结构力学-第7章 位移法

合集下载

结构力学位移法

结构力学位移法

M AB
(a)
B M BA
M=1 A
(b)
1
(c)
A
1 B M=1
2)求图(2)中 φA2和φB2
3)叠加得到
A
l
l
3EIMAB6EIMBA
l
B
6El IMAB3Ei IMBA
l
变换式上式可得杆端内力的刚度方程(转角位移方程):
MA
B
4iA
2iB
6i
l
MB
A
2iA
4iB
6i
l
由平衡条件得杆端剪力:见图(d)
M AB A
(d)
B M BA
F QAB
FQAB
FQBA
MAB
l
MBA
6i l
A
6i l
B
12i l2
F QBA
1.两端固定单元,在A端发生一个顺时针的转角 A。
A MAB A
由力法求得
B MBA
2i
M
AB
4
EI L
A
4i A
M
BA
2
EI L
A
2i A
4i
M
2.两端固定单元,在B端发生一个顺时针的转角 B。
MAB A
B
由力法求得
B MBA
M
BA
4
EI L
B
4i B
M
AB
2
EI L
B
2i B
3.两端固定单元,在B端发生一个向下的位移 。
A MAB
B MBA
由力法求得

M
AB
6EI L2
6i L
M
BA

结构力学I-第7章 位移法

结构力学I-第7章 位移法
4
Page
LOGO
§7-1位移法基本概念
位移法基本方程:

i 1 5
EAi sin 2 i FP li
FP EAi sin 2 i i 1 li
5

关键的一步!
将杆数由5减少为2,这时的结 构是静定的;如果杆数大于 (或等于)3时,结构是超静 定的。
以上两种情况都可以用上述 方法计算!
(2) 杆件转角以顺时针为正 , 反之为负。杆件两端在垂直 于杆轴方向上的相对线位移 ΔAB (侧移)以使杆件顺时针转 动为正,反之为负。 B A B A θB
θ
A
AB
2015-12-21
Page
14
浙江大学海洋学院 Tel : Email:
LOGO
§7-2 单跨超静定梁的形常数与载常数
ΔAB F M AB l
Page
23
LOGO
§7-2单跨超静定梁的形常数与载常数
3. 一端固定、一端定向的等截面直杆
MAB A A
A
β AB
F EI
B
B
AB
FQBA=0,ΔAB是θA 和θB的函 数,转角位移方程为
F M AB i AB A i AB B M AB F M BA i AB A i AB B M BA
2015-12-21
LOGO
§7-2单跨超静定梁的形常数与载常数
2. 一端固定、一端铰支的等截面直杆
MAB A A FS BA l FS BA
A
F EI
B
AB
MBA=0,θB 是θA 和ΔAB的函数,转角位移方程为
M AB 3i AB A 3i AB M BA 0

结构力学 位移法

结构力学 位移法
1
第七章 位移法
7-1 位移法的基本概念
2
求解超静定结构的两种最基本的方法:
力法 位移法
力法适用性广泛,解题灵活性较大。(可选 用各种各样的基本结构)。
位移法在解题上比较规范,具有通用性,因 而计算机易于实现。
位移法可分为:手算——位移法 电算——矩阵位移法
力法与位移法最基本的区别: 3
基本未知量不同
(位移法基本方程)
在(1)(2)条件成立条件下,基本结构 的内力和位移与原结构相同。
解位移法基本方程
结点位移 未知量
内力
适用范围:
6
力法: 超静定结构
位移法: 超静定结构,也可用于静定结构。 一般用于结点少而杆件较多的刚架。
例:
7
P
力法计算,9个基本未知量
位移法计算, 1个基本未知量
位移法的准备工作
力法:以多余未知力基本未知量
位移法:以某些结点位移基本未知量
力法和位移法的解题思路:
力法:
先求多余未知力
结构 内力
结构 位移
力法的解题过程
4
力法的全部计算均在基本结构上
原结构
超静定结构
确定基本未知量: 多余未知力Xi
基本结构
施加条件:
原结构的变形协调条件
(力法基本方程)
在变形条件成立条件下,基本体 系的内力和位移与原结构相同。
8
三种单跨超静定梁作为基本构件
常用的形常数:杆轴弦转角
9
三类基本构件由杆端单位位移引起的杆端弯矩和剪力.
1
A
B
+

i
i = EI 线刚度
l
M AB = i MBA = −i

结构力学 7.位移法

结构力学 7.位移法
也称“先拆后搭”
§7-1 位移法的基本概念
2 位移法计算刚架的基本思路
(1)基本未知量——A 和。
(2)建立位移法基本方程 ■刚架拆成杆件,得出杆件的刚度方程。 ■杆件合成刚架,利用刚架平衡条件,建立位移法基本方程。
§7 – 2 等截面直杆的刚度方程 正负号规定
结点转角 A 、 B 、弦转角( = / l ) 和杆端弯矩M AB
0
0
6
5ql
3ql
3l / 8
8
8
9ql2 / 128
(↑) (↑)
2ql
ql
7
5
10
(↑) (↑)
8
9ql
11ql
40
40
(↑) (↑)
§7-2 等截面杆件的刚度方程
表1:载常数表(续)
序号 计算图及挠度图
弯矩图及固端弯矩
9
10
5FPl / 32
11
12
固端剪力
FQAB
FQBA
FPb(3l 2 b2 ) 2l 3
M AB
4i A
2i B
6i
l
M BA
2i A
4i B
6i
l
(1)B端为固定支座 B 0
FQ AB FQ BA
6i l
A
6i l
B
12i l2
(2)B端为铰支座 MBA 0
M AB
4i A
6i
l
M BA
2i A
6i
l
M AB
3i A
3i
l
§7-2 等截面杆件的刚度方程
M AB
24
25
26
27
固端剪力

结构力学第七章-位移法(一)

结构力学第七章-位移法(一)

由 M B = 0 同理可得,
FQAB 6i 6i 12i F A B 2 FQAB l l l
结构力学 第七章 位移法
2015年9月12日星期六
§7-2 等截面直杆的转角位移方程
等截面直杆的转角位移方程:

一端固端一端铰支的等截面直杆:
B端角位移不独立。
C
B A
AB:一端固定一端定向滑动 BC:一端固定一端定向滑动 BD:一端固定一端铰支
C
EI=c D B A
AB:两端固定 BC:一端固定一端定向滑动 BD:一端固定一端铰支
C
EI=c D B A
AB:两端固定 BC:两端固定 BD:一端固定一端铰支
C
EI=c D EI=c B A
AB:两端固定 BC:一端固定一端定向滑动 BD:两端固定
R1 = 0 R2 = 0 R3 = 0
R11 Z1
R21
R31
R12
R22 Z2
R32
R13
R23
R1P R33
R2P
P2
R3P
D EI=c A
E
F
D EI=c
E
F
D EI=c
E
F
P1
D EI=c A
E
F
B
C
A
B
C
A
B
C
B
C
(a)基本结构只发生 Z1
(b)基本结构只发生 Z 2
EI 1
B’ O
B
A’
EI
EI
EI
A EI
EI 1
不考虑杆件伸缩变形,AB 不能转动,无结点角位移
结构力学 第七章 位移法

结构力学中的位移法

结构力学中的位移法

结构力学中的位移法
位移法是基于以下假设的:结构单元之间的约束全部通过边界条件来
体现,结构中的材料是线弹性材料,结构中的每个单元之间是相互独立和
互不干扰的。

位移法的基本思想是首先假设结构的位移场,然后利用位移场的表达
式和边界条件,推导出结构的应力、应变和位移等信息。

具体步骤如下:
1.确定结构的约束条件:根据结构的平衡条件,确定结构各部分之间
的约束关系。

一般包括边界条件和连接条件等。

2.建立位移场:通过将结构的变形分解为一系列位移函数的线性组合,建立位移场。

常用的位移函数包括常数、线性函数、二次函数等。

3.推导位移场的表达式:利用结构的几何关系和材料的力学性质,根
据平衡条件和应力-应变关系,推导出位移场的表达式。

4.边界条件和连接条件:利用结构的边界条件和连接条件,确定位移
场中的待定系数。

5.应力和应变的计算:利用位移场的表达式和应力-应变关系,计算
结构中各点的应力和应变。

6.变形和位移的计算:利用位移场的表达式,计算结构中各点的变形
和位移。

7.校核:通过校核位移场的可行性和合理性,验证所得结果的准确性。

位移法的优点是可以处理各种复杂的边界条件和载荷情况,适用于各
种不规则结构。

但是位移法也存在一些局限性,如要求解一些复杂结构时,可能需要大量的计算和繁琐的推导过程。

总之,位移法是结构力学中一种重要的解决结构问题的方法,通过确定结构的位移场来分析结构的力学性能,具有广泛的应用前景。

在实际工程中,位移法被广泛运用于结构设计和分析中,是一种非常有效的结构分析方法。

结构力学第07章 位移法-3

结构力学第07章 位移法-3

基本体系转化为原结构的条件是: 基本结构在给定荷载以及结点位移的共同 作用下,在附加约束中产生的总约束力应该等 于零。
(变形协调) (平衡条件) 原结构 若干根单跨杆 整体结构 放松 件的组合体 锁住 (还原)
以两个基本未知量的结构为例。 基本体系转化为原结构的条件: 基本结构在给定荷载和结点位 移Δ 1, Δ 2共同作用下,在附加约 束中产生的总约束反力F1,F2应等 于零。 即: F1 =0 F2 =0
B FP l/2
l/2
Δ1
Δ1
EI=常数 A
l
C
Δ2
D
(7-15)
B 基本结构 A
C
D
FP
B l/2 l/2
Δ1 Δ1
C
Δ2 B 基本结构
C
A
EI=常数
D
A
D
l
F1 =0
FP B Δ1
C
Δ2
F2 =0
B
F1=0 MBC MBA F2=0
FQCD
A
D
基本体系
FQBA
F11 B
F21 C
F12
B
CΔ2 F22
X 0
解方程求多余未知力; 迭加作内力图; 用变形条件进行校核; 只用来求解超静定结构。
K F 0
解方程求独立结点位移; 迭加作内力图; 用平衡条件进行校核; 静定、超静定结构均可。
2、位移法典型方程(n个基本未知量) k11 Δ1+k12 Δ2+…+ k1n Δn+F1P= 0 k21 Δ1+k22 Δ2+…+ k2n Δn+F2P= 0 … +…+ … kn1 Δ1+kn2 Δ2+…+ knn Δn+FnP= 0 可写成矩阵形式

结构力学位移法

结构力学位移法

结构力学位移法结构力学是研究结构物的力学性能和变形规律的科学,位移法是结构力学中常用的一种分析方法。

它通过计算结构物各个节点的位移,进而求解出结构物的应力、应变等力学参数。

下面将详细介绍位移法的原理和应用。

一、位移法的原理位移法是一种基于力的平衡方程和位移的相关性质来计算结构物响应的方法。

它的基本原理是通过建立结构物的整体刚度方程,解这个方程得到各节点的位移,再根据位移计算出相应节点上的应力和应变。

在应用位移法时,首先需要确定结构物的受力状态,即施加在结构物上的外力和边界条件。

然后,根据结构物的几何约束条件和材料特性,建立结构物的整体刚度方程。

这个方程是一个描述结构物节点位移与受力关系的方程,通常表示为[K]{D}={F},其中[K]是结构物的刚度矩阵,{D}是节点位移矩阵,{F}是节点受力矩阵。

解刚度方程可以得到节点位移矩阵{D},再通过位移与应力或应变的关系,计算出各个节点上的应力和应变。

常用的位移与应力或应变的关系包括伯努利梁理论、平面假设等。

最后,根据应力或应变条件,判断结构物的安全性和稳定性。

二、位移法的应用位移法广泛应用于各种结构物的力学分析和设计中,特别是对于复杂结构和非线性问题的分析更具优势。

1.梁和框架的分析对于梁和框架结构,可以根据位移法计算出节点上的位移、弯矩、剪力和轴力等力学参数。

通过对结构物的力学性能的准确分析,可以进行合理的结构设计和优化。

2.刚架和刚构的计算在刚架和刚构的计算中,位移法可以用来求解节点刚度,从而得到结构物的受力分布和变形情况。

这对于评估结构物的稳定性和刚度有重要意义。

3.非线性问题的分析位移法还可以应用于非线性结构的分析,如软土地基的承载力计算、非线性材料的应力分析等。

在这些情况下,结构物的刚度和应力等参数会随着受力状态的变化而发生变化,需要通过迭代的方法来求解。

4.动力分析位移法也可以用于结构物的动力分析。

动力分析主要研究结构物在动态载荷下的响应和振动特性。

结构力学-第7章-位移法

结构力学-第7章-位移法

第7 章位移法一.教学目的掌握位移法的基本概念;正确的判断位移法基本未知量的个数;熟悉等截面杆件的转角位移方程;熟练掌握用位移法计算荷载作用下的刚架的方法了解位移法基本体系与典型方程的物理概念和解法。

二.主要章节§7-1 位移法的基本概念§7-2 杆件单元的形常数和载常数—位移法的前期工作§7-3 位移法解无侧移刚架§7-4 位移法解有侧移刚架§7-5 位移法的基本体系§7-6 对称结构的计算*§ 7-7 支座位移和温度改变时的位移法分析(选学内容)§7-8 小结§7-9 思考与讨论三.学习指导位移法解超静定结构的基础是确定结构的基本未知量以及各个杆件的转角位移方程,它不仅可以解超静定结构,同时还可以求解静定结构,另外,要注意杆端弯矩的正负号有新规定。

四.参考资料《结构力学(I)基本教程第3版》P224〜P257第六章我们学习了力法,力法和位移法是计算超静定结构的两个基本方法,力法发展较早,位移法稍晚一些。

力法把结构的多余力作为基本未知量,将超静定结构转变为将定结构,按照位移条件建立力法方程求解的;而我们今天开始学的这一章位移法则是以结构的某些位移作为未知量,先设法求出他们,在据以求出结构的内力和其他位移。

由位移法的基本原理可以衍生出其他几种在工程实际中应用十分普遍的计算方法,例如力矩分配法和迭代法等。

因此学习本章内容,不仅为了掌握位移法的基本原理,还未以后学习其他的计算方法打下良好的基础。

此外,应用微机计算所用的直接刚度法也是由位移法而来的,所以本章的内容也是学习电算应用的一个基础。

本章讨论位移法的原理和应用位移法计算刚架,取刚架的结点位移做为基本未知量,由结点的平衡条件建立位移法方程。

位移法方程有两种表现形式:①直接写平衡返程的形式(便于了解和计算)②基本体系典型方程的形式(利于与力法及后面的计算机计算为基础的矩阵位移法相对比,加深理解)§ 7-1位移法的基本概念1.关于位移法的简例为了具体的了解位移法的基本思路,我们先看一个简单的桁架的例子:课本P225。

结构力学 第七章 结构位移计算

结构力学 第七章  结构位移计算

第七章 结构位移计算到上节课为止,我们把五种静定杆件结构的计算问题全讨论过了。

我们知道内力计算问题属强度问题→是结力讨论的首要任务。

讲第一章时,结力的第二大任务:刚度问题,而要解决…,首先应该…杆件结构位移计算 (结构变形+刚度位移)→{刚度校核截面设计确定P max又是超静定结构计算的基础(双重作用)。

另外本章主要讨论各种杆件结构的位移计算问题。

结构位移计算的依据是虚功原理,所以本章先讨论刚体、变形体的虚功原理,然后推导出杆件结构位移计算的一般公式,再讨论各种具体结构的位移计算。

§7-1概述一、结构的位移画图:梁、刚架、桁架 (内力N 、Q 、M ——拉伸、剪切、弯曲)截面C 线位移:C ∆ 角位移:C ϕ结点的线位移: 两点(截面)相对线位移: 杆件的角位移: AB ϕ 两截面相对角位移: 两杆件相对角位移:1、位移定义:由于结构变形或其它原因使结构各点的位置产生(相对)移动(线位移),使杆件横截面产生(相对)转动(角位移)。

截面C 线位移:C ∆。

一般 分解成水平、垂直两方向:CH ∆、CV ∆ 角位移:C ϕ2、位移的分类:6种绝对位移:点(截面)线位移——分解成水平、垂直两方向截面角位移:杆件角位移:相对位移:两点(截面)相对线位移——沿连线方向两截面相对角位移:两杆件相对角位移:统称为:广义位移:角、线位移;相对、绝对位移Δki:k:产生位移的方向;i:引起位移原因。

如ΔA P、Δat、ΔA C广义力:集中力、力偶、分布荷载,也可以是上述各种力的综合二、引起位移的原因1、荷载作用:(荷载→内力→变形→位移)2、温度改变:静定结构,温度改变,→0应力非0应变→结构变形(材料胀缩引起的位移性质同)3、支座移动;(无应力,无应变,但几何位置发生变化){刚体位移(制造误差同)变形位移三、计算位移的目的1)刚度验算:最大挠度的限制(框架结构弹性层间位移限值1/450)2)为超静定结构的弹性分析打下基础3)预先知道变形后的位置,以便作出一定的施工措施:(起重机吊梁、板)(屋架安装)(建筑起拱)(屋窗、门、过梁)(结构要求高,精密)四、计算位移的有关假定(简化计算)1)弹性假设2)小变形假设建立平衡、应变与位移、位移与荷载成线性关系3)理想约束(联结,不考虑阻力摩擦)变形体系{ 线性变形体系(线弹性体系)荷载和位移呈线性关系,且荷载全撤除后位移将全部消失,无残余变形,(可用位移叠加原理)非线形变形体系(分段线形叠加)4)位移叠加原理(类似内力、反力叠加)§7-2 变形体系的虚功原理一、 位移实位移:外因作用下结构实际位移虚位移:根据解题需要,虚设位移状态 (满足变形协调+边界条件) 统称为:广义位移二、功:力所做的功:该力大小乘以力方向上的相应位移常力的功: T =P ×Δ=P ×D ×cos a (大小、方向、作用点不变) 变力的功:T=⎰s dT =⎰s P ×cos (P ,d s )×d s力偶所做的功:功两要素:力与位移P :广义力(力、力偶、相对力、相对力偶)Δ:和广义力相对应的广义位移(线、角、相对线、相对角)注意:在定义功T 时,没有说位移Δ是由力P 引起的,可能由P 或其它原因,但P 力照样作功。

结构力学

结构力学

因 B 0, QAB QBA 0 EI l MBA
1 A 代入(2)式可得 l 2
M AB i A M BA i A
A
由单位杆端位移引起的杆端力称为形常数(即刚度系数, 是只与截面尺寸和材料性质有关的常数)。
单跨超静定梁简图
A A
MAB
B
MBA
QAB= QBA
关于刚架的结点未知量
A P C
q
B A
A

A
B
M AB
A
P C
M AB
A
q
↓↓↓↓↓↓↓↓↓↓
↓↓↓↓↓↓↓↓↓↓
F1
θA
q
ql2/12 ↓↓↓↓↓↓↓↓↓↓
F1P
q
ql2/12
A
C F1P
ql 2 F1P 12
ql2/12
2 EI A l
A l
βA EI=常数
C
A
C
F1=0
ql2/48
2
2 EI A l
B
2 EI A l
4i
2 EI A l
B
ql3 A 96EI
4 EI θA A l
§2 等截面杆件的刚度方程
杆端力和杆端位移的正负规定
①杆端转角θA、θB ,弦转角β=Δ/l都以顺时针为正。 ②杆端力的表示方法和正负号的规定 1、弯矩:MAB表示AB杆A端的弯矩。对杆端而言,顺时针为 正,逆时针为负;对结点而言,顺时针为负,逆时针为正。 P B A MBA0 MAB0 2、剪力:QAB表示AB杆A端的剪力。正负号规定同前。 P B A QAB0 QBA0
A A
A A F1 0 A A F1 0

结构力学-第7章-位移法习题答案

结构力学-第7章-位移法习题答案

EA=∞ E
EA=∞ F
EI
2EI EI
A
B
C
6m
6m
解:(1)确定基本未知量 一个线位移未知量,各种 M 图如下
7- 34
(2)位移法典型方程
r11Z1 R1p 0
(3)确定系数并解方程
r11

4 243
EI , R1p

Fp
4 243
EIZ1

Fp

0
Z1

243 4EI
(4)画 M 图
(d)
E
F
EA
EA
A
B
FP aa
C EI1=∞
2a
D
FP a
解:(1)确定基本未知量 一个线位移未知量,各种 M 图如下
2a
7- 35
(2)位移法典型方程
r11Z1 R1p 0
(3)确定系数并解方程
r11

2 5
EA / a, R1p


6 5
Fp
2 5
EA a
Z1

6 5
Fp

0
Z1

3a EA
(4)求最终弯矩图
7- 41
(d)
l
E q
GB
D
ql F
EI=常数
A
C
l 2
l
l
l
解:(1)确定基本未知量 两个位移未知量,各种 M 图如下
7- 42
(2)位移法典型方程
r11Z1 r12Z2 R1 p 0 r21Z1 r22Z2 R2 p 0
(3)确定系数并解方程
r11

07★结构力学A上★第七章★位移法

07★结构力学A上★第七章★位移法
31
例:作图示刚架弯矩图。忽略横梁的 轴向变形。 解:(1)基本未知量:各柱顶水平 位移相等,只有一个独立线位移Δ。 (2)各柱的杆端弯矩和剪力为:
EI1 i1 h1 EI 2 i2 h2 EI 3 i3 h3
32
M BA 3i1 M DC 3i2 M FE 3i3


FP i1 i2 i3 3 2 2 2 h1 h2 h3 FP 3 i h2
列出水平投影方程:
X 0
33
(4)各柱最终杆端弯矩,画弯矩图:
i1 2 h1 FP i 2 h i3 2 h3 FP i 2 h i2 2 h2 i 2 h
转角位移方程。因此,不能利用刚性杆两端的刚结点力矩平
衡条件。应建立弹性杆端的剪力平衡方程。 刚性杆虽然没有变形,但是可存在内力。
30
2. 基本方程的建立
B= 0.737/ i (1) 基本未知量 B = 7.58/i
(2) 杆端弯矩
1 AB:M AB 2i B 6i 3 42 4 12 1 M BA 4iB 6i 3 42 4 12
M E 0, FQBE
M F 0, FQCF
1 (M EB M BE ) 4
1 M FC M CF 6
1 1 (M EB M BE ) M FC M CF 0 4 6
(4)解方程组
1.125 B 0.5C 0.728 0
得 B= 0.94 C= -4.94 = -1.94
10 B 2C 1.125 1.7 0 2 B 9C 0.5 41.7 0 1.125 B 0.5C 0.728 0

结构力学第七章

结构力学第七章

结构力学课件
第七章 位移法
章目录 第一节
第1节
7.1 基本概念
基本概念
第二节 第三节 第四节 第五节 第六节
• 为了说明位移法的基本概念,我们来分析图 ( d )所示刚架的位移.它在 均布荷载 q 作用下将发生虚线所示的变形,在刚结点 C 处两杆的杆端 均发生相同的转角 c (这个位移本章统一用 Z1 来表示).我们用位移
本章目录
7.1 基本概念 7.2 等截面直杆的转角位移方程 7.3 基本未知量数目的确定和基本结构 7.4 位移法典型方程及计算步骤 7.5 直接由平衡条件建立位移法基本方程 7.6 对称性的利用
基本要求
1.了解结构含义及结构的分类 2. 了解荷载的各种分类 3 .掌握结构计算的三个方面 4 .了解结构力学研究的具体内 容和任务
法分析内力时可略去各杆的轴向变形,即认为两杆长度不变,因而结点
C 没有线位移.下面就来讨论根据 C 点的位移 Z1 来确定各杆内力.
结构力学课件
第七章 位移法
章目录 第一节
第1节
7.1 基本概念
基本概念
第二节 第三节 第四节 第五节 第六节 结构力学课件
第七章 位移法
章目录 第一节 第二节 第三节 第四节 第五节 第六节 结构力学课件
第七章 位移法
章目录 第一节 第二节 第三节 第四节 第五节 第六节 结构力学课件
第 2 节 等截面直杆的转角位移方程
7.2.3 一端固定、另一端定向支撑的单跨超静定梁
第七章 位移法
章目录 第一节 第二节 第三节 第四节 第五节 第六节 桥梁支座 结构力学课件
第 3 节 基本未知量数目的确定和基本结构
7.2 等截面直杆的转角位移方程

结构力学 第七章 位移法

结构力学 第七章 位移法

表示等截面直杆杆端力与杆端位移及杆上荷载间关系的表达式
B A
Δ
6i F M AB l 6i F M BA 2i A 4i B M BA l 6i 6i 12i F F QAB A B 2 FAB l l l M AB 4i A 2i B
B
4i
1
2i
6i l
12i
l
6i
3i
l
6i
0
l2
θ =1
B B
3i
3i l
l
2
1 θ =1
B
3i
i
l
0
A
-i
0
三 等截面直杆的载常数 由荷载作用所引起的杆端力(固端力)
单跨超静定梁简图
q A
↓↓↓↓↓↓ ↓↓↓↓↓↓ ↓↓
mAB
B
mBA
ql 2 12
Pl 8
ql 2 12
Pl 8
位移法方程实质上平衡方程
Z1
D i A 2i E
Z2
C 2i
i EI l
4m
EI
i B
A
B
4m
2m
2m
位移法基本体系
解:1 确定位移法基本体系 2 列位移法方程 k11Z1+ k12Z2+ F1P=0 k21Z1+ k22Z2+ F2P=0
3 计算系数和自由项 Z1=1
4i 4i D i8i A 2i 8i 2i E 2i i B C
M AB 2i B
M BC ql 2 4i B 12
ql 2 ql 2 ql 2 4i 96i 12 24

结构力学第七章位移法

结构力学第七章位移法

结构力学第七章位移法1.引言结构力学是研究结构受力、变形和稳定性的力学分支。

在结构力学中,位移法是一种重要的分析方法,用于求解结构的变形和应力分布。

2.位移法的基本原理位移法是基于以下两个基本原理:(1)弹性体的受力状态可通过满足平衡条件来确定;(2)位移场的连续性条件,即位移场在结构内部要处处连续,边界上要满足给定的边界条件。

3.位移法的基本步骤位移法的基本步骤如下:(1)建立结构的受力模型,包括结构的材料性质、几何形状和边界条件等;(2)选取适当的位移函数形式,以确定位移场;(3)利用平衡方程和满足位移场连续性条件的边界条件,求解未知的位移和受力分布;(4)利用位移和受力分布计算结构的变形和应力分布。

4.位移法的应用位移法广泛应用于各种结构的力学分析,特别是对于复杂的非线性和不规则结构,位移法是一种常用的分析方法。

以下是一些常见的应用:(1)梁的挠曲分析:位移法可以用来求解梁的挠曲问题,通过选取合适的位移函数形式,可以得到梁的弯曲形状和弯矩分布。

(2)柱的稳定性分析:位移法可以用来求解柱的稳定性问题,通过选取合适的位移函数形式,可以得到柱的稳定性临界载荷和稳定形状。

(3)桁架结构的分析:位移法可以用来求解桁架结构的强度和刚度,通过选取合适的位移函数形式,可以得到桁架结构的内力和变形。

(4)地基基础的分析:位移法可以用来求解地基基础的变形和应力分布,通过选取合适的位移函数形式,可以得到地基基础的沉降和周边土体的应力分布。

5.位移法的优缺点位移法作为一种结构力学的分析方法,具有以下优点:(1)位移法适用于各种结构的力学分析,可以求解复杂的非线性和不规则结构问题;(2)位移法具有较强的适用性和灵活性,可以根据实际情况选取不同的位移函数形式;(3)位移法的计算步骤相对简单,易于实现。

然而,位移法也存在一些缺点:(1)位移法需要选取适当的位移函数形式,这对分析结果的准确性有较大影响;(2)位移法的计算过程较为繁琐,需要手动推导和求解方程组,耗费时间和精力。

结构力学第七章-位移法(二)

结构力学第七章-位移法(二)
C
t1
t1 40 D t2 20

Z1
l t1 2
B
C
t1
t1 40 D t2 20

Z2
C’ C
30 l 30 l
D’ D
t1
15 l
A
l
l 2
A
B 基本结构
B
基本结构只承 受t0时的变形
EI l
A
2个基本未知量。 【解】 几个基本未知量?
位移法方程
r11Z1 r12 Z 2 R R 0 r21Z1 r22 Z 2 R R 0
' 1t ' 2t '' 1t '' 2t
R1't
180 EI l 45
' R2 t
基本结构只承受温度变化t0=30° 基本结构只承受温度变化Dt=20°
R1't 135
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§ 7-7 广义荷载作用下的位移法计算
二、温度改变时的位移法
关于表7-2中端弯矩的理解:
t t
2l

利用对称性 取半结构
l
t t
温度变化情况 下,原直杆的 形状有何变化?

t t
端弯矩方向: 温度低的一侧受拉
力法和位移法作为超静定结构求解的两种基本方法, 各自的最适用范围如何? 判别原则:基本未知量数量尽可能少。 力法:超静定次数少而结点位移多的结构。 位移法:超静定次数多而结点位移少的结构。
Strucural Analysis
Байду номын сангаас
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章位移法一. 教学目的掌握位移法的基本概念;正确的判断位移法基本未知量的个数;熟悉等截面杆件的转角位移方程;熟练掌握用位移法计算荷载作用下的刚架的方法了解位移法基本体系与典型方程的物理概念和解法。

二. 主要章节§7-1 位移法的基本概念§7-2 杆件单元的形常数和载常数—位移法的前期工作§7-3 位移法解无侧移刚架§7-4 位移法解有侧移刚架§7-5 位移法的基本体系§7-6 对称结构的计算*§7-7支座位移和温度改变时的位移法分析(选学内容)§7-8小结§7-9思考与讨论三. 学习指导位移法解超静定结构的基础是确定结构的基本未知量以及各个杆件的转角位移方程,它不仅可以解超静定结构,同时还可以求解静定结构,另外,要注意杆端弯矩的正负号有新规定。

四. 参考资料《结构力学(Ⅰ)-基本教程第3版》P224~P257第六章我们学习了力法,力法和位移法是计算超静定结构的两个基本方法,力法发展较早,位移法稍晚一些。

力法把结构的多余力作为基本未知量,将超静定结构转变为将定结构,按照位移条件建立力法方程求解的;而我们今天开始学的这一章位移法则是以结构的某些位移作为未知量,先设法求出他们,在据以求出结构的内力和其他位移。

由位移法的基本原理可以衍生出其他几种在工程实际中应用十分普遍的计算方法,例如力矩分配法和迭代法等。

因此学习本章内容,不仅为了掌握位移法的基本原理,还未以后学习其他的计算方法打下良好的基础。

此外,应用微机计算所用的直接刚度法也是由位移法而来的,所以本章的内容也是学习电算应用的一个基础。

本章讨论位移法的原理和应用位移法计算刚架,取刚架的结点位移做为基本未知量,由结点的平衡条件建立位移法方程。

位移法方程有两种表现形式:①直接写平衡返程的形式(便于了解和计算)②基本体系典型方程的形式(利于与力法及后面的计算机计算为基础的矩阵位移法相对比,加深理解)§7-1位移法的基本概念1.关于位移法的简例为了具体的了解位移法的基本思路,我们先看一个简单的桁架的例子:课本P225。

图7-1和图7-2所示。

(a)(a)(b) (b)图7-1 图7-2第一步:从结构中取出一个杆件进行分析。

(杆件分析)图7-2中杆件AB 如已知杆端B 沿杆轴向的位移为i u (即杆件的伸长)则杆端力Ni F 为:i iiNi u l EA F =(7-1) E-为弹性模量,A-为杆件截面面积,i l -为杆件长度iil EA --使杆端产生单位位移时所需施加的杆端力 -- 刚度系数 公式(7-1)的物理意义:表明杆件的杆端力Ni F 与杆端位移i u 之间的关系---杆件的刚度方程。

第二步:把各杆件综合成结构。

(整体分析)各杆端位移i u 与基本未知量∆之间的关系为:i i Sin u α∆= (a)B 点的平衡条件为0=∑y F 得:p i i Ni F Sin F =∑=α51(b )由7-1式和(a )式带入(b)式得:p i i ii F Sin l EA=∑=∆α251 (c )(c )式就是位移法的基本方程,它表明结构的位移∆与荷载p F 之间的关系。

由(c )式可得:∑==512i i iiPSin l EA F α∆ (d ) 完成了位移法中的关键一步 求各杆轴力可将求得的∆代入(a )式得i i i iiPi Sin Sin l EA F u αα∑==512再代入(7-1)得:P i i iii i iNi F Sin l EA Sin lEA F ∑==512αα (e)在图7-1中如果只是两根杆时结构是静定的(相当于固定一个结点的方式,用两根不共线的链杆)。

当杆数大于2时,结构式超静定的。

所以用位移法计算时,计算方法并不因结构是静定结构还是超静定结构而有所不同。

由以上简例可以归纳出位移法的要点如下:(1) 位移法的基本未知量是结构的结点位移(图7-1中的B 点的位移∆) (2) 位移法的基本方程是平衡方程(B 点的y 方向的投影平衡方程式0=∑y F ) (3) 建立基本方程的过程分为两步:a :将结构拆成杆件,进行杆件分析得出杆件的刚度方程;b :再把杆件综合成结构,进行整体分析得出基本方程。

(4) 根据位移法方程解出基本未知量并由此计算各杆的内力。

位移法就是将结构拆了再搭的计算过程—基本思路。

杆件分析是结构分析的基础,杆件的刚度方程是位移法的基本方程的基础。

因此位移法也称为刚度法。

位移法与力法的区别:1.主要区别是基本未知量不同:力法是取结构中的多余未知力作为基本未知量;位移法是以结点位移(线位移和角位移)作为基本未知量。

2.建立的基本方程不同:力法是由变形协调条件建立位移方程;位移法是由平衡条件建立的平衡方程。

注:力法的基本未知量的数目等于超静定次数,而位移法的基本未知量与超静定次数无关。

如左图所示:力法计算, 9个基本未知量;位移法计算, 1个基本未知量2.位移法计算刚架的基本思路以上结合链杆系的情况对位移法的基本思路做了简短的说明。

现在再结合刚架的情况作进一步的介绍。

在刚架的分析中,通常只考虑弯曲变形,忽略剪切和拉伸变形。

下面结合简单实例说明位移法的基本思路。

图7-3如图7-3a 所示的刚架,在荷载的作用下发生变形,杆件AB、BC 在结点B处有相同的转角θ,称为结点B的角位移。

将整个刚架分解为AB、BC 杆件,则AB 杆件相当于两端固定的单跨粱,固定端B发生一转角θ( 图7-3b ),BC 杆相当于一端固定另一端铰支的单跨粱,受荷载作用,同时在B 端发生角位移( 图7-3c )。

如果能够求出角位移,则能够计算出杆件的内力,问题的关键是求结点的角位移。

用位移法计算刚架,结点的位移是处于关键地位的未知量,基本思路是拆了再搭,将刚架拆成杆件,进行求解;再将杆件合成为刚架,利用平衡条件求出位移。

对于位移法的基本计算将在今后具体分析。

§7-2 等截面杆件的刚度方程一. 教学目的本节是位移法的基础,理解杆端力与杆端位移及荷载之间的关系,正确理解杆端剪力和弯矩的符号,掌握杆端位移方程,能够判定和选择杆端剪力和弯矩。

二. 主要内容1. 由杆端位移求杆端弯矩(1)由杆端位移求杆端弯矩(2)2. 由荷载求固端弯矩(1)由荷载求固端弯矩(2)三. 学习指导本节主要讨论一个杆件的杆端力与杆端位移及荷载之间的关系,要正确理解其中的关系和符号。

根据位移法的基本思路,以及为了更好的进行位移法的计算,需要讨论等截面杆件的两个问题:由杆端位移求杆端弯矩和由荷载求固端弯矩。

四. 参考资料《结构力学教程(Ⅰ)》P227~P2327.2.1 由杆端位移求杆端弯矩(1)图7-4为等截面杆件,截面惯性矩为常数。

已知端点A和B的角位移分别是θA和θB ,两端垂直于杆轴的相对线位移为Δ,拟求杆端弯矩ABM。

M、BA图7-4在位移法中位移的正负号规定为:结点转角,弦转角和杆端弯矩一律以顺时针为正。

这一点一定要注意与以前的不同。

应用单位荷载法可得出:杆件的线刚度i=EI/l解联立方程可得:利用平衡条件可求出杆端剪力如下:于是可将上式写为:则矩阵称为杆件的刚度矩阵,其中的系数称为刚度系数,又称为形常数。

上面公式利用力法计算过程:1.用力法来计算简支梁在两端力偶ABM作用下产生M、BA的杆端转角'Aθ、'Bθ。

)6131(]212322)([1BA AB BA BA AB A M M EI l l M l M M EI -=⨯⋅-⨯⋅+=θ)6131(]212312)([1AB BA BA BA AB B M M EI l l M l M M EI -=⨯⋅-⨯⋅+=θ2.考虑两端有相对竖向位移 ∆,BABM BAM 图P M (b)BAM 11=X 图1M (c)11图2M 12=X (d)图7-5l ''B ''A ∆θθ==杆件的线刚度 i =EI /l ,所以:下面讨论杆端具有不同约束时的刚度方程。

7.2.1 由杆端位移求杆端弯矩(2)根据前面的讨论得出一般情况下的刚度方程以下将利用以上结论讨论杆件在不同的支承条件下的刚度方程。

对于图7-6a B 端为固定支座,θB = 0 ,则得对于图7-6b B 端为铰支座,M BA = 0 ,则得对于图7-6c B 端为滑动支座,θB =0 和 F QAB = 0 F QBA =0 ,则得图7-6下面将讨论由荷载引起的固端弯矩。

7.2.3 由荷载求固端弯矩(1)—载常数对于常见的三种粱:两端固定;一端固定、另一端简支;一端固定另一端滑动支承,下表给出常见荷载作用下的杆端弯矩和剪力,又称固端弯矩和剪力用FAB M 、FBA M 、FQBA F 、FQBA F 表示,其正负号要注意。

因为它们只与荷载形势有关的常数,所以又称载常数。

下面是固端弯矩和剪力,表7-1。

单跨超静定梁由单位杆端位移引起的杆端力称为形常数。

单跨超静定梁简图M ABM BAF QAB =F QBA4i2ili 6-li6-li6-212l i3il i3-l i3-23l ii-i 0最后利用叠加原理得到杆端弯矩的一般公式为:上式也称为等截面直杆的转角-位移方程。

§7-3 无侧移刚架的计算一. 教学目的本节是位移法在计算刚架中的直接应用,能够正确的确定基本未知量,熟练的掌握转角位移方程的应用并能够求解无侧移刚架和粱的内力。

二. 主要内容1. 一般概念及过程2. 实例分析三. 学习指导本节的关键是转角位移方程的应用,其中荷载项可查表计算,注意正负号的规定,要多进行练习。

四. 参考资料《结构力学(Ⅰ)》P232~P2357.3.1 一般概念及过程无侧移刚架:刚架的各结点(不包括支座)只有角位移而没有线位移。

下面通过连续梁的计算来介绍位移法的实际过程。

图7-8a 为一连续粱,试分析内力。

图7-81. 基本未知量只有结点B 的角位移θB2. 查表列出各杆的固端弯矩158-=-=L F MP F ABMpa ;158==L F M P FBA Mpa ;982-=-=qL M F BC Mpa 3.各杆的杆端弯矩:4. 建立位移法基本方程,结点B 为隔离体图7-8b ,列平衡方程,并求解5. 计算各杆杆端弯矩最后画出弯矩图(图7-8c)。

画图时注意弯矩画在受拉一侧。

一般的情况,每一个刚结点由一个结点转角----基本未知量;与此相应,在每一个刚结点处又可写一个力矩平衡方程----基本方程。

刚架分析7.3.2 实例分析利用位移法计算图7-9a刚架的内力。

图7-91. 基本未知量共有两个刚结点,因而有两个基本未知量:θB 和θC2. 用转角位移方程表达杆端弯矩固端弯矩各杆线刚度的计算列各杆的杆端弯矩3.利用结点B、C的力矩平衡方程(图7-9b)4.求基本未知量θB = 1.15θC = -4.89 5.计算杆端弯矩并画弯矩图(图7-9c)§7-4 有侧移刚架的计算一. 教学目的通过本节的学习,要能够正确的确定位移法基本未知量----刚结点的角位移、独立的结点线位移,掌握转角位移方程的应用并能够求解有侧移刚架的内力。

相关文档
最新文档