初中数学竞赛常用解题方法代数

合集下载

初中数学竞赛题,代数式求值,全班仅1人会解

初中数学竞赛题,代数式求值,全班仅1人会解

初中数学竞赛题,代数式求值,全班仅1人会解
小升初时,初中数学竞赛开始流行起来。

学校里的比赛场面异常火爆,参赛者们竞争激烈,甚至出现了成绩大涨,但是也有一种比赛让学生们摸不着头脑,就是解决代数式求值的比赛。

许多学生都认为,解决代数式求值的比赛是最难的,因为代数式求值的计算方式比较复杂,还需要学生们掌握一定的数学常识。

他们很是头疼,参加了几次竞赛,但总是没有解决出一道代数式求值的题目。

这时,在一次竞赛中出现了一个学生,他完美地解决了这道题,使全班学生都被他的表现惊呆了,因为他与其他学生很明显的不同,他的解答正确率极高,他到底是怎么做到的?
原来,这位少年把他的注意力放在微积分和三角学领域,做了大量的训练,他在认真学习的同时,还把这些技能应用到了代数式求值中,他知道微积分和三角学的知识可以帮助他把复杂的计算分解,从而解决问题。

他可以将复杂的求值变为一系列简单的计算步骤,就像积木一样,一步一步搭建起一道题,慢慢解决起来。

然而,这种做法也并非轻而易举,而是要求学生具有数学常识和深厚的数学基础,只有这样才能把繁杂复杂的题目解决出来。

这位少年的表现给这些参赛的学生提供了一个很好的启发,他们也逐渐开始把注意力放在其他数学领域,并加强自身的数学素养,慢慢地,他们也开始取得优异成绩。

经过一段时间的努力,这些学生终于表现出色,他们不仅学会了解决代数式求值的答案,还学会了如何应用微积分和三角学的知识来解决更多复杂的问题,取得丰硕的成果。

可以说,这位少年以及他的同学们,他们通过解决代数式求值而对这个学科产生了更深的理解,实现了从无知到有知的进步,他们的努力让学校的数学水平达到了新的高度,而这位少年的英勇无畏,给了学生们更坚定的信心,让他们更加热爱数学。

初中数学竞赛常用公式总结

初中数学竞赛常用公式总结

初中数学竞赛常用公式总结数学竞赛是考验学生逻辑思维、推理能力和数学知识应用的重要考试。

在竞赛中,掌握一些常用的数学公式是非常关键的。

下面将总结初中数学竞赛中常用的公式,帮助竞赛学习者更好地备战。

1. 代数公式(1)二次方程的解:对于一元二次方程ax^2 + bx + c = 0,有以下公式:\[ x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \]其中,Δ = b^2 - 4ac,称为判别式。

(2)平方差公式:对于任意实数a和b,有以下公式:\[ (a+b)(a-b)=a^2-b^2 \](3)两点间距离公式:对于平面上任意两点A(x1, y1)和B(x2, y2),它们之间的距离d可以用以下公式表示:\[ d=\sqrt{(x2-x1)^2+(y2-y1)^2} \]2. 几何公式(1)周长和面积公式:- 矩形的周长C和面积S分别为:C = 2(l + w),S = lw,其中l和w分别表示矩形的长度和宽度。

- 正方形的周长C和面积S分别为:C = 4s,S = s^2,其中s表示正方形的边长。

- 圆的周长C和面积S分别为:C = 2πr,S = πr^2,其中r表示圆的半径。

- 三角形的周长C和面积S可以根据不同类型的三角形使用不同公式计算(如直角三角形的勾股定理)。

(2)三角函数公式:- 正弦定理:在任意三角形ABC中,有以下公式:\[ \frac{a}{\sin(A)}=\frac{b}{\sin(B)}=\frac{c}{\sin(C)} \]其中,a、b、c分别为三角形BC、AC和AB的边长,A、B、C分别为三角形对应的角度。

- 余弦定理:在任意三角形ABC中,有以下公式:\[ c^2 = a^2 + b^2 - 2ab\cos(C) \]- 正弦、余弦和正切的关系:对于任意角θ,有以下公式:\[ \sin(\theta) = \frac{opposite}{hypotenuse},\cos(\theta) =\frac{adjacent}{hypotenuse},\tan(\theta) = \frac{opposite}{adjacent} \]其中,opposite表示对边的长度,adjacent表示邻边的长度,hypotenuse表示斜边的长度。

初中数学竞赛代数专题讲义之代数式求值含例题习题及详解

初中数学竞赛代数专题讲义之代数式求值含例题习题及详解

代数式求值由数与字母经有限次代数运算(加、减、乘、除、乘方、开方)所组成的表达式叫做代数式。

已知一个代数式,把式中的字母用给定数值代替后,运算所得结果叫做在字母取给定数值时代数式的值。

一、专题知识1.基本公式(1)立方和公式:2233()()a b a ab b a b +-+=+(2)立方差公式:2233()()a b a ab b a b-++=-(3)完全立方和:33223()33a b a a b ab b +=+++(4)完全立方差:33223()33a b a a b ab b -=-+-2.基本结论(1)33322()33a b a b a b ab +=+--(2)33322()33a b a b a b ab -=-+-(3)22()()4a b a b ab-=+-二、经典例题例题1已知y z x z x yx y z+++==求代数式y z x +的值。

【解】(1)0x y z ++≠,由等比性质得2()2x y z y zx y z x+++==++;(2)0x y z ++=,则y z x +=-,所以1y zx+=-。

例题2已知234100x y +-=,求代数式y x x y xy y x x 65034203152223--++++的值。

【解】32221532043506x x y xy y x x y++++--322222215205034103410105(3410)(3410)(3410)1010x xy x x y y y x y x x y y x y x y =+-++-++-+=+-++-++-+=例题3实数,,a b c满足条件:231224a b ab -=+=-,求代数式2a b c ++的值。

【解】22222442318224a b a ab b ab c ab ⎧-=⇒-+=⎪⎨+=-⇒+=-⎪⎩两式相加得,()2220a b ++=只有2=0a b +且0c =,所以20a b c ++=。

初中数学竞赛知识点整理

初中数学竞赛知识点整理

初中数学竞赛知识点整理数学竞赛是一项旨在培养学生数学思维和解决问题能力的活动。

初中数学竞赛注重学生对基础知识的掌握和灵活运用,同时也考察学生的逻辑思维和推理能力。

下面将整理一些常见的初中数学竞赛知识点,希望能帮助同学们有效备战竞赛。

一、代数与方程1. 一元一次方程与一次不等式:掌握解方程的基本方法,如加减消元、配方法等,并能解决带有实际问题背景的方程与不等式。

2. 二元一次方程组:理解二元一次方程组解的概念与表示方法,能够利用加减消元、代入法等解决二元一次方程组问题。

3. 等差数列与等比数列:掌握求等差数列与等比数列的通项公式及其应用,如求特定项的值、求和等。

4. 平方根与立方根:了解平方根和立方根的概念,能够利用开方运算解决相关数学问题。

二、几何1. 平面几何基本概念:掌握平面内的点、线、面等基本概念,包括平行线、垂直线、相交等。

2. 角与三角形:了解角和三角形的基本概念,如内、外角、等腰三角形、直角三角形等。

3. 平行四边形和梯形:理解平行四边形和梯形的特征与性质,能够运用对应关系解题。

4. 圆的性质:掌握圆与弧、圆心角、切线等的基本概念,能够根据性质解决相关问题。

三、概率与统计1. 概率基本概念:了解事件、样本空间、概率等基本概念,能够根据概率计算相关问题。

2. 抽样与统计:掌握抽样的方法与统计的基本概念,如平均数、中位数、众数等,能够分析统计数据并解决问题。

3. 列表、树状图与图表的应用:能够根据给定的信息绘制图表,并从中读取相关数据。

四、数与图像1. 数的分类与性质:了解自然数、整数、有理数、无理数等的概念,能够运用数的性质解决问题。

2. 图形的变换:掌握平移、旋转、对称等图形变换的基本概念与性质,能够应用变换解决几何问题。

3. 坐标系与图像:了解直角坐标系的构建与应用,能够根据坐标系绘制和分析简单的图形。

五、函数与图像1. 函数的概念:了解函数的定义与概念,包括函数的自变量、函数值等。

初中数学竞赛:代数式的求值

初中数学竞赛:代数式的求值
x=(a-b)k,y=(b-c)k,z=(c-a)k.
所以
x+y+z=(a-b)k+(b-c)k+(c-a)k=0.
u+v+w=1,①
由②有
把①两边平方得
u2+v2+w2+2(uv+vw+wu)=1,
所以u2+v2+w2=1,

两边平方有
所以
4.利用非负数的性质求值
若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.
1.利用因式分解方法求值
因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.
分析x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.
解已知条件可变形为3x2+3x-1=0,所以
6x4+15x3+10x2
=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1
解x2+6xy+y2=x2+2xy+y2+4xy
=(x+y)2+4xy
3.设参数法与换元法求值
如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.
分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.
5.利用分式、根式的性质求值
分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.

(完整版)初中数学竞赛专题选讲-配方法(含答案)

(完整版)初中数学竞赛专题选讲-配方法(含答案)

初中数学竞赛专题[配方法]一、内容提要1. 配方:这里指的是在代数式恒等变形中,把二次三项式a2土2ab+b2写成完全平方式(a土b) 2.有时需要在代数式中添项、折项、分组才能写成完全平方式.常用的有以下三种:①由a +b配上2ab, ②由 2 ab 配上a +b ,③由a2土2ab配上b2.2. 运用配方法解题,初中阶段主要有:①用完全平方式来因式分解例如:把x4+4因式分解.2 2 2 2 2母乱=x +4 + 4x — 4x =(x +2) — 4x = ...........这是由a2+b2配上2ab.②二次根式化简常用公式:福|a ,这就需要把被开方数写成完全平方式.例如:化简、一5一2 6.我们把5-2*写成2 - 2逐+ 3=(克V - ^ 2^3 + (V3)2=(V2 —V3 ).这是由2 ab配上a2+b2.③求代数式的最大或最小值,方法之一是运用实数的平方是非负数,零就是最小值.即a >0, .,•当a=0时, a2的值为0是最小值.例如:求代数式a2+2a — 2的最值... a2+2a— 2= a2+2a+1 - 3=(a+1) 2- 3当a=— 1时,a +2a— 2有最小值—3.这是由a2土2ab配上b2④有一类方程的解是运用几个非负数的和等于零,则每一个非负数都是零,有时就需要配方.例如::求方程x2+y2+2x-4y+5=0的解x, y.解:方程x2+y2+2x-4y+1 + 4= 0.配方的可化为(x+1) 2+(y - 2) 2=0.要使等式成立,必须且只需x 1 0y 2 0x 1 y2解得此外在解二次方程中应用根的判别式,或在证明等式、不等式时,也常要有配方的知识和技巧.二、例题2 2 2 2例 1.因式分解:a b —a +4ab— b +1.解:a b — a +4ab — b +1 = a b +2ab+1+( — a +2ab — b ) (折项,分组)=(ab+1 ) 2 - (a - b):(配方)= (ab+1+a-b ) (ab+1-a+b) (用平方差公式分解)本题的关键是用折项,分组,树立配方的思想^例2.化简下列二次根式:①J7 5 ;②*2焰;③了10时3 2豆. 解:化简的关键是把被开方数配方①(7 4>/3 = J4 2 2/3 3 = J(2 V3)2=2 < 3 = 2 + 43.②户=居=疗=\吁<2(73 1)=无V2 2 . 2③\;10 4^3 2龙=寸10 4》(。

数学竞赛常见解题方法总结

数学竞赛常见解题方法总结

数学竞赛常见解题方法总结数学竞赛常见解题方法可以分为几个大类,包括代数、几何、概率与统计以及数论。

每个类别下又有不同的方法和技巧,适用于解答不同类型的题目。

下面将对这些常见解题方法进行总结和分析。

一、代数类解题方法1. 数列求和:对于给定的数列,可以用等差数列或等比数列的求和公式来快速求解。

此外,还可以利用差分法、二次差分法等方法求和。

2. 方程求解:对于一元二次方程、一次方程及其他更复杂的方程,可以运用配方法、因式分解、绝对值法、韦达定理等方法求解。

3. 不等式求解:针对不等式问题,可以运用代换法、区间判断法、平方运算法等方法,求解不等式的解集。

4. 函数图像分析:可以通过求导、极值问题等方法,对函数的图像进行分析和求解。

5. 组合函数求解:针对给定的复合函数,可以通过逆函数定义、复合函数的性质等方法进行求解。

二、几何类解题方法1. 平面几何定理:常用平面几何定理包括平行线定理、相似三角形定理、勾股定理等。

在解题过程中,可以通过画图、构造辅助线等方法,将问题转化为已知几何定理的形式进行求解。

2. 三角形性质利用:针对三角形问题,可以应用三角形中位线、垂心定理、欧拉定理等几何性质进行解题。

3. 向量方法:向量方法在几何问题中有广泛应用,常用于求解线段的中点、平行四边形的性质、共线问题等。

4. 坐标系与方程运用:对于平面几何问题,可以通过建立坐标系,利用坐标运算进行解题。

此外,还可以通过方程的运用,表示几何图形,进而求解问题。

三、概率与统计类解题方法1. 随机事件计算:针对概率问题,可以利用集合论的知识进行解题,包括用频率定义概率、利用互斥事件和对立事件计算概率等方法。

2. 组合计数:在概率和统计问题中,常常需要进行组合和计数的运算。

可以利用阶乘、排列组合等方法进行计算。

3. 数据处理与分析:对于给定的数据集合,可以通过构造频率分布表、绘制直方图、计算中位数、算术平均数等方法进行数据的处理和分析。

初中数学奥林匹克竞赛解题方法大全-第07章-代数式的运算

初中数学奥林匹克竞赛解题方法大全-第07章-代数式的运算

初中数学奥林匹克竞赛解题方法大全-第07章-代数式的
运算
此章介绍了一些重要的代数式的运算方法,包括多项式的加减乘除、平方差公式、完全平方公式、公式的展开与因式分解等。

一、多项式的加减乘除
1.加法和减法:将同类项进行合并,即将具有相同字母和相同指数的项相加或相减。

2.乘法:首先用分配律将多项式和多项式相乘化为多个单项式之和,然后用乘法原则计算各个单项式的乘积。

3.除法:主要采用长除法的形式,将被除式逐步除以除式。

二、平方差公式
平方差公式是解决具有连续变量的代数式的重要方法之一
根据平方差公式:
(a + b)^2 = a^2 + 2ab + b^2
(a - b)^2 = a^2 - 2ab + b^2
其中a和b是任意实数。

三、完全平方公式
完全平方公式是解决具有二次项的代数式的重要方法之一
根据完全平方公式:
(a + b)^2 = a^2 + 2ab + b^2
(a - b)^2 = a^2 - 2ab + b^2
其中a和b是任意实数。

四、公式的展开与因式分解
1.公式的展开:利用分配律将复杂的代数式展开为简单的形式。

2.因式分解:将代数式分解成为两个或更多的乘积形式。

常用的因式分解方法有:
(1)公因式法:找到公共因子并提取。

(2)提公式法:根据指定的公式将代数式进行变换。

(3)配方法:根据两个乘积的和或差的公式将代数式进行变换。

(4)分组法:将代数式中的项分成两组,然后利用提取公因子或公式进行变换。

(5)差平方因式法:利用平方差公式进行变换。

(6)和差三角型法:利用三角函数的和差公式进行变换。

初中数学竞赛“取特殊值”快速求出代数式的值(含答案)

初中数学竞赛“取特殊值”快速求出代数式的值(含答案)

“取特殊值”快速求出代数式的值(初一、初二)当已知条件是关于y x ,的二元不定方程()0,=y x f ,求关于y x ,的代数式()y x g ,的值时。

我们可以将满足二元不定方程()0,=y x f 的一组特殊的解,代入()y x g ,中,计算得到结果,这比用常规的整体代入的方法简洁,快速。

1 例1 若,010432=-+y x 则y x x y xy y x x 65034203152223--++++= .(第3届“希望杯”全国数学邀请赛初二试题)解:取二元不定方程010432=-+y x 的一组特殊的解:⎪⎩⎪⎨⎧==250y x ,代入待求式得: 原式=10152525625402=-=⨯-⎪⎭⎫ ⎝⎛⨯+ 注意:1.因为满足二元不定方程()0,=y x f 的解有无数组,所以,取满足二元不定方程()0,=y x f 一组特殊值的原则是:要求代入待求代数式()y x g ,中便于计算。

2.此题的常规解法是用因式分解的方法,凑出10432-+y x 这个因式,利用,010432=-+y x 整体代入求解。

y x x y xy y x x 65034203152223--++++=()101015)1043(2=+++-+y x y x3.相比较而言,取满足二元不定方程()0,=y x f 一组特殊值,再代入待求代数式()y x g ,来计算,这种解法要快速得多。

对解答填空题,不失为好方法。

4.对待这类求值问题,我们常规的解题方法是将()y x g ,恒等变形为含有()y x f ,的代数式:()y x g ,=()y x f ,()k y x +,ϕ其中()()的整式为关于为常数,y x y x k ,,ϕ 利用()0,=y x f 进而求出结果,即()k y x g =,。

例2.若1-=+y x ,则43222234585y xy xy y x y x y x x ++++++的值等( ) (A )0;(B )-1;(C )1;(D )3(第14届“希望杯”全国数学邀请赛试题)分析与解答:因为满足不定方程1-=+y x 的y x ,有无数个,为了计算简便,不妨取特殊值1,0-==y x 直接代入待求多项式计算。

初中数学竞赛必备——42个定理与解题模型

初中数学竞赛必备——42个定理与解题模型

初中数学竞赛必备——42个定理与解题模型一、概述1. 数学竞赛在培养学生的逻辑思维能力、数学解决问题的能力以及快速计算的能力方面具有重要的作用。

2. 初中数学竞赛中,掌握一定的数学定理和解题模型对于取得好成绩至关重要。

3. 本文将介绍初中数学竞赛必备的42个定理与解题模型,希望能为参加数学竞赛的同学们提供帮助。

二、数学定理与解题模型1. 代数部分1.1. 一元二次方程的求解方法1.2. 因式分解1.3. 角平分线定理1.4. 勾股定理1.5. 平方差公式1.6. 公式a^2-b^2=(a+b)(a-b)1.7. a^3-b^3=(a-b)(a^2+ab+b^2)2. 几何部分2.1. 同位角性质2.2. 对顶角性质2.3. 三角形的内角和2.4. 三角形的外角和2.5. 圆的性质2.6. 相似三角形的性质2.7. 三角形的高到底边的距离是线段的中线3. 概率部分3.1. 随机事件的概率计算3.2. 排列组合问题的概率计算3.3. 互斥事件和对立事件4. 数论部分4.1. 奇数与偶数的性质4.2. 质数与合数4.3. 最大公约数与最小公倍数5. 解题模型5.1. 分析题目5.2. 构建数学模型5.3. 运用定理解题5.4. 推理思路与方法三、数学竞赛练习与应用1. 多做数学竞赛题目,提高解题速度和正确率。

2. 运用所学的定理和解题模型解决实际问题,提高数学应用能力。

3. 对于涉及到竞赛的数学知识点,进行整体性的复习和整理。

四、结语1. 数学竞赛对于学生的数学能力提升有着一定的促进作用。

2. 要想在数学竞赛中取得好成绩,掌握基本数学定理和解题模型至关重要。

3. 希望本文介绍的42个定理与解题模型能为广大初中生在数学竞赛中取得优异成绩提供一定帮助。

五、举例演练1. 代数部分:一元二次方程的求解方法:解方程x^2+5x+6=0,可以使用因式分解或者配方法来进行求解。

因式分解:对于表达式x^2-4,可以因式分解为(x+2)(x-2)。

初中竞赛重要数学公式归纳总结

初中竞赛重要数学公式归纳总结

初中竞赛重要数学公式归纳总结初中数学竞赛中常用的一些重要公式主要包括代数、几何和概率三个方面。

下面将对这些公式进行归纳总结。

一、代数公式:1.两数和、差与积的关系:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab + b^2(a+b)(a-b)=a^2-b^22.平方差:a^2-b^2=(a+b)(a-b)3.二次方程求根公式:对于ax^2 + bx + c = 0,其解为:x = (-b ± √(b^2 - 4ac)) / 2a4.四则运算:a^m*a^n=a^(m+n)a^m/a^n=a^(m-n)(a^m)^n=a^(m*n)(ab)^n = a^n * b^n(a/b)^n=a^n/b^n5.无理数:√a * √b = √(ab)√a/√b=√(a/b)√a+√b≠√(a+b)6.配方法:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab + b^27.因式分解:a^2-b^2=(a+b)(a-b)a^3 + b^3 = (a+b)(a^2 - ab + b^2)a^3 - b^3 = (a-b)(a^2 + ab + b^2)a^2 + 2ab + b^2 = (a+b)^2a^2 - 2ab + b^2 = (a-b)^28.绝对值:a*b,=,a,*二、几何公式:1.面积公式:矩形的面积:S=长×宽三角形的面积:S=(底边×高)/2圆的面积:S=πr^22.周长公式:矩形的周长:P=2(长+宽)圆的周长:P=2πr3.直角三角形勾股定理:对于直角三角形ABC,设边长分别为a、b、c,则有:a^2+b^2=c^24.圆内切四边形面积公式:设四边形的边长分别为a、b、c、d,其半周长为s,则其面积S可以用公式表示为:S=√((s-a)(s-b)(s-c)(s-d))5.圆内接四边形面积公式:设四边形的边长分别为a、b、c、d,其半周长为s,则其面积S可以用公式表示为:S = √((s-a)(s-b)(s-c)(s-d) - abcd cos^2((A+C)/2))6.等腰三角形的高公式:设等腰三角形的底边为a,高为h,则其面积S可以用公示表示为:S = (1/2)ah7.同位角与同旁内角对应关系:同位角相等,同旁内角和为180°三、概率公式:1.事件的概率:事件A发生的概率P(A)=A的可能性数/总的可能性数2.互斥事件概率:两个互斥事件A、B均发生的概率P(A∩B)=03.独立事件概率:两个独立事件A、B发生的概率P(A∩B)=P(A)*P(B)4.包含关系的事件概率:一个事件A包含另一个事件B的概率P(B)=P(A∩B)/P(A)以上就是初中数学竞赛常用的一些重要公式的归纳总结。

讲解初中数学竞赛试题及答案

讲解初中数学竞赛试题及答案

讲解初中数学竞赛试题及答案初中数学竞赛试题通常涵盖代数、几何、数论和组合等数学领域。

下面是一个模拟的初中数学竞赛试题及其答案的讲解。

题目一:代数问题题目:已知 \( a, b \) 为正整数,且满足 \( a^2 - b^2 = 1 \),求 \( a \) 和 \( b \) 的所有可能值。

答案:根据题目中的等式 \( a^2 - b^2 = 1 \),我们可以将其转换为 \( (a+b)(a-b) = 1 \)。

因为 \( a \) 和 \( b \) 都是正整数,所以 \( a+b \) 和 \( a-b \) 也必须是正整数,并且它们的乘积为1。

考虑到正整数的性质,可能的组合只有 \( (a+b, a-b) = (1, 1) \)或 \( (2, 1) \)。

对于 \( (a+b, a-b) = (1, 1) \),显然不可能,因为 \( a+b \) 和\( a-b \) 不能同时为1。

对于 \( (a+b, a-b) = (2, 1) \),我们可以得到 \( a =\frac{3}{2} \) 和 \( b = \frac{1}{2} \),但这不是正整数,所以不符合题意。

因此,我们考虑 \( (a+b, a-b) = (3, 2) \) 或 \( (4, 3) \)。

对于 \( (a+b, a-b) = (3, 2) \),我们可以得到 \( a = 2.5 \) 和\( b = 0.5 \),这同样不是正整数。

对于 \( (a+b, a-b) = (4, 3) \),我们可以得到 \( a = 3.5 \) 和\( b = 0.5 \),这也不是正整数。

但是,如果我们考虑 \( (a+b, a-b) = (2, 1) \) 的整数解,我们可以得到 \( a = 2 \) 和 \( b = 1 \),这满足题目要求。

讲解:这个问题考察了平方差公式的应用,通过将等式转换为\( (a+b)(a-b) = 1 \) 并考虑正整数的性质来找到可能的解。

初中数学竞赛代数部分

初中数学竞赛代数部分
综合法:适用于形如ax^2+bx+c=0 的方程
分式方程与无理方程的应用题
应用题类型:解分式方程和无理方程
解题步骤:设未知数,列方程,解方程
解题技巧:利用方程的性质和技巧,如因式分解、配方法等 应用题实例:求解分式方程和无理方程的实际问题,如工程问题、经济 问题等
方程的近似解法
牛顿法:通过迭代 求解方程的近似解
添加标题
添加标题
添加标题
添加标题
函数的性质:函数的性质包括单调 性、奇偶性、周期性等
函数的应用:函数在初中数学竞赛 中经常出现,是代数部分的重要内 容
一次函数与反比例函数
一次函数: y=kx+b,其 中k为斜率,b
为截距
反比例函数: y=k/x,其中k
为常数
一次函数的图 像是一条直线, 反比例函数的 图像是一条双
曲线
一次函数与反 比例函数的区 别在于斜率与 截距的关系, 以及图像的形

函数的图像与性质
函数的定义:函 数是一种映射关 系,将自变量x映 射到因变量y
函数的图像:函 数图像是函数在 平面直角坐标系 中的图形表示
函数的性质:函 数的性质包括单 调性、奇偶性、 周期性等
函数的应用:函 数在初中数学竞 赛代数部分中的 应用广泛,如求 解方程、不等式、 最大值最小值等 问题
代数表达式的应用
解方程:利用代 数表达式求解方 程
求值:计算代数 表达式的值
化简:将复杂的 代数表达式化简 为简单的形式
证明:利用代数 表达式进行数学 证明
一元一次方程
一元一次方程的解法
代入法: 将方程中 的未知数 用已知数 代替,求 解出未知 数
加减法: 将方程中 的未知数 移到一边, 另一边的 常数移到 另一边, 求解出未 知数

初中数学竞赛解题方法归纳

初中数学竞赛解题方法归纳

初中数学竞赛解题方法归纳(一)
一、代数
1、一元二次方程根的分布
(1)利用韦达定理
(2)利用二次函数图像
2、一元二次方程整数根
(1)判别式(令
2
p
=
∆,利用平方差公式算出整数根)
(2)韦达定理(两根均为整数)
(3)参数分离法(参数为一次的时候且可以利用整除解决问题)(4)因式分解法
3、绝对值方程
(1)零点分段法
(2)绝对值不等式(
b
a
b
a
b
a+

+

-

证明绝对值不等式的时候可以利用两边平方法。

二、几何
三角形的五心(内心、外心、重心、垂心、旁心)
全等相似
边角转换器:等边三角形,锐角三角比(正弦定理余弦定理)比例线段:梅涅劳斯定理塞瓦定理角元塞瓦定理
面积问题:共边比例定理共角比例定理正弦面积公式海伦公式添辅助线方法:
三角形:倍长中线利用角平分线翻折构造外心构造中位线
梯形:添平行线添垂线延长两腰作对角线的平行线
三、求最值(一定要写出取到最值时,x,y分别满足的条件!)
设所求代数式为t,然后通过代入,计算判别式等求出t的范围。

把所求的最值问题转化为代数问题,利用基本不等式求最值。

先求出最值n,构造一个n的特例,再证明n-1不能成立。

1/1。

初中竞赛重要数学公式归纳总结

初中竞赛重要数学公式归纳总结

初中竞赛重要数学公式归纳总结数学公式在解决问题、推导证明以及解释数学概念等过程中起着重要的作用。

对于初中生而言,在竞赛中掌握一些重要的数学公式将能极大地提升他们解题的效率和准确性。

本文将就初中竞赛中常见的数学公式进行归纳总结,以便同学们在备战竞赛时能够更好地应用。

1. 代数公式1.1 一次方程:ax + b = 0根据一次方程的一般形式可以得出:x = -b/a1.2 二次方程:ax^2 + bx + c = 0根据二次方程的求解公式可以得出:x = (-b ± √(b^2 - 4ac))/(2a)1.3 等差数列通项公式:an = a1 + (n - 1)d其中,an表示第n项,a1表示首项,d表示公差。

1.4 等比数列通项公式:an = a1 * r^(n - 1)其中,an表示第n项,a1表示首项,r表示公比。

2. 几何公式2.1 长方形面积公式:S = 长 ×宽2.2 正方形面积公式:S = 边长 ×边长2.3 圆的面积公式:S = πr^2其中,S表示面积,r表示半径,π取近似值3.14。

2.4 三角形面积公式:S = 1/2 ×底边长 ×高其中,S表示三角形面积,底边长和高为已知条件。

3. 概率公式3.1 事件A发生的概率:P(A) = 事件A发生的次数 / 总的可能性次数3.2 互斥事件A、B的概率:P(A或B) = P(A) + P(B)其中,P(A或B)表示事件A或事件B发生的概率,P(A)和P(B)分别表示事件A和事件B发生的概率。

3.3 独立事件A、B同时发生的概率:P(A且B) = P(A) × P(B)其中,P(A且B)表示事件A和事件B同时发生的概率,P(A)和P(B)分别表示事件A和事件B发生的概率。

4. 统计学公式4.1 平均数的计算公式:平均数 = 总和 / 数据个数4.2 中位数的计算公式:将数据按照大小排列,若数据个数为奇数,则中位数为中间的那个数;若数据个数为偶数,则中位数为中间两个数的平均数。

初中数学代数最值问题常用解决方法

初中数学代数最值问题常用解决方法

初中数学代数最值问题常用解决方法最值问题,也就是最大值和最小值问题。

它是初中数学竞赛中的常见问题。

这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度。

一. 配方法例1. (2005年全国初中数学联赛武汉CASIO杯选拔赛)可取得的最小值为_________。

解:原式由此可知,当时,有最小值。

二. 设参数法例2. (《中等数学》奥林匹克训练题)已知实数满足。

则的最大值为________。

解:设,易知由,得从而,由此可知,是关于t的方程的两个实根。

于是,有解得。

故的最大值为2。

例3. (2004年全国初中联赛武汉选拔赛)若,则可取得的最小值为()A. 3B.C.D. 6解:设,则从而可知,当时,取得最小值。

故选(B)。

三. 选主元法例4. (2004年全国初中数学竞赛)实数满足。

则z的最大值是________。

解:由得。

代入消去y并整理成以为主元的二次方程,由x为实数,则判别式。

即,整理得解得。

所以,z的最大值是。

四. 夹逼法例5. (2003年北京市初二数学竞赛复赛)是非负实数,并且满足。

设,记为m的最小值,y为m的最大值。

则__________。

解:由得解得由是非负实数,得从而,解得。

又,故于是,因此,五. 构造方程法例6. (2000年山东省初中数学竞赛)已知矩形A的边长为a和b,如果总有另一矩形B使得矩形B与矩形A的周长之比与面积之比都等于k,试求k的最小值。

解:设矩形B的边长为x和y,由题设可得。

从而x和y可以看作是关于t的一元二次方程的两个实数根,则因为,所以,解得所以k的最小值是四. 由某字母所取的最值确定代数式的最值例7. (2006年全国初中数学竞赛)已知为整数,且。

若,则的最大值为_________。

解:由得,代入得。

而由和可知的整数。

所以,当时,取得最大值,为。

七. 借助几何图形法例8. (2004年四川省初中数学联赛)函数的最小值是________。

初中数学竞赛代数专题之一元二次方程培优讲义例题练习及解答

初中数学竞赛代数专题之一元二次方程培优讲义例题练习及解答

初中数学竞赛之一元二次方程培优讲义形如0=a 的方程叫做一元二次方程。

当240b ac -≥时,一元二次方程的两根为1242b x a-±=、一、专题知识1.直接开平方法、配方法、公式法、因式分解发是一元二次方程的四种基本解法。

2.公式法是解一元二次方程最一般地方法:(1)240b ac ->时,方程20(0)ax bx c a ++=≠有两个不相等的实数根122b x a-±=、(2)240b ac -=时,方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-(3)240b ac -<时,方程20(0)ax bx c a ++=≠无实数根二、经典例题例题1已知m n 、是有理数,方程20x mx n ++=2-,求m n +的值。

解:由题意得22)2)0m n ++=即(92)(0m n m -++-而m n 、是有理数,必有92040m n m -+=⎧⎨-=⎩,解得41m n =⎧⎨=-⎩,所以m n +的值为3.例题2求证:一元二次方程20(0)ax bx c a ++=≠至多有两个不相等的实数根。

证明:用反证发假设方程20(0)ax bx c a ++=≠有三个不同的实数根1x 、2x 和3x ,则有2110(0)ax bx c a ++=≠①2220(0)ax bx c a ++=≠②2330(0)ax bx c a ++=≠③①—②得22121212()()0,a x x b x x x x -+-=≠有12()0a x xb ++=④同理②—③有23()0a x xb ++=⑤④—⑤得1313()0()a x x x x -=≠必有0a =,与已知条件矛盾,所以一元二次方程20(0)ax bx c a ++=≠至多有两个不相等的实数根。

例题3已知首项系数不相等的两个一元二次方程222(1)(2)(2)0a x a a a --+++=及222(1)(+2)(+2)0(,)b x b x b b a b Z -++=∈有一个公共根,求a bb aa b a b --++的值。

代数证明题超难奥林匹克初二

代数证明题超难奥林匹克初二

代数证明题超难奥林匹克初二代数证明题一直是奥林匹克数学竞赛中的一大难点,尤其是对于初二的学生来说,更是极具挑战性。

在这样的情况下,掌握一定的解题技巧和方法显得尤为重要。

下面将以一道初二奥林匹克代数证明题为例,详细分析解题过程,以期为大家提供实用的解题指导。

一、问题背景介绍题目:已知函数f(x) = ax + bx + c(a≠0),当x=-1时,f(-1) = 0;当x=1时,f(1) = 2。

求证:f(x)在区间(-1,1)内有且仅有一个零点。

二、解题思路分析1.题目特点及关键信息本题主要考查了二次函数的性质和区间零点存在定理。

题目给出的条件为f(-1) = 0和f(1) = 2,这为我们求解本题提供了关键信息。

2.解题方法提炼我们可以利用二次函数的性质,首先求出函数的对称轴,然后分析函数在区间(-1,1)内的单调性。

最后,根据零点存在定理,判断函数在区间(-1,1)内是否有且仅有一个零点。

3.解题步骤详解(1)求出函数的对称轴已知f(-1) = 0,可得:a -b +c = 0 (1)f(1) = 2,可得:a +b +c = 2 (2)将(1)式+(2)式,得:2a + 2c = 2a + c = 1 (3)将(3)式代入二次函数的一般式,得:f(x) = ax + (1-a)x + a-1二次函数的对称轴公式为:x = -b/2a将b = 1-a,a≠0代入,得:x = -(1-a)/2a(2)分析函数在区间(-1,1)内的单调性当x < -(1-a)/2a时,f(x)的值小于0;当x > -(1-a)/2a时,f(x)的值大于0;由于a≠0,所以-(1-a)/2a≠-1,即对称轴不等于-1。

因此,在区间(-1,1)内,f(x)在(-1,-(1-a)/2a)上单调递减,在(-(1-a)/2a,1)上单调递增。

(3)应用零点存在定理根据函数的单调性,我们可以知道,f(x)在区间(-1,1)内至少有一个零点。

初中数学竞赛重要定理公式(代数篇)

初中数学竞赛重要定理公式(代数篇)

初中数学竞赛重要定理公式(代数篇)初中数学竞赛重要定理、公式及结论代数篇【乘法公式】完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a-b)=a2-b2,立方和(差)公式:(a±b)(a2 ?ab+b2)=a3±b3多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd 二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4)(a±b)5=a5±5a4b+10a3b2±10a2b3+5ab4±b5)…………在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1- a2n-2b+a2n-3b2- …+ab2n-2- b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2n-…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n公式的变形及其逆运算由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得a3+b3=(a+b)3-3ab(a+b) 由公式的推广③可知:当n为正整数时a n-b n能被a-b 整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b 及a-b整除。

重要公式(欧拉公式)(a+b+c)(a2+b2+c2+ab+ac+bc)=a3+b3+c3-3abc【综合除法】一个一元多项式除以另一个一元多项式,并不是总能整除。

当被除式f(x)除以除式g(x),(g(x)≠0) 得商式q(x)及余式r(x)时,就有下列等式:f(x)=g(x)q(x)-r(x)其中r(x)的次数小于g(x)的次数,或者r(x)=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛常用解题方法(代数)一、 配方法例1122122x x x x -+----练习:若2()4()()0x z x y y z ----=,试求x+z 与y 的关系。

二、 非负数法例2112()2x y z x y z --=++.三、 构造法(1)构造多项式例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( ) (A) 0 (B) 2 (C) 3 (D) 不确定的(2)构造有理化因式 例4、 已知22(2002)(2002)2002x x y y ++=.则22346658x xy y x y ----+=___ ___。

(3)构造对偶式例5、 已知αβ、是方程210x x --= 的两根,则43αβ+的值是___ ___。

(4)构造递推式例6、 实数a 、b 、x 、y 满足3ax by +=,227ax by +=,3316ax by +=,4442ax by +=.求55ax by +的值___ ___。

(5)构造几何图形例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求2214u a b =++___ ___。

练习:(构造矩形)若a ,b 22a b +224a b +224a b +形的三条边的长,那么这个三角形的面积等于___________。

四、 合成法例8、若12345,,,x x x x x 和满足方程组123451234512345123451234520212224248296x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。

五、 比较法(差值比较法、比值比较法、恒等比较法)例9、71427和19的积被7除,余数是几?练习:设0a b c >>>,求证:222a b cb c c a a b a b ca b c +++>.六、 因式分解法(提取公因式法、公式法、十字相乘法)1221()(...)n n n n n n a b a b a a b ab b -----=-++++ 1221()(...)n n n n n n a b a b a a b ab b ----+=+-+-+例10、设n 是整数,证明数323122M n n n =++为整数,且它是3的倍数。

练习:证明993991993991+能被1984整除。

七、 换元法(用新的变量代换原来的变量)例11、解方程29(87)(43)(1)2x x x +++=练习:解方程 11 (1)11 (1x)x=.八、 过度参数法(常用于列方程解应用题)例12、一商人进货价便宜8%,售价保持不变,那么他的利润(按进货价而定)可由目前的%x 增加到(10)%x +,x 等于多少?九、 判别式法(24b ac ∆=-判定一元二次方程20ax bx c ++=的根的性质)例13、求使222433x x A x x -+=-+为整数的一切实数x.练习:已知,,x y z 是实数,且222212x y z ax y z a++=++=求证:2220,0,0333x a y a z a ≤≤≤≤≤≤. 十、 韦达法(韦达定理:1212,b cx x x x a a+=-⋅=)例14:255y y +=十一、 共轭根式法(设A 使含有根式的表达式,若存在另一个不恒等于零的表达式B ,使乘积AB 不含根式,则称B 为A 的共轭根式) 例11、设a,b 37-求2(17)a ab ++的值为___ ___。

练习:求不超过675)的值的最大整数为___ ___。

十二、 反证法例12、已知a ,b ,c 为实数,设2222,2,2236A a bB b cC c a πππ=-+=-+=-+证明:A ,B ,C 中至少有一个大于零。

练习:命题“如果a ,b 都是无理数,那么ba 也是无理数”是否正确,如果正确,试给予证明;如果不正确,试说明理由.代数常用的四种解题方法数学离不开思维。

学习效果的大小,取决于思维活动的发展与思维能力的发挥。

而思维方法是思维的钥匙,有了科学的思维就能从总体上把握事物的本质联系。

从而,有效地提高发现问题和解决问题的能力。

很多学生天天做练习,但成绩就是不理想。

为什么呢?主要原因就是没有吃透教材的基本原理,就是没有掌握解题的科学方法。

掌握方法,是攻克难题的有力武器,只有掌握方法,才能触类旁通,举一反三。

不管遇到什么难题,都能得心应手,迎刃而解。

那么在初中代数中有那些常用的解题思维方法呢? 一、 待定系数法用一个或多个字母来表示与解答有关的未知数,这些字母就叫待定系数法。

待定系数法是一种最基本的数学方法,这个方法多用于多项式运算、方程和函数方面较多。

例如: 例1 试用关于(x-1)的各次幂表示多项式322435x x x -+-。

解:设323224352(1)(1)(1)x x x x a x b x c -+-=-+-+-+。

因为上式是恒等式,所以不论x 取什么数,两边都应相等,据此可设 1x =,代入上式得 4c =-,0x =,代入上式得 522a b -=-+-+2x =,代入上式得 1616652.a b c -+-=+++ 联立上面三个式子解得 2,1,4a b c ===-∴323224352(1)2(1)(1)4x x x x x x -+-=-+-+--。

这道例题在求待定系数时运用了特殊值法。

要尽量减少待定系数的个数,比如可以断定3(1)x -的系数是2,就没有必要再将3(1)x -项的系数设为待定系数了。

例2 根据二次函数的图象上(-1,0)、(3,0)、(1,-5)三点的坐标,写出函数的解析式。

解:由题设知,当1x =-和3x =时,函数y 的值都等于0.故设二次函数的解析式为(1)(3)y a x x =+-,把(1,-5)代入上式,得54a =, 故所求的解析式为255515(1)(3).4424y x x x x =+-=--这道例题告诉我们用待定系数法确定函数式时要讲究一些解题技巧.此题若设所求二次函数的解析式为2y ax bx c =++,用待定系数法,把已知的三点代入,得到一个三元一次方程组,进而求出三个待定系数,,a b c ,这种解法运算量较大.二、 配方法配方,一般是指在一个代数式中通过加减相同的项,把其中若干项变形为n 次幂形式的项.这是恒等变形的重要方法之一.因为它有广泛的迁移意义。

举例如下: 例3 分解因式 (1)464x +(2)222341b ab a a ---- 解:(1)464x +=42222222(1664)16(8)(4)(48)(48)x x x x x x x x x ++-=+-=++-+ (2)222341b ab a a ----22222(2)(441)()(21)(21)(21)(1)(31)b ab a a a b a a b a a b a a b a b a =-+-++=--+=-++---=++--例4 已知n 为正整数,且71998444n ++是一个完全平方数,则n 的一个值是_____。

(第九界“希望杯”赛试题)解:设719981423996444222n n ++=++142399672222(22)n x ++=+ ①将72(22)x +展开后得721472(22)22222x x x +=+••+ ②由①、②得14239961482222222n x x +++=++ 比较两边的指数,得8+x=2n,23996.{x =或者 8+x=3996,22.{x n = 解之得1003n = 或者3988n =。

此题有两解,所以任意填其中的一个都行。

三、 换元法把一个简单的含变元的式子替换一个较为复杂的含变元的式子,从而使问题得以简化。

这样的方法就叫做换元法。

换元法是数学中重要的解题方法,根据问题的特点,进行巧妙的换元,往往可以化繁为简,化难为易,收到事半功倍的功效,现举例说明。

例5 化简 32321996199719951997199619961995199719951996+⨯-⨯-⨯-⨯。

(第七界“希望杯”赛培训试题)解:设1996为a ,则1997=(1)a +,1995=(1)a -, 所以,原式323232323232(1)(1)(1)(1)(1)(1)11111a a a a a a a a a a a a a a a a a a ++--+=--+--+---=-+-+-==-例6 解方程组2236,330.{xxy y x xy y -+=-+=解:令,.{x y u xy v +== ⑴代入方程组中,得2336,30.{uv u v -=-= 解得12,36.{u v ==和3,9.{u v =-=- 代入⑴式中,得12,3,36.9.{{xy x y xy xy +=+=-==- 分别解之,得335,6,2 6.335.2{{x xy y -±===- 显然,这些例题运用了换元法就变的简捷了。

四、 同一法同一法属于间接证法,它的理论依据分别是逻辑学中的同一律与矛盾律和排中律。

同一法就是应用“同一法则”进行证明的方法。

同一法则是如果两个互逆的命题的条件和结论所关联的事物是唯一存在的,那么两个命题同时为真,或同时为假。

例如: 例7 设,,都是锐角,它们的正切依次是111,,258。

求证:45。

证明:11tg tg 725tg ()111tg tg9125,以及,都是锐角。

()是小于45的锐角 。

现在取锐角,使45,于是7119tgtg 45()tg 781945当然,以上的四种方法只是我们初中阶段较常见较重要解题的方法,愿同学们能从中得到启发。

重视中学数学中的解题基本方法,它对同学们扩大知识领域,提高综合解题能力将带来很多方便。

相关文档
最新文档