一次函数之存在性问题

合集下载

一次函数综合—线段和差、存在性问题

一次函数综合—线段和差、存在性问题

一次函数的应用—线段和差、存在性问题一、一次函数线段和差最值问题【知识点】1. 最短路径原理【原理1】作法作图原理在直线l 上求一点P,使PA+PB 值最小。

连AB,与l 交点即为P.两点之间线段最短.PA+PB 最小值为AB.【原理2】作法作图原理在直线l 上求一点P,使PA+PB 值最小.作 B 关于l 的对称点B'连A B',与l 交点即为P.两点之间线段最短.PA+PB 最小值为A B'.【原理3】作法作图原理在直线l 上求一点P,使作直线AB,与直线l的交点即为P.三角形任意两边之差小于第三边.≤AB .PBPA-(1)求线段和最小时动点坐标或直线解析式;(2)求三角形周长最小值;(3)求线段差最大时点的坐标或直线解析式。

3. 口诀:“和小异,差大同”(一)一次函数线段和最小值问题【例题讲解】★★☆例题1.在平面直角坐标系xOy中,y轴上有一点P,它到点(4,3)A,(3,1)B 的距离之和最小,则点P的坐标是()A.(0,0)B.4(0,)7C.5(0,)7D.4(0,)5的值最大 .【原理4】作法作图原理在直线l 上求一点P,使的值最大 .作B 关于l 的对称点B'作直线A B',与l交点即为P.三角形任意两边之差小于第三边.≤A B' .PB PA-PB PA-PB PA-★★☆练习1.如图,在平面直角坐标系中,已知点(2,3)B-,在x轴上存在点P到A,B两点的A,点(2,1)距离之和最小,则P点的坐标是.★★☆练习2.如图,直线34120+-=与x轴、y轴分别交于点B、A两点,以线段AB为边在第一象限x y内作正方形ABCD.若点P为x轴上的一个动点,求当PC PD+的长最小时点P的坐标.★★☆例题2.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,3∆的周长最小时,求点E OB=,D为边OB的中点,若E为x轴上的一个动点,当CDEOA=,4的坐标()A .(3,0)-B .(1,0)C .(0,0)D .(3,0)★★☆练习1.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,连接AC 、BC ,当ABC ∆的周长最小值时,ABC ∆的面积为 .★★☆练习2.如图,在平面直角坐标系中,直线122y x =+与x 轴、y 轴分别交于A 、B 两点,以AB 为边 在第二象限内作正方形ABCD .(1)求点A 、B 的坐标,并求边AB 的长;(2)求点C 和点D 的坐标;(3)在x 轴上找一点M ,使MDB ∆的周长最小,请求出M 点的坐标,并直接写出MDB ∆的周长最小值.(二)一次函数线段差最大值问题【例题讲解】★★☆例题1.已知,如图点(1,1)A,(2,3)B-,点P为x轴上一点,当||PA PB-最大时,点P 的坐标为()A.1(,0)2B.5(,0)4C.1(,0)2-D.(1,0)★★☆练习1.平面直角坐标系中,已知(4,3)A、(2,1)B,x轴上有一点P,要使PA PB-最大,则P点坐标为★★☆练习2.如图,在平面直角坐标系中,点A的坐标为(0,4),点B的坐标为(6,0),点P在一次函数1322y x =+的图象上运动,则PB PA -的最大值为( )A .2B .233C .4D .143【题型知识点总结】一次函数最短路径问题注意事项:1. 根据“和小异,差大同”判断是否需要作对称;2. 作对称时注意要选取动点运动的直线为对称轴作某一定点的对称点。

一次函数之平行四边形存在性问题

一次函数之平行四边形存在性问题

一次函数与平行四边形1.线段中点公式平面直角坐标系中,点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则线段AB 的中点P 的坐标为 (2,22121y y x x ++) 例:如图,已知点A (-2,1),B (4,3),则线段AB 的中点P 的坐标是________.2.线段的平移平面内,线段AB 平移得到线段A'B' ,则①AB ∥A'B' ,AB =A'B' ;②AA'∥BB',AA'= BB'. 如图,线段AB 平移得到线段A'B' ,已知点A (-2,2),B (-3,-1), B' (3,1),则点A'的坐标是________.%例:如图,在平面直角坐标系中,□ABCD 的顶点坐标分别为A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)、D (x 4,y 4),已知其中3个顶点的坐标,如何确定第4个顶点的坐标"例:如图,已知□ABCD 中A (-2,2),B (-3,-1), C (3,1),则点D 的坐标是________. 方法一:利用线段平移总结:x 1-x 2= x 4-x 3,y 1-y 2= y 4-y 3 或者 x 4-x 1= x 3-x 2,y 4-y 1= y 3-y 2 等方法二:利用中点公式总结:x 1+x 3= x 2+x 4,y 1+y 3= y 2+y 4类型一:三定一动例1 、如图,平面直角坐标中,已知中A(-1,0),B(1,-2),C (3,1),点D是平面内一动点,若以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标是_________________________________.*总结:三定一动问题,可以通过构造中点三角形得以解决.说明:若题中四边形ABCD是平行四边形,则点D的坐标只有一个结果________【例1】.一次函数y =x +3与y =﹣x +q 的图象都过点A (m ,0),且与y 轴分别交于点B 、C .(1)试求△ABC 的面积;(2)点D 是平面直角坐标系内的一点,且以点A 、C 、B 、D 为顶点的四边形是平行四边形,请直接写出点D 的坐标;(3)过△ABC 的顶点能否画一条直线,使它能平分△ABC 的面积若能,求出直线的函数关系式,若不能,说明理由.【解答】解:(1)将点A (m ,0)代入y =x +3中,得$m +3=0,解得m =﹣3,即点A (﹣3,0),将点A (﹣3,0)代入y =﹣x +q 中,得q =﹣3,∴点B (0,3)、C (0,﹣3),故S =12×BC ×AO =9;(2)满足条件的D 点坐标为D (﹣3,6)、D (﹣3,﹣6)、D (3,0);(3)若过点A ,则得直线l :y =0;若过点C ,则得直线l :y =﹣3x ﹣3;@若过点B ,则得直线l :y =3x +3.例2.如图,在平面直角坐标系xOy 中,已知直线PA 是一次函数y =x +m (m >0)的图象,直线PB 是一次函数y =﹣3x +n (n >m )的图象,点P 是两直线的交点,点A 、B 、C 、Q 分别是两条直线与坐标轴的交点.(1)用m 、n 分别表示点A 、B 、P 的坐标及∠PAB 的度数;(2)若四边形PQOB 的面积是112,且CQ :AO =1:2,试求点P 的坐标,并求出直线PA 与PB的函数表达式;(3)在(2)的条件下,是否存在一点D ,使以A 、B 、P 、D 为顶点的四边形是平行四边形若存在,求出点D 的坐标;若不存在,请说明理由.【解答】解:(1)在直线y =x +m 中,令y =0,得x =﹣m .∴点A (﹣m ,0).…在直线y =﹣3x +n 中,令y =0,得x =x 3. ∴点B (x 3,0). 由{x =x +x x =−3x +x ,得{x =x −x 4x =x +3x 4,∴点P (x −x 4,x +3x 4). 在直线y =x +m 中,令x =0,得y =m ,∴|﹣m |=|m |,即有AO =QO .又∵∠AOQ =90°,∴△AOQ 是等腰直角三角形,∴∠PAB =45°.(2)∵CQ :AO =1:2,,∴(n ﹣m ):m =1:2,整理得3m =2n ,∴n =32m , ∴x +3x 4=32x +3x 4=98m , 而S 四边形PQOB =S △PAB ﹣S △AOQ =12(x 3+m )×(98m )−12×m ×m =1132m 2=112, 解得m =±4,∵m >0,∴m =4,∴n =32m =6,∴P (12,92). !∴PA 的函数表达式为y =x +4,PB 的函数表达式为y =﹣3x +6.(3)存在.过点P 作直线PM 平行于x 轴,过点B 作AP 的平行线交PM 于点D 1,过点A 作BP 的平行线交PM 于点D 2,过点A 、B 分别作BP 、AP 的平行线交于点D 3.①∵PD 1∥AB 且BD 1∥AP ,∴PABD 1是平行四边形.此时PD 1=AB ,易得x 1(132,92); ②∵PD 2∥AB 且AD 2∥BP ,∴PBAD 2是平行四边形.此时PD 2=AB ,易得x 2(−112,92);③∵BD 3∥AP 且AD 3∥BP ,此时BPAD 3是平行四边形.】∵BD 3∥AP 且B (2,0),∴y BD 3=x ﹣2.同理可得y AD 3=﹣3x ﹣12{x =x −2x =−3x −12, 得{x =−52x =−92,∴x 3(−52,−92).3.如图,在等边△ABC 中,BC =8cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1cm /s 的速度运动,同时点F 从点B 出发沿射线BC 以2cm /s 的速度运动,设运动时间为t (s ).(1)连接EF ,当EF 经过AC 边的中点D 时,求证:△ADE ≌△CDF ;(2)填空:#①当t 为 s 时,以A 、F 、C 、E 为顶点的四边形是平行四边形;②当t 为 s 时,四边形ACFE 是菱形.【解答】(1)证明:∵AG ∥BC ,∴∠EAD =∠DCF ,∠AED =∠DFC ,∵D 为AC 的中点,∴AD =CD ,∵在△ADE 和△CDF 中,{∠xxx =∠xxx∠xxx =∠xxx xx =xx,∴△ADE ≌△CDF (AAS );(2)解:①当点F 在C 的左侧时,根据题意得:AE =tcm ,BF =2tcm ,·则CF =BC ﹣BF =6﹣2t (cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AECF 是平行四边形,即t =8﹣2t ,解得:t =83; 当点F 在C 的右侧时,根据题意得:AE =tcm ,BF =2tcm ,则CF =BF ﹣BC =2t ﹣8(cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AEFC 是平行四边形,即t =2t ﹣8,]解得:t =8;综上可得:当t =83或8s 时,以A 、C 、E 、F 为顶点四边形是平行四边形.②若四边形ACFE 是菱形,则有CF =AC =AE =8,则此时的时间t =8÷1=8(s );故答案是:83或8;8.|4.已知,Rt △OAB 的两直角边OA 、OB 分别在x 轴和y 轴上,如图1,A ,B 坐标分别为(﹣2,0),(0,4),将△OAB 绕O 点顺时针旋转90°得△OCD ,连接AC 、BD 交于点E .(1)求证:△ABE ≌△DCE .(2)M 为直线BD 上动点,N 为x 轴上的点,若以A ,C ,M ,N 四点为顶点的四边形是平行四边形,求出所有符合条件的M 点的坐标.(3)如图2,过E 点作y 轴的平行线交x 轴于点F ,在直线EF 上找一点P ,使△PAC 的周长最小,求P 点坐标和周长的最小值.【分析】(1)由A 、B 的坐标可求得AO 和OB 的长,由旋转的性质可求得OC 、OD 的长,从而可求得∠AEB =90°,再由勾股定理可求得CD 和AB 的长,可求得AB =CD ,可证得△ABE ≌△DCE ;(2)由B 、D 坐标可求得直线BD 解析式,当M 点在x 轴上方时,则有CM ∥AN ,则可求得M 点纵坐标,代入直线BD 解析式可求得M 点坐标,当M 点在x 轴下方时,同理可求得M 点纵坐标,则可求得M 点坐标;)(3)由AE =DE 可知A 、D 关于EF 对称,连接CD 交EF 于点P ,则P 点即为满足条件的点,由C 、D 坐标可求得直线CD 的解析式,则可求得P 点坐标,利用勾股定理可分别求得AC 和CD 的长,则可求得此时△PAC 的周长.【解答】解:(1)∵A (﹣2,0),B (0,4),∴OA =2,OB =4,∵将△OAB 绕O 点顺时针旋转90°得△OCD ,∴OC =OA =2,OD =OB =4,AB =CD ,∴∠ACO =∠ECB =∠CBE =45°,∴∠CEB =90°,∴∠AEB =∠CED ,且CE =BE ,在Rt △ABE 和Rt △DCE 中:{xx =xx xx =xx∴Rt △ABE ≌Rt △DCE (HL );(2)由(1)可知D (4,0),且B (0,4),∴直线BD 解析式为y =﹣x +4,当M 点在x 轴上方时,则有CM ∥AN ,即CM ∥x 轴,∴M 点到x 轴的距离等于C 点到x 轴的距离,∴M 点的纵坐标为2,在y =﹣x +4中,令y =2可得x =2,∴M (2,2);当M 点在x 轴下方时,同理可得M 点的纵坐标为﹣2,(在y =﹣x +4中,令y =﹣2可求得x =6,∴M 点的坐标为(6,﹣2);综上可知M 点的坐标为(2,2)或(6,﹣2);(3)由(1)可知AE =DE ,∴A 、D 关于直线EF 对称,连接CD 交EF 于点P ,则PA =PD , ∴PA +PC =PD +PC =CD ,∴满足△PAC 的周长最小,∵C (0,2),D (4,0),∴可设直线CD 解析式为y =kx +2,∴4k +2=0,解得k =−12, ∴直线CD 解析式为y =−12x +2,∵A (﹣2,0),D (4,0),∴F (1,0),即直线EF 解析式为x =1,在y =−12x +2中,令x =1可得y =32, ∴P (1,32), 在Rt △AOC 中,由勾股定理可求得AC =2√2, 在Rt △COD 中,由勾股定理可求得CD =√22+42=2√5, ∴PA +PC +AC =CD +AC =2√5+2√2, 即△PAC 的周长最小值为2√5+2√2.。

中考数学 一次函数综合类问题四大类

中考数学 一次函数综合类问题四大类

大类一、一次函数与几何综合班级:__________ 姓名:__________【知识点睛】1.一次函数表达式:y=kx+b(k,b为常数,k≠0)①k是斜率,表示倾斜程度,可以用几何中的坡度(或坡比)来解释.坡面的竖直高度与水平宽度的比叫坡度或坡比,如图所示,AM即为竖直高度,uj7BM即为水平宽度,则=AMkBM,②b是截距,表示直线与y轴交点的纵坐标.2.设直线l1:y1=k1x+b1,直线l2:y2=k2x+b2,其中k1,k2≠0.①若k1=k2,且b1≠b2,则直线l1∥l2;②若k1·k2=-1,则直线l1⊥l2.3.一次函数与几何综合解题思路从关键点出发,关键点是信息汇聚点,通常是函数图象与几何图形的交点.通过点的坐标和横平竖直的线段长的互相转化将函数特征与几何特征结合起来进行研究,最后利用函数特征或几何特征解决问题.【精讲精练】1.如图,点B,C分别在直线y=2x和y=kx上,点A,D是x轴上的两点,已知四边形ABCD是正方形,则k的值为______.MA B第1题图 第2题图 第3题图2. 如图,直线l 1交x 轴、y 轴于A ,B 两点,OA =m ,OB =n ,将△AOB 绕点O 逆时针旋转90°得到△COD .CD 所在直线l 2与直线l 1交于点E ,则l 1____l 2;若直线l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=_________.3. 如图,直线483y x =-+交x 轴、y 轴于A ,B 两点,线段AB 的垂直平分线交x 轴于点C ,交AB 于点D ,则点C 的坐标为4. 如图,在平面直角坐标系中,函数y =x 的图象l 是第一、三象限的角平分线.探索:若点A 的坐标为(3,1),则它关于直线l 的对称点A'的坐标为____________;猜想:若坐标平面内任一点P 的坐标为(m ,n ),则它关于直线l 的对称点P ′的坐标为____________;应用:已知两点B (-2,-5),C (-1,-3),试在直线l 上确定一点Q ,使点Q 到B ,C 两点的距离之和最小,则此时点Q 的坐标为____________. 5. 如图,已知直线l :y x =+与x 轴交于点A ,与y 轴交于点B ,将△AOB 沿直线l 折叠,点O 落在点C 处,则直线CA 的表达式为__________________.第5题图 第6题图 第7题图6. 如图,四边形ABCD 是一张矩形纸片,E 是AB 上的一点,且BE :EA =5:3,EC=BCE 沿折痕EC 向上翻折,点B 恰好落在AD 边上的点F 处.若以点A 为原点,以直线AD 为x 轴,以直线BA 为y 轴建立平面直角坐标系,则直线FC 的表达式为__________________.7. 如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,AB =2,AD =1,过定点Q (0,2)和动点P (a ,0)的直线与矩形ABCD 的边有公共点.(1)a 的取值范围是________________;(2)若设直线PQ 为y =kx +2(k ≠0),则此时k 的取值范围是____________8. 如图,已知正方形ABCD 的顶点A (1,1),B (3,1),直线y =2x +b 交边AB 于点E ,交边CD 于点F ,则直线y =2x +b 在y 轴上的截距b 的变化范围是____________.第9题图9. 如图,已知直线l 1:2833y x =+与直线l 2:y =-2x +16相交于点C ,直线l 1,l 2分别交x 轴于A ,B 两点,矩形DEFG 的顶点D ,E 分别在l 1,l 2上,顶点F ,G 都在x 轴上,且点G 与点B 重合,那么S 矩形DEFG :S △ABC =_________. 10. 如图,在平面直角坐标系中,点A ,B 的坐标分别为A (4,0),B (0,-4),P 为y 轴上B点下方一点,PB=m(m>0),以点P为直角顶点,AP为腰在第四象限内作等腰Rt△APM.(1)求直线AB的解析式;(2)用含m的代数式表示点M的坐标;(3)若直线MB与x轴交于点Q,求点Q的坐标.大类二、一次函数之存在性问题班级:__________ 姓名:__________【知识点睛】存在性问题:通常是在变化的过程中,根据已知条件,探索某种状态是否存在的题目,主要考查运动的结果.一次函数背景下解决存在性问题的思考方向: 1. 把函数信息(坐标或表达式)转化为几何信息; 2. 分析特殊状态的形成因素,画出符合题意的图形;3. 结合图形(基本图形和特殊状态下的图形相结合)的几何特征建立等式来解决问题. 【精讲精练】 1.如图,直线y =+x 轴、y 轴分别交于点A ,点B ,已知点P 是第一象限内的点,由点P ,O ,B 组成了一个含60°角的直角三角形,则点P 的坐标为_____________.2. 如图,直线y =kx -4与x 轴、y 轴分别交于B ,C 两点,且43OC OB =. (1)求点B 的坐标和k 的值. (2)若点A 是第一象限内直线y =kx -4上的一个动点,则当点A 运动到什么位置时,△AOB 的面积是6?(3)在(2)成立的情况下,x 轴上是否存在一点P ,使△POA 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,直角梯形OABC的边OC,OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=点C的坐标为(-9,0).(1)求点B的坐标.(2)若直线BD交y轴于点D,且OD=3,求直线BD的表达式.(3)若点P是(2)中直线BD上的一个动点,是否存在点P,使以O,D,P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.4.点C 是直线y =kx +3上与A ,B 不重合的动点.过点C 的另一直线CD 与y 轴相交于点D ,是否存在点C 使△BCD 与△AOB 全等?若存在,请求出点C 的坐标;若不存在,请说明理由.5. 如图,直线122y x =+与x 轴、y 轴分别交于A ,B 两点,点C 的坐标为(-3,0),P (x ,y )是直线122y x=+上的一个动点(点P不与点A重合).(1)在点P的运动过程中,试写出△OPC的面积S与x之间的函数关系式.?求出此时(2)当点P运动到什么位置时,△OPC的面积为278点P的坐标.(3)过P作AB的垂线与x轴、y轴分别交于E,F两点,是否存在这样的点P,使△EOF≌△BOA?若Array存在,求出点P的坐标;若不存在,请说明理由.大类三、一次函数之动点问题班级:__________ 姓名:__________【知识点睛】动点问题的特征是速度已知,主要考查运动的过程.1.一次函数背景下研究动点问题的思考方向:①把函数信息(坐标或表达式)转化为基本图形的信息;②分析运动过程,注意状态转折,确定对应的时间范围;③画出符合题意的图形,研究几何特征,设计解决方案.2.解决具体问题时会涉及线段长的表达,需要注意两点:①路程即线段长,可根据s=vt直接表达已走路程或未走路程;②根据研究几何特征需求进行表达,既要利用动点的运动情况,又要结合基本图形信息.【精讲精练】1. 如图,在平面直角坐标系中,O 为坐标原点,直线334y x =-+与x 轴、y 轴分别交于A ,B 两点.点P 从点A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 的运动时间为t 秒. (1)求OA ,OB 的长.(2)过点P 与直线AB 垂直的直线与y 轴交于点E ,在点P 的运动过程中,是否存在这样的点P ,使△EOP ≌△AOB ?若存在,请求出t 的值;若不存在,请说明理由.3.如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,11),C(0,5),点D为线段BC的中点.动点P从点O出发,以每秒1个单位的速度,沿折线OA—AB—BD的路线运动,至点D停止,设运动时间为t秒.(1)求直线BC的解析式.(2)若动点P在线段OA上运动,当t为何值时,四边形OPDC的面积是梯形COAB面积的14?(3)在动点P的运动过程中,设△OPD的面积为S,求S与t4.如图,直线y =+与x 轴交于点A,与直线y =交于点P .(1)求点P 的坐标. (2)求△OP A 的面积.(3)动点E 从原点O 出发,以每秒1个单位的速度沿OA 方向向终点A 运动,过点E 作EF ⊥x 轴交线段OP 或线段P A 于点F ,FB ⊥y 轴于点B .设运动时间为t 秒,矩形OEFB 与△OP A 重叠部分的面积为S ,求S 与t 之间的函数关系式.5.如图,直线l的解析式为y=-x+4,它与x轴、y轴分别交于A,B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别交于M,N两点,设运动时间为t秒(0< t <4).(1)求A,B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重叠部分的面积为S2,试探究S2与t之间的函数关系式.大类四、一次函数之面积问题 班级:_________ 姓名:__________【知识点睛】1. 坐标系中处理面积问题,要寻找并利用横平竖直的线, 通常有以下三种思路: ①公式法(规则图形);②割补法(分割求和、补形作差); ③转化法(例:同底等高). 2. 坐标系中面积问题的处理方法举例 ① 割补求面积(铅垂法):12△APB S ah = 12△APB S ah= ②转化求面积:l 1l 2如图,满足S △ABP =S △ABC 的点P 都在直线l 1,l 2上.二、 精讲精练1. 如右图,在平面直角坐标系中,已知A (-1,3),B (3,-2),则△AOB 的面积为___________.2. 如图,直线y =-x +4与x 轴、y 轴分别交于点A ,点B ,点P 的坐标为(-2,2),则S △PAB =___________.第2题图 第3题图3. 如图,直线AB :y =x +1与x 轴、y 轴分别交于点A ,点B ,直线CD :y =kx -2与x 轴、y 轴分别交于点C ,点D ,直线AB 与直线CD 交于点P .若S △APD =4.5,则k =__________.4. 如图,直线112y x =+经过点A (1,m ),B (4,n ),点C 的坐标为(2,5),求△ABC 的面积.5. 如图,在平面直角坐标系中,已知A (2,4),B (6,6),C (8,2),求四边形OABC 的面积.6. 如图,直线112y x =-+与x 轴、y 轴分别交于A ,B 两点,C (1,2),坐标轴上是否存在点P ,使S △ABP =S △ABC ?若存在,求出点P 的坐标;若不存在,请说明理由.7. 如图,已知直线m 的解析式为112y x =-+,与x 轴、y 轴分别交于A ,B 两点,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,且∠BAC =90°,点P 为直线x =1上的动点,且△ABP的面积与△ABC的面积相等.(1)求△ABC的面积;(2)求点P的坐标.8.如图,直线P A:y=x+2与x轴、y轴分别交于A,Q两点,直线PB:y=-2x+8与x轴交于点B.(1)求四边形PQOB的面积.(2)直线P A上是否存在点M,使得△PBM的面积等于四边形PQOB的面积?若存在,求出点M的坐标;若不存在,请说明理由.【分类一参考答案】 二、精讲精练1.232.⊥,-1 3.7(0)3-, 4.(1,3);(n ,m );1313()55--, 5.y =+ 6.4163y x =-+ 7.(1)-2≤a ≤2;(2)k ≥1或k ≤-1 8.-3≤b ≤-1 9.8:9 10.(1)y =x -4;(2)M (m +4,-m -8);(3)Q (-4,0)【分类二参考答案】 二、精讲精练1.333(4444或(或,或(,) 2.(1)B (3,0),43k =(2)A (6,4) (3)123413(120)03P P P P 或(-)或,或(,)3.(1)B (-3,6) (2)y =-x +3(3)123433(30)(22P P P P +,或或或(,) 4.1261224()(46)5555--,或(,)或,5.(1)33(4)433(4)4x x S x x ⎧--<-⎪⎪=⎨⎪+>-⎪⎩(2)1217919()2424P P --,或(,) (3)12412124()5555P P ,或(-,) 【分类三参考答案】1.(1)OA =4,OB =3; (2)t =1或t =7 2.(1)y =+(2)22(04)(48)t S t <=⎨⎪+<<⎪⎩≤(3)123(08)(08)(0M M M -或或,4(0M 或3.(1)354y x =+(2)32t =(3)4(08)248(819)248(1924)t t S t t t t <⎧⎪=-+<⎨⎪-+<<⎩≤≤4.(1)(3P (2) (3)22(03)(34)t S t <=⎨⎪+-<<⎪⎩≤第21页/共21页 5.(1)(40)(04)A B ,,, (2)2112S t =.(3)2221(02)2388(24)2t tS t t t ⎧<⎪⎪=⎨⎪-+-<<⎪⎩≤ 【分类四参考答案】二、精讲精练1.72 2.8 3.52 4.925.24 6.123451(0)(50)(0)(10)22P P P P --,或,或,或,7.(1)52;(2)12(13)(12)P P -,或,8.(1)10;(2)12162242()()3333M M -,或,。

第4章一次函数——存在性问题专训1 北师大版数学八年级上册

第4章一次函数——存在性问题专训1 北师大版数学八年级上册

北师大版数学八年级上期第4章一次函数——存在性问题专训11.如图,已知点A(6,0),B(8,5),将线段OA平移至CB,点D(x,0)在x轴正半轴上(不与点A重合),连接OC,AB,CD,BD.(1)求对角线AC的长;(2)△ODC与△ABD的面积分别记为S1,S2,设S=S1-S2,求S关于x的函数解析式,并探究是否存在点D使S与△DBC的面积相等,如果存在,请求出x的值(或取值范围);如果不存在,请说明理由.2.如图,直线l1的解析表达式为y=-3x+3,且l1与x轴交于点D.直线l2经过点A、B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)在直线l2上存在异于点C的另一个点P,使得△ADP与△ADC的面积相等,求P点的坐标.x与直线l2:y2=x+b交于点,直线l2与y轴交于3.如图,直线l1:y1=−12点B.(1)求m,b的值,并计算△AOB的面积.(2)在直线l2上,是否存在点P,使得△POB的面积是△AOB的面积的一半?若存在,求出点P的坐标,请说明理由.4.如图1,平面直角坐标系中,直线y=kx+b与x轴交于点A(6,0),与y轴交于点B,与直线y=2x交于点C(a,4).(1)求点C的坐标及直线AB的表达式;(2)如图2,在(1)的条件下,过点E作直线l⊥x轴于点E,交直线y=2x于点F,交直线y=kx+b于点G,若点E的坐标是(4,0).①求△CGF的面积;②直线l上是否存在点P,使OP+BP的值最小?若存在,直接写出点P的坐标;若不存在,说明理由;(3)若(2)中的点E是x轴上的一个动点,点E的横坐标为m(m>0),当点E 在x轴上运动时,当m=___________何值时,直线l上存在点Q,使得以A,C,Q 为顶点的三角形与△AOC全等?.5.如图,在平面直角坐标系中,直线l1:y1=kx+b经过A(a,0),B(0,b)两点,且a、b满足(a-4)2+√b−2=0,过点B作BP∥x轴,交直线l2:y2=x于点P,连接PA.(1)求直线AB的函数表达式;(2)在直线l2上是否存在一点Q,使得S△BPQ=S△BPA?若存在,求出点Q的坐标;若不存在,请说明理由.(3)点C(n,0)是x轴上的一个动点,点D是y轴上的一个动点,过点C作x 轴的垂线交直线l1、l2于点M、N,若△MND是等腰直角三角形,请直接写出符合条件的n的值.6.如图,直角坐标系中,直线y=kx+b分别与x轴、y轴交于点A(3,0),点B(0,-4),过D(0,8)作平行x轴的直线CD,交AB于点C,点E(0,m)在线段OD上,延长CE交x轴于点F,点G在x轴正半轴上,且AG=AF.(1)求直线AB的函数表达式.(2)当点E恰好是OD中点时,求△ACG的面积.(3)是否存在m,使得△FCG是直角三角形?若存在,直接写出m的值;若不存在,请说明理由.7.如图,在平面直角坐标系中,直线AC交y轴于点C(0,6),交直线0A于点A(4,2),有一动点M在线段OA和线段AC上运动。

一次函数中(特殊三角形)的存在性问题优秀教学设计

一次函数中(特殊三角形)的存在性问题优秀教学设计
学生学习策略:明确学习目标,了解所需掌握的知识,在教师的组织、引导、点拨下主动地从事观察、实验、猜测、验证与交流等教学活动,从而真正有效地理解和掌握知识。
辅助策略:借助几何画板,使学生直观形象地观察、操作。
2、教法
演示法:通过几何画板演示两圆一中垂线和外K全等,使学生直观、形象的感知因动点的移动,在何时会出现等腰三角形和等腰直角三角形,思考在没有几何画板的时候,我们自己该如何作图,快速确定动点的位置。
《一次函数中特殊三角形的存在性问题》教学设计
【教学目标】
1、知识与技能
(1)使学生体会定点与动点之间的关系,做到以静制动。
(2)通过数形结合,利用几何法和代数法求一次函数中特殊三角形的存在性问题。
2、过程与方法
(1)借助几何画板探究一次函数中特殊三角形的存在性问题,使学生初步形成正确、科学的分析解决问题的方法。
①设点:设点P(0,m)A(3,0),B(0,4)
②表示三条边:
③列方程:
三、小组讨论
已知A(2,0),B(0,4),在第一象限内是否存在一点P,使得△PAB是等腰直角三角形,若存在请求出点P的坐标;若不存在,请说明理由。
讨论目标:①这样的动点P可能有多少个?如何分类?
②你能不能画出等腰直角三角形?
等腰三角形可以是两条边相等或者两个角相等,在我们所学的知识中,是边好表示,还是角好表示呢?
探究一:用几何法确定动点的位置——两圆一中垂线
例1、已知,A(3,0),B(0,4),在y轴上是否存在一点P,使得△PAB是等腰三角形,若存在,请求出点P的坐标,若不存在,请说明理由
探究二:用代数法确定动点的位置——设点法
实验法:让学生自己动手、在探究过程中,自己发现动点的规律

2025年华师版八年级下册数学期末复习阶段拔尖专训6 一次函数中存在性问题

2025年华师版八年级下册数学期末复习阶段拔尖专训6 一次函数中存在性问题
又∵ ∠ + ∠ = 90∘ ,
∴ ∠ + ∠ = 90∘ .
∴ ∠ = 90∘ .∴ ⊥ .
(3)若点是直线上的一个动点,在
轴上是否存在另一个点,使以,,
,为顶点的四边形是平行四边形?若存
在,请直接写出点的坐标;若不存在,请
说明理由.
【解】存在.点的坐标为(−6,0)或(6,0)或(14,0).
5

2
+2
5
+
4
+ 1 = 6. ∴ =
4
.
5
4 8
5 5
∴ 点的坐标为( , ).
(3)如图②,若点为线段的
中点,点为直线上一点,点
为坐标系内一点,且以,,
,为顶点的四边形为矩形,请
直接写出所有符合条件的点的坐标.(提示:直角三角形斜
边的中线等于斜边的一半)
1 9
∵ ∠ = ∠ = 90∘ ,
∴ △≌△. ∴ = , = = 3.
设(, 0)(0 ≤ ≤ 6),则
= = ,∴ ( + 3, −). ∵ 点在
直线上,∴ − =
1
(
2
+ 3) − 3,解得
= 1. ∴ (1,0).设直线的函数表达式为
标为(6,0);当是平行四边形的对角线时,作(−6,0)关于
点的对称点,其坐标为(14,0),易知点的坐标为(14,0).
综上所述,点的坐标为(−6,0)或(6,0)或(14,0).
题型2 一次函数与矩形的存在性问题
3.如图①,在平面直角坐标系中,一次函数 = 2 + 4的图
象分别交轴,轴于,两点,将△绕点顺时针旋转

专题55 一次函数背景下的图形存在性问题(解析版)-中考数学解题大招复习讲义

专题55 一次函数背景下的图形存在性问题(解析版)-中考数学解题大招复习讲义

例题精讲考点一:一次函数中等腰三角形存在性问题【例1】.如果一次函数y=﹣x+6的图象与x轴、y轴分别交于A、B两点,M点在x轴上,并且使得以点A、B、M为定点的三角形是等腰三角形,则M点的坐标为(﹣8,0)或(﹣2,0)或(18,0)或(﹣,0).解:一次函数y=﹣x+6中令x=0,解得y=6;令y=0,解得x=8,∴A(8,0),B(0,6),即OA=8,OB=6,在直角三角形AOB中,根据勾股定理得:AB=10,分四种情况考虑,当BM=BA时,由BO⊥AM,根据三线合一得到O为MA的中点,此时M1(﹣8,0);当AB=AM时,由AB=10,得到OM=﹣2或18,此时M2(﹣2,0),M3(18,0);当MA=MB时,∵A(8,0),B(0,6),∴AB的中点的坐标为(4,3),设直线AB的垂直平分线的解析式为y=x+b,代入(4,3)得3=+b,解得b=﹣,∴直线AB的垂直平分线的解析式为y=x﹣,令y=0,解得x=,此时M4(,0).综上,这样的M点有4个,分别为(﹣8,0)或(﹣2,0)或(18,0)或(,0).故答案为(﹣8,0)或(﹣2,0)或(18,0)或(,0).变式训练【变1-1】.如图,在平面直角坐标系中,直线MN的函数解析式为y=﹣x+3,点A在线段MN上且满足AN=2AM,B点是x轴上一点,当△AOB是以OA为腰的等腰三角形时,则B点的坐标为(2,0)或(,0)或(,0).解:∵在y=﹣x+3中,令x=0,则y=3;令y=0,则﹣x+3=0,解得x=3,∴N(3,0),M(0,3),∴OM=ON=3,∵AN=2AM,∴A(1,2),∴OA==,当AO=OB时,则OB=,∴点B的坐标为(﹣,0)或(,0);②当AO=AB时,设点B的坐标为(m,0),则=,整理得,(1﹣m)2=1,解得m=2或m=0(舍去),∴点B的坐标为(2,0).综上所述:点B的坐标为(2,0)或(,0)或(,0).【变1-2】.如图,在平面直角坐标系中,直线y=﹣2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当△OPC是等腰三角形时P的坐标.解:(1)联立两直线解析式成方程组,得,解得:,∴点C的坐标为(4,4);(2)设点P(m,0),而点C(4,4),点O(0,0);PC2=(m﹣4)2+16,PO2=m2,OC2=42+42=32;当PC=PO时,(m﹣4)2+16=m2,解得:m=4;当PC=OC时,同理可得:m=0(舍去)或8;当PO=OC时,同理可得:m=±4;故点P的坐标为(4,0)或(8,0)或(4,0)或(﹣4,0).考点二:一次函数中直角三角形存在性问题【例2】.已知点A、B的坐标分别为(2,2)、(5,1),试在x轴上找一点C,使△ABC为直角三角形.解:当△ABC为直角三角形时,设点C坐标为(x,0),分三种情况:①如果A为直角顶点,则AB2+AC2=BC2,即(2﹣5)2+(2﹣1)2+(2﹣x)2+22=(5﹣x)2+1,解得:x=,②如果B为直角顶点,那么AB2BC2=AC2,即(2﹣5)2+(2﹣1)2+(5﹣x)2+1=(2﹣x)2+22,解得x=,③如果C为直角顶点,那么AB2=AC2+BC2,即(2﹣5)2+(2﹣1)2=(2﹣x)2+22+(5﹣x)2+1,解得x=3或4,综上可知,使△PAB为直角三角形的点C坐标为(,0)或(,0)或(3,0)或(4,0).变式训练【变2-1】.如图,一次函数y=kx+1的图象过点A(1,2),且与x轴相交于点B.若点P 是x轴上的一点,且满足△ABP是直角三角形,则点P的坐标是(1,0)或(3,0).解:∵一次函数y=kx+1的图象过点A(1,2),∴2=k+1,解得k=1,∴一次函数的解析式为y=x+1.∴当∠APB=90°时,P1(1,0);当∠BAP=90°时,∵一次函数的解析式为y=x+1,∴设直线AP的解析式为y=﹣x+b,∵A(1,2),∴2=﹣1+b,解得b=3,∴直线AP的解析式为y=﹣x+3,∴当y=0时,x=3,∴P2(3,0).综上所述,点P的坐标是(1,0)或(3,0).【变2-2】.如图,已知一次函数y=x﹣2的图象与y轴交于点A,一次函数y=4x+b的图象与y轴交于点B,且与x轴以及一次函数y=x﹣2的图象分别交于点C、D,点D的坐标为(﹣2,﹣4).(1)关于x、y的方程组的解为.(2)求△ABD的面积;(3)在x轴上是否存在点E,使得以点C,D,E为顶点的三角形是直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.解:(1)∵一次函数y=x﹣2的图象与一次函数y=4x+b的图象交于点D,且点D的坐标为(﹣2,﹣4),∴关于x、y的方程组的解是,∴关于x、y的方程组的解是,故答案为:;(2)把点D的坐标代入一次函数y=4x+b中得:﹣8+b=﹣4,解得:b=4,∴B(0,4),∵A(0,﹣2),∴AB=4﹣(﹣2)=6,==6;∴S△ABD(3)存在,如图1,当点E为直角顶点时,过点D作DE⊥x轴于E,∵D(﹣2,﹣4),∴E(﹣2,0);当点C为直角顶点时,x轴上不存在点E;当点D为直角顶点时,过点D作DE⊥CD交x轴于点E,作DF⊥x轴于F,设E(t,0),当y=0时,4x+4=0,∴x=﹣1,∴C(﹣1,0),∵F(﹣2,0),∴CE=﹣1﹣t,EF=﹣2﹣t,∵D(﹣2,﹣4),∴DF=4,CF=﹣1﹣(﹣2)=1,在Rt△DEF中,DE2=EF2+DF2=42+(﹣2﹣t)2=t2+4t+20,在Rt△CDF中,CD2=12+42=17,在Rt△CDE中,CE2=DE2+CD2,∴(﹣1﹣t)2=t2+4t+20+17,解得t=﹣18,∴E(﹣18,0),综上,点E的坐标为:(﹣2,0)或(﹣18,0).考点三:一次函数中平行四边形存在性问题【例3】.如图,已知一次函数y=kx+b的图象经过A(1,3),B(﹣2,﹣1)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的表达式;(2)求△AOB的面积;(3)平面内是否存在一点M,使以点M、C、O、B为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标,若不存在,请说明理由.解:(1)将A(1,3)、B(﹣2,﹣1),代入y=kx+b得:,解得,∴一次函数的表达式为y=x+;(2)在y=x+中,令x=0得y=,∴OD=,=OD•|x A|=××1=,∴S△AODS△BOD=OD•|x B|=××2=,=S△BOD+S△AOD=;∴△AOB的面积S△AOB(3)存在,理由如下:在y=x+中,令y=0得y=﹣,∴C(﹣,0),设M(m,n),而B(﹣2,﹣1),O(0,0),①以OB、CM为对角线,则OB的中点即是CM的中点,如图:∴,解得,∴M(﹣,﹣1);②以BC、OM为对角线,则BC的中点即是OM的中点,如图:∴,解得,∴M(﹣,﹣1);③以BM、CO为对角线,则BM的中点即是CO的中点,如图:∴,解得,∴M(,1);综上所述,M的坐标为:(﹣,﹣1)或(﹣,﹣1);或(,1).变式训练【变3-1】.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.(1)证明:∵∠BOC=∠BCD=∠CED=90°,∴∠OCB+∠OBC=90°,∠OCB+∠ECD=90°,∴∠OBC=∠ECD.∵将线段CB绕着点C顺时针旋转90°得到CD,∴BC=CD.在△BOC和△CED中,,∴△BOC≌△CED(AAS).(2)解:∵直线y=﹣x+3与x轴、y轴相交于A、B两点,∴点B的坐标为(0,3),点A的坐标为(6,0).设OC=m,∵△BOC≌△CED,∴OC=ED=m,BO=CE=3,∴点D的坐标为(m+3,m).∵点D在直线y=﹣x+3上,∴m=﹣(m+3)+3,解得:m=1,∴点D的坐标为(4,1),点C的坐标为(1,0).∵点B的坐标为(0,3),点C的坐标为(1,0),∴直线BC的解析式为y=﹣3x+3.设直线B′C′的解析式为y=﹣3x+b,将D(4,1)代入y=﹣3x+b,得:1=﹣3×4+b,解得:b=13,∴直线B′C′的解析式为y=﹣3x+13,∴点C′的坐标为(,0),∴CC′=﹣1=,∴△BCD平移的距离为.(3)解:设点P的坐标为(0,m),点Q的坐标为(n,﹣n+3).分两种情况考虑,如图3所示:①若CD为边,当四边形CDQP为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P1的坐标为(0,);当四边形CDPQ为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P2的坐标为(0,);②若CD为对角线,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P的坐标为(0,).综上所述:存在,点P的坐标为(0,)或(0,).考点四:一次函数中矩形存在性问题【例4】.Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)∵|OA﹣8|+(OB﹣6)2=0,∴OA=8,OB=6,在直角△AOB中,AB===10;(2)∵BC平分∠ABO,CD⊥AB,AO⊥BO,∴OC=CD,设OC=x,则AC=8﹣x,CD=x.∵△ACD和△ABO中,∠CAD=∠BAO,∠ADC=∠AOB=90°,∴△ACD相似于△ABO,∴,即,解得:x=3.即OC=3,则C的坐标是(﹣3,0).设AB的解析式是y=kx+b,根据题意得解得:则直线AB的解析式是y=x+6,设CD的解析式是y=﹣x+m,则4+m=0,则m=﹣4.则直线CE的解析式是y=﹣x﹣4;(3)①当AB为矩形的边时,如图所示矩形AM1P1B,易知BC的直线方程为y=2x+6,设M1(m,2m+6),P1(x,y),因为A(﹣8,0),B(0,6),则AM12=(m+8)2+(2m+6)2,=5m2+40m+100,BM12=m2+(2m+6﹣6)2=5m2,AB=10,根据AB2+AM12=BM12得100+5m2+40m+100=5m2,m=﹣5,∴M1(﹣5,﹣4),根据平移规律可以解得P1(3,2)②当AB为矩形的对角线时,此时有AB2=AM22+BM22,即100=5m2+40m+100+5m2,m =﹣4或m=0(舍去),∴M2(﹣4,﹣2),根据平移规律可以解得P2(﹣4,8)综上可得,满足条件的P点的坐标为P1(3,2)或P2(﹣4,8).变式训练【变4-1】.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣4x+3=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求点H到x轴的距离;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.解:(1)x2﹣4x+3=0,解得:x=3或1,故BC=1,OC=3,即点C(0,3)、点A(﹣1,0),则点B(﹣1,3),点D(3,0),点E(3,1),将B、D点的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线BD的表达式为:y=﹣x+…①;(2)同理可得:直线OE的表达式为:y=x…②,联立①②并解得:y=,即点H到x轴的距离为:;(3)直线BD的表达式为:y=﹣x+,则点F(0,),①当FD是矩形的一条边时,当点M在x轴上时,∵MF⊥BD,则直线MF的表达式为:y=x+,当y=0,x=﹣,即点M(﹣,0),点F向右平移3个单位向下平移单位得到D,则点M向右平移3个单位向下平移单位得到N,则点N(,﹣);当点M在y轴上时,同理可得:点N(﹣3,﹣);②当FD是矩形的对角线时,此时点M在原点O,则点N(3,);综上,点N的坐标为:(,﹣)或(﹣3,﹣)或(3,).考点五:一次函数中菱形存在性问题【例5】.如图1,直线y=x+6与x,y轴分别交于A,B两点,∠ABO的角平分线与x轴相交于点C.(1)求点C的坐标;(2)在直线BC上有两点M,N,△AMN是等腰直角三角形,∠MAN=90°,求点M 的坐标;(3)点P在y轴上,在平面上是否存在点Q,使以点A、B、P、Q为顶点的四边形为菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.解:(1)对于直线y=x+6,令x=0,得到y=6,∴B(0,6),令y=0,得到x=﹣8,∴A(﹣8,0).∵A(﹣8,0),B(0,6),∴OA=8,OB=6,∵∠AOB=90°,∴AB==10,过点C作CH⊥AB于H,设OC=t,∵BC平分∠ABO,∠AOB=90°,∴CH=OC=t,=S△ABC+S△BCO,∵S△ABO∴OA•OB=AB•CH+OC•OB,∴6×8=10t+6t,∴t=3,∴OC=3,∴C(﹣3,0);(2)设线BC的表达式为:y=kx+b,∵B(0,6),C(﹣3,0),∴直线BC的表达式为:y=2x+6,设点M(m,2m+6)、N(n,2n+6),过点M作MF⊥x轴于点F,过点N作NE⊥x轴于点E,∵△AMN为等腰直角三角形,故AM=AN,∵∠NAE+∠MAF=90°,∠MAF+∠AMF=90°,∴∠NAE=∠AMF,∵∠AFM=∠NEA=90°,AM=AN,∴△FMA≌△EAN(AAS),∴EN=AF,MF=AE,即﹣2n﹣6=m+8,2m+6=8+n,解得:m=﹣2,n=﹣6,故点M的坐标为(﹣2,2)、点N(﹣6,﹣6);由于M,N的位置可能互换,故点N的坐标为(﹣2,2)、点M(﹣6,﹣6);综上所述,点M的坐标为(﹣2,2)或(﹣6,﹣6);(3)设点P(0,p),∴BP2=(p﹣6)2,AP2=82+p2,①当AB是边时,如图,∵点A、B、P、Q为顶点的四边形为菱形,∴BP=AB=10,BP′=AB=10,OB=OP″,∵B(0,6),∴P(0,16),P′(0,﹣4),P″(0,﹣6),∵A(﹣8,0),∴Q(﹣8,10),Q′(﹣8,﹣10),Q″(8,0);②当AB是对角线时,如图,∵点A、B、P、Q为顶点的四边形为菱形,∴AP=BP,∴BP2=AP2,∴(p﹣6)2=82+p2,解得p=﹣,∴P(0,﹣),∵A(﹣8,0),B(0,6),∴Q(﹣8,);综上所述,点Q的坐标为(﹣8,10)或(﹣8,﹣10)或(8,0)或(﹣8,).变式训练【变5-1】.如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于点D、C,直线AB与y轴交于点B(0,﹣2),与直线CD交于点A(m,2).(1)求直线AB的解析式;(2)点E是射线CD上一动点,过点E作EF∥y轴,交直线AB于点F,若以O、C、E、F为顶点的四边形是平行四边形,请求出点E的坐标;(3)设P是射线CD上一点,在平面内是否存在点Q,使以B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.解:(1)∵点A(m,2)在直线y=x+4上∴m+4=2解得m=﹣2∴点A的坐标为(﹣2,2)设直线AB的解析式为y=kx+b∴解得∴直线AB的解析式为y=﹣2x﹣2;(2)如图1,由题意设点E的坐标为(a,a+4),则∵EF∥y轴,点F在直线y=﹣2x﹣2上∴点F的坐标为(a,﹣2a﹣2)∴EF=|a+4﹣(﹣2a﹣2)|=|3a+6|,∵以点O、C、E、F为顶点的四边形是平行四边形,且EF∥OC∴EF=OC∵直线y=x+4与y轴交于点C∴点C的坐标为(0,4)∴OC=4,即|3a+6|=4解得:a=﹣或a=﹣∴点E的坐标为(﹣,)或(﹣,);(3)如图2,当BC为对角线时,点P,Q都是BC的垂直平分线,且点P和点Q关于BC对称,∵B(0,﹣2),C(0,4),∴点P的纵坐标为1,将y=1代入y=x+4中,得x+4=1,∴x=﹣3,∴P''(﹣3,1),∴Q''(3,1)当CP是对角线时,CP是BQ的垂直平分线,设Q(m,n),∴BQ的中点坐标为(,),代入直线y=x+4中,得+4=①,∵CQ=CB,∴m2+(n﹣4)2=36②,联立①②得,(舍)或,∴Q'(﹣6,4),当PB是对角线时,PC=BC=6,设P(c,c+4),∴c2+(c+4﹣4)2=36,∴c=3(舍)或c=﹣3,∴P(﹣3,﹣3+4),设Q(d,e)∴(﹣3+0)=(0+d),(﹣3+4﹣2)=(e+4),∴d=﹣3,e=﹣3﹣2,∴Q(﹣3,﹣3﹣2),即:点Q的坐标为(3,1),(﹣6,4)或(﹣3,﹣3﹣2).1.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点C,使△ABC为等腰三角形,则这样的点C的坐标为(﹣8,0)(3,0)(2,0)(,0).解:当x=0时,y=4,当y=0时,x=﹣3,即A(﹣3,0),B(0,4),OA=3,OB=4,由勾股定理得:AB=5,有三种情况:①以A为圆心,以AB为半径交x轴于两点,此时AC=AB=5,C的坐标是(2,0)和(﹣8,0);②以B为圆心,以AB为半径交x轴于一点(A除外),此时AB=BC,OA=OC=3,C的坐标是(3,0);③作AB的垂直平分线交x轴于C,设C的坐标是(a,0),A(﹣3,0),B(0,4),∵AC=BC,由勾股定理得:(a+3)2=a2+42,解得:a=,∴C的坐标是(,0),故答案为:(﹣8,0)(3,0)(2,0)(,0).2.如图,在平面直角坐标系中,点A坐标为(2,1),连接OA,点P是x轴上的一动点,如果△OAP是等腰三角形,请你写出符合条件的点P坐标P1(4,0),P2(,0),P3(﹣,0),P4(,0).解:设P(x,0),当OA=AP时,∵A(2,1),∴P1(4,0);当OA=OP时,∵A(2,1),∴OA==,∴P2(,0),P3(﹣,0);当AP=OP时,∵P(x,0),(2,1),∴(2﹣x)2+12=x2,解得x=,∴P4(,0).综上所述,P点坐标为:P1(4,0),P2(,0),P3(﹣,0),P4(,0).故答案为:P1(4,0),P2(,0),P3(﹣,0),P4(,0).3.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y 的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为(3,2)(﹣3,2)(5,﹣2).解:如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).故答案为:(3,2)(﹣3,2)(5,﹣2).4.如图,一次函数y=k2x+b的图象与y轴交于点B,与正比例函数y=k1x的图象相交于点A(3,4),且OA=OB.(1)分别求出这两个函数的解析式;(2)求△AOB的面积;(3)点P在x轴上,且△POA是等腰三角形,请直接写出点P的坐标.解:(1)∵正比例函数y=k1x的图象经过点A(3,4),∴3k1=4,∴k1=,∴正比例函数解析式为y=x.如图1中,过A作AC⊥x轴于C,在Rt△AOC中,OC=3,AC=4,∴AO==5,∴OB=OA=5,∴B(0,﹣5),∴,解得,∴一次函数的解析式为y=3x﹣5.(2)如图1中,过A作AD⊥y轴于D,∵A(3,4),∴AD=3,=;∴S△AOB(3)当OP=OA时,P1(﹣5,0),P2(5,0),当AO=AP时,P3(6,0),当PA=PO时,线段OA的垂直平分线为y=﹣,∴,满足条件的点P的坐标(﹣5,0)或(5,0)或(6,0)或.5.直线l1交x轴于点A(6,),交y轴于B(0,6).(1)如图,折叠△AOB,使BA落在y轴上,折痕所在直线为l2,直线l2与x轴交于C 点,求C点坐标及l2的解析式;(2)在直线l1上找点M,使得以M、A、C为顶点的三角形是等腰三角形,求出所有满足条件的M点的坐标.解:∵点A(6,0),交y轴于B(0,6).∴OA=6,OB=6,∴tan∠OAB==,∴∠OAB=30°,∴∠OBA=60°,∵折叠△AOB,∴∠OBC=∠ABC=30°,∴BC=2OC,BO=OC=6,∴OC=2,∴点C(2,0),设直线BC解析式为:y=kx+b,解得:∴直线BC解析式为:y=﹣x+6;(2)当点M与点B重合时,由(1)可知:∠AMC=∠MAC=30°,∴CM=AC,∴△ACM是等腰三角形,∴当M为(0,6)时,△ACM是等腰三角形,∵OC=2,OA=6,∴AC=4,若AM=AC=4,如图1:过点M作MH⊥AC,∵∠MAH=30°,∴MH=AM=2,AH=2MH=6,∴OH=6﹣6或6+6,∴点M(6﹣6,2)或(6+6,﹣2)若AM=MC,如图2,过点M作MH⊥AC,∵AM=MC,MH⊥AC,∴AH=CH=2,∴OC=4,∵∠MAH=30°,∴AH=MH,∴MH=2,∴点M(4,2),综上所述:点M(6﹣6,2)或(6+6,﹣2)或(4,2)或(0,6).6.在平面直角坐标系中,直线y=kx+8k(k是常数,k≠0)与坐标轴分别交于点A,点B,且点B的坐标为(0,6).(1)求点A的坐标;(2)如图1,将直线AB绕点B逆时针旋转45°交x轴于点C,求直线BC的解析式;(3)在(2)的条件下,直线BC上有一点M,坐标平面内有一点P,若以A、B、M、P 为顶点的四边形是菱形,请直接写出点P的坐标.解:(1)令y=kx+8k=0,解得x=﹣8,故点A的坐标为(﹣8,0);(2)过点A作AD⊥AB交BC于点D,过点A作y轴的平行线交过点B与x轴的平行线于点M,交过点D与x轴的平行线于点N,∵∠ABC=45°,故△ABD为等腰直角三角形,则AD=AB,∵∠BAM+∠DAN=90°,∠DAN+∠ADN=90°,∴∠BAM=∠ADN,∵∠BMA=∠AND=90°,∴△BMA≌△AND(AAS),∴AN=BM=8,ND=AM=6,故点D的坐标为(﹣2,﹣8),设直线BC的表达式为y=kx+b,则,解得,故直线BC的表达式为y=7x+6;(3)设点M的坐标为(m,7m+6),点P(s,t),而点A、B的坐标分别为(﹣8,0)、(0,6),①当AB是边时,点A向右8个单位向上6个单位得到点B,同样,点M(P)向右8个单位向上6个单位得到点P(M),且AB=BP(AB=BM),则或,解得或或(不合题意的值已舍去);故点P的坐标为(﹣8,7)或(﹣﹣8,﹣7)或(6,﹣2);②当AB是对角线时,由中点坐标公式和AM=BM得:,解得,故点P的坐标为(﹣7,7);综上,点P的坐标为(﹣8,7)或(﹣﹣8,﹣7)或(6,﹣2)或(﹣7,7).7.如图,在平面直角坐标系中,一次函数的图象与x轴交于点A(﹣4,0),与y轴交于点B,且与正比例函数y=x的图象交于点C(m,6).(1)求一次函数的解析式;(2)求△BOC的面积;(3)在x轴上是否存在一点P,使得△ABP是等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.解:(1)∵将点C(m,6)代入y=x,∴6=m,∴m=4,∴C(4,6),设一次函数的解析式为y=kx+b,∴,∴,∴y=x+3;(2)在y=x+3中,令x=0得y=3,∴B(0,3),=OB•|x C|=×3×4=6;∴S△BOC(3)在x轴上存在一点P,使得△ABP是等腰三角形,理由如下:∵A(﹣4,0),B(0,3),∴AB=5,OA=4,当B为等腰三角形顶角顶点时,P点与A点关于y轴对称,∴P(4,0);当A为等腰三角形顶角顶点时,AP=AB=5,∴P(﹣9,0)或P(1,0);当P为等腰三角形顶角顶点时,设P(t,0),∵PA=PB,∴(t+4)2=t2+9,解得t=﹣,∴P(﹣,0),综上所述:P点坐标为(﹣9,0)或(1,0)或(4,0)或(﹣,0).8.如图,已知一次函数y=x+m的图象与x轴交于点A(﹣6,0),交y轴于点B.(1)求m的值与点B的坐标(2)问在x轴上是否存在点C,使得△ABC的面积为16?若存在,求出点C的坐标;若不存在,说明理由.(3)问在x轴是否存在点P,使得△ABP为等腰三角形,求出点P坐标.(4)一条经过点D(0,2)和直线AB上的一点的直线将△AOB分成面积相等的两部分,请求出这条直线的函数表达式.解:(1)把点A(﹣6,0)代入y=x+m,得m=8,∴点B坐标为(0,8).(2)存在,设点C坐标为(a,0),由题意•|a+6|•8=16,解得a=﹣2或﹣10,∴点C坐标(﹣2,0)或(﹣10,0).(3)如图1中,①当AB=AP时,AP=AB==10,可得P1(﹣16,0),P2(4,0).②当BA=BP时,OA=OP,可得P3(6,0).③当PA=PB时,∵线段AB的垂直平分线为y=﹣x+,可得P4(,0),综上所述,满足条件的点P坐标为(﹣16,0)或(4,0)或(6,0)或(,0).(4)如图2中,设过点D的直线交AB于E,设E(b,),由题意BD•(﹣b)=××6×8,∴b=﹣4,∴点E坐标(﹣4,),设直线DE的解析式为y=kx+b则有,解得,∴这条直线的函数表达式y=﹣x+2.9.在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴、y轴分别于A、B两点,交直线y=kx于P(2,a).(1)求点A、B的坐标;(2)若Q为x轴上一动点,△APQ为等腰三角形,直接写出Q点坐标;(3)点C在直线AB上,过C作CE⊥x轴于E,交直线OP于D,我们规定若C,D,E 中恰好有一点是其他两点所连线段的中点,则称C,D,E三点为“和谐点”,求出C,D,E三点为“和谐点”时C点的坐标.解:(1)当x=0时,y=﹣x+2=2,∴点B的坐标为(0,2);当y=0时,有﹣x+2=0,解得:x=4,∴点A的坐标为(4,0);(2)∵一次函数y=﹣x+2的图象交直线y=kx于P(2,a).∴a=﹣×2+2=1,∴点P的坐标为(2,1),设点Q(m,0),而点A、P的坐标分别为:(4,0)、(2,1),则AP==,AQ=|4﹣m|,PQ=,当AP=AQ时,则=|4﹣m|,解得m=4±,∴点Q(4±,0);当AP=PQ时,=,解得m=0或4(舍去),∴点Q(0,0);当PQ=AQ时,即=|4﹣m|,解得:m=,∴点Q(,0);综上,点Q的坐标为(4±,0)或(0,0)或(,0);(3)∵y=kx过P(2,1).∴2k=1,解得k=,∴y=x,设点C的坐标为(n,﹣n+2),则点D的坐标为(n,n),点E的坐标为(n,0),∴CD=|﹣n+2﹣n|=|2﹣n|,DE=|n|,CE=|﹣n+2|=|n﹣2|,当D为CE的中点时,CD=DE,∴|2﹣n|=|n|,解得n=或4(舍去),∴点C的坐标为(,);当C为DE的中点时,CD=CE,∴|2﹣n|=|n﹣2|,解得n=或0(舍去),∴点C的坐标为(,);当E为CD的中点时,DE=CE,∴|n|=|n﹣2|,无解;综上,C,D,E三点为“和谐点”时C点的坐标为(,)或(,).10.如图所示,直线l:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4).(1)求△AOB的面积;(2)动点M从A点以每秒1个单位的速度沿x轴向左移动,求△COM的面积S与M的移动时间t之间的函数关系式;(3)当动点M在x轴上移动的过程中,在平面直角坐标系中是否存在点N,使以点A,C,N,M为顶点的四边形为菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.解:(1)令y=0,,解得x=.令x=0,y=.∴A(,0),B(0,).=.∴△AOB的面积为12.(2)∵动点M从A点以每秒1个单位的速度沿x轴向左移动,∴AM=t.当0≤t≤时,OM=,OC=.∴==.当t>时,OM=t﹣.∴==.综上,△COM的面积S与M的移动时间t之间的函数关系式:S=.(3)在平面直角坐标系中存在点N,使以点A,C,N,M为顶点的四边形为菱形.①当AC,AM为菱形的边时,情况一:如图1,当点M在点A的左侧时,Rt△AOC中,=,∴NC=AC=.∵NC∥AM,∴点N(,).情况二,如图1′,当点M在点A的右侧时,由情况一同理可得点N的坐标为.②当AC为菱形的对角线时,如图2,此时M,O重合,四边形OANC为正方形,则点N(,).③如图3,当AC为菱形的边,AM为菱形的对角线时,此时点C,N关于x轴对称,∴点N(0,﹣).综上,在平面直角坐标系中存在点N,使以点A,C,N,M为顶点的四边形为菱形,此时点N的坐标为:(,),,(,),(0,﹣).11.如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,直线BC与x轴、y轴分别交于C、B两点,连接BC,且OC=OB.(1)求点A的坐标及直线BC的函数关系式;(2)点M在x轴上,连接MB,当∠MBA+∠CBO=45°时,求点M的坐标;(3)若点P在x轴上,平面内是否存在点Q,使点B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.解:(1)对于直线y=﹣x+4,令x=0的y=4,令y=0得x=4,∴A(4,0),B(0,4),∴OB=OA=4,∵OC=OB,∴OC=3,∴C(﹣3,0),设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=x+4.(2)如图1中,当点M在点A的左边时,∵OB=OA=4,∠AOB=90°,∴∠ABO=45°,∴∠CBO+∠MBA=∠MBA+∠MBO=45°,∴∠CBO=∠OBM,∵∠CBO+∠BCO=90°,∠BMO+∠OBM=90°,∴∠BCO=∠BMO,∴BC=BM,OC=OM=3,∴M(3,0),作点M关于直线AB的对称点N,作直线BN交x轴于M1,则∠M1BA=∠MBA,点M1满足条件.∵N(4,1),B(0,4),∴直线BN的解析式为y=﹣x+4,令y=0,得x=,∴M1(,0),综上所述,满足条件的点M的坐标为(3,0)或(,0).(3)如图2中,∵BC==5,当BC为菱形的边时,四边形CP1Q1B,四边形CP3Q3B,四边形BCQ2P2是菱形,此时Q1(﹣5,4),Q3(5,4),Q2(0,4),当BC是菱形的对角线时,四边形CP4BQ4是菱形,可得Q4(﹣,4).综上所述,满足条件的点Q的坐标为(﹣5,4)或(5,4)或(0,﹣4)或.12.已知,一次函数y=的图象与x轴、y轴分别交于点A、点B,与直线y=相交于点C.过点B作x轴的平行线l.点P是直线l上的一个动点.(1)求点A,点B的坐标.(2)求点C到直线l的距离.=S△BCP,求点P的坐标.(3)若S△AOC(4)若点E是直线y=上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,请直接写出点E的坐标.解:(1)∵一次函数y=的图象与x轴、y轴分别交于点A、点B,∴令y=0,则=0,∴x=8,令x=0,则y=6,∴点A、B的坐标分别为:(8,0)、(0,6);(2)解:得,,∴点C(3,),则C到直线l的距离为6﹣=;=×8×=15=S△BCP=×BP×(y P﹣y C)=BP×,(3)∵S△AOC解得:BP=,故点P(,6)或(﹣,6);(4)设点E(m,m)、点P(n,6);①当∠EPA=90°时,当点P在y轴右侧时,当点P在点E的左侧时,如图1,∵∠MEP+∠MPE=90°,∠MPE+∠NPA=90°,∴∠MEP=∠NPA,AP=PE,∵△EMP≌△PNA(AAS),则ME=PN=6,MP=AN,即m﹣n=6,m﹣6=8﹣n,解得:m=,当点P在点E的右侧时,如图,同理可得m=16,当∠EAP=90°时,当点P在y轴左侧时,如图2,同理可得:m﹣8=6,m=8﹣n,解得:m=14,故点E(14,);故点E(,)或(14,)或(16,20);如图3,同理可得:△AMP≌△ANE(AAS),故MP=EN,AM=AN=6,即m=n﹣8,|8﹣m|=6,解得:m=2或14(不合题意舍去),故点E(2,);综上,E(,)或(16,20)或(2,)或(14,).13.如图,在平面直角坐标系xOy中,直线y=﹣x+与y=x相交于点A,与x轴交于点B.(1)求点A,B的坐标;(2)在平面直角坐标系xOy中,是否存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形?如果存在,试求出所有符合条件的点C的坐标;如果不存在,请说明理由;(3)在直线OA上,是否存在一点D,使得△DOB是等腰三角形?如果存在,试求出所有符合条件的点D的坐标,如果不存在,请说明理由.解:(1)∵直线y=﹣x+与y=x相交于点A,∴联立得,解得,∴点A(1,1),∵直线y=﹣x+与x轴交于点B,∴令y=0,得﹣x+=0,解得x=3,∴B(3,0),(2)存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形.①如图1,过点A作平行于x轴的直线,过点O作平行于AB的直线,两直线交于点C,∵AC∥x轴,OC∥AB,∴四边形CABO是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(﹣2,1),②如图2,过点A作平行于x轴的直线,过点B作平行于AO的直线,两直线交于点C,∵AC∥x轴,BC∥AO,∴四边形CAOB是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(4,1),③如图3,过点O作平行于AB轴的直线,过点B作平行于AO的直线,两直线交于点C,∵OC∥AB,BC∥AO,∴四边形CBAO是平行四边形,∵A(1,1),B(3,0),∴AO=BC,OC=AB,作AE⊥OB,CF⊥OB,易得OE=EF=FB=1,∴C(2,﹣1),(3)在直线OA上,存在一点D,使得△DOB是等腰三角形,①如图4,当OB=OD时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=,∴D(﹣,﹣),②如图5,当OD=OB时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=,∴D(,),③如图6,当OB=DB时,∵∠AOB=∠ODB=45°,∴DB⊥OB,∵OB=3,∴D(3,3),④如图7,当DO=DB时,作DE⊥x轴,交x轴于点E∵∠AOB=∠OBD=45°,∴OD⊥DB,∵OB=3,∴OE=,AE=,∴D(,).综上所述,在直线OA上,存在点D(﹣,﹣),D(,),D(3,3)或D(,),使得△DOB是等腰三角形,14.如图,经过点B(0,2)的直线y=kx+b与x轴交于点C,与正比例函数y=ax的图象交于点A(﹣1,3)(1)求直线AB的函数的表达式;(2)直接写出不等式(kx+b)﹣ax<0的解集;(3)求△AOC的面积;(4)点P是直线AB上的一点,且知△OCP是等腰三角形,写出所有符合条件的点P的坐标.解:(1)依题意得:,解得,∴所求的一次函数的解析式是y=﹣x+2.(2)观察图形可知:不等式(kx+b)﹣ax<0的解集;x<﹣1.(3)对于y=﹣x+2,令y=0,得x=2∴C(1,0),∴OC=2.=×2×3=3.∴S△AOC(4)①当点P与B重合时,OP1=OC,此时P1(0,2);②当PO=PC时,此时P2在线段OC的垂直平分线上,P2(1,1);③当PC=OC=2时,设P(m.﹣m+2),∴(m﹣2)2+(﹣m+2)2=4,∴m=2±,可得P3(2﹣,),P4(2+,﹣),综上所述,满足条件的点P坐标为:(1,1)或(0,2)或P(2+,﹣)或(2﹣,).15.如图1,已知直线l1:y=kx+4交x轴于A(4,0),交y轴于B.(1)直接写出k的值为﹣1;(2)如图2,C为x轴负半轴上一点,过C点的直线l2:经过AB的中点P,点Q(t,0)为x轴上一动点,过Q作QM⊥x轴分别交直线l1、l2于M、N,且MN=2MQ,求t的值;(3)如图3,已知点M(﹣1,0),点N(5m,3m+2)为直线AB右侧一点,且满足∠OBM=∠ABN,求点N坐标.解:(1)把A(4,0)代入y=kx+4,得0=4k+4.解得k=﹣1.故答案是:﹣1;(2)∵在直线y=﹣x+4中,令x=0,得y=4,∴B(0,4),∵A(4,0),∴线段AB的中点P的坐标为(2,2),代入,得n=1,∴直线l2为,∵QM⊥x轴分别交直线l1、l2于M、N,Q(t,0),∴M(t,﹣t+4),,∴,MQ=|﹣t+4|=|t﹣4|,∵MN=2MQ,∴,分情况讨论:①当t≥4时,,解得:t=10.②当2≤t<4时,,解得:.③当t<2时,,解得:t=10>2,舍去.综上所述:或t=10.(3)在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M(﹣1,0),∴OP=OM=1,∴BP=BM,∴∠OBP=∠OBM=∠ABN,∴∠PBQ=∠OBA=45°,∴PB=PQ,∴△OBP≌△RPQ(AAS),∴RQ=OP=1,PR=OB=4,∴OR=5,∴Q(5,1),∴直线BN的解析式为,将N(5m,3m+2)代入,得3m+2=﹣×5m+4解得,∴.16.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM 的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.解:(1)x2﹣(+1)x+=0,(x﹣)(x﹣1)=0,解得x1=,x2=1,∵OA<OB,∴OA=1,OB=,∴A(1,0),B(0,),∴AB=2,又∵AB:AC=1:2,∴AC=4,∴C(﹣3,0);(2)∵AB=2,AC=4,BC=2,∴AB2+BC2=AC2,即∠ABC=90°,由题意得:CM=t,CB=2.①当点M在CB边上时,S=2﹣t(0≤t);②当点M在CB边的延长线上时,S=t﹣2(t>2);(3)存在.①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),②当AB为菱形的对角线时,如图所示的菱形AP4BQ4,设菱形的边长为x,则在Rt△AP4O中,AP42=AO2+P4O2,即x2=12+(﹣x)2,解得x=,所以Q4(1,).综上可得,平面内满足条件的Q点的坐标为:Q1(﹣1,0),Q2(1,2),Q3(1,﹣2),Q4(1,).17.如图1,在平面直角坐标系中.直线与x轴、y轴相交于A、B两点,动点C 在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当直线B′C′经过点D时,求点D的坐标;(3)若点P在y轴上,点Q在直线AB上.是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标;若不存在,请说明理由.(1)证明:∵∠BOC=∠BCD=∠CED=90°,∴∠OCB+∠DCE=90°,∠DCE+∠CDE=90°,∴∠BCO=∠CDE,在△BOC和△CED中,。

一次函数背景下的存在性问题

一次函数背景下的存在性问题

2021年第02期总第495期数理化解题研究一次函数背景下的存在性问题王帅兵(河南省郑州市孜文教育信息咨询有限公司450000)摘 要:一次函数是八年级数学的学习内容,在平面直角坐标系中,研究点和直线的动态特征,以及在动 态情境下产生的几何图形存在性问题,是考察学生思维能力的有效载体,已成为考试的重难点.本文将结合具 体题目,从不同方面探讨存在性问题的解法.关键词:一次函数;存在性;对称;两圆一线;弦图中图分类号:G632 文献标识码:A 文章编号:1008 -0333(2021)02 -0017 -02一、两定一动型,注意好“一上一下”两定一动型,是指在给定两个点的情况下,另一点在一条线上运动所产生的面积问题,解决这类问题,要做好 题目分析,有一边与坐标轴平行时直接求解;没有边与坐 标轴平行时,用好“铅锤法”(或“割补法”),同时注意好 “ 一一上 —下”.例1如图1所示,一次 函数y 二2% +4的图像与坐标 轴分别交于点A 、B ,在一次函数的图象上是否存在一点P , 使得A AOP 的面积为3?思路分析由题设条件,易求出点A 和点0坐标分别为(-2,0)和(0,0),点P 为直 图1线上一动点,不妨设其坐标为(%,y ),当点P 位于%轴上方时,S △A0P 二2 ; y 二3 ,解得y 二3,代入表达式y 二2% + 4 可得点P 坐标为(-1 /2,3).由于坐标系中的对称性,点 P 也可以位于%轴下方,此时可求出点P 的坐标为 (-7/2,-3).综上,点 P 坐标为(-1/2,3)或者(-7/2, -3).一例2如图2所示,直线y 二1 /2%与直线y 二-% + 3 相交于点A ,点B 是直线y 二1 /2%上的一个点,且横坐标 为4.如果点P 是直线y 二-% +3上的一个动点,且满足 △ABP 的面积为9,那么点P 的坐标为 .思路分析 如图2,易求出点A 和点B 坐标分别为(2,1) 和(4,2).如图3,过点P 向%轴做垂线交直线AB 于点F ,设点P ( a , - a +3),那么点F 坐标为(a , ; a ),则A ABP 的面积为:"F x ( %B 一 %a)(3 -a - 2 a )(4 -2)-----------「 - 9.解得 a 二-4,点P 的坐标为(-4,7).同理,如图4时,可得点P 的坐标 为(8,-5).综上,点P 的坐标为(-4,7)或(8,-5).二、等腰三角形,用好“两圆一线”在一次函数的背景下,等腰三角形的存在性问题可 以借助图形的基本性质来解,利用同端点、等长度作圆和 线段垂直平分线.例 3 如图 5 所示, 直线 y - % + 4 与坐标轴交于点 A 和点B ,在%轴上是否存在点P ,使得A ABP 为等腰三角 形?若存在,求出所有满足条件的点P 的坐标.图5 图6思路分析如图6所示,分别以点A 和点B 为圆心 作圆,同时作出线段AB 的垂直平分线,可得与%轴的4个 交点:P ]、戶2、P 3和P 4.分别求解,可得其坐标分别为P 1( -4-4 2 ,0)、P 2(0,0)、P s (4 2 -4,0)心4,0).三、直角三角形,利用顶点来分类对于直角三角形的存在性,可以利用顶点来分类,然 后结合具体条件求解.例4如图7所示,在平面直角坐标系%oy 中,三角收稿日期:2020 -10 -15作者简介:王帅兵(1988. 7 -),男,河南省鲁山人,本科,从事数学教学研究.17数理化解题研究2021年第02期总第495期板的直角顶点P的坐标为(2,2),一条直角边与兀轴的正半轴交于点A,另一直角边与y轴交于点B,三角板绕点P在坐标平面内转动的过程中,当MA为直角三角形时,请求出所有满足条件的点B的坐标.思路分析分析题设条件可得,乙POA二45°,不可能为直角,'FOA的另两个角可以是直角.如图8,当OA丄AP时,可求出点B的坐标为(0,2);如图9,当OP丄PA时,点B和点O重合,点B坐标为(0,0).综上所述,点B的坐标为(0,2)或(0,0).图7图8图9四、等腰直角三角形,借助弦图轻松解等腰直角三角形的分类问题,可以在构造基本直角的情况下,借助弦图求解.例5如图10所示,直线y二-2兀+4与坐标轴交于点A和点B,在第一象限内是否存在点P,使得A ABP为等腰直角三角形?思路分析由题设条件易得,A(2,0)、B(0,4),OA二2,OB二4.利用心A AOB作弦图,如图11所示,其中P】、P2、戶3是满足条件的点.利用弦图中的全等三角形的性质,以及线段长与坐标的相互转化,可得三点的坐标分别为:P1(4,6)、P2(6,2)、P3(3,3).五、全等三角形,对应后综合求解全等三角形的存在性问题,要注意好顶点的对应,然后借助多种基本方法解题.例6如图12所示,在平面直角坐标系中作矩形OABC,点B坐标为(4,8),将A ABC对折,使点A与点C 重合,折痕交AB于点D,坐标系内是否存在点P(除点B 外),使A APC与A ABC全等?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.思路分析由题设条件易得点A与点C的坐标分别为(4,0)、(0,8),直线AC表达式为:y二-2%+8.由矩形性质可得A AOC=△CBA,此时点P与点O重合,坐标为(0,0).由翻折性质可得△ADB'^A CDB',此时,如图13, 18可以延长CP,过点A作CP丄AP于点P,利用等面积法可得点P坐标为(;,?)•如图14,作A ABC关于直线AC 的对称图形,此时,过点P作PQ丄y轴于点Q,利用等面积法可得点P坐标为(-12,24).六、等距离轨迹问题,借助坐标轴三角形构造相似在一次函数背景下的等距离轨迹问题,可以借助一次函数图像与坐标轴的交点,构造相似图形,求出点的坐标,进而找到点所在直线的表达式.例7如图15所示,直线y二2%+6与坐标轴分别交于点A和点B,在平面直角坐标系中是否存在一点,使得点P到直线AB的距离等于25,若存在,请求出点P所在轨迹的表达式;若不存在,请说明理由.思路分析到直线AB距离等于25的点的集合是与直线AB平行的两条直线.由题设条件易得,点A和点B 的坐标分别为(-3,0)和(0,6).如图16,过点B作直线AB的垂线-,在直线-上分别截取BP】二BP?二25,再分别过点P1和点P2作垂直于直线z1的直线z2和z3,直线12和人即为点P的轨迹.因为直线J和厶与直线AB平行,要求其表达式,只要求出点P1和点P2的坐标即可,此时,过点P1作P1Q1丄y轴于点Q1,则△P1Q1B^△BOA,可得P1Q1二4,BQ1二2,可得点P1坐标为(4,4),可求出心:y二2%-4.同理可求出厶:y二2%+16.综上,解决一次函数的存在性问题,一定要研究好背景图形,调用基本技巧和方法,构图确定位置,画图解答.参考文献:[1]王玉新.学好一次函数,善于梳理总结是关键[J].数学学习与研究,2019(19):135.[2]王淑艳.一次函数解初中几何动点问题[J].理科爱好者,2019(4):147.[责任编辑:李璟]。

专题04 一次函数中的特殊平行四边形存在性问题(解析版)

专题04 一次函数中的特殊平行四边形存在性问题(解析版)

专题04一次函数中的特殊平行四边形存在性问题类型一、菱形问题(1)如图1,请直接写出点A 的坐标,并求出直线AB 的解析式.(2)如图2,直线2y x b =+是线段AB 的垂直平分线,垂足为点D ,且交y 轴于点C ,连接BC 线CD 上的一动点,当点P 使得32ACP ACD S S =△△时,请求出符合条件的点P 坐标.(3)在(2)的条件下,若点P 在直线CD 上且在第三象限内,在平面内是否存在其它点Q ,使得以点P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)()0,2A ,122y x =-+(2)()3,3或者()3,9--(1)求A C 、两点坐标;(2)若点M 是直线CB 上一点,且(3)点P 是y 轴上的点,在坐标平面内是否存在点直接写出点Q 坐标,若不存在,请说明理由.【答案】(1)(1,0)A ,(3,0)C -∵(1,0),(0,3),(3,0),,A B C M m ⎛- ⎝∴1(3)4AC =--=,3OB =,MD ∴23ABC S = ,12ACM S AC MD = △∴(,3)F m ,BF m =,33MF =∵90ABC ∠=︒,∴90ABM ∠=︒,即ABM 是直角三角形,∴AB BP PQ AQ ===∴()1,2Q ;②如图所示,以AP 为对角线,四边形同理,AB BP PQ ==∴()1,2Q -;③如图所示,以AB 为对角线,四边形在Rt AOB △中,OA =∴根据菱形的性质可知,∵30ABO ∠=︒,∴30PAH QAH ∠=∠=∴AB BQ QP AP ====∴(0,3),(1,0)P Q --;综上所述,点P 是y 轴上的点,坐标平面内存在点为()1,2或()1,2-或21,⎛ ⎝∴存在,点Q 坐标为(1,(1)如图1,求点E 坐标和直线CE 的解析式;(2)点P 为x 轴正半轴上的动点,设OP t =.①如图2,当点P 在线段OA (不包含端点A ,O )上运动时,过点P 作直线l ∥y 的线段长为d .求d 关于t 的函数关系式,并直接写出自变量t 的取值范围;∵OP t=,∴31,6,,43 G t t H t t ⎛⎫⎛-+-+ ⎪⎝⎭⎝∴136634d t t⎛⎫=-+--+=⎪⎝⎭②当CE 为对角线时,如图,∵四边形CPEG 是菱形,∴设CP PE n ==,则OP =在直角三角形O C P 中,根据勾股定理可得当CE 为边时,如图,∵四边形CEPG 是菱形,∴∵CG PE ∥,∴(10,6G 综上,点G 的坐标是25⎛【点睛】本题考查了矩形的性质、菱形的性质、勾股定理、折叠的性质、待定系数法求一次函数的解析式等知识,具有较强的综合性,熟练掌握相关图形的性质、熟练掌握待定系数法求一次函数的解析式、灵活应用数形结合思想是解题的关键.类型二、矩形存在性问题(1)求直线BD的表达式;(2)求OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【答案】(1)2833 y x =+(2)64 21(3)存在,N点坐标为208,93⎛⎫-⎪⎝⎭或104,3⎛⎫--⎪⎝⎭或84,3⎛⎫⎪⎝⎭【分析】(1)根据旋转的性质求出D点坐标,根据矩形的性质求出B 析式即可;(2)分别求出80,,(4,2)3F E⎛⎫⎪⎝⎭,先确定直线OE的解析式,从而求出∵MF FD FO MD ⊥⊥,,∴90MFD ∠=°,FOM DOF ∠=∠(1)求A,B,C三点的坐标;(2)点D是折线B A C--上一动点.①如图(1),当点D是线段AB的中点时,在y轴上找一点E,使ED EB+最小;用直尺和圆规画出点位置(保留作图痕迹,不要求写作法和证明),并求出点E的坐标;点D 是AB 的中点,(0,6)A ,(6,0)B ,(3,3)D \,6,90OA OB AOB ==∠=︒ ,AOB ∴ 为等腰直角三角形,即BAO ∠=∠在BOF 与AOC 中,FBO CAO ∠=∠⎧类型三、正方形存在性问题(1)求点A ,点B 的坐标;(2)若AOC BCP S S =△△,求点P 的坐标;(3)若点E 是直线54y x =上的一个动点,在平面内是否存在点F ,使四边形APEF 点E 的坐标;若不存在,请说明理由.99⎝⎭②当点P 在点E 的右侧时,如图同理可得AMP PNE ≌△△,∴6NE PM ==,NP AM =,即65684m n m n +=⎧⎪⎨-=-⎪⎩解得:16m =,5204m =,【点睛】本题考查了一次函数综合问题,一次函数与坐标轴交点问题,正方形的性质,三角形面积问题,坐标与图形,熟练掌握一次函数的性质,数形结合是解题的关键.例2.如图,在平面直角坐标系中,直线(0k ≠)交于点P ,4OC OD OA ==(1)求直线CD 的解析式;(2)连接OP 、BC ,若直线AB 上存在一点Q ,使得(3)将直线CD 向下平移1个单位长度得到直线,直线角坐标系中,是否存在点M ,使以点O ,E ,N ,M 标;若不存在,请说明理由.【答案】(1)4y x =-+;∵3AC=,点P的坐标为∴12PQC P S AC y=⨯+△∴点N 的坐标为(0,3),∴点M 的坐标为(3,3);当3OE =作为矩形OEMN ∴点F 的坐标为3(,0)2,∵tan 11OEN ∠=-=,∴45OEN ∠=︒,∵ON NE ⊥,∴ONE ∆是等腰直角三角形,(1)求直线l 的解析式;(2)求证:ABC 是等腰直角三角形;(3)将直线l 沿y 轴负方向平移,当平移恰当的距离时,直线与存在点P ,使得A B P ''△是等腰直角三角形,请直接写出所有符合条件的点【答案】(1)142y x =-+∴90DPE A PB ''∠=∠=︒,∴A PD B PE ''∠=∠,∵90A FP CEB ''∠=∠=︒,∴A FP CEB '' ≌,∴4,PE PF A F B E ''===,此时点P 的坐标为()44--,;同理此时点P 的坐标为()44-,;如图,若以点B '为直角顶点时,过点P 作同理A OB B GP ''' ≌,∴44OB PG OF t '====+,B '∴8t =-或0(舍去),∴8B G OA ''==,∴12OG =,∴此时点P 的坐标为()412--,;如图,若以点B '为直角顶点时,过点同理PB M A B O ''' ≌,∴44B M B O t ''===+,82PM OA t '==+,∴0=t (舍去);如图,若以点A '为直角顶点时,同理A PF B A O ''' ≌,∴,PF A O B O A F '''==,∴4482t t --=---,解得:8t =-,∴8PF =,此时点P 的坐标为()48-,;如图,若以点A '为直角顶点时,同理A PF B A O ''' ≌,(1)求直线1l的解析式;(2)设2P m(,),求ABP的面积S (3)当ABP的面积为3时,则以点【答案】(1)114y x =-+(2)当12m>时,21S m=-;当m90CBF PBE CFB PEB BC BP ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴CBF PBE AAS ≌().∴2BF CF PE EB ====.∴426OF OB BF =+=+=.∴62C (,);如图3,PBC 是等腰直角三角形,∴PE CE =,∴22C (,-),∴以点B 为直角顶点作等腰直角BPC △,点C 的坐标是62(,)或22(,-).当123m -=时,1m =-,可得21P (,-),同法可得32C (,)或52-(,).综上所述,满足条件的点C 坐标为62(,)或22(,-)或(3,2)或52(,-).【点睛】本题考查一次函数与几何的综合应用,同时考查了等腰三角形的性质,全等三角形的判定和性质.正确的求出函数解析式,利用数形结合和分类讨论的思想,进行求解,是解题的关键.2.如图1,在平面直角坐标系中,△ABO 为直角三角形,∠ABO =90°,∠AOB =30°,OB =3,点C 为OB 上一动点.∵将△OAB绕点O顺时针旋转,∴BO=B'O=3,∠AOB=∠A'OB'=30°,∵将△OAB绕点O顺时针旋转,∴∠BOB'=∠AOA'=90°,OB=OB'=3,∴点B'在y轴上,∴点B'(0,-3),如图,由中心对称的性质可得:点B'的坐标综上所述:点B '的坐标()03-,或332⎛- ⎝,【点睛】本题考查了含30度角的直角三角形的性质,旋转的性质,一次函数的性质等知识,中心对称的性质,利用分类讨论思想解决问题是解题的关键..如图,在平面直角坐标系中,直线y =与直线CD 交于点(),3A m .(1)求直线AB 的解析式;(2)点E 是射线CD 上一动点,过点E 作EF y ∥轴,交直线平行四边形,请求出点E 的坐标;(3)设P 是射线CD 上一点,在平面内是否存在点Q ,使以直接写出点Q 的坐标;若不存在,请说明理由.∵()0,3B -,()0,6C ∴直线PQ 的解析式是直线32y =,M 令362y x =-+=,解得92x =,∴点P 的坐标是93,22⎛⎫ ⎪⎝⎭,设点P 的坐标是(,6b b -+∵BC BP =,即()20b -解得:9b =或0b =(此时点∴点P 的坐标是()9,3-∴9PQ BC ==,设点P 的坐标是(,b b -+解得:922b =或b =-又∵9PQ =,∴点Q 的坐标是综上所述:点Q 的坐标为:【点睛】本题考查待定系数法求直线的解析式,一次函数的图象与性质,平行四边形的性质,菱形的性质,(2)迁移应用:如图2,将一块等腰直角的三角板(3)拓展应用:如图3,在平面直角坐标系内,已知直线【答案】(1)见解析;(2)点【详解】(1)证明:∵90ACB ∠=︒,AD l ⊥,∴90ACB ADC ∠=∠=︒,∵ACE ADC CAD ∠=∠+∠,ACE ACB BCE ∠=∠+∠,∴CAD BCE ∠=∠,∵90ADC CEB ∠=∠=︒,AC BC =,∴()AAS ACD CBE ≌ ,∴AD CE =,CD BE =;(2)解:如图2,过点F 作FM y ⊥轴,垂足为M ,过点G 作GN x ⊥轴于点N ,交MF 的延长线于J ,∵()3,1G -,∴3ON =,1GN =,由已知可得OG GF =,且90OGF ∠=︒,∵FM y ⊥轴,GN x ⊥轴,∴90JMO MON JNO ∠=∠=∠=︒,∴四边形JMON 是矩形,∴90ONG FJG ∠=∠=︒,JM ON =,∴90FGJ OGN OGN GON ∠+∠=∠+∠=︒,∴FGJ GON ∠=∠,∵OG GF =,90ONG FJG ∠=∠=︒,∴()AAS GJF ONG ≌ ,∴3GJ ON ==,1JF GN ==,∴3JM ON ==,过点3P 作3P E x ⊥轴于点E ,由(1)知3P EN NOM ≌ ,∴33P E ON ==,1NE OM ==,∴314OE =+=,∴()343P ,,同理可得()42,3P -.综上所述点P 的坐标为()34,或()32-,或()41,或(()2,1--).【点睛】本题主要考查了一次函数的应用,正方形的判定和性质,矩形的判定和性质,三角形全等的判定和性质,余角的性质,解题的关键是作出辅助线构造全等三角形,熟练掌握全等三角形的判定方法.5.如图,在平面直角坐标系中,一次函数(0)y kx b b =+≠的图象经过(1,0)A -,(0,2)B ,D 三点,点D 在x 轴上方,点C 在x 轴正半轴上,且5OC OA =,连接,BC CD ,已知2ADC ABC S S =△△.(1)求直线AB 的表达式;(2)求点D 的坐标;(3)在线段AD CD ,上分别取点M ,N ,使得MN x ∥轴,在x 轴上取一点P ,连接MN NP MP ,,,是否存(1)求直线1l 的函数表达式;(2)在平面直角坐标系中有一点()5,P m ,使得S (3)点M 为直线1l 上的动点,过点M 作y 轴的平行线,交直角三角形,请直接写出满足条件的点M 的坐标.【答案】(1)26y x =-+;(2)点P 坐标为()5,2或()5,8;则||M MN x t ==,∴36t t -=,∴32t =或3t =,∴332,M ⎛⎫ ⎪⎝⎭或()3,0M ,综上所述,点M 的坐标为618,55⎛⎫ ⎪⎝⎭或()6,6-或⎛ ⎝。

专题二:一次函数中等腰直角三角形存在性问题方法总结

专题二:一次函数中等腰直角三角形存在性问题方法总结

专题二:一次函数中等腰直角三角形存在性问题方法总结类型二、等腰直角三角形以(,)A A A x y 、(,)c c C x y 为三角形的边,在平面内找一点B 使得△ABC为等腰直角三角形(二定一动)一.找法:画圆和作垂直平分线①以A 直角顶点,即有23B B 、点;②以C 直角顶点,即有14B B 、点;③以AC 为斜边,即有56B B 、点;二、算法:利用三垂直模型进行计算(,)A A A x y 、(,)B B B x y 、(,)C C C x y 、(,)M M M x y 、(,)M M C x y由MBC ≌NCA可得:MB CN MC AN ==可推出B M C N M C A Nx x y y y y x x -=-⎧⎨-=-⎩例题1、如图,已知直线AB 与x 轴,y 轴分别交于点A (-3,0)、点B (0,2),以点A 为直角顶点,AB 为直角边作等腰直角△ADB ,线段AD 所在直线交y 轴于点P.(1)求直线AB 的解析式;(2)求△BDP 得面积;(3)点C 在x 轴上,D 在x 轴下方时,且△BOC 也是等腰直角三角形,动点M 在y 轴上,若使MC MD -取最大值,求出这个最大值及此时点M 的坐标.【答案】(1)AB 解析式:2+23y x = (2)①1(1,3)D -- 算法:利用1AOB AID ≅ 设1(,)D m n 20(3)0(3)0m n -=--⎧⎨--=-⎩解得13m n =-⎧⎨=-⎩ 则1(1,3)D -- 同理2(5,3)D -(3)根据题意,如图:12(2,0)(2,0)C C -、(两种情况答案一样,自行分类分析)当11,,C D M 三点共线时,MC MD -取最大值,最大值为11C D 11C D 解析式:36y x =--则M (0,-6)11max 10MC MD C D -==练习:1.已知直线1:l y x b =-+与x 轴交于点A ,直线2416:33l y x =-与x 轴交于点B ,直线12l l 、交于点C ,且C 点的横坐标为1.(1)求直线1l 的解析式和点A 的坐标.(2)直线1l 与y 轴交于点D ,将1l 向上平移9个单位得3l ,3l 与x 轴、y 轴分别交于点E 、F ,点P 为3l 上一动点,连接AP 、BP ,当△ABP 的周长最小时,求△ABP 的周长和点P 的坐标.(3)将1l 绕点C 逆时针旋转,使旋转后的直线4l 过点G (-2,0),过点C 作5l 平行于x 轴,点M 、N 分别为直线4l 、5l 上两个动点,是否存在点M 、点N ,使△BMN 是以点M 为直角顶点的等腰直角三角形,若存在,求出点M 的坐标,若不存在,请说明理由.【答案】解:(1)将1x =代入直线41633y x =-,得4161433y =⨯-=-, 故点C 的坐标为(1,4)-,将C 的坐标(1,4)-代入直线y x b =-+得,41b -=-+, 解得3b =-,∴直线1:3l y x =--,令0y =,则30x --=,解得3x =-,故点A 的坐标为(3,0)-,(2)直线3l 为1l 向上平移9个单位所得,故直线3l 的解析式为:6y x =-+,令0x =,得6y =,令0y =,得6x =,故点E ,点F 的坐标分别为(6,0),(0,6), 直线2416:33l y x =-与x 轴交于点B , 令0y =,得4x =,故B 点的坐标为(4,0),取点B 关于3l 的对称点Q ,设点Q 的坐标为(,)a b ,则线段BQ 的中点坐标为(2a b +,)2b 在直线3l , ∴622b a b +=-+,(1) 且(1)14b a ⋅-=--即14b a =-,(2) 联立(1)(2)得622b a b b +⎧=-+⎪⎪⎨⎪,解得:62a b =⎧⎨=⎩, (6,2)Q ∴,直线AQ 的解析式:2293y x =+, 当ABP ∆的周长最小时,即AP BP +最小, 连接AQ ,交直线3l 于点P ,此时AP BP +最小,最小值为22(63)(20)85AQ =++-=,7AB =,此时ABP ∆的周长为785+,由22936y x y x ⎧=+⎪⎨⎪=-+⎩解得48111811x y ⎧=⎪⎪⎨⎪=⎪⎩, P ∴点坐标为48(11,18)11, (3)设4l 的解析式:y mx n =+,将(1,4)C -,(2,0)G -,代入y mx n =+得,024m n m n =-+⎧⎨-=+⎩,解得4383m n ⎧=-⎪⎪⎨⎪=-⎪⎩, 4l ∴的解析式为:4833y x =--, 1︒当点M 在直线4l 的上方时,设点(,4)N n -,点48(,)33M s s --, 过点N ,B 分别作y 轴的平行线,过点M 作x 轴的平行线,三条直线分别交于R ,S 两点,如图则R ,S 的坐标分别为48(,)33n s --,48(4,)33s --, RM s n ∴=-,48433RN s =--,4MS s =-,4833SB s =--, 90NMB ∠=︒,90NMR SMB ∴∠+∠=︒,90BMS MBS ∠+∠=︒,90S R ∠=∠=︒,MB MN =,()MNR MBS AAS ∴∆≅∆,RM SB ∴=,RN SM =, 即4833s n s -=--,484433s s --=-, 解得8s =-,16n =-,∴点M 的坐标为(8,8)-,2︒当点M 在直线4l 的下方时,设点(,4)N n -,点48(,)33M s s --, 过点N ,B 分别作y 轴的平行线,过点M 作x 轴的平行线,三条直线分别交于R ,S 两点,如图则R ,S 的坐标分别为48(,)33n s --,48(4,)33s --, RM n s ∴=-,48433RN s =+-,4MS s =-,4833SB s =+, 90NMB ∠=︒,90NMR SMB ∴∠+∠=︒,90BMS MBS ∠+∠=︒,NMR MBS ∴∠=∠,90S R ∠=∠=︒,MB MN =,()MNR MBS AAS ∴∆≅∆,RM SB ∴=,RN SM =,即4833n s s -=+,484433s s +-=-, 解得407s =,16n =, ∴点M 的坐标为40(7,72)7-, 综上点M 的坐标为(8,8)-或40(7,72)7-,练习2:7.(2020春•官渡区期末)如图,在平面直角坐标系中,直线13:4l y x =与直线2:(0)l y kx b k =+≠相交于点(,3)A a ,直线2l 与y 轴交于点(0,5)B -. (1)求直线2l 的函数解析式;(2)将OAB ∆沿直线2l 翻折得到CAB ∆,使点O 与点C 重合,AC 与x 轴交于点D .求证:四边形AOBC 是菱形;(3)在直线BC 下方是否存在点P ,使BCP ∆为等腰直角三角形?若存在,直接写出点P 坐标;若不存在,请说明理由.【答案】解:(1)直线3?:4l y x =与直线?:l y kx b =+相交于点(,3)A a , (4,3)A ∴, 直线交?l 交y 轴于点(0,5)B -,5y kx ∴=-,把(4,3)A 代入得,345k =-,2k ∴=,∴直线2l 的解析式为25y x =-;(2)22345OA =+=,OA OB ∴=,将OAB ∆沿直线?l 翻折得到CAB ∆,OB OC ∴=,OA AC =,OA OB BC AC ∴===,∴四边形AOBC 是菱形;(3)如图,过C 作CM OB ⊥于M ,则4CM OD ==,5BC OB ==,3BM ∴=,(4,2)C ∴-, 过1P 作1PN y ⊥轴于N , BCP ∆是等腰直角三角形, 190CBP ∴∠=︒,1MCB NBP ∴∠=∠, 1BC BP =,BCM ∴∆≅△1()PBN AAS , 4BN CM ∴==, 1(3,9)P ∴-;同理可得,2(7,6)P -,37(2P ,11)2-. 综上所述,点P 的坐标是(3,9)-或(7,6)-或7(2P ,11)2-.。

一次函数之存在性问题(一)(讲义及答案).

一次函数之存在性问题(一)(讲义及答案).

3一次函数之存在性问题(一)(讲义)➢课前预习1.如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为( ,1),P 为y 轴上一点,且△POA 为等腰三角形,则满足条件的点P 的坐标为.2.如图是乐乐的五子棋棋盘的一部分(5×5 的正方形网格),以点D,E 为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC 全等,这样的格点三角形最多可以画出个.1➢知识点睛1.存在性问题:通常是在变化的过程中,根据已知条件,探索某种状态是否存在的题目,主要考查.2.存在性问题的处理思路:①分析不变特征分析背景图形中的定点、定线及不变特征,结合图形形成因素(判定,定义等)考虑分类.②分类画图求解分析各种状态的可能性,画出符合题意的图形.通常先尝试画出其中一种情形,分析解决后,再类比解决其他情形.③结果验证回归点的运动范围,画图或推理,验证结果.注:复杂背景下的存在性问题往往需要研究背景图形,几何背景往往研究点、线、图形;函数背景往往研究点坐标、表达式等.3.等腰三角形存在性的不变特征及特征下操作要点举例:两定一动连接两个定点得定线段,定线段在等腰三角形中作腰或底进行分类(两圆一线),通常借助腰相等或者“三线合一”进行求解.4.全等三角形存在性的特征分析及特征下操作要点:分析两三角形的不变特征及对应关系,根据不确定的对应关系进行分类,通常借助边、角的对应相等进行求解.➢精讲精练1.如图,直线y=kx-4 与x 轴、y 轴分别交于点A,B,且OB4.OA 3点 C 在第一象限,且在直线y=kx-4 上,△AOC 的面积是6.(1)求点C 的坐标.(2)x 轴上是否存在点P,使△POC 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.2.如图,直线y=2x+3 与y 轴交于点A,与直线x=1 交于点B.(1)求点A,B 的坐标.(2)在直线x=1 上是否存在点P,使△ABP 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.2 3.如图,在平面直角坐标系中,四边形 OABC 的边 OC ,OA 分 别与 x 轴、y 轴重合,AB ∥OC ,∠BCO =45°,BC = 4 ,点 C 的坐标为(-6,0),直线 BD 交 y 轴正半轴于点 D ,且 OD =2.(1) 求直线 BD 的表达式.(2) 若 P 是直线 BD 上的一个动点,是否存在点 P ,使以O ,D ,P 为顶点的三角形是等腰三角形?若存在,求出点 P 的坐标;若不存在,请说明理由.4.如图,直线y =1x + 2 与x 轴、y 轴分别交于点A,B,点P 是2直线y =1x + 2 上的一个动点,过点P 作直线AB 的垂线,分2别交x 轴、y 轴于点E,F,是否存在点P,使△EOF≌△BOA?若存在,求出点P 的坐标;若不存在,请说明理由.5.如图,直线y=-x+2 与x 轴、y 轴分别交于点A,B,点C 是直线y=-x+2 上的一个动点(不与点A 重合).过点C 的另一直线CD 与y 轴相交于点D,是否存在点C,使△BCD 与△AOB 全等?若存在,求出点C 的坐标;若不存在,请说明理由.5 5 2 2 2 2 2 【参考答案】➢ 课前预习 1. (0,2)或(0,-2) 2. 4➢ 知识点睛1. 运动的结果 ➢ 精讲精练1. (1)点 C 的坐标为(6,4);(2)存在,点 P 的坐标为( -2 0)或( 13,0).3,0),( 2,0),(12,2. (1)点 A 的坐标为(0,3),点 B 的坐标为(1,5); (2)存在,点 P 的坐标为(1,5 + ),(1,5 - ),(1,1)或(1, 15).43. (1)直线 BD 的表达式为 y = -x + 4 ;(2)存在,点 P 的坐标为(2,0),( ,2 - ),( - , 2 + 2 )或(1,1).4. 存在,点 P 的坐标为( - 12 , 4 )或( 4 , 12)5 5 5 55. 存在,点 C 的坐标为( - ,2 + ),( 2 ,2 - )或(-2,4).13 13 2。

初中数学课件一次函数中三角形的存在性问题

初中数学课件一次函数中三角形的存在性问题
(2)在移动的过程中是否存在某个时刻能使△是等腰三角形?若能,
求出的值,并求此时点的坐标;若不能,请说明理由.
课堂小结
等腰三角形的存在性:两圆加一中垂线,记得去掉共线点.
知识讲解
直角三角形的存在性
关联知识点
1
尺规作图:作弧
2
直角三角形斜边上的中线等于斜边上的
一半
知识讲解
直角三角形的存在性:一圆加上两垂线,构造思想得坐标.
△ 为直角三角形 ,写出所有符合条件的点的坐标.
课堂小结
直角三角形的存在性:一圆加上两垂线,构造思想得坐标.
原题证明
一次函数 =
4

3
+ 4分别交轴、y轴于、两点,在轴上取一点C,使
△ 为等腰三角形 ,写出所有符合条件的点的坐标.
原题证明
如图,点坐标为(4,0),点在第一象限,且在直线 = − + 5上,
此时,2 = = 4 − (−3) = 7,点2 在第一象限,离轴的距离为7,离
轴的距离为4,∴ 2 (4, 7);
③当∠3 是直角时,∵∠ = 45∘
∴此情况不存在,应舍去
综上所述,当取0.5或4时,△ 是直角三角形.
应用练习
一次函数 =
4

3
+ 4分别交轴、y轴于、两点,在轴上取一点C,使
当 = 时,3 点的坐标为(2, 0),
当 = 时,4 点的坐标为(0, 0),
综上所述,点的坐标为(2 2 − 2, 0),(−2 2 − 2, 0),(2, 0),(0, 0).
应用练习
如图,在平面直角坐标系中,一次函数 = 1 + 的图象与轴交于点
(−3, 0),与 轴交于点 ,且与正比例函数 = 的图象交点为(3, 4).求:

一次函数等腰直角三角形存在性问题教案

一次函数等腰直角三角形存在性问题教案

专题:一次函数中等腰直角三角形存在性问题【教学目标】理解、掌握一次函数中等腰直角三角形存在性问题两定一动模型点的找法和算法,以及两动一定模型的解题思路。

经历作图,旋转三角板这些操作,促进学生对数学知识的理解,形成有效的学习模式。

【回顾】 一次函数中等腰三角形存在性问题找点方法: ,算法: 一次函数中直角三角形存在性问题找点方法: ,算法:【新知】以(,)A A A x y 、(,)c c C x y 为三角形的边,在平面内找一点B 使得△ABC 为等腰直角三角形(二定一动)一.找法:二.算法:例题例1:如图,在平面直角坐标系中,已知A(a,0),B(0,b)其中a、b满足关系式|a﹣2|=-(b﹣6)2(1)求a,b的值,并写出直线AB的函数表达式;(2)过点A作AD⊥AB,交BC延长线于点D,且AB=AD,N是平面直角坐标系中的一点,是否存在以BD为直角边的等腰直角三角形△BDN,若存在,请直接写出点N的坐标.变式:如图,在平面直角坐标系中,已知A(a,0),B(0,b),其中a、b满足关系式|a﹣2|=-(b﹣6)2(1)求a,b的值,并写出直线AB的函数表达式;(2)过点A作AD⊥AB,交BC延长线于点D,且AB=AD,点M在直线AB 上,点Q是x轴上异于点A的一个动点,是否存在以MQ为斜边的等腰直角三角形△DQM,若存在,请直接写出点Q的坐标.练习1:如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,点A坐标(﹣9,0),直线BC的解析式为y=−34x+12,点D是线段BC上一动点(不与点B、点C重合),过点D作直线DE⊥OB,垂足为E.(1)求点B、点C的坐标;(2)求直线AC的解析式;(3)若点N在射线DE上,是否存在点N使△BCN是等腰直角三角形?若存在,请直接写出点D的坐标;若不存在,请说明理由.2. 如图1,直线y=−34x+m交x轴于点A(4,0),交y轴正半轴于点B.(1)求△AOB的面积;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为射线AB(不含A点)上一点,过点P作y轴的平行线交射线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,在y轴上是否存在点N,使△PQN是等腰直角三角形?若存在,请求出点N的坐标;若不存在,请说明理由.。

一次函数的专题-等腰三角形存在性问题

一次函数的专题-等腰三角形存在性问题

DyxOCB A一次函数中等腰三角形的存在性若△ABC 是等腰三角形,则分三种情况分类讨论:AB=AC ;BA=BC ;CA=CB ,然后利用等腰三角形的性质或勾股定理计算(或建立方程)解题。

如图①,在直线l 上找一点C ,使得△ABC 为等腰二用形。

图① 图②(1)若AB=AC ,以A 点为圆心,AB 为半径画圆,交直线l 于两点C 1,C 2;(2)若BA=BC ,以B 点为圆心,AB 为半径画圆,交直线l 于两点C 3,C 4;(3)若CA=CB ,作AB 的中垂线交直线l 于点C 5.上述寻找等腰三角形的方法简称“两圆一线(垂直平分线)”。

例:已知直线经过点A (-2,0),B (0,3) (1)求直线的解析式;(2)在x 轴上有一点P ,且△ABP 是等腰三角形,求点P 的坐标。

跟踪练习:1、如图,一次函数y kx b =+的图象与x 轴和y 轴分别交于点A(6,0)和B(0, 23),再将△AOB 沿直线CD 对折,使点A 与点B 重合.直线CD 与x 轴交于点C,与AB 交于点D 、(1)试确定这个一次函数的解析式;(2)求点C 的坐标;(3)在x 轴上是否存在一点P,使△PAB 是等腰三角形,若存在,直接写出点P 的坐标;若不存在请说明理由.2、如图,直线y =4-3x +8与x 轴、y 轴分别交于点A 和点B ,M 是OB 的上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B ′处. (1)求A 、B 两点的坐标; (2)求直线AM 的表达式;(3)在x轴上是否存在点P,使得以点P、M、B′为顶点的三角形是等腰三角形,若存在,请直接写出所有点P的坐标;若不存在,请说明理由.3、如图,直线l₁:y=x+2与直线l₂:y=kx+b相交于点P(1,m)(1)写出k、b满足的关系;(2)如果直线l₂:y=kx+b与两坐标轴围成一等腰直角三角形,试求直线l₂的函数表达式;(3)在(2)的条件下,设直线l₂与x轴相交于点A,点Q是x轴上一动点,求当△APQ是等腰三角形时的Q点的坐标.4、如图,在平面直角坐标系中,过点 B(6,0)的直线 AB 与直线 OA 相交于点 A(4,2).(1)求直线 BC 的函数表达式;(2)若在 x轴上存在一点 M,使 MA+MC 的值最小,请求出点 M 的坐标;(3)在 y轴上是否存在点 N,使△AON 是等腰三角形?如果存在,直接写出点 N 的坐标;如果不存在,说明理由.。

最新一次函数--直角三角形存在性问题

最新一次函数--直角三角形存在性问题

一次函数--直角三角形存在性问题处理方法一次函数y=kx+b(k≠0)中k、b的几何意义:k(称为斜率)表示直线y=kx+b(k≠0)的倾斜程度;b(称为截距)表示直线y=kx+b(k≠0)与y轴交点的。

斜率公式已知点、,且与轴不垂直,过两点、的直线的斜率公式同一平面内,不重合的两直线 y=k1x+b1(k1≠0)与 y=k2x+b2(k2≠0)的位置关系:当时,两直线平行。

当时,两直线垂直。

两直线垂直设两条直线的斜率分别为.若,则.练习1、如图,已知A(1,0),B(0,3),P是直线x=2上一点,若△ABP是以AB为斜边的直角三角形,则点P的坐标为。

2、如图,已知点A(0,1),B(4,3),P是x轴上一点,若△ABP是直角三角形,则点P的坐标为。

3、如图,一次函数(0)y kx b k=+≠的图像交坐标轴于A,B两点,其中A(-4,0)B(0,3),(1)求直线AB的解析式;(2)点C的坐标为(5,2m),连接AC,BC,若∠ACB=90o,则m的值为___________。

练习21. 如图,直线y =kx -4与x 轴、y 轴分别交于B ,C 两点,且43OC OB =. (1)求B 点的坐标和k 的值.(2)若点A (x ,y )是第一象限内的直线y =kx -4上的一个动点,则当点A 运动到什么位置时,△AOB 的面积是6?(3)在(2)成立的情况下,x 轴上是否存在点P ,使△POA 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.2.如图,在直角坐标系中,一次函数y=23x +的图象与x 轴交于点A ,与y 轴交于点B .(1)已知OC ⊥AB 于C ,求C 点坐标;(2)在x 轴上是否存在点P ,使△PAB 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.3.如图,平面直角坐标系中,四边形OABC为直角梯形,CB∥OA,∠OCB=90°,CB=1,AB112y x=-+过A点,且与y轴交于D点.4.如图,在平面直角坐标系中,直线l1:y=162x-+分别与x轴、y轴交于点B,C,且与直线l2:y=12x交于点A.(1)求出点A,B,C的坐标;(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;。

一次函数之存在性问题

一次函数之存在性问题

重难点二:一次函数之存在性问题【知识点睛】通常是在变化的过程中,根据已知条件,探索某种状态是否存在的题目,主要考查运动的结果.一次函数背景下解决存在性问题的思考方向:1.把函数信息(坐标或表达式)转化为几何信息;2.分析特殊状态的形成因素,画出符合题意的图形;3.结合图形(基本图形和特殊状态下的图形相结合)几何特征建立等式来解决问题.【例题精讲】例题1. 如图,直线y=kx-4与x轴、y轴分别交于B,C两点,且OC/OB=4/3.(1)求点B的坐标和k的值.(2)若点A是第一象限内直线y=kx-4上的一个动点,则当点A运动到什么位置时,△AOB 的面积是6?(3)在(2)成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.【参考答案】练1、如图,在平面直角坐标系中,直角梯形OABC的边OC,OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=,点C的坐标为(-9,0).(1)求点B的坐标.(2)若直线BD交y轴于点D,且OD=3,求直线BD的表达式.(3)若点P是(2)中直线BD上的一个动点,是否存在点P,使以O,D,P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.【参考答案】x+4与x轴、y轴分别交于点A、点B,练2、如图,在平面直角坐标系xOy中,直线y=﹣43点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式;S△OCD,若存在,请求出点P的坐标;若不存在,(3)y轴上是否存在一点P,使得S△PAB=12请说明理由.(4)求S△ADE的面积;(5)直线BA与直线CD相交于点E,若点P是x轴上的一动点记d=PE+PD,求d的最小值及此时点P的坐标.(6)在x轴上是否存在一点Q,使△QAB为等腰三角形,若存在,求Q点坐标;若不存在,说明理由.(7)在坐标轴上是否存在点M,使△MAB为等腰三角形,若存在,求M点坐标;若不存在,说明理由.(8)在直线DC上是否存在点N,使得△NDA为等腰三角形,若存在,求N点坐标;若不存在,说明理由.【分析】(1)先求得点A和点B的坐标,则可得到OA、OB的长,然后依据勾股定理可求得AB的长,然后依据翻折的性质可得到AC的长,于是可求得OC的长,从而可得到点C的坐标;(2)设OD=x,则CD=DB=x+4.,Rt△OCD中,依据勾股定理可求得x的值,从而可得到点D(0,﹣6),然后利用待定系数法求解即可;(3)先求得S△PAB的值,然后依据三角形的面积公式可求得BP的长,从而可得到点P的坐标.【解答】解:(1)令x=0得:y=4,∴B(0,4).∴OB=4x+4,解得:x=3,令y=0得:0=﹣43∴A(3,0).∴OA=3.在Rt△OAB中,AB=√OA2+OB2=5.∴OC=OA+AC=3+5=8,∴C(8,0).(2)设OD=x,则CD=DB=x+4.在Rt△OCD中,DC2=OD2+OC2,即(x+4)2=x2+82,解得:x=6,∴D(0,﹣6).设CD的解析式为y=kx﹣6,将C(8,0)代入得:8k﹣6=0,解得:k=3,4∴直线CD的解析式为y=3x﹣6.4S△OCD,(3)∵S△PAB=12∴S △PAB =12×12×6×8=12. ∵点Py 轴上,S △PAB =12,∴12BP•OA=12,即12×3BP=12,解得:BP=8, ∴P 点的坐标为(0,12)或(0,﹣4).。

恒成立与存在性问题

恒成立与存在性问题

01
总结词
一次函数性质简单,常用于基础问 题。
总结词
一次函数在定义域内单调,不存在 极值点。
03
02
总结词
一次函数图像为直线,单调性明显。
总结词
一次函数在定义域内单调,恒成立 与存在性问题较易解决。
04
二次函数的恒成立与存在性问题实例
总结词
二次函数开口方向由二次项系数决定。
总结词
二次函数在区间$[-infty, frac{b}{2a}]$上单调递增,在区间$[-
利用三角函数的周期性、对称性、数形结合 等方法,判断三角函数在某个区间内是否存 在极值点或零点。
三角函数存在性问题的应 用
在解决实际问题中,如物理、工程等领域, 常常需要判断某个三角函数是否满足某些条
件,如是否存在最优解或可行解。
03
恒成立与存在性问题的解 法
分离参数法
总结词
分离参数法是一种通过将参数分离到不等式的两边,从而简化问题的方法。
判别式法
总结词
判别式法是一种通过引入判别式来解决 问题的方法。
VS
详细描述
判别式法的基本思想是通过引入判别式来 简化方程的解的求解过程。这种方法在处 理一元二次方程和二元二次方程组时非常 有效。通过判别式,我们可以更容易地找 到方程的解,并且可以更好地理解解的性 质和分布。
04
实例分析
一次函数的恒成立与存在性问题实例
详细描述
分离参数法的基本思想是将参数从不等式中分离出来,单独放在不等式的另一 边,这样可以更容易地找到参数的取值范围,从而解决问题。这种方法在处理 包含参数的不等式问题时非常有效。
数形结合法
总结词
数形结合法是一种通过将问题转化为 图形问题,从而直观地理解问题的方 法。

一次函数与矩形存在性问题

一次函数与矩形存在性问题

一次函数与矩形存在性问题本文讨论一次函数与矩形存在性的问题,并探讨其中的关系和特点。

引言一次函数是指具有形式为 y = ax + b 的函数,其中 a 和 b 均为常数,且 a 不等于 0。

矩形是一个具有四个直角的四边形,其中所有内角均为 90 度。

在数学中,我们经常会遇到一次函数与矩形的相关问题,例如确定一次函数是否与某个矩形相交或相切。

问题分析一次函数与矩形相交或相切的存在性取决于函数的斜率和截距与矩形的边界条件之间的关系。

以下是一些常见情况的分析结果:1. 当函数的斜率为正时,如果函数的截距小于矩形最低边的上端点,并且截距大于矩形最高边的下端点,则函数与矩形相交或相切。

2. 当函数的斜率为负时,如果函数的截距大于矩形最低边的上端点,并且截距小于矩形最高边的下端点,则函数与矩形相交或相切。

3. 当函数的斜率为零时,如果函数的截距在矩形最低和最高边的下、上端点之间,则函数与矩形相交或相切。

需要注意的是,以上分析仅适用于矩形的上、下、左、右四条边界条件,对于矩形内部的情况则不予考虑。

实例分析为了更好地理解一次函数与矩形存在性问题,我们来看一个具体的实例。

假设有一条直线方程为 y = 2x + 3,并且有一个矩形的四个顶点坐标分别为 A(1, 2),B(4, 5),C(6, 1) 和 D(3, -2)。

我们可以根据上述分析方法来判断这条直线是否与该矩形相交或相切。

根据函数的斜率和截距,我们可以得知该直线的斜率为 2,截距为 3。

然后我们可以根据矩形的边界条件来判断:1. 矩形的最低边为 AB,上端点为 B(4, 5)。

根据情况 1,我们可以知道直线的截距必须小于 B 的 y 坐标,即 3 < 5,所以该直线与矩形 AB 边相交或相切。

2. 矩形的最高边为 CD,下端点为 D(3, -2)。

根据情况 1,我们可以知道直线的截距必须大于 D 的 y 坐标,即 3 > -2,所以该直线与矩形 CD 边相交或相切。

一次函数与平行四边形存在性问题

一次函数与平行四边形存在性问题

一次函数与平行四边形存在性问题问题描述在平面几何中,我们知道一次函数可以用来表示一条直线的方程,而平行四边形则是具有平行边的四边形。

我们现在想研究以下问题:一次函数是否存在与平行四边形的边平行的斜率?解决方案我们将通过讨论一次函数的斜率和平行四边形的边进行分析。

一次函数的斜率一次函数可以用如下的一般方程表示:y = mx + c其中,`m` 表示斜率,`c` 表示截距。

斜率 `m` 是函数直线斜率的关键参数,它决定了直线的倾斜程度。

我们知道,当两条直线的斜率相等时,它们是平行的。

平行四边形的边平行四边形是一种特殊的四边形,它的对边是平行的。

我们可以定义平行四边形的边为 `AB` 和 `CD`,并假设它们是平行的。

讨论现在,我们来探讨一次函数是否可能存在与平行四边形的边平行的斜率 `m`。

假设 `AB` 和 `CD` 是平行四边形的边,我们可以通过求解两个点的斜率来判断函数的斜率是否与平行四边形的边平行。

假设点 `A` 的坐标为 `(x1, y1)`,点 `B` 的坐标为 `(x2, y2)`,我们可以计算出两点的斜率 `m_AB`:m_AB = (y2 - y1) / (x2 - x1)同理,如果点 `C` 的坐标为 `(x3, y3)`,点 `D` 的坐标为 `(x4, y4)`,我们可以计算出另一条边的斜率 `m_CD`:m_CD = (y4 - y3) / (x4 - x3)如果 `m_AB` 等于 `m_CD`,那么一次函数存在与平行四边形的边平行的斜率。

总结通过对一次函数的斜率和平行四边形的边进行分析,我们得出结论:一次函数存在与平行四边形的边平行的斜率。

请注意,此结论仅在满足题设条件的情况下成立,具体问题具体分析。

此解决方案仅提供了一种可能的方法,具体问题的解决需要进一步讨论和推导。

参考资料:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数之存在性问题(
知识点睛
函数背景下研究存在性问题,先把函数信息转化为几何信息,然后按照存在性问题来处理.
几何图形
一次函数
坐标
①求坐标:___________________________;______________.
②求函数表达式:__________________;_________________.
③研究几何图形:__________________;__________________.
二、精讲精练
1.
如图,直线2
3
y x
=+与坐标轴分别交于A,B两点,点C在y轴上,且
1
2
OA
AC
=,直线CD
⊥AB于点P,交x轴于点D.
(1)求点P的坐标;
(2)坐标系内是否存在点M,使以点B,P,D,M为顶点的四边形为平行四边形若存在,求出点M的坐标;若不存在,请说明理由.
(
~
2.如图,在平面直角坐标系中,直角梯形OABC的边OC,OA分别与x轴、y轴重合,AB∥OC,
∠AOC=90°,∠BCO=45°,BC
=,点C的坐标为(-9,0).
(1)求点B的坐标.
(2)如图,直线BD交y轴于点D,且OD=3,求直线BD的表达式.
(3)若点P是(2)中直线BD上的一个动点,是否存在点P,使以O,D,P为顶点的三角形是等腰三角形若存在,求出点P的坐标;若不存在,请说明理由.

; …
3.如图,直线y=kx-4与x轴、y轴分别交于B,C两点,且
4
3 OC
OB

(1)求B点的坐标和k的值.
(2)若点A(x,y)是第一象限内的直线y=kx-4上的一个动点,则当点A运动到什么位置时,△AOB的面积是6
(3)在(2)成立的情况下,x轴上是否存在点P,使△POA是等腰三角形若存在,求出点P的坐标;若不存在,请说明理由.
] \
4.如图,在平面直角坐标系中,点A,B分别在x轴、y轴上,OA=6,OB=12,点C是直线y=2x
与直线AB的交点,点D在线段OC上,OD
=

(1)求直线AB的解析式及点C的坐标;
(2)求直线AD的解析式;
(3)P是直线AD上的一个动点,在平面内是否存在点Q,使以O,A,P,Q为顶点的四边形是菱形若存在,求出点Q的坐标;若不存在,请说明理由.
;{
5. `
6.
如图,直线1
22
y x =+与x 轴、y 轴分别交于A ,B 两点,点C 的坐标为(-3,0)
,P (x ,y )是直线1
22
y x =
+上的一个动点(点P 不与点A 重合)
. (1)在P 点运动过程中,试写出△OPC 的面积S 与x 的函数关系式;
(2)当P 运动到什么位置时,△OPC 的面积为27
8
,求出此时点P 的坐标;
(3)过P 作AB 的垂线分别交x 轴、y 轴于E ,F 两点,是否存在这样的点P ,使△EOF ≌△BOA 若存在,求出点P 的坐标;若不存在,请说明理由.
<
【参考答案】 :
一、知识点睛
① 函数表达式求出或表达出坐标;线段长转坐标. ② 坐标代入;k ,b 几何意义.
x
x
③坐标转线段长;k,b几何意义.
一次函数之存在性问题 (每日一题)
1.如图,在直角坐标系中,一次函数y
=2
3
x+的图象与x轴交于点A,与y轴交于点B.
(1)已知OC⊥AB于C,求C点坐标;
(2)在x轴上是否存在点P,使△PAB为等腰三角形若存在,请直接写出点P的坐标;若不存在,请说明理由.

-
2.如图,一次函数y
=+x轴、y轴分别交于点A,B,以线段AB为直
角边在第一象限内作Rt△ABC,且使∠ABC=30°.(1)求△ABC的面积;
(2)如果在第二象限内有一点P(m

2
),试用含m的代数式表示△APB的面积,并求当
△APB与△ABC面积相等时m的值;
(3)在坐标轴上是否存在一点Q,使△QAB是等腰三角形若存在,请直接写出点Q所有可能的坐标;若不存在,请说明理由.

3.如图,在平面直角坐标系中,直线y=x+1与y=-3
4
x+3交于点A,分别交x轴于点B和点
C,点D是直线AC上的一个动点.
4.(1)求出点A,B,C的坐标;
5.(2)在直线AB上是否存在点E,使得以点E,D,O,A为顶点的四边形是平行四边形如果存在,求出点E的坐标;如果不存在,请说明理由.


6.如图,平面直角坐标系中,四边形OABC为直角梯形,CB∥OA,∠OCB=90°,CB=
1,AB

1
1
2
y x
=-+过A点,且与y轴交于D点.
(1)求点A、点B的坐标;
(2)试说明:AD⊥BO;
(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O,B,M,N为顶点的四边形是平行四边形若存在,求出N点的坐标,若不存在,请说明理由.
7.如图,在平面直角坐标系中,直线l1:y=
1
6
2
x
-+分别与x轴、y轴交于点B,C,且与直
线l2:y=1
2
x交于点A.
(1)求出点A,B,C的坐标;
(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;
(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O,C,P,Q 为顶点的四边形是菱形若存在,直接写出点Q的坐标;若不存在,请说明理由.
,
一次函数之存在性问题(随堂测试)
1.如图,直线y=kx-1与x轴、y轴分别交于B,C两点,且
1
2 OC
OB
.
(1)求B点的坐标和k的值.
(2)若点A(x,y)是第一象限内的直线y=kx-1上的一个动点,则当点A运动到什么位置时,△AOB的面积是2
(3)在(2)成立的情况下,x轴上是否存在点P,使△POA是等腰三角形若存在,求出点P 的坐标;若不存在,请说明理由.
-
<
!! ^
一次函数之存在性问题(作业)
(3)x轴上是否存在点P,使△PAD是等腰三角形若存在,求出点P的坐标;若不存在,请说明理由.
3. 如图,四边形ABCD 为矩形,点D 与坐标原点重合,点C 在x 轴上,点A 在y 轴上,点B
的坐标是(3,4),矩形ABCD 沿直线EF 折叠,点A 落在BC 边上的G 处,点E ,F 分别在
AD ,AB 上,且F 点的坐标是(2,4).

(1)求点G 的坐标;
(2)求直线EF 的解析式;
(3)坐标系内是否存在点M ,使以点A ,E ,F ,M 为顶点的四边形为平行四边形若存在,求出点M 的坐标;若不存在,请说明理由.

-
4. 如图,在平面直角坐标系中,直线y =-x +8与x 轴、y 轴分别交于点A ,B ,点P (x ,y )
是直线AB 上一动点(点P 不与点A 重合),点C (
6,0),O 是坐标原点,设△PCO 的面积为S .
(1)求S 与x 的函数关系式.
(2)当点P运动到什么位置时,△PCO的面积为15
(3)过点P作AB的垂线分别交x轴、y轴于点E,F,是否存在这样的点P,使△EOF≌△BOA若存在,求出点P的坐标;若不存在,请说明理由.。

相关文档
最新文档