微观计量经济学模型ModelofMicroeconometrics.doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微观计量经济学模型(Model of Microeconometrics )
1.1 Generalized Linear Mod els
Three aspects of the linear regression model for a conditionally normally distributed response y are:
(1) The linear predictor βηT i i x = through which )|(i i i x y E =μ. (2) i i x y | is ),(2σμi N (3) i i ημ=
GLMs: extends (2)and(3) to more general families of distributions for y. Specifically, i i x y | may follow a density:
⎭
⎬⎫+⎩⎨⎧-=);()
(exp ),;(φφθθφθy c b y y f
θ:canonical parameter, depends on the linear predictor.
φ:dispersion parameter, is often known.
Also i η and i μ are related by a monotonic transformation,
i i g ημ=)(
Called the link function of the GLM.
Selected GLM families and their canonical link
1.2 Binary Depend ent Variables
Model:
n i x F p x y E T i i i i ,......2,1),()|(===β
In the probit case: F equals the standard normal CDF In the logit case: F equals the logistic CDF
Example:
(1)Data
Considering female labor participation for a sample of 872 women from Switzerland.
The dependent variable: participation The explain variables:
income,age,education,youngkids,oldkids,foreignyesandage^2. R:
library("AER")
data("SwissLabor")
summary(SwissLabor)
participation income age education
no :471 Min. : 7.187 Min. :2.000 Min. : 1.000
yes:401 1st Qu.:10.472 1st Qu.:3.200 1st Qu.: 8.000
Median :10.643 Median :3.900 Median : 9.000
Mean :10.686 Mean :3.996 Mean : 9.307
3rd Qu.:10.887 3rd Qu.:4.800 3rd Qu.:12.000
Max. :12.376 Max. :6.200 Max. :21.000 youngkids oldkids foreign
Min. :0.0000 Min. :0.0000 no :656
1st Qu.:0.0000 1st Qu.:0.0000 yes:216
Median :0.0000 Median :1.0000
Mean :0.3119 Mean :0.9828
3rd Qu.:0.0000 3rd Qu.:2.0000
Max. :3.0000 Max. :6.0000
(2) Estimation
R:
swiss_prob=glm(participation~.+I(age^2),data=SwissLabor,family=binomial(link="pro bit"))
summary(swiss_prob)
Call:
glm(formula = participation ~ . + I(age^2), family = binomial(link = "probit"),
data = SwissLabor)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.9191 -0.9695 -0.4792 1.0209 2.4803
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.74909 1.40695 2.665 0.00771 **
income -0.66694 0.13196 -5.054 4.33e-07 ***
age 2.07530 0.40544 5.119 3.08e-07 ***
education 0.01920 0.01793 1.071 0.28428
youngkids -0.71449 0.10039 -7.117 1.10e-12 ***
oldkids -0.14698 0.05089 -2.888 0.00387 **
foreignyes 0.71437 0.12133 5.888 3.92e-09 ***
I(age^2) -0.29434 0.04995 -5.893 3.79e-09 ***
---