数值分析-数值计算方法
数值计算方法和应用
数值计算方法和应用数值计算方法是指将数学问题转化为计算机程序来求解的一种方法。
随着计算机技术的不断发展,数值计算方法已经成为解决各种实际问题的重要手段。
在这篇文章中,我们将介绍数值计算方法的基础知识和应用。
一、基础知识1.1 数值解数值解是指通过数值计算方法得到的近似解。
对于某些复杂的数学问题,很难得到精确解,这时就需要采用数值计算方法来求解。
数值解的精度取决于算法本身的精度以及所使用的计算机的精度。
1.2 常用数值计算方法常用的数值计算方法包括求解方程、插值和拟合、微积分等。
其中,求解方程是数值计算方法中应用最广泛的一种方法。
通过数值计算方法求解方程的思路是将方程转化为一个数值逼近问题,然后采用数值计算方法求解出近似解。
插值和拟合是另外一种常用的数值计算方法,它们主要用于分析和处理实验数据,用来预测未知变量的值。
1.3 数值稳定性在进行数值计算时,数值稳定性是非常重要的一方面。
数值稳定性指的是计算结果受到输入数据误差的影响程度。
如果计算结果对输入数据的微小变化非常敏感,那么该算法就是不稳定的。
否则,该算法就是稳定的。
在选择数值计算方法时,需要考虑计算结果的稳定性。
二、应用2.1 工程计算数值计算方法在工程计算中也得到了广泛的应用。
工程计算包括结构分析、流体力学等领域。
在这些领域中,需要对各种物理现象进行数值模拟和分析。
利用数值计算方法可以得到复杂系统的数值解,帮助工程师掌握系统的性能和行为规律,做出正确的决策。
2.2 金融计算金融计算是另外一种需要应用数值计算方法的领域。
金融计算通常涉及大量的金融数据,例如股票价格、汇率等。
利用数值计算方法可以对这些数据进行分析,预测未来的价格趋势,提高投资的成功率。
2.3 数据科学数据科学是近年来兴起的一种新兴领域。
数据科学利用大数据分析技术,对各种数据进行分析,预测未来的趋势,挖掘出隐藏在数据背后的信息。
数值计算方法是数据科学中最基础的方法之一,无论是数据采集、数据处理还是数据分析,都需要通过数值计算方法得到精确的数据结果。
数值分析计算方法介绍
据此有 Vt1 vt0 S ,两端同除以 V v ,有
S t * 由于 V v
V v S t1 t0 V v V v V v
为人龟追赶问题的精确解,
由此可见,精确解等于任给预报值同它的校正值的加权平均:
其中
v V v
t* (1 )t1 t0
数
值
分
析
——插值、拟合与数值微积分
:
1
• 引例
数值分析(计算方法)简介
a11 x1 a1n xn b1 a x a x b nn n n n1 1
考虑如下线性方程组
(1)
或者:
Ax b
其中 det(A) 0 , 由克莱姆法则可知 (1)有唯一的解,而且解为:
, a3 0.8610 ,其绝对误差限都是0.005, 例 设近似值 a1 1.38, a2 0.0312 求各个近似值各有几位有效数字?
解
4
3 李庆扬. 数值分析. 清华大学出版社,2001.
4 白峰杉. 数值计算引论. 高等教育出版社, 2004. 5 王能超. 计算方法. 北京: 高等教育出版社, 2005
8
数值分析的基本概念
内容:
• • • • • 算法设计技术 误差 数值计算中需要注意的一些问题 算法的稳定性 病态问题
9
算法设计技术
1 a x1 x0 2 x0
0出发,利用上式反复迭代,即可获得满足精度要求的开
1 a xk , k 0,1, 2, 2 xk
校正技术的基本思想:删繁就简,逐步求精 ! 17
• 算法优化的松弛技术 再考察Zeno算法: 对于给定的预报值 t 0 ,校正值为 t1
数值分析与数值计算方法
数值分析与数值计算方法数值分析与数值计算方法是现代科学与工程领域中的重要学科,它涉及到利用计算机和数值方法解决数学问题的理论和技术。
本文将从数值分析的基本概念、应用领域以及常见的数值计算方法等方面进行探讨。
一、数值分析的基本概念数值分析是一门研究数学算法与计算机实现相结合的学科,旨在通过数学模型的建立和数值计算方法的选择,对实际问题进行定量分析和计算。
它不仅包括了数值计算方法的研究,还包括了误差分析、计算复杂性和算法设计等内容。
数值分析的核心任务是将问题转化为数学模型和计算机可处理的形式,通过数值计算方法求解模型得到近似解。
数值分析的基本思想是通过将连续问题离散化,将其转化为离散的代数问题,然后利用数值计算方法进行求解。
二、数值分析的应用领域数值分析广泛应用于科学和工程领域,例如物理学、化学、生物学、经济学、计算机科学等。
在实际的科学研究和工程应用中,常常需要对现象进行数值建模和计算求解,以获得更加准确的结果。
在物理学中,数值分析用于求解微分方程、积分方程等物理模型,并模拟和预测天体运动、流体流动等自然现象。
在化学和生物学中,数值分析被用于计算分子结构、化学反应动力学等问题。
在经济学中,数值分析可以用于建立经济模型、进行风险评估和决策分析。
三、常见的数值计算方法1. 插值和拟合方法:插值和拟合方法用于根据已知数据点的函数值,构造出一个逼近原函数的函数。
常见的插值方法有拉格朗日插值和牛顿插值;拟合方法包括最小二乘拟合、多项式拟合等。
2. 数值积分方法:数值积分方法用于计算函数在一定区间上的定积分。
常见的数值积分方法有梯形规则、辛普森规则等。
3. 数值微分方法:数值微分方法用于在离散数据点上估计函数的导数。
常见的数值微分方法有中心差分法和向前差分法等。
4. 常微分方程数值解法:常微分方程数值解法用于求解常微分方程的数值解。
常见的数值解法有欧拉法、龙格-库塔法等。
5. 线性方程组的数值解法:线性方程组的数值解法用于求解线性代数方程组的数值解。
数值分析-数值计算方法48页PPT
▪Leabharlann 29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
48
数值分析-数值计算方法
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
数值计算方法教案
数值计算方法教案第一章:数值计算概述1.1 数值计算的定义与特点引言:介绍数值计算的定义和基本概念数值计算的特点:离散化、近似解、误差分析1.2 数值计算方法分类直接方法:高斯消元法、LU分解法等迭代方法:雅可比迭代、高斯-赛德尔迭代等1.3 数值计算的应用领域科学计算:物理、化学、生物学等领域工程计算:结构分析、流体力学、电路模拟等第二章:误差与稳定性分析2.1 误差的概念与来源绝对误差、相对误差和有效数字误差来源:舍入误差、截断误差等2.2 数值方法的稳定性分析线性稳定性分析:特征值分析、李雅普诺夫方法非线性稳定性分析:李模型、指数稳定性分析2.3 提高数值计算精度的方法改进算法:雅可比法、共轭梯度法等增加计算精度:闰塞法、理查森外推法等第三章:线性方程组的数值解法3.1 高斯消元法算法原理与步骤高斯消元法的优缺点3.2 LU分解法LU分解的步骤与实现LU分解法的应用与优势3.3 迭代法雅可比迭代法与高斯-赛德尔迭代法迭代法的选择与收敛性分析第四章:非线性方程和方程组的数值解法4.1 非线性方程的迭代解法牛顿法、弦截法等收敛性条件与改进方法4.2 非线性方程组的数值解法高斯-赛德尔法、共轭梯度法等方程组解的存在性与唯一性4.3 非线性最小二乘问题的数值解法最小二乘法的原理与方法非线性最小二乘问题的算法实现第五章:插值与逼近方法5.1 插值方法拉格朗日插值、牛顿插值等插值公式的构造与性质5.2 逼近方法最佳逼近问题的定义与方法最小二乘逼近、正交逼近等5.3 数值微积分数值求导与数值积分的方法数值微积分的应用与误差分析第六章:常微分方程的数值解法6.1 初值问题的数值解法欧拉法、改进的欧拉法龙格-库塔法(包括单步和多步法)6.2 边界值问题的数值解法有限差分法、有限元法谱方法与辛普森法6.3 常微分方程组与延迟微分方程的数值解法解耦与耦合方程组的处理方法延迟微分方程的特殊考虑第七章:偏微分方程的数值解法7.1 偏微分方程的弱形式介绍偏微分方程的弱形式应用实例:拉普拉斯方程、波动方程等7.2 有限差分法显式和隐式差分格式稳定性分析与收敛性7.3 有限元法离散化过程与元素形状函数数值求解与误差估计第八章:优化问题的数值方法8.1 优化问题概述引言与基本概念常见优化问题类型8.2 梯度法与共轭梯度法梯度法的基本原理共轭梯度法的实现与特点8.3 序列二次规划法与内点法序列二次规划法的步骤内点法的原理与应用第九章:数值模拟与随机数值方法9.1 蒙特卡洛方法随机数与重要性采样应用实例:黑箱模型、金融衍生品定价等9.2 有限元模拟离散化与求解过程应用实例:结构分析、热传导问题等9.3 分子动力学模拟基本原理与算法应用实例:材料科学、生物物理学等第十章:数值计算软件与应用10.1 常用数值计算软件介绍MATLAB、Python、Mathematica等软件功能与使用方法10.2 数值计算在实际应用中的案例分析工程设计中的数值分析科学研究中的数值模拟10.3 数值计算的展望与挑战高性能计算的发展趋势复杂问题与多尺度模拟的挑战重点解析本教案涵盖了数值计算方法的基本概念、误差分析、线性方程组和非线性方程组的数值解法、插值与逼近方法、常微分方程和偏微分方程的数值解法、优化问题的数值方法、数值模拟与随机数值方法以及数值计算软件与应用等多个方面。
数值计算方法简介
2、常用的数值计算方法
2.1.2 有限差分法的具体操作
(1)用差分代替微分方程中的微分,将连续变化 的变量离散化,从而得到差分方程组的数学形式; (2)求解差分方程组。 在第一步中,我们通过所谓的网格分割法,将函 数定义域分成大量相邻而不重合的子区域。通常采用 的是规则的分割方式。这样可以便于计算机自动实现 和减少计算的复杂性。 在第二步中,数值求解的关键就是要应用适当的 计算方法,求得特定问题在所有这些节点上的离散近 似值。
2、常用的数值计算方法
2.1 有限差分法(FDM)
有限差分法是指用泰勒技术展开式将变量的导数 写成变量,在不同的时间或空间点值的差分形式的方 法。它是以变量离散取值后对应的函数值来近似微分 方程中独立变量的连续取值。有限差分法在土木工程 ,材料成型等领域应用比较的普遍,它与有限元等方 法一起成为计算机模拟技术的主要数值分析方法。
3、常用的数值分析软件
3.1.2 ANSYS软件的优缺点
(1)优点
l)ANSYS是完全的WWS程序,从而使应用更加方便; 2)产品系列由一整套可扩展的、灵活集成的各模块组 成,因而能满足各行各业的工程需要; 3)它不仅可以进行线性分析,还可以进行各类非线性 分析; 4)它是一个综合的多物理场耦合分析软件,用户不但 可用其进行诸如结构、热、流体流动、电磁等的单独研 究,还可以进行这些分析的相互影响研究。
3、常用的数值分析软件
ABAQUS优缺点
与ANSYS相比,他是基于点线面体的思想建立有限元 模型,ABAQUS是基于装配思想建立有限元模型,在线性 分析方面,二者基本差不多,而ABAQUS在非线性方面的 分析能力比较强,另外ABAQUS操作界面比较友好不是其 他CAE软件可以比拟的,同时接口python语言,比较强 大。
数值计算方法
数值计算方法
首先,数值计算方法涉及到数值逼近和插值。
在实际问题中,我们经常会遇到
一些函数的图像,但是这些函数并不一定能够通过解析表达式来描述,这时候我们就需要利用数值逼近和插值的方法来近似表示这些函数。
数值逼近和插值的方法有很多种,比如最小二乘法、拉格朗日插值法、牛顿插值法等,它们可以帮助我们用简单的函数来近似表示复杂的函数,从而方便我们进行计算和分析。
其次,数值计算方法还涉及到数值积分和微分方程的数值解法。
在实际问题中,我们经常需要计算一些函数的积分或者求解一些微分方程,但是这些问题并不一定能够通过解析的方法来得到精确的解,这时候我们就需要利用数值积分和微分方程的数值解法来进行近似计算。
数值积分和微分方程的数值解法有很多种,比如复化梯形公式、龙格-库塔法、有限元法等,它们可以帮助我们用离散的方法来近似表
示连续的函数,从而方便我们进行计算和分析。
另外,数值计算方法还涉及到线性代数和矩阵计算。
在实际问题中,我们经常
会遇到一些线性方程组的求解问题,或者矩阵的特征值和特征向量的计算问题,这时候我们就需要利用线性代数和矩阵计算的方法来进行求解。
线性代数和矩阵计算的方法有很多种,比如高斯消元法、雅可比迭代法、幂法等,它们可以帮助我们高效地求解线性方程组,计算矩阵的特征值和特征向量,从而方便我们进行计算和分析。
总的来说,数值计算方法是一门非常重要的学科,它不仅为科学家和工程师提
供了强大的工具,也为数学家提供了新的研究方向。
通过数值计算方法,我们可以更好地理解和解决实际问题,促进科学技术的发展。
希望通过不断地学习和研究,我们能够更好地利用数值计算方法来解决更多的实际问题,为人类的发展做出更大的贡献。
数值分析与计算方法的基本原理
数值分析与计算方法的基本原理数值分析与计算方法是一门涉及数学、计算机科学和工程学的学科,主要研究如何利用数值计算的方法解决实际问题。
本文将从数值分析和计算方法的基本原理两个方面进行论述。
一、数值分析的基本原理数值分析的基本原理是通过数学方法对实际问题进行近似计算,以获得问题的数值解。
它主要涉及数值逼近、数值积分、数值微分和数值代数等方面。
1. 数值逼近数值逼近是指通过一系列已知的数值来近似表示一个函数或者数值。
其中最常用的方法是插值和拟合。
插值是通过已知数据点构造一个函数,使得该函数在这些点上与原函数值相等;拟合是通过已知数据点构造一个函数,使得该函数在这些点上与原函数的差别最小。
插值和拟合可以用于曲线拟合、数据预测等问题。
2. 数值积分数值积分是指通过数值计算的方法对函数的积分进行近似计算。
常用的数值积分方法有梯形法则、辛普森法则和龙贝格法则等。
这些方法通过将积分区间划分成若干小区间,在每个小区间上用简单的数值计算方法来估计积分值,然后将这些估计值相加得到近似的积分值。
3. 数值微分数值微分是指通过数值计算的方法对函数的导数进行近似计算。
常用的数值微分方法有有限差分法和微分拟合法。
有限差分法通过计算函数在某一点的前后差值来估计导数的值;微分拟合法通过在某一点附近构造一个拟合函数,然后计算该函数的导数来估计原函数的导数。
4. 数值代数数值代数是指通过数值计算的方法解决线性代数方程组、非线性方程和矩阵特征值等问题。
常用的数值代数方法有高斯消元法、迭代法和特征值分解等。
这些方法通过将复杂的代数问题转化为简单的数值计算问题来求解。
二、计算方法的基本原理计算方法是指利用计算机进行数值计算的方法,它主要涉及数值计算软件、算法设计和计算机编程等方面。
1. 数值计算软件数值计算软件是指专门用于进行数值计算的软件工具,如MATLAB、Python的NumPy库和SciPy库等。
这些软件提供了丰富的数学函数和数值计算工具,方便用户进行各种数值计算操作。
数值分析讲义
由于除数很小,将导致商很大,有可能出现“溢出”现 象另外. ,设x* ,y* 的近似值分别为x,y,则z=x÷y是z*=x*÷y*
的近似值.此时,z的绝对误差满足估计式
e(z) z* z (x* x) y x( y y* ) y e(x) x e( y)
yy*
y2
可见,若除数太小,则可能导致商的绝对误差很大。
n k, k 1,...2,1
类似地可得
Ik
I
* k
(1) nk
k!( n!
I
n
I
* n
)
,
k n, n 1,...,1,0
可见,近似误差Ik-I*k是可控制的,算法是数值稳定的。
例如,由于
e 1 10
01 x9e1dx
I9
01 x9dx
1 10
取近似值 I9
1 (e1 1 ) 0.0684 2 10 10
§3 绝对误差、相对误差和有效数字
设x是精确值x*的一个近似值,记 e=x*-x
称e为近似值x的绝对误差,简称误差。如果满足 |e|≤
则称为近似值x的绝对误差限,简称误差限。 精确值x* 、近似值x和误差限之间满足: x-≤x*≤x+
通常记为 x*=x±
绝对误差有时并不能很好地反映近似程度的好坏,如
随着计算机的飞速发展,数值分析方法已深入到计算 物理、计算力学、计算化学、计算生物学、计算经济学等 各个领域。本课仅限介绍最常用的数学模型的最基本的数 值分析方法。
§2 误差的来源和分类
误 1.差模是型描误述差数值数计学算模之型中通近常似是值由的实精际确问程题度抽,象在得数到值的, 计一般算带中有十误分差重,要这,种误误差差按称来为源模可型分误为差模。型误差、观测误差、 截断误2.差观和测舍误入差误差数四学种模。型中包含的一些物理参数通常是 通过观测和实验得到的,难免带有误差,这种误差称为观 测误差。
数值分析(计算方法)总结
第一章绪论误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差是的绝对误差,是的误差,为的绝对误差限(或误差限)为的相对误差,当较小时,令相对误差绝对值得上限称为相对误差限记为:即:绝对误差有量纲,而相对误差无量纲若近似值的绝对误差限为某一位上的半个单位,且该位直到的第一位非零数字共有n位,则称近似值有n位有效数字,或说精确到该位。
例:设x==3。
1415926…那么,则有效数字为1位,即个位上的3,或说精确到个位.科学计数法:记有n位有效数字,精确到。
由有效数字求相对误差限:设近似值有n位有效数字,则其相对误差限为由相对误差限求有效数字:设近似值的相对误差限为为则它有n位有效数字令1.x+y近似值为和的误差(限)等于误差(限)的和2.x-y近似值为3.xy近似值为4.1.避免两相近数相减2.避免用绝对值很小的数作除数3.避免大数吃小数4.尽量减少计算工作量第二章非线性方程求根1。
逐步搜索法设f (a) <0, f (b)〉 0,有根区间为 (a, b),从x0=a出发,按某个预定步长(例如h=(b-a)/N)一步一步向右跨,每跨一步进行一次根的搜索,即判别f(x k)=f(a+kh)的符号,若f(x k)〉0(而f(x k-1)<0),则有根区间缩小为[x k-1,x k] (若f(x k)=0,x k即为所求根),然后从x k—1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k—x k-1|< 为止,此时取x*≈(x k+x k-1)/2作为近似根.2。
二分法设f(x)的有根区间为[a,b]= [a0,b0], f(a)<0,f(b)〉0。
将[a0,b0]对分,中点x0= ((a0+b0)/2),计算f(x0)。
3.比例法一般地,设 [a k,b k]为有根区间,过(a k,f(a k))、 (b k, f(b k))作直线,与x轴交于一点x k,则:1.试位法每次迭代比二分法多算一次乘法,而且不保证收敛.2。
数值分析计算方法
void main(void)
{
double fa=fc(1),fb=fc(3),a=1,b=3,f,x0;
int k=0;
for(;b>a&&b-a>=pow(10,-4)*0.5;)
{
仁fc((a+b)/2);
if(仁=0)
{ x0=(a+b)/2; break;
}Байду номын сангаас
else if(fa*f<0)
{
double y;
y=pow((3*x+1),1.0/3);
return y;
}
double Derivative1(double x)
{
double y;
y=pow((3*x+1),-2.0/3);
return y;
} double Iterate2(double x) {
double y;
y=(1-x*x*x)/3.0;
1.19 817
1.23223
作五次插值,并求x1=0.46,x2=0.55,x3=0.60时的函数近似值.
1■实验目的:通过拉格朗日插值和牛顿插值的实例,了解两种求解方法,并分析 各自的优缺点。
2.算法描述:
3.源程序:
拉格朗日插值:
#include<stdio.h>
#define k2
void main()
三•实验三:分别用复化梯形公式和复化辛卜生公式计算f(x)=s in( x)/x的积分, 并与准确值比较判断精度。
1■实验目的:通过实例体会各种算法的精度。熟练掌握复化梯形,复化辛普森, 复化柯特斯求积方法的程序。
数值分析与数值计算的基本算法
数值分析与数值计算的基本算法数值分析和数值计算是现代科学和工程领域中的重要分支,涵盖了各种具体问题的数值求解方法和近似计算方法。
在本文中,我们将介绍数值分析与数值计算的基本算法,包括线性方程组的解法、插值和逼近、数值积分和数值微分等内容。
一、线性方程组的解法线性方程组是数值分析中常见的问题之一,其解法有很多种。
其中,高斯消元法是最常用的一种方法,它通过行变换将方程组化为上三角形式,然后通过回代求解得到解。
另外,雅可比迭代和高斯-赛德尔迭代是迭代法中常用的解法,它们通过不断迭代逼近解的过程来求解线性方程组。
二、插值和逼近在实际问题中,往往需要根据已知数据点来估计未知数据点的值。
插值和逼近就是用已知数据点的函数值来构造一个函数,使得这个函数在已知数据点上的取值与给定的函数值或数据值尽可能接近。
常用的插值方法有拉格朗日插值和牛顿插值,它们通过构造插值多项式来实现。
而逼近方法则通过在限定误差范围内拟合已知数据点,常见的逼近方法有最小二乘逼近和Chebyshev逼近。
三、数值积分数值积分是计算给定函数在给定区间上的积分值的方法,常用于无法通过解析方法求解的复杂积分。
常见的数值积分方法包括梯形法则、辛普森法则和高斯积分法等。
这些方法通过将积分区间离散化为若干小区间,并在每个小区间上进行近似计算,最后将结果相加得到数值积分的近似值。
四、数值微分数值微分是计算给定函数在给定点上的导数值的方法,常用于无法通过解析方法求解的复杂微分。
常见的数值微分方法有前向差分、后向差分和中心差分等。
这些方法通过计算函数在给定点附近的斜率或差值来近似计算导数的值。
总结:数值分析与数值计算的基本算法包括线性方程组的解法、插值和逼近、数值积分和数值微分等。
这些算法在科学和工程领域中有着广泛的应用,可以帮助我们解决各种实际问题。
在实际应用中,我们需要根据具体的问题选择合适的算法,并注意算法的收敛性、稳定性和精度,以确保得到准确可靠的计算结果。
数值计算方法第一章 误差
6
误差的来源
4.舍入误差 在计算过程中往往要对数字进行舍入。 如受机器 字长的限制,无穷小数和位数很多的数必须舍入成 一定的位数。 这样产生的误差称为“舍入误差”。 本课程只讨论截断误差与舍入误差对计算结 果的影响。
§1.2 绝对误差、相对误差和有效数字
7
绝对误差、相对误差和有效数字
1.2.1
绝对误差与相对误差
17
x* 0.a1a2 an 10m
如果
1 x x 10 m n 2
*
(1-5)
(1-6)
* x 则称近似值 有n位有效数字。
1 5 x 0 . 003400 10 例如 表示近似值0.003400准确 2
到小数点后第5位,有3位有效数字。
上面的讨论表明,可以用有效数字位数来刻划 误差限。 形如式(1-5)的数,当m一定时,其有效数字 数位n越大,则误差限越小。
但可以根据测量 能算出绝对误差 e( x*) 的准确值, 工具或计算的情况估计出它的取值范围,
8
绝对误差、相对误差和有效数字
即估计出误差绝对值的一个上界
e( x ) x x
* *
*
(1-2)
通常称 为近似值 x 的绝对误差限,简称误差限。 显然误差限不是唯一的。 有了误差限及近似值,就可以得到准确值 的范围 * * 即准确值 x
* 显然,误差限与近似值绝对值之比 * 为 x 的 一 x
个相对误差限。
例 取3.14作为 相对误差限.
的四舍五入的近似值,试求其
13
绝对误差、相对误差和有效数字
1 2 3 . 14 0 . 0016 10 解: 2 相对误差限 1 2 10 2 0.159 % * x 3.14 又如 由实验测得光速近似值为 c * 2.997925 105 km/s, 其误差限为 0.1 km/s, 于是
数值计算方法
数值计算方法数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。
它包括了数值分析、数值逼近、数值代数、数值微分方程等多个领域。
数值计算方法在科学工程领域有着广泛的应用,例如在物理学、化学、生物学、经济学和工程学等领域都有着重要的地位。
本文将介绍数值计算方法的基本原理和常用技术,并探讨其在实际问题中的应用。
一、数值计算方法的基本原理。
数值计算方法的基本原理是将实际问题转化为数学模型,然后通过计算机算法来求解这个数学模型。
在实际问题中,往往会遇到一些复杂的方程或者函数,无法通过解析方法求解。
这时就需要借助数值计算方法来进行近似求解。
数值计算方法主要包括了离散化、逼近和求解三个步骤。
1. 离散化。
离散化是将连续的问题转化为离散的问题。
在实际问题中,往往会遇到一些连续的函数或者方程,无法直接求解。
这时就需要将连续的问题转化为离散的问题,然后通过计算机算法来求解。
离散化的方法有很多种,比如有限差分法、有限元法、谱方法等。
2. 逼近。
逼近是指通过一些简单的函数或者多项式来近似表示复杂的函数或者方程。
在实际问题中,往往会遇到一些复杂的函数或者方程,无法直接求解。
这时就需要通过逼近的方法来近似表示这个函数或者方程,然后通过计算机算法来求解。
逼近的方法有很多种,比如插值法、拟合法、最小二乘法等。
3. 求解。
求解是指通过计算机算法来求解离散化的问题或者逼近的问题。
在实际问题中,往往会遇到一些复杂的离散化问题或者逼近问题,无法直接求解。
这时就需要通过计算机算法来求解这个离散化问题或者逼近问题。
求解的方法有很多种,比如迭代法、直接法、迭代法等。
二、数值计算方法的常用技术。
数值计算方法有很多种常用技术,下面将介绍一些常用的技术。
1. 有限差分法。
有限差分法是一种常用的离散化方法,它将微分方程转化为差分方程,然后通过计算机算法来求解。
有限差分法的基本思想是将函数在一些离散点上进行逼近,然后通过差分近似来求解微分方程。
数值分析与计算方法
数值分析与计算方法数值分析与计算方法是一门应用数学科学,应对处理数值计算问题的方法与技巧进行研究与应用。
它主要关注如何使用数值方法来近似求解数学问题,特别是那些无法以解析方法解决的问题。
本文将介绍数值分析与计算方法的基本概念、常用算法以及应用领域。
一、数值分析与计算方法的概念数值分析与计算方法是研究如何通过数值计算来解决数学问题的一门学科,它主要包括数值逼近、插值与外推、数值微积分、常微分方程的数值解、线性方程组的数值解等内容。
数值分析与计算方法的研究对象包括数值算法和数值方法,并通过计算机软件和硬件来实现数值计算。
二、常用数值分析与计算方法算法1. 数值逼近:数值逼近是通过有限个已知的点来近似一个函数的值,常用的数值逼近方法包括最小二乘逼近、插值逼近和曲线拟合等。
2. 插值与外推:插值与外推是通过已知点列的函数值来确定一个函数,以便在给定区间上任意点处计算函数值。
常用的插值与外推方法包括拉格朗日插值法、牛顿插值法和埃尔米特插值法等。
3. 数值微积分:数值微积分是通过数值方法进行微积分运算,包括数值积分和数值微分。
常用的数值积分方法有梯形法则、辛普森法则和龙贝格法则等。
4. 常微分方程的数值解:常微分方程的数值解是通过数值方法求解微分方程的近似解。
常用的数值解法包括欧拉方法、改进的欧拉方法和龙格-库塔方法等。
5. 线性方程组的数值解:线性方程组的数值解是通过数值方法求解线性方程组的近似解。
常用的数值解法有高斯消元法、LU分解法和迭代法等。
三、数值分析与计算方法的应用领域数值分析与计算方法在科学计算、工程计算、金融计算等领域具有广泛的应用。
以下是一些典型的应用领域:1. 科学计算:数值计算在物理学、化学、生物学等自然科学领域中具有重要的应用,例如在偏微分方程的数值解、数值模拟等方面。
2. 工程计算:数值计算在工程设计、结构分析、电力系统仿真等工程领域中发挥重要作用,例如在有限元分析、流体力学计算等方面。
数值计算方法
数值计算方法数值计算方法是一种利用计算机进行数学计算的方法。
它主要是通过离散化连续问题,将其转化为离散的数值问题,然后利用计算机进行求解。
数值计算方法在科学计算、工程技术、经济管理等领域有着广泛的应用,因此对于掌握数值计算方法具有重要意义。
首先,数值计算方法包括了数值逼近、数值积分、数值微分、常微分方程数值解、偏微分方程数值解等内容。
其中,数值逼近是利用有限的计算资源来逼近实际的数学问题,而数值积分和数值微分则是对于连续函数的积分和微分进行数值计算。
常微分方程数值解和偏微分方程数值解则是对于微分方程进行数值求解,这些方法在实际问题中有着广泛的应用。
其次,数值计算方法的基本思想是离散化。
离散化是将连续的数学问题转化为离散的数值问题,通过离散化,我们可以利用计算机进行高效的数值计算。
在离散化的过程中,我们需要考虑如何选择合适的离散化方法和步长,以及如何控制离散化误差,这些都是数值计算方法中需要重点关注的问题。
另外,数值计算方法需要注意数值稳定性和数值精度。
数值稳定性是指数值计算方法对于输入数据的微小扰动具有较好的稳定性,而数值精度则是指数值计算方法得到的数值解与真实解之间的误差大小。
在实际应用中,我们需要根据具体的问题来选择合适的数值计算方法,并且要注意数值稳定性和数值精度的问题。
最后,数值计算方法是一门综合性较强的学科,它涉及到数学、计算机科学、物理学、工程技术等多个领域。
掌握数值计算方法需要具备扎实的数学基础和良好的计算机编程能力,同时也需要对于实际问题有较强的应用能力。
因此,学习数值计算方法需要全面提高自己的综合素质,这对于提高科学技术水平和解决实际问题有着重要的意义。
总之,数值计算方法是一门重要的学科,它在科学研究和工程技术中有着广泛的应用。
通过学习数值计算方法,我们可以更好地理解和解决实际问题,提高数学建模和科学计算的能力,为推动科学技术的发展做出积极的贡献。
希望大家能够重视数值计算方法的学习,不断提高自己的数值计算能力,为社会发展做出更大的贡献。
数值计算中的数值分析与计算方法
数值计算中的数值分析与计算方法随着计算机技术的不断进步,数值计算已经成为现代科学和工程计算的基础。
这就要求我们不仅要熟练掌握数值计算的基本原理和方法,同时也需要深入了解数值计算中的数值分析与计算方法。
数值分析是指将数学问题转换为计算机可解决的问题的过程。
因为计算机只能处理有限个数字,而大多数数学问题需要使用无限个数字来描述,因此需要进行数值化处理。
而数值计算方法则是指使用计算机进行数值计算的具体方法。
在数值分析中,最基本的概念是误差。
误差是指计算结果与真实值之间的差别。
在数值计算中,误差不能完全避免,但可以通过优化算法来减小误差。
因此,数值计算中的算法设计是非常重要的。
数值计算中最常用的算法之一是迭代法。
迭代法是通过不断逼近真实值来得到数值解的方法。
例如,牛顿迭代法就是一种常用的迭代法。
它通过不断逼近函数的零点来求解方程。
迭代法在数值计算中应用广泛,因为它具有简单、可靠的特点。
另一个重要的数值计算方法是插值法。
插值法是指通过已知函数值,估计给定函数的值的方法。
例如,拉格朗日插值法就是一种常用的插值法。
它通过构造一个多项式函数来逼近给定函数。
插值法在图像处理、信号处理等领域中也有着广泛的应用。
在数值计算中,还有一些重要的概念,如截断误差、舍入误差等。
截断误差是指使用近似的方法求解问题所产生的误差,而舍入误差则是指由计算机数字舍入所引起的误差。
这些误差可能会对数值计算的精度产生影响。
为了减小误差,我们需要考虑使用更加高效、精确的数值计算方法。
例如,若使用高精度浮点数进行计算,可以极大地提高计算精度。
还可以使用符号计算方法,将计算结果表示为解析表达式,从而避免误差的累积。
总的来说,数值分析与计算方法是数值计算中非常重要的部分。
只有深入了解这些理论知识,才能够在实际计算中发挥更大的作用,解决真实世界中的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6.3)
一般地,一个 p 进制数 x 可以表示为
t
x p J dk pk
(6.4)
k 1
其中 dk , k 1,, t 都是0,1,2,, p 1中的一个数字
或记 x a p J
(6.5)
其中
t
a dk 10 k 0.d1d2 dt
k 1
称为数 x 的尾数(其值小于 1)
rz
ez z
x ( f )( x, y) ex
z x
x
y ( f )( x, y) ey
z y
y
x z
f ( x )( x, y)rx
y z
( f )( x, y
y )ry
(5. 2)
初始数据误差和计算结果中产 生的误差之间有下列关系
(1) f (x, y) x y : 绝对误差: ex y ex ey ;
产生的误差。即z f (x, y) 的误差。 假设绝对误差ex , ey 的绝对值都很小,
且 f (x, y) 可微,
则 z 的误差
ez z z f (x, y) f (x, y)
可以近似地表示成
ez
(
f x
)(
x
,
y
)ex
(
f y
)(
x
,
y
)e
y
(5. 1)
而且,
例: 计算 a 的 Newton 法的一种算法
输入 初始近似值 x0 ;最大迭代次数 m
输出 a 的近似值 p 或迭代失败的信息
step1 p0 x0 step2 对 n 1,, m 做 step3 — 4
step3
p
( p0
a )/2 p0
step4 若 p p0 108 ,则输出( p ),停机,否则 p0 p
(6.6)
J 为数 x 的阶,它用于定 x 的小数点的位置。
如果 J 不变,则(6.4)或(6.5)为定点表示, 此时通常取 J 0 或 J t
如果阶 J 可变,则(6.4)或(6.5)为浮点表示, 若尾数的第一位数字d1 非零,则该数称为 规格化浮点数。 尾数对十进制满足 0.1 a 1 对二进制满足 1 a 1
误差大小的衡量:
• 绝对误差 ( absolute error ) • 相对误差 ( relative error ) • 误差界 ( bound of error )
舍入误差与有效数字
• 舍入误差 (rounding error )(四 舍五入表示近似数产生的误差 )
• 有效数字 — 第一位非零数字到最 右边的数字为止的所有的数字被称 为有效数字。
Equation 简写为 ODE )
• 计算机基础及计算机语言
第一章 算术运算中的误差分析初步
• 数值方法、算法 • 误差来源 • 误差大小的衡量方法 • 舍入误差与有效数字 • 数据误差在算术运算中的传播 • 机器误差
数值方法(Numerical Method):
• 数值方法是对给定问题的输入数据和所 需计算结果之间的关系的一种明确的描 述。
例:
用 Newton 法 ( 将在 Ch2 §4 中讨论)
计算 3 。
给定 3 的一个初始近似值 x0 , ( x0 0 )
由迭代公式:
xn
1 2
( xn1
3) xn1
,
n
1, 2 ,
产生一个序列 x0 , x1,, xn ,
算法:(Algorithm)
• 它是算术和逻辑运算的完整描述, 按一定顺序执行这些运算,经有 限步把输入数据的每一个容许集 转换成输出数据。
数值计算方法
The Method of Numerical Computation Numerical Analysis
教材
林成森 编著 «数值计算方法»上下册 科学出版社 1998
先行课程
• 数学分析 ( Mathematical Analysis ) • 线性代数 ( Linear Algebra ) • 常微分方程 ( Original Differential
数据误差在算术运算中的传播
• 初始数据误差和计算结果中产生的误差 之间的关系
• 避免相减相消。
设 x, y 分别是初始数据x, y 的近似值,即
x x ex , y y ey
ex , ey 分别是 x, y 的绝对误差。
考察用 x, y 分别代替x, y 计算函数值
z f (x, y)
相对误差:
rx y
x
x
y
rx
x
y
y
ry
从上式可见,接近相等的同号数相减时,
会使计算结果的误差变得很大。
故应避免相减相消。
(2) f (x, y) xy : 绝对误差: exy yex xey ; 相对误差: rxy rx ry
(3) f (x, y) x / y :
绝对误差:
ex / y
yex xey y2
;
从上式可见,
应避免绝对值很小的数作分母。
相对误差: rx / y rx ry
例 1 求方程 ax2 bx c 0 , a 0 的两个根分别为
x1 b
b2 4ac 2a
和tep5 输出 ( ‘Method failed ’)
停机
建立数值方法的基本原则:
• 便于在计算机上实现 • 计算工作量尽量小 • 存储量尽量小 • 问题的解与近似解的误差小
误差的来源(Error Resource):
• 模型误差 ( Model Error ) • 数据误差 ( Data Error ) • 截断误差 (Truncation Error ) • 离散误差 ( Discrete Error ) • 数据计算过程中的误差
若 b 0 , 且b2 4ac 0 ,则x1 需改为
x1 b
2c b2 4ac
例 2 计算表达式 1 cos x 。 当 x0 时
为避免相减相消,应利用 恒等式
1 cos x 2 sin2 x 2
机器误差
• 计算机中数的表示
• 浮点运算和舍入误差
设计算机中的数x 为有限位小数,
表示为
x 10 J
t
d k 10 k
k 1
(6.1)
其中 L J U (L 和 U 是正整数或零)
t 为计算机的字长, di , i 1,, t 都是0,1,2,,9 中的一个数字
t
若记 a dk10 k 0.d1d2 dt (6.2)
k 1
则
x a 10J