,24.06) 24.06 D({3,4},{5}) min{ d35 , d45} min{3.51,2.21) 2.21
解:聚类过程略,聚类图如下
x(1) x(2) x(6) x(8) x(5) x(7) x(9) x(3) x(4) x(10)
0
G11
2
5
G13
G14 G16
G12
G15
9 10
13
G18 G19
G17
20
如果类之间距离取不同的临界值,可以得到不 同的分类结果,下图临界值为15
x(1) x(2) x(6) x(8) x(5) x(7) x(9) x(3) x(4) x(10)
3、 欧氏距离
p
21
d (x(i) , x( j) ) [ xik x jk ]2
k 1
二、变量间的相似系数
相似系数越接近 1,说明变量间的关联程度越好。
常用的变量间的相似系数有
1、 夹角余弦
rij 2、 相关系数
n
xkixkj
k 1
n
n
(xki )2 (xkj )2
k 1
k 1
n
xki xi )(xkj x j )
i 1,2,, n,
k 1,2,, p
xk
1 n
n i 1
xik ,
sk
1 n 1
n i 1
( xik
xk )2 ,
k 1,2,, p
三、类与类之间的距离
用 Gp 和Gq 分别代表两个类,它们所包含的样品个数 分别记为 n p 和 nq ,类 Gp 和 Gq 之间的距离记为 D(Gp ,Gq ) 。 下面给出三种最常用的定义方法。
1、 最短距离
D(Gp ,Gq ) min (dij x(i) Gp ,x( j) Gq )
类与类之间的最短距离有如下的递推公式,设 Gr 为由 Gp 和 Gq 合并所得,则 Gr 与其它类 Gk (k p, q) 的最短 距离为
D(Gr , Gk ) min {D(G p , Gk ), D(Gq , Gk )}
C A• B ,其中 和 的含义为
a b max{a,b}, a b min{a,b}
显然,两个模糊矩阵的乘积仍为模糊矩阵。
设方阵 A 为一个模糊矩阵,若 A 满足 A• A A, 则称 A 为模糊等价矩阵。模糊等价矩阵可以反映模糊 分类关系的传递性,即描述诸如“甲象乙,乙象丙,
则甲象丙”这样的关系。 设 A (aij )nn 为一个模糊等价矩阵, 0 1为一
{3,4,5} {1,2}
0
D2 12.80
23.54
0 11.67
, 0
D3 120.80
0
最后将 5 个省合并为一大类,画出聚类图如下:
辽宁
浙江
11.67
河南
12.80
2.20 甘肃
2.21 青海
由此可见,分成三类比较合适,即辽宁和浙江各 为一类,河南、甘肃、青海为一类。
若类与类之间的距离用最长距离或类平均距离, 也会得到相同的结论。
例2 从某大学男生中随机抽取10名,测得其身高 x1(单位:cm)和体重x2(单位:kg)的数值下表,样品 间采用欧氏距离的平方,试用最短距离法进行系统 聚类并画出系统聚类图。
x1 170 173 180 185 168 165 177 165 178 182
x2 66 66 68 72 63 62 68 59 69 71
若矩阵 A 的各元素 aij 满足 0 aij 1,则称 A 为模糊矩阵。 设 A (aij )np 和 B (bij ) pm 为两个模糊矩阵,令
p
cij k1(aik bkj ), i 1,2,, n, j 1,2,, m
则称矩阵 C (cij )nm 为模糊矩阵 A 与 B 的乘积,记为
rij
k 1 n
n
(xki xi )2 • (xkj x j )2
k 1
k 1
值得注意的是,当变量的测量值相差较大时,直接使
用以上各式计算距离或相似系数常使数值较小的变量失去
作用,为此需应先对数据进行标准化,然后再用标准化的
数据来计算。标准化的具体方法是:
xi*k
xik xk sk
,
其中
1、将 n 个样品( p 个变量)一开始看作 n 类( p 类),
计算两两样品(变量)之间的距离(相似系数),构成一
个对称矩阵
D0
dij
nn
,称为距离矩阵(相似系数矩阵)。
此时显然有 D(G p ,Gq ) d pq ;
2、选择距离矩阵 D0 中对角线元素以外的下三角部分中 的最小元素(相似系数矩阵则选择对角线元素以外的最 大者),设其为 D(Gp ,Gq ) ,则将 Gp 和 Gq 合并为一个新类 Gr 。 在 D0 中划去Gp 和Gq 所对应的两行与两列,并加入由新类 Gr 与剩下的未聚合的各类之间的距离所组成的一行和 一列,得到一个新的矩阵 D1,它是降低了一阶的对称矩 阵;
一、分类统计量
聚类分析的研究内容包括两个方面,一是对样品进 行分类,称为 Q 型聚类法,使用的统计量是样品间的 距离;二是对变量进行分类,称为 R 型聚类法,使用 的统计量是变量间的相似系数。
设 共 有 n 个 样 品 , 每 个 样 品 x(i) 有 p 个 变 量 x1, x2 ,, x p ,它们的观测值可以表示为
河南
9.42 27.93 8.20 8.14 16.17 9.42 1.55 9.76
甘肃
9.16 27.98 9.01 9.32 15.99 9.10 1.82 11.35
青海
10.06 28.64 10.52 10.05 16.18
8.39 1.96 10.81
其中 X1:人均粮食支出; X2:人均副食品支出; X3:人均烟、酒、茶支出; X4:人均其它副食品支出; X5:人均衣着商品支出; X6:人均日用品支出; X7:人均燃料支出; X8:人均非商品支出。
1、计算相似系数矩阵 R (或样品的距离矩阵 D ) 其中 D (dij )nn 或 R (rij ) pp 的算法见一。
2、将 R (或 D )中的元素压缩到 0 与 1 之间形成模糊矩阵 我们统一记为 A (aij )nn ;例如对相似系数矩阵
R (rij ) pp ,可令
aij
1 2
0
G11
2
5
G13
G14 G16
G12
G15
9 10
13
G18 G19
G17
20
下图临界值为11
x(1) x(2) x(6) x(8) x(5) x(7) x(9) x(3) x(4) x(10)
0
G11
2
5
G13
G14 G16
G12
G15
9 10
相关文档
最新文档