反比例函数面积问题专题(一)

合集下载

反比例函数与一次函数综合(面积问题、线段和差,函数值比较大小)—2024年二轮热点题型(全国通用)

反比例函数与一次函数综合(面积问题、线段和差,函数值比较大小)—2024年二轮热点题型(全国通用)

反比例函数与一次函数综合目录热点题型归纳 (1)题型01 面积问题 (1)题型02 两线段和差最值问题 (3)题型03 两函数值比较大小问题 (15)中考练场 (31)题型01 面积问题【解题策略】【典例分析】例.(2023·辽宁鞍山·中考真题)如图,直线AB 与反比例函数()0k y x x=<的图象交于点()2,A m −,(),2B n ,过点A 作AC y 轴交x 轴于点C ,在x 轴正半轴上取一点D ,使2OC OD =,连接BC ,AD .若ACD 的面积是6.(1)求反比例函数的解析式.(2)点P 为第一象限内直线AB 上一点,且PAC △的面积等于BAC 面积的2倍,求点P 的坐标.【答案】(1)8y x =−;(2)()2,8P【分析】(1)根据2OC OD =,可得三角形面积之比,计算出AOC 的面积,面积乘2即为8k =,解析式可得;(2)根据点的坐标求出直线AB 的解析式为6y x =+,设符合条件的点(),6P m m +,利用面积的倍数关系建立方程解出即可.【详解】(1)解:∵2OC OD =,ACD 的面积是6,∴4AOC S =V , ∴8k =,∵图象在第二象限,∴8k =−,∴反比例函数解析式为:8y x =−;(2)∵点()2,A m −,(),2B n ,在8y x =−的图象上, ∴4m =,n =−4,∴()2,4A −,()4,2B −,设直线AB 的解析式为y kx b =+,2442k b k b −+=⎧⎨−+=⎩,解得:16k b =⎧⎨=⎩,∴直线AB 的解析式为6y x =+,∵AC y 轴交x 轴于点C ,∴()2,0C −, ∴14242ABC S =⨯⨯=,设直线AB 上在第一象限的点(),6P m m +, ∴()142282PAC ABC S m S =⨯⨯+==,∴248m +=,∴2m =,∴()2,8P .【点睛】本题考查了反比例函数与一次函数的交点问题,交点坐标满足两个函数关系式.【变式演练】1.(2023·山东泰安·三模)如图,一次函数1112y x =+的图象与反比例函数2(0)k y x x =>的图象交于点(),3A a ,与y 轴交于点B .(1)求a ,k 的值;(2)请直接写出在第一象限124y y <<时,x 的取值范围.(3)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC AD =,连接.CB 求ABC 的面积.【答案】(1)412a k ==,(2)34x <<(3)8【分析】本题主要考查了求反比例函数的解析式,结合一次函数的解析式求点的坐标,解决问题的关键是画出图形.(1)用待定系数法即可求解;(2)根据图象直接得出答案;(3)求出()2,6C ,由1144822ABC A S CE x =⋅=⨯⨯=△,即可求解.【详解】(1)将点A 的坐标代入一次函数表达式得:1312a =+, 解得:4a =,则点()4,3A ,将点A 的坐标代入反比例函数表达式得:34k=, 解得:12k =;(2)把4y =代入12y x =,得3x =, 由图可知24y <时,3x >, 由图可知12y y <时,4x <, 124y y ∴<<时,34x <<;(3)点()4,3A ,D 点的纵坐标是0,AD AC =, ∴点C 的纵坐标是3206⨯−=,把6y =代入12y x =,得2x =, ()2,6C ∴,如图1,作CD x ⊥轴于D ,交AB 于E ,当2x =时,12122y =⨯+=,()2,2E ∴, ()2,6C ,624CE ∴=−=,∴由1144822ABC A S CE x =⋅=⨯⨯=△.2.(2023·山东泰安·一模)如图,一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于()1,2A ,()2,B n −两点.(1)求一次函数和反比例函数的表达式.(2)根据图象,直接写出满足21k k x b x+<的x 的取值范围. (3)若点P 在线段AB 上,且1:3AOP BOP S S =△△:,求点P 的坐标.【答案】(1)2y x =,1y x =+(2)01x <<或<2x − (3)15,44⎛⎫ ⎪⎝⎭【分析】(1)把()1,2A 坐标代入2k y x =可得解析式,继而求出n ,用待定系数法求出一次函数解析式; (2)根据图象直接写出21k k x b x +<的x 的取值范围即可;(3)利用1:3AOP BOP S S =△△:得出3PB PA =,设P 坐标(),1x x +利用勾股定理建立方程求出x 即可. 本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.【详解】(1)解:反比例函数2k y x =经过()1,2A , 2122k ∴=⨯=,∴反比例函数解析式为2y x =,()2B n −,在反比例函数2y x =的图象上, 212n ∴==−−,()21B ∴−−,,直线1y k x b =+经过()1,2A ,()2,1B −−,11221k b k b +=⎧∴⎨−+=−⎩,解得111k b =⎧⎨=⎩,∴一次函数的解析式为1y x =+;(2)解:观察函数图象可知21k k x b x +<的x 的取值范围是01x <<或<2x −;(3)解:设()1P x x +,,∵1:3AOP BOP S S =△△::1:3AP BP ∴=,即3PB PA =,()()()()22222119112x x x x ⎡⎤∴++++=−++−⎣⎦, 解得15(4x =舍去),214x =, P ∴点坐标为1544⎛⎫ ⎪⎝⎭,3.(2023·广东潮州·二模)如图,反比例函数2y x=的图象与一次函数y kx b =+的图象交于点A 、B ,点A 、B 的横坐标分别为1,2−,一次函数图象与y 轴的交于点C ,与x 轴交于点D .(1)求一次函数的解析式;(2)对于反比例函数2y x=,当1y <−时,写出x 的取值范围; (3)点P 是第三象限内反比例图象上的一点,若点P 满足S △BDP =12S △ODA ,请求出点P 的坐标.【答案】(1)1y x =+(2)20x −<<(3)(或(1−【分析】本题主要考查二次函数性质,一次函数性质,图形的面积等,解题的关键在于利用反比例函数得出交点坐标,从而求出一次函数解析式,以及懂得观察图象,获取图象信息,从而得到自变量的取值范围,以及利用割补法求面积.(1)利用反比例函数求出交点A 、点B 的坐标分别为()1,2,()2−,-1,再利用待定系数法即可求出一次函数的解析式.(2)当1y <−时,即为B 点右侧图象,观察图象,从而得出此段图象对应的自变量的取值范围为20x −<<.(3)先求出ODP 的面积为1,从而确定BDP △的面积为12,再通过点P 的不同的位置,设点P 的坐标为2,x x ⎛⎫ ⎪⎝⎭,根据图形面积列出方程,即可求出点P 的坐标.【详解】(1)解:∵反比例函数2y x =的图象与一次函数y kx b =+的图象交于点A 、B ,点A 、B 的横坐标分别为1,﹣2;∴A ()1,2,B()2,1−−; 把A 、B 的坐标代入y kx b =+得221k b k b +=⎧⎨−+=−⎩,解得11k b =⎧⎨=⎩;∴一次函数的解析式为1y x =+.(2)∵()2,1B −−;由图象可知,当20x −<<时,1y <−.(3)∵一次函数为1y x =+;∴D ()1,0−;∵A ()1,2, ∴1212ODA S =⨯⨯V ; ∴1122BDP ODA S S ==V V , 设点P 的坐标为: 2,x x ⎛⎫ ⎪⎝⎭,0x <;∴ON x =−,2PN x =−;当P 在直线下方时,如图1,则;()()()121211=1212112222BDP BDM PDNBMNP S S S S x x x x =+−⎛⎫⎛⎫−++−−−−−⨯= ⎪ ⎪⎝⎭⎝⎭梯形;解得x =∴点P (.当P 在直线AB 的上方时,如图2,则;()()()1211112211122222BDF BDM PDN BMNP SS S S x x x x =+−⎛⎫⎛⎫=−−−+−⨯−−−−= ⎪ ⎪⎝⎭⎝⎭梯形;解得1x =−∴点P (1−;综上可得:点P的坐标为:( 或(1− .4.(2023·广东云浮·二模)如图,在平面直角坐标系中,一次函数y kx b =+图象与x 轴交于点A ,与y 轴交于点B ,与反比例函数m y x=在第一象限内的图象交于点C ,CD x ⊥轴, 1tan BAO 2∠=,42OA OD ==,.(1)求一次函数与反比例函数的解析式;(2)若点E 是反比例函数在第三象限内图象上的点,过点E 作EF ⊥y 轴,垂足为点F ,连接OE AF 、,如果4BAF EFO SS =,求点E 的坐标. 【答案】(1)一次函数解析式为122y x =+,反比例函数解析式为6y x =(2)342E ⎛⎫−− ⎪⎝⎭, 【分析】本题主要考查了一次函数与反比例函数综合,解直角三角形,待定系数法求函数解析式,正确求出对应的函数解析式是解题的关键.(1)先求出A 、D 坐标,以及AD 的长,解直角三角形求出CD 的长,进而得到点C 的坐标,然后利用待定系数法求出对应的函数解析式即可;(2)设出点E 坐标,求出OEF 的面积为3,进而得到ABF △的面积为12,再求出点B 的坐标,得到OB 的长,利用面积法求出BF 的长进而求出点E 的坐标即可.【详解】(1)解:∵42OA OD ==,,∴()()4020A D −,,,,426AD OA OD =+=+=,∵BAO CAD ∠=∠, ∴1tan tan 2BAO CAD ∠=∠=, ∵CD x ⊥轴, ∴1tan 2CD CAD AD ∠== , ∴132CD AD ==,∴点C 的坐标为()23,,∴把()()4023A C −,,,代入y kx b =+中得4023k b k b −+=⎧⎨+=⎩,解得122k b ⎧=⎪⎨⎪=⎩,∴一次函数的解析式为122y x =+,∵点C 在反比例函数my x =的图象上,∴将()23C ,代入m y x =中得32m=, 解得:6m =,∴反比例函数解析式为6y x =;(2)解:设6E m m ⎛⎫−− ⎪⎝⎭,, ∴6EF m OF m ==,∴132EFOSOF EF =⋅=,∴142BAFEFOSS==,∵一次函数解析式为122y x =+,∴()02B ,,∴2OB =,又∵4OA =,12ABF S BF OA =⋅=△,∴()2212OF +=,∴626m +=,∴32m =, ∴342E ⎛⎫−− ⎪⎝⎭,. 题型02 两线段和差最值问题【解题策略】例.(2023·四川宜宾·中考真题)如图,在平面直角坐标系xOy 中,等腰直角三角形ABC 的直角顶点()30C ,,顶点A 、()6B m ,恰好落在反比例函数ky x=第一象限的图象上.(1)分别求反比例函数的表达式和直线AB 所对应的一次函数的表达式;(2)在x 轴上是否存在一点P ,使ABP 周长的值最小.若存在,求出最小值;若不存在,请说明理由.【答案】(1)6y x =,142y x =−+(2)在x 轴上存在一点()5,0P ,使ABP 周长的值最小,最小值是【分析】(1)过点A 作AE x ⊥轴于点E ,过点B 作BD x ⊥轴于点D ,证明()AAS ACE CBD ≌,则3,CD AE BD EC m ====,由3OE m =−得到点A 的坐标是()3,3m −,由A 、()6B m ,恰好落在反比例函数ky x =第一象限的图象上得到()336m m−=,解得1m =,得到点A 的坐标是()2,3,点B 的坐标是()6,1,进一步用待定系数法即可得到答案;(2)延长AE 至点A ',使得EA AE '=,连接A B '交x 轴于点P ,连接AP ,利用轴对称的性质得到AP A P '=,()2,3A '−,则AP PB A B '+=,由AB =AB 是定值,此时ABP 的周长为AP PB AB AB A B '++=+最小,利用待定系数法求出直线A B '的解析式,求出点P 的坐标,再求出周长最小值即可.【详解】(1)解:过点A 作AE x ⊥轴于点E ,过点B 作BD x ⊥轴于点D , 则90AEC CDB ∠=∠=︒,∵点()30C ,,()6B m ,,∴3,6,OC OD ==BD m =, ∴3CD OD OC =−=, ∵ABC 是等腰直角三角形, ∴90,ACB AC BC ∠=︒=,∵90ACE BCD CBD BCD ∠+∠=∠+∠=︒, ∴ACE CBD ∠=∠, ∴()AAS ACE CBD ≌,∴3,CD AE BD EC m ====, ∴3OE OC EC m =−=−, ∴点A 的坐标是()3,3m −,∵A 、()6B m ,恰好落在反比例函数ky x =第一象限的图象上.∴()336m m−=,解得1m =,∴点A 的坐标是()2,3,点B 的坐标是()6,1,∴66k m ==,∴反比例函数的解析式是6y x =,设直线AB 所对应的一次函数的表达式为y px q =+,把点A 和点B 的坐标代入得,2361p q p q +=⎧⎨+=⎩,解得124p q ⎧=−⎪⎨⎪=⎩,∴直线AB 所对应的一次函数的表达式为142y x =−+,(2)延长AE 至点A ',使得EA AE '=,连接A B '交x 轴于点P ,连接AP ,∴点A 与点A '关于x 轴对称, ∴AP A P '=,()2,3A '−,∵AP PB A P PB A B ''+=+=, ∴AP PB +的最小值是A B '的长度,∵AB =AB 是定值,∴此时ABP 的周长为AP PB AB AB A B '++=+最小, 设直线A B '的解析式是y nx t =+,则2361n t n t +=−⎧⎨+=⎩,解得15n t =⎧⎨=−⎩, ∴直线A B '的解析式是5y x =−, 当0y =时,05x =−,解得5x =,即点P 的坐标是()5,0,此时AP PB AB AB A B '++=+=综上可知,在x 轴上存在一点()5,0P,使ABP周长的值最小,最小值是【点睛】此题考查了反比例函数和一次函数的图象和性质、用到了待定系数法求函数解析式、勾股定理求两点间距离、轴对称最短路径问题、全等三角形的判定和性质等知识,数形结合和准确计算是解题的关键.【变式演练】1.(2023·河南濮阳·三模)如图,一次函数6y x =−+与反比例函数()0ky x x=>交于A 、B 两点,交x 轴于点C ,已知点A 的坐标为()2,a .(1)求反比例函数解析式; (2)直接写出不等式()60kx x x−+>>的解集______. (3)在x 轴是否存在点P ,使得PA PB −有最大值,若存在,请求出点P 的坐标,若不存在,请说明理由. 【答案】(1)反比例函数解析式为:y =8x .(2)24x <<.(3)在x 轴上存在点P ,使PA PB −有最大值为AB 此时P 点坐标是()6,0.【分析】本题考查了一次函数与反比例函数的综合、三角形的三边关系的应用等知识点,熟练掌握待定系数法和数形结合法是解题关键.(1)先求解A 的坐标,再利用待定系数法求解反比例函数的解析式即可; (2)先求解函数的交点坐标,再结合图象可得答案;(3)先求解一次函数与x 轴的交点坐标,再结合三角形的三边关系确定P 的位置即可.【详解】(1)解:∵点A 的坐标为()2,a 在一次函数6y x =−+上,∴264a =−+=,∴()2,4A ,∵()2,4A 在反比例函数()0ky x x =>上,∴248k =⨯=,∴反比例函数解析式为:8y x =.(2)联立一次函数和反比例函数得析式为:86y x y x ⎧=⎪⎨⎪=−+⎩,解得24x y =⎧⎨=⎩或42x y =⎧⎨=⎩,∴()2,4A ,()4,2B , 由图示可知:不等式()60kx x x −+>>的解集是24x <<.(3)∵直线AB 的解析式是6y x =−+,令0y =, 则06x =−+,则6x =,∴()6,0C ,∴当P 点坐标是()6,0,PA PB −有最大值理由如下:在PAB 中,根据三边关系,PA PB AB −<,当P 在点C 处时,PA PB AB −=.即最大值为AB .故在x 轴上存在点P ,使PA PB −有最大值为AB 此时P 点坐标是()6,0.2.(2023·辽宁盘锦·二模)如图,一次函数4y x =+的图象与反比例函数ky x=(k 为常数且0k ≠)的图象交于()1,A a −,B 两点.(1)求此反比例函数的表达式及点B 的坐标;(2)当反比例函数值大于一次函数值时,直接写出x 的取值范围;(3)在y 轴上存在点P ,使得APB △的周长最小,求点P 的坐标并直接写出APB △的周长.【答案】(1)3y x =−,()3,1B −(2)10x −<<或3x <−(3)点P 的坐标为50,2⎛⎫ ⎪⎝⎭,【分析】本题主要考查了一次函数与反比例函数综合,轴对称最短路径问题,灵活运用所学知识是解题的关键. (1)先把点A 坐标代入一次函数解析式求出点A 的坐标,再把点A 的坐标代入反比例函数解析式求出反比例函数解析式,再联立一次函数与反比例函数解析式即可求出点B 的坐标; (2)利用图象法求解即可;(3)如图所示,作点A 关于y 轴的对称点A ',连接BA '交y 轴于点P ,此时PA PB +的值最小,则APB △的周长最小,再求出直线BA '的解析式即可求出点P 的坐标,由()1,3A −,()3,1B −,()1,3A ',可求出AB 、A B '的值,最后根据APB△的周长为PA PB AB A B AB '++=+.【详解】(1)解:点()1,A a −在一次函数4y x =+的图象上,∴143a =−+=, ∴点()1,3A −,点()1,3A −在反比例函数ky x =的图象上,∴133k =−⨯=−,∴反比例函数的表达式为3y x =−,联立34y x y x ⎧=−⎪⎨⎪=+⎩, 解得: 13x y =−⎧⎨=⎩或31x y =−⎧⎨=⎩, ∴()3,1B −;(2)观察函数图象可知:当10x −<<或3x <−时,一次函数4y x =+的图象在3y x =−的图象的下方,∴当反比例函数值大于一次函数值时,x 的取值范围为:10x −<<或3x <−;(3)作点A 关于y 轴的对称点A ',连接BA '交y 轴于点P ,此时PA PB +的值最小,则APB △的周长最小,如图所示.点()1,3A −,∴点()1,3A ',设直线BA '的表达式为()0y mx n m =+≠,则331m n m n +=⎧⎨−+=⎩,得:1252m n ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线BA '的表达式为1522y x =+,在1522y x =+中,令0x =,则52y =,∴点50,2P ⎛⎫ ⎪⎝⎭,()1,3A −,()3,1B −,()1,3A ',∴AB =A B =='∴APB △的周长为PA PB AB A B AB '++=+=3.(2023·广东云浮·二模)如图,在平面直角坐标系中,矩形OABC 的两边OC 、OA 分别在坐标轴上,且2OA =,4OC =,连接OB .反比例函数1(0)k y x x=>的图象经过线段OB 的中点D ,并与AB 、BC 分别交于点B 、F .一次函数2y k x b =+的图象经过E 、F 两点.(1)分别求出一次函数和反比例函数的表达式.(2)点P 是x 轴上一动点,当PE PF +的值最小时,求点P 的坐标.【答案】(1)一次函数的解析式为1522y x =−+,反比例函数表达式为2y x =;(2)17,05⎛⎫ ⎪⎝⎭ 【分析】(1)由矩形的性质及中点坐标公式可得(2,1)D ,从而可得反比例函数表达式;再求出点E 、F 坐标可用待定系数法解得一次函数的解析式;(2)作点E 关于x 轴的对称点E ',连接E F '交x 轴于点P ,则此时PE PF +最小.求出直线E F '的解析式后令0y =,即可得到点P 坐标. 【详解】(1)解:四边形OABC 为矩形,2OA BC ==,4OC =,(4,2)B ∴.由中点坐标公式可得点D 坐标为(2,1),反比例函数1(0)k y x x =>的图象经过线段OB 的中点D ,1212k xy ∴==⨯=,故反比例函数表达式为2y x =.令2y =,则1x =;令4x =,则12y =.故点E 坐标为(1,2),1(4,)2F . 设直线EF 的解析式为2y k x b =+,代入E 、F 坐标得:222142k b k b =+⎧⎪⎨=+⎪⎩,解得:21252k b ⎧=−⎪⎪⎨⎪=⎪⎩, 故一次函数的解析式为1522y x =−+.(2)作点E 关于x 轴的对称点E ',连接E F '交x 轴于点P ,则此时PE PF +最小.如图. 由E 坐标可得对称点(1,2)E '−,设直线E F '的解析式为y mx n =+,代入点E '、F 坐标,得:2142m n m n −=+⎧⎪⎨=+⎪⎩,解得:56176m n ⎧=⎪⎪⎨⎪=−⎪⎩. 则直线E F '的解析式为51766y x =−,令0y =,则751x =.∴点P 坐标为17(5,0).故答案为:17(5,0).【点睛】本题考查了反比例函数的图象性质,反比例函数图象与一次函数图象的交点,中点坐标公式,矩形的性质,待定系数法求函数解析式,最短路径问题(将军饮马).解题关键在于牢固掌握待定系数法求函数解析式、将军饮马解题模型.题型03 两函数值比较大小问题【解题策略】例.(2023·山东淄博·中考真题)如图,直线y kx b =+与双曲线m y x=相交于点()2,3A ,(),1B n .(1)求双曲线及直线对应的函数表达式;(2)将直线AB 向下平移至CD 处,其中点()2,0C −,点D 在y 轴上.连接AD ,BD ,求ABD △的面积;(3)请直接写出关于x 的不等式m kx b x +>的解集. 【答案】(1)6y x =,142y x =−+ (2)10 (3)26x <<或0x <【分析】()1将()2,3A 代入双曲线m y x =,求出m 的值,从而确定双曲线的解析式,再将点(),1B n 代入6y x =,确定B 点坐标,最后用待定系数法求直线的解析式即可;()2由平行求出直线CD 的解析式为11,2y x =−−过点D 作DG AB ⊥交于G ,设直线AB 与y 轴的交点为H ,与x 轴的交点为F , 可推导出HDG HFO ∠=∠, 再由cos HFO ∠=,求出DG ==则ABD 的面积110;2=⨯ ()3数形结合求出x 的范围即可.【详解】(1)将()2,3A 代入双曲线m y x =,∴6m =, ∴双曲线的解析式为6y x =, 将点(),1B n 代入6y x =,∴6n =,∴()6,1B ,将()()2,3,6,1A B 代入y kx b =+, 2361k b k b +=⎧∴⎨+=⎩,解得124k b ⎧=−⎪⎨⎪=⎩,∴直线解析式为142y x =−+;(2)∵直线AB 向下平移至CD ,∴AB CD ,设直线CD 的解析式为12y x n =−+,将点()2,0C −代入1,2y x n =−+∴10n +=,解得1n =−∴直线CD 的解析式为112y x =−−∴()0,1D −过点D 作DG AB ⊥交于G ,设直线AB 与y 轴的交点为H ,与x 轴的交点为 F ,∴()()0,4,8,0H F ,∵90,90HFO OHF OHG HDG ∠+∠=︒∠+∠=︒,∴HDG HFO ∠=∠,∵4,8OH OF ==,HF ∴=cosHFO ∴∠=∵5DH =,DG DH ∴==, 2AB =∴ABD 的面积1102=⨯= (3)由图可知26x <<或0x <时,161.2x x −−> 【点睛】本题考查反比例函数的图象及性质,熟练掌握反比例函数的图象及性质,直线平移是性质,数形结合是解题的关键.【变式演练】1.(2023·山东青岛·一模)如图,一次函数y ax b =+与反比例函数k y x=的图象交于A 、B 两点,点A 坐标为(,2)m ,点B 坐标为(4,)n −,OA 与x 轴正半轴夹角的正切值为13,直线AB 交y 轴于点C ,过C 作y 轴的垂线,交反比例函数图象于点D ,连接OD 、BD .(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD 的面积;(3)请你根据图象直接写出不等式k ax b x+>的解集. 【答案】(1)一次函数表达式为112y x =−,反比例函数表达式为12y x =; (2)18;(3)6x >或40x −<<. 【分析】本题考查了反比例函数的综合题,涉及解直角三角形,待定系法求函数解析式,三角形面积等,熟练掌握反比例函数图象上点的坐标特征是解题的关键.(1)先求出点A 坐标,再利用待定系数法求出反比例函数解析,再根据点B 在反比例函数图象上,可得点B 的坐标,进一步利用待定系数法求一次函数解析式即可;(2)先求出点C 和点D 坐标,再根据OCD BCD OCBD S S S ∆∆=+四边形求解即可;(3)根据图象即可确定不等式的解集.【详解】(1)解:OA 与x 轴正半轴夹角的正切值为13,∴13AE OE =,点(,2)A m ,2AE ∴=,6OE m ==,∴点A 坐标为(6,2),6212k ∴=⨯=,点B 在反比例函数图象上,412n ∴−=,解得3n =−,∴点B 坐标为(4,3)−−,将点(6,2)A ,点(4,3)B −−代入一次函数y ax b =+,得6243a b a b +=⎧⎨−+=−⎩,解得121a b ⎧=⎪⎨⎪=−⎩,∴一次函数表达式为112y x =−,反比例函数表达式为12y x =; (2)解:当0x =时,1112y x =−=−, ∴点C 坐标为(0,1)−,CD y ⊥轴, ∴点D 纵坐标为1−,点D 在反比例函数12y x =上,∴点D 横坐标为12−,12CD ∴=,∴111211221822OCD BCD OCBD S S S ∆∆=+=⨯⨯+⨯⨯=四边形;(3)解:由图象可知,不等式kax b x +>的解集是6x >或40x −<<..2.(2023·广西桂林·一模)如图,直线1y kx b =+与双曲线2a y x=相交于A 、B 两点,直线AB 与x 轴相交于点C ,点B 的坐标是()3m m ,,5OA =,E 为x 轴正半轴上一点,且3os 5c AOE ∠=.(1)双曲线2y 的解析式是 ,直线1y 的解析式是 .(2)求证:3AOB COB S S =△△.(3)当12y y >时,x 的取值范围是 .【答案】(1)122,23y y x x ==+ (2)见解析(3)60x −<<或3x >【分析】(1)根据三角函数的定义求出点A 的坐标,代入反比例函数解析式求出结果即可;求出点B 的坐标,用待定系数法求出一次函数解析式即可;(2)根据A 、B 两点的坐标分别表示出AOB 和BOC 的面积即可得出答案;(3)根据函数图象得出x 的取值范围即可.【详解】(1)解:过点A 作AD x ⊥轴于点D ,如图所示:∵3cos 55OD AOE ∠==, ∴3OD =,∴4AD ,∴()34A ,,将点A 的坐标代入反比例函数2y x =12a =, ∴双曲线2y 的解析式为12y x =,∵点()3B m m ,在反比例函数12y x =图象上, ∴123m m =,解得2m =±,∴()6,2B −−,把()34A ,,()6,2B −−代入1y kx b =+得3462k b k b +=⎧⎨−+=−⎩,解得232k b ⎧=⎪⎨⎪=⎩,∴直线1y 的解析式是223y x =+;(2)解:∵()34A ,,()6,2B −−,∴AOC 的面积1422OC OC =⨯⨯=,BOC 的面积122OC OC =⨯⨯=,∴AOB 的面积3OC =,∴3AOB BOC S S =△△;(3)解:根据函数图象可知,当60x −<<或3x >时,一次函数在反比例函数图象的上面,∴当12y y >时,x 的取值范围为60x −<<或3x >.【点睛】本题主要考查了一次函数和反比例函数的综合应用,求一次函数和反比例函数的解析式,三角函数的应用,解题的关键是数形结合,根据三角函数求出点A 的坐标.3.(2023·四川泸州·一模)如图,一次函数y ax b =+的图象与反比例函数(0)ky x x=>的图象交于第一象限()1,4C ,()4D m ,两点,与坐标轴交于A 、B 两点,连接OC ,OD .(O 是坐标原点)(1)求一次函数与反比例函数的表达式;(2)直接写出当一次函数值小于反比例函数值时x 的取值范围;(3)将直线AB 向下平移多少个单位长度,直线与反比例函数(0)k y x x =>图象只有一个交点?【答案】(1)4y x =,5y x =−+; (2)01x <<或>4x ;(3)1.【分析】本题考查了反比例函数与一次函数的综合,熟练掌握函数的图象与性质是解题的关键.(1)根据待定系数法求解即可;(2)结合图象找出反比例函数图象高于直线部分对应的x 的范围即可;(3)设出平移后直线的解析式结合一元二次方程的根的判别式解答即可;【详解】(1)解:∵反比例函数ky x =过点()1,4C ,()4,D m , ∴144k m =⨯=,解得:4k =,1m = 反比例函数解析式为:4y x =,点()4,1D , ∵一次函数解析式y ax b =+过点C ,D ,∴441a b a b +=⎧⎨+=⎩,解得:15a b =−⎧⎨=⎩∴一次函数解析式为:5y x =−+;(2)解:根据图象,不等式kax x +<的解集为:01x <<或>4x ; (3)解:设直线AB 向下平移n 个单位长度时,直线与反比例函数图象只有一个交点,则平移后的解析式为5y x n =−+−, 联立两个函数得:45x n x =−+−,整理得:2(5n)40x x −−+=,2(5)4140n ∆=−−⨯⨯=,∴54n −=±,9n =或1,∵点(0,5)B ,∴9n =不符合题意舍去.∴直线AB 向下平移1个单位长度时,直线与反比例函数图象只有一个交点.4.(2024·新疆·一模)如图,一次函数()110y k x b k =+≠与反比例函数()220k y k x=≠的图象交于点()()2,3,,1A B n −.(1)求反比例函数和一次函数的解析式;(2)判断点()2,1P −是否在一次函数1y k x b =+的图象上,并说明理由;(3)直接写出不等式21k k x b x+≥的解集. 【答案】(1)反比例函数解析式为6y x =,一次函数的解析式为122y x =+ (2)点()2,1P −在一次函数122y x =+的图象上,理由见解析(3)60x −≤<或2x ≥【分析】本题主要考查了一次函数与反比例函数综合:(1)先利用点A 求出反比例函数的解析式,由此求出点B 的坐标,再利用点A 及点B 的坐标求出一次函数的解析式;(2)在一次函数中求出2x =−时的函数值即可得到结论;(3)根据函数图象找到一次函数图象在反比例函数图象上方或二者交点处时自变量的取值范围即可得到答案.【详解】(1)解:将点()2,3A 代入反比例函数()220k y k x =≠中,得2236k =⨯=, ∴反比例函数解析式为6y x =;将点(),1B n −代入6y x =中,得6n −=,∴6n =−,∴()6,1B −−,将点()2,3A 、()6,1B −−代入一次函数()110y k x b k =+≠中,得112361k b k b +=⎧⎨−+=−⎩,∴1122k b ⎧=⎪⎨⎪=⎩,∴一次函数的解析式为122y x =+;(2)解:点()2,1P −在一次函数122y x =+的图象上,理由如下:在122y x =+中,当2x =−时,()12212y =⨯−+=,∴点()2,1P −在一次函数122y x =+的图象上;(3)解:由图象可知:当60x −≤<或2x ≥时,一次函数的图象在反比例函数图象的上方或二者的交点处,即21k k x b x +≥,∴当60x −≤<或2x ≥时,21k k x b x +≥.1.(2023·贵州·中考真题)如图,在平面直角坐标系中,四边形OABC 是矩形,反比例函数()0ky x x=>的图象分别与,AB BC 交于点()4,1D 和点E ,且点D 为AB 的中点.(1)求反比例函数的表达式和点E 的坐标;(2)若一次函数y x m =+与反比例函数()0k y x x=>的图象相交于点M ,当点M 在反比例函数图象上,D E 之间的部分时(点M 可与点,D E 重合),直接写出m 的取值范围.【答案】(1)反比例函数解析式为4y x =,()22E ,(2)30m −≤≤【分析】(1)根据矩形的性质得到BC OAAB OA ∥,⊥,再由()4,1D 是AB 的中点得到()42B ,,从而得到点E 的纵坐标为2,利用待定系数法求出反比例函数解析式,进而求出点E 的坐标即可; (2)求出直线y x m =+恰好经过D 和恰好经过E 时m 的值,即可得到答案.【详解】(1)解:∵四边形OABC 是矩形,∴BC OAAB OA ∥,⊥, ∵()4,1D 是AB 的中点,∴()42B ,,∴点E 的纵坐标为2,∵反比例函数()0k y x x =>的图象分别与,AB BC 交于点()4,1D 和点E ,∴14k =,∴4k =,∴反比例函数解析式为4y x =,在4y x =中,当42y x ==时,2x =,∴()22E ,;(2)解:当直线 y x m =+经过点()22E ,时,则22m +=,解得0m =; 当直线 y x m =+经过点()41D ,时,则41m +=,解得3m =−;∵一次函数y x m =+与反比例函数()0ky x x =>的图象相交于点M ,当点M 在反比例函数图象上,D E 之间的部分时(点M 可与点,D E 重合),∴30m −≤≤.【点睛】本题主要考查了求一次函数解析式,一次函数与反比例函数综合,矩形的性质等等,灵活运用所学知识是解题的关键.2.(2023·山东聊城·中考真题)如图,一次函数y kx b =+的图像与反比例函数my x=的图像相交于()1,4A −,(),1B a −两点.(1)求反比例函数和一次函数的表达式;(2)点(),0P n 在x 轴负半轴上,连接AP ,过点B 作BQ AP ∥,交my x=的图像于点Q ,连接PQ .当BQ AP =时,若四边形APQB 的面积为36,求n 的值.【答案】(1)4y x =−,3y x =−+(2)215n =−【分析】(1)根据反比例函数过点()1,4A −,(),1B a −两点,确定()4,1B −,待定系数法计算即可.(2)根据平移思想,设解析式求解即可.【详解】(1)解:∵一次函数y kx b =+的图像与反比例函数my x =的图像相交于()1,4A −,(),1B a −两点,∴144m =−⨯=−,故反比例函数的解析式为4y x =−,∴441a =−=−,故()4,1B −,∴414k b k b +=−⎧⎨−+=⎩,解得13k b =−⎧⎨=⎩, ∴直线的解析式为3y x =−+.(2)∵()1,4A −,()4,1B −,(),0P n ,BQ AP ∥,BQ AP =,∴四边形APQB 是平行四边形,∴点A 到点P 的平移规律是向左平移1n −−个单位,向下平移4个单位,∴点()4,1B −到点Q 的平移规律也是向左平移1n −−个单位,向下平移4个单位,故()5,5Q n +−, ∵()5,5Q n +−在4y x =−上,∴44555n +=−=−,解得:215n =−,∴点P 的坐标为210,5⎛⎫− ⎪⎝⎭, 设AB 与x 轴交于点C ,连接PB ,如图所示:把0y =代入3y x =−+,解得:3x =,∴()3,0C ,∴2136355PC ⎛⎫=−−=⎪⎝⎭, ∴()136411825APBS=⨯⨯−−=⎡⎤⎣⎦,∵四边形APQB 为平行四边形, ∴236APBAPQB S S==四边形,∴当215n =−时,符合题意.【点睛】本题考查了一次函数与反比例函数的交点,平移规律计算,熟练掌握规律是解题的关键. 3.(2023·四川乐山·中考真题)如图,一次函数y kx b =+的图象与反比例函数4y x=的图象交于点(),4A m ,与x 轴交于点B , 与y 轴交于点()0,3C .(1)求m 的值和一次函数的表达式; (2)已知P 为反比例函数4y x=图象上的一点,2OBP OAC S S =△△,求点P 的坐标. 【答案】(1)3y x =+ (2)()2,2P 或()2,2−−【分析】(1)先把点A 坐标代入反比例函数解析式求出m 的值,进而求出点A 的坐标,再把点A 和点C 的坐标代入一次函数解析式中求出一次函数解析式即可;(2)先求出3OB =,3OC =,过点A 作AH y ⊥轴于点H ,过点P 作PD x ⊥轴于点D ,如图所示,根据2OBPOACS S =△△可得11222OB PD OC AH⋅=⨯⋅,求出2PD =,则点P 的纵坐标为2或2−,由此即可得到答案.【详解】(1)解:点(),4A m 在反比例函数4y x =的图象上,44m ∴=,1m ∴=,()1,4A ∴,又点()1,4A ,()0,3C 都在一次函数y kx b =+的图象上,43k bb =+⎧∴⎨=⎩,解得13k b =⎧⎨=⎩, ∴一次函数的解析式为3y x =+.(2)解:对于3y x =+,当0y =时,3x =−,∴()30B −,,3OB ∴=,∵()0,3C ,3OC ∴=过点A 作AH y ⊥轴于点H ,过点P 作PD x ⊥轴于点D ,如图所示.2OBP AOC S S =△△,11222OB PD OC AH ∴⋅=⨯⋅. 11323122PD ∴⨯⨯=⨯⨯⨯,解得2PD =. ∴点P 的纵坐标为2或2−.将2y =代入4y x =得2x =, 将=2y −代入4y x =得2x =−,∴点()2,2P 或()2,2−−.【点睛】本题主要考查了一次函数与反比例函数综合,利用数形结合的思想求解是解题的关键.4.(2022·江苏徐州·中考真题)如图,一次函数(0)y kx b k =+>的图像与反比例函数8(0)y x x=>的图像交于点A ,与x 轴交于点B ,与y 轴交于点C ,AD x ⊥轴于点D ,CB CD =,点C 关于直线AD 的对称点为点E . (1)点E 是否在这个反比例函数的图像上?请说明理由; (2)连接AE 、DE ,若四边形ACDE 为正方形. ①求k 、b 的值;②若点P 在y 轴上,当PE PB −最大时,求点P 的坐标.【答案】(1)点E 在这个反比例函数的图像上,理由见解析 (2)①1k =,2b =;②点P 的坐标为(0,2)−【分析】(1)设点A 的坐标为8(,)m m ,根据轴对称的性质得到AD CE ⊥,AD 平分CE ,如图,连接CE 交AD 于H ,得到CH EH =,再结合等腰三角形三线合一得到CH 为ACD ∆边AD 上的中线,即AH HD =,求出4,H m m ⎛⎫ ⎪⎝⎭,进而求得4(2,)E m m ,于是得到点E 在这个反比例函数的图像上;(2)①根据正方形的性质得到AD CE =,AD 垂直平分CE ,求得12CH AD=,设点A 的坐标为8(,)m m ,得到2m =(负值舍去),求得(2,4)A ,(0,2)C ,把(2,4)A ,(0,2)C 代入y kx b =+得,解方程组即可得到结论;②延长ED 交y 轴于P ,根据已知条件得到点B 与点D 关于y 轴对称,求得PE PD PE PB−=−,则点P 即为符合条件的点,求得直线DE 的解析式为2y x =−,于是得到结论.【详解】(1)解:点E 在这个反比例函数的图像上. 理由如下:一次函数(0)y kx b k =+>的图像与反比例函数8(0)y x x =>的图像交于点A ,∴设点A 的坐标为8(,)m m ,点C 关于直线AD 的对称点为点E ,AD CE ∴⊥,AD 平分CE ,连接CE 交AD 于H ,如图所示:CH EH ∴=, AD x ⊥轴于D ,CE x ∴∥轴,90ADB ∠=︒, 90CDO ADC ∴∠+∠=︒, CB CD =, CBO CDO ∴∠=∠,在Rt ABD ∆中,90ABD BAD ∠+∠=︒,CAD CDA ∴∠=∠,CH ∴为ACD ∆边AD 上的中线,即AH HD =,4,H m m ⎛⎫∴ ⎪⎝⎭,4(2,)E m m ∴,428m m ⨯=,∴点E 在这个反比例函数的图像上;(2)解:①四边形ACDE 为正方形,AD CE ∴=,AD 垂直平分CE ,12CH AD ∴=,设点A 的坐标为8(,)m m ,CH m ∴=,8AD m =,182m m ∴=⨯,2m ∴=(负值舍去),(2,4)A ∴,(0,2)C ,把(2,4)A ,(0,2)C 代入y kx b =+得242k b b +==⎧⎨⎩,解得12k b =⎧⎨=⎩; ②延长ED 交y 轴于P ,如图所示:CB CD =,OC BD ⊥,∴点B 与点D 关于y 轴对称,PE PD PE PB∴−=−,则点P 即为符合条件的点,由①知,(2,4)A ,(0,2)C ,(2,0)D ∴,(4,2)E ,设直线DE 的解析式为y ax n=+,∴2042a n a n +=+=⎧⎨⎩,解得12a n ==−⎧⎨⎩,∴直线DE 的解析式为2y x =−, 当0x =时,=2y −,即()0,2−,故当PE PB −最大时,点P 的坐标为(0,2)−.【点睛】本题考查了反比例函数的综合题,正方形的性质,轴对称的性质,待定系数法求一次函数的解析式,正确地作出辅助线是解题的关键.。

中考数学考点系统复习 第三章 函数 方法技巧突破(一) 反比例函数中的面积问题

中考数学考点系统复习 第三章 函数 方法技巧突破(一) 反比例函数中的面积问题

S 阴影=|k1|-|k2|
图形
S =S -S 阴影 △AOB △AOD 结论 1 1
=2|k1|-2|k2|
S =S -S 阴影 △COB △OCD 11
=2|k1|-2|k2|
图形
过点 D 作 DF⊥x 轴于点
结论
S 阴影=S 矩形 -S -S = OABC △OCD △OAE |k1|-|k2|
【模型示例】
图形
结论
S 四边形 PMON=|k|
S =S 四边形 ABCD
四边形 PQMD
2.(2021·荆州)如图,过反比例函数 y=kx(k>0,x>0) 图象上的四点 P1,P2,P3,P4 分别作 x 轴的垂线,垂足 分别为 A1,A2,A3,A4,再过 P1,P2,P3,P4 分别作 y 轴, P1A1,P2A2,P3A3 的垂线,构造了四个相邻的矩形.若这四个矩形的面积从 左到右依次为 S1,S2,S3,S4,OA1=A1A2=A2A3=A3A4,则 S1 与 S4 的数量关 系为 S1=S1=44SS44.
x 轴于点 B,连接 BC,则△ABC 的面积等于
A.8
B.6 C.4 D.2
( C)
模型四:两点两垂线 【模型特征】
反比例函数与正比例函数图象的交点及由交点向坐标轴所作两条垂 线围成的图形面积等于 2|k|.
【模型示例】
图形
结论
S△APP′=2|k| S 四边形 ANBM=2|k|
4.(2021·南京)如图,正比例函数 y=kx 与函数 y=6x的图象交于 A,B 两点,BC∥x 轴,AC∥y 轴,则 S△ABC=1 12 2.
A.4
B.6
C.8
D.12
( C)

反比例函数中的面积问题(共26张PPT)

反比例函数中的面积问题(共26张PPT)

课后精练
解:(1)如图,过点 D 作 DH⊥x 轴于点 H, ∵直线 AB 的解析式为 y=-2x+4,∴B 点坐标为(0,4), A 点坐标为(2,0). ∵∠OAB+∠DAH=90°,∠ADH+∠DAH=90°, ∴∠BAO=∠ADH. 又∵∠BOA=∠AHD,∴△AOB∽△DHA. ∴ADOH=ABOH=AADB=12.∴D2H=A4H=12,解得 DH=4,AH=8. ∴D(10,4),则 k=10×4=40. 故答案为:40.
③若 M 点的横坐标为 1,△OAM 为等边三角形,则 k=2+ 3;
7.如图,函数 y=kx(k 为常数,k>0)的图象与过原点的 O 的直线 相交于 A,B 两点,点 M 是第一象限内双曲线上的动点(点 M 在点 A 的左侧),直线 AM 分别交 x 轴,y 轴于 C,D 两点,连接 BM 分别 交 x 轴,y 轴于点 E,F.现有以下四个结论:
课后精练
∵D(10,4),∴D′(10,-4). 设直线 CD′的解析式为 y=ax+d, 则180a+a+dd==8- ,4,解得da==-566. , 故直线 CD′的解析式为 y=-6x+56. 当 y=0 时,x=238,故 P 点坐标为238,0. 延长 CD 交 x 轴于 Q,此时|QC-QD|的值最大, ∵CD∥AB,D(10,4),∴直线 CD 的解析式为 y=-2x+24. ∴Q(12,0).∴PQ=12-238=83. 故 P 点坐标为238,0,Q 点坐标为(12,0),线段 PQ 的长为83.
专题2 反比例函数中的面积问题
考点解读
反比例函数中的面积类问题是最能体现数形结合思想 方法的一类问题,几何中的函数问题使图形性质代数 化,函数中的几何问题使代数知识图形化,利用“数”

专题:反比例函数(一)

专题:反比例函数(一)
(1)求反比例函数的表达式;
(2)将直线y=﹣ x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.
6如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半M=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y= 的图象经过点D,与BC的交点为N.
A.0B.1C.2D.3
2如图,直线y=﹣x+5与双曲线y= (x>0)相交于A,B两点,与x轴相交于C点,△BOC的面积是 .若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线y= (x>0)的交点有( )A.0个B.1个C.2个D.0个,或1个,或2个
3如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )A.60B.80C.30D.40
4反比例函数y= 的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是( )A.t< B.t> C.t≤ D.t≥
三、解答题:
1如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y= 的图象在第二象限交于点 C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,OE=2.
2解:连接AC,交y轴于点D,∵四边形ABCO为菱形,∴AC⊥OB,且CD=AD,BD=OD,∵菱形OABC的面积为12,∴△CDO的面积为3,∴|k|=6,∵反比例函数图象位于第二象限,∴k<0,则k=﹣6.故答案为:﹣6.
3如图,半径为2的⊙O在第一象限与直线y=x交于点A,反比例函数y=(x>0)的图象过点A,则k=_________.

反比例函数面积问题专题

反比例函数面积问题专题

反比例函数面积问题专题【围矩形】1.如图所示,点P是反比例函数图象上一点,过点P分别作x轴、y轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是()A. B.C..D.2.反比例函数的图象如图所示,则k的值可能是()A. -1B.C. 1D. 23.如图,A、B是双曲线上的点,分别过A、B两点作x轴、y轴的垂线段.S1,S2,S3分别表示图中三个矩形的面积,若S3=1,且S1+S2=4,则k值为()A. 1B. 2C. 3D. 44.如图,在反比例函数y=(x>0)的图象上,有点P1、P2、P3、P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1、S2、S3,则S1+S2+S3=()A. 1B. 1.5C. 2D. 无法确定5.如图,两个反比例函数y=和y=(其中k1>0>k2)在第一象限内的图象是C1,第二、四象限内的图象是C2,设点P在C1上,PC⊥x轴于点M,交C2于点C,PA⊥y轴于点N,交C2于点A,AB∥PC,CB∥AP相交于点B,则四边形ODBE的面积为()A. |k1﹣k2|B.C. |k1•k2|D.6.如图,A、C是函数y=的图象上的任意两点,过A作x轴的垂线,垂足为B,过C作y轴的垂线,垂足为D,记Rt△AOB的面积为S1,Rt△COD的面积为S2,则()A. S1>S2B. S1<S2C. S1=S2D. 关系不能确定7.如图,过y轴上任意一点p,作x轴的平行线,与反比例函数的图象交于A点,若B为x轴上任意一点,连接AB,PB则△APB的面积为()A. 1 B. 2 C. 3 D. 48.如图,A是反比例函数图象上一点,过点A作AB⊥x轴于点B,点P在y轴上,△ABP的面积为1,则k的值为()A. 1 B. 2 C. -1 D. -29.反比例函数y=与y=在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A. B. 2 C. 3 D. 110.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=﹣和y=的图象交于A、B两点.若点C是y轴上任意一点,连接AC、BC,则△ABC的面积为() A. 3 B . 4 C . 5 D . 1011.双曲线y1=与y2=在第一象限内的图象如图.作一条平行于x轴的直线交y1,y2于B、A,连OA,过B作BC∥OA,交x轴于C,若四边形OABC的面积为3,则k=()A. 2B. 4 C .3 D . 512.如图,直线l和双曲线交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、0P,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A. S1<S2<S3B. S1>S2>S3C. S1=S2>S3D. S1=S2<S313.如图是反比例函数和在第一象限内的图象,在上取点M分别作两坐标轴的垂线交于点A、B,连接OA、OB,则图中阴影部分的面积为.14.如图,直线y=kx(k>0)与双曲线y=交于A,B两点,BC⊥x轴于C,连接AC交y轴于D,下列结论:①A、B关于原点对称;②△ABC的面积为定值;③D是AC的中点;④S△AOD=.其中正确结论的个数为()个 A. 1 B . 2 C . 3 D . 415.如图,直y=mx与双曲线y=交于点A,B.过点A作AM⊥x轴,垂足为点M,连接BM.若S△ABM=1,则k的值是()A. 1 B. m﹣1 C. 2 D. m16.正比例函数y=x与反比例函数y=的图象相交于A、C两点.AB⊥x轴于B,CD⊥y轴于D,如图,则四边形ABCD的面积为()A. 1B.C. 2D.17.如图,A,C是函数y=(k≠0)的图象上关于原点对称的任意两点,AB,CD垂直于x轴,垂足分别为B,D,那么四边形ABCD的面积S是()A. B. 2k C. 4k D. k18.如图,反比例函数y=﹣的图象与直线y=﹣x的交点为A,B,过点A作y轴的平行线与过点B作x轴的平行线相交于点C,则△ABC的面积为()A. 8B. 6C. 4D. 2【三角形叠梯形】19.如图,点A和B是反比例函数y=(x>0)图象上任意两点,过A,B分别作y轴的垂线,垂足为C和D,连接AB,AO,BO,△ABO的面积为8,则梯形CABD的面积为()A. 6B. 7C. 8D. 1020.如图,△ABO的顶点A和AB边的中点C都在双曲线y=(x>0)的一个分支上,点B在x轴上,CD⊥OB于D,若△AOC的面积为3,则k=()A. 2 B. 3 C. 4 D.21.如图,A、B是双曲线上任意两点,过A、B两点分别作y轴的垂线,垂足分别为C、D,连接AB,直线OB、OA分别交双曲线于点E、F,设梯形ABCD的面积和△EOF的面积分别为S1、S2,则S1与S2的大小关系是()A. S1=S2 B. S1>S2 C. S1<S2 D. 不能确定【截矩形】22.如图,过点P(2,3)分别作PC⊥x轴于点C,PD⊥y轴于点D,PC、PD分别交反比例函数y=(x>0)的图象于点A、B,则四边形BOAP的面积为()A. 3 B. 3.5 C. 4 D. 523.如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,则k=.24.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是()A. ①②③B. ②③④C. ①③④D. ①②④25.两个反比例函数和(k1>k2>0)在第一象限内的图象如图,P在C1上,作PC、PD垂直于坐标轴,垂线与C2交点为A、B,则下列结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积等于k1﹣k2③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中正确的是()【截直角三角形】26.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣8,6),则△AOC的面积为()A. 20B. 18C. 16D. 1227.如图,双曲线经过Rt△OAB斜边OA的中点D,且与直角边AB相交于点C.则△AOC的面积为()A. 9 B. 6 C. 4.5 D. 328.如图,已知矩形ABCO的一边OC在x轴上,一边OA在y轴上,双曲线交OB的中点于D,交BC边于E,若△OBC的面积等于4,则CE:BE的值为()A. 1:2 B . 1:3 C. 1:4 D. 无法确定29.如图,已知梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,过点C的双曲线交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值()A. 2B.C.D. 无法确定30.如图,反比例函数的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为()A. 1B. 2C. 3D. 4反比例函数【围矩形】1.解:由题意得:矩形面积等于|k|,∴|k|=4又∵反比例函数图象在二、四象限.∴k<0∴k=﹣4∴反比例函数的解析式是y=﹣.故选C.2.解:∵反比例函数在第一象限,∴k>0,∵当图象上的点的横坐标为1时,纵坐标小于1,∴k<1,故选B.3.解:∵S1+S2=4,∴S1=S2═2,∵S3=1,∴S1+S3=1+2=3,∴k=3故选C.4.解:由题意可知点P1、P2、P3、P4坐标分别为:(1,2),(2,1),(3,),(4,).∴由反比例函数的几何意义可知:S1+S2+S3=2﹣1×==1.5.故选B.5.解:∵AB∥PC,CB∥AP,∠APC=90°,∴四边形APCB是矩形.设P(x,),则A(,),C(x,),∴S矩形APCB=AP•PC=(x﹣)(﹣)=,∴四边形ODBE的面积=S矩形APCB ﹣S矩形PNOM﹣S矩形MCDP﹣S矩形AEON=﹣k1﹣|k2|﹣|k2|=.故选D.【围三角形】6.解:结合题意可得:A、C都在双曲线y=上,反比例函数系数k的几何意义有S1=S2;故选C.7.解:依题意得:△APB的面积S=|k|=×|4|=2.故选B8.解:如图,连OA,∵AB⊥x轴,∴AB∥OP,∴S△OAB=S△PAB=1,∴|k|=2×1=2,∵反比例函数图象过第二象限,∴k=﹣2.故选D.9.解:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,∵由反比例函数系数k的几何意义可知,S四边形OEAC=6,S△AOE=3,S△BOC=,∴S△AOB=S四边形OEAC﹣S△AOE﹣S△BOC=6﹣3﹣=.故选A.10.解:设P(a,0),a>0,则A和B的横坐标都为a,将x=a代入反比例函数y=﹣中得:y=﹣,故A(a,﹣);将x=a代入反比例函数y=中得:y=,故B(a,),∴AB=AP+BP=+=,则S△ABC=AB•x P的横坐标=××a=5.故选C11.解:由题意得:S四边形OABC=|k1|﹣|k2|=|6|﹣|k|=3;又由于反比例函数位于第一象限,k>0;k=3.故选C.12.解:结合题意可得:AB都在双曲线y=上,则有S1=S2;而AB之间,直线在双曲线上方;故S1=S2<S3故选D.13.解:∵在上取点M分别作两坐标轴的垂线交于点A、B,∴S△AOC=×5=2.5,S△BOD=×5=2.5 S矩形MDOC=3∴S阴影=S△AOC+S△BOD﹣S矩形MDOC=5﹣3=2故答案为2.【对称点】14.解:①反比例函数与正比例函数若有交点,一定是两个,且关于原点对称,所以正确;②根据A、B关于原点对称,S△ABC为即A点横纵坐标的乘积,为定值1,所以正确;③因为AO=BO,OD∥BC,所以OD为△ABC的中位线,即D是AC中点,所以正确;④在△ADO中,因为AD和y轴并不垂直,所以面积不等于k的一半,不等于,错误.故选C.15.解:由图象上的点A、B、M构成的三角形由△AMO和△BMO的组成,点A与点B关于原点中心对称,∴点A,B的纵横坐标的绝对值相等,∴△AMO和△BMO的面积相等,且为,∴点A的横纵坐标的乘积绝对值为1,又因为点A在第一象限内,所以可知反比例函数的系数k为1.故选A.16.解:根据反比例函数的对称性可知:OB=OD,AB=CD,∴四边形ABCD的面积=S△AOB+S△ODA+S△ODC+S△OBC=1×2=2.故选C.17.解:∵A,C是函数y=(k≠0)的图象上关于原点对称的任意两点,∴若假设A点坐标为(x,y),则C点坐标为(﹣x,﹣y).∴BD=2x,AB=CD=y,∴S=S△ABD+S△CBD=BD•AB+BD•CD=2xy=2k.故四边形ABCD的面积S是2k.故选B.四边形ABCD18.解:由于点A、B在反比例函数图象上关于原点对称,则△ABC的面积=2|k|=2×4=8.故选A.【三角形叠梯形】19.解:过点B向x轴作垂线,垂足是G.由题意得:矩形BDOG的面积是|k|=3,∴S△ACO=S△BOG=.所+S梯形ABDC﹣S△ACO﹣S△BOG=8,以△AOB的面积=S矩形BDOG则梯形CABD的面积=8﹣3+3=8.故选C20.解:过点A作AM⊥OB于M,设点A坐标为(x,y),∵顶点A在双曲线y=(x>0)图象上,∴xy=k,∴S△AMO=OM•AM=xy=k,设B的坐标为(a,0),∵中点C在双曲线y=(x>0)图象上,CD⊥OB于D,∴点C坐标为(,),∴S△CDO=OD•CD=••=k,∴ay=3k,∵S△AOB=S△AOM+S△AMB =k+•(a﹣x)y =k+ay﹣xy=k+×3k﹣k =k,又∵C为AB中点,∴△AOC的面积为×k=3,∴k=4,故选C.21.解:∵直线OB、OA分别交双曲线于点E、F,∴S2=S△AOB,∵S1=S△AOC+S△AOB﹣S△BOD,而S△AOC=S△BOD=k,∴S1=S△AOB,∴S1=S2.故选A.【截矩形】22.解:∵B、A两点在反比例函数y=(x>0)的图象上,∴S△DBO=S△AOC=×2=1,∵P(2,3),∴四边形DPCO的面积为2×3=6,∴四边形BOAP的面积为6﹣1﹣1=4,故选:C.23.解:连接OE,设此反比例函数的解析式为y=(k≠0),C(c,0),则B(c,b),E(c,),设D(x,y),∵D和E都在反比例函数图象上,∴xy=k,=k,即S△AOD=S△OEC=×c×,∵梯形ODBC的面积为3,∴bc﹣×c×=3,∴bc=3,∴bc=4,∴S△AOD=S△OEC=1,∵k>0,∴k=1,解得k=2,故答案为:2.24.解:∵A、B是反比函数y=上的点,∴S△OBD=S△OAC=,故①正确;当P的横纵坐标相等时PA=PB,故②错误;=4,∵P是y=的图象上一动点,∴S矩形PDOC=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正确;∴S四边形PAOB连接OP,===4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正确;综上所述,正确的结论有①③④.故选C.25.解:①∵A、B两点都在y=上,∴△ODB与△OCA的面积都都等于,故①正确;②S矩形OCPB﹣S△AOC﹣S△DBO=|k2|﹣2×|k1|÷2=k2﹣k1,故②正确;③只有当P的横纵坐标相等时,PA=PB,错误;④当点A是PC的中点时,点B一定是PD的中点,正确.故选B.【截直角三角形】26.解:∵点A的坐标为(﹣8,6),O点坐标为(0,0),∴斜边OA的中点D的坐标为(﹣4,3),把D(﹣4,3)代入y=得k=﹣4×3=﹣12,∴反比例函数的解析式为y=﹣,∵AB⊥x轴,∴C点和横坐标为点A相同,都为﹣8,把x=﹣8代入y=﹣得y=,∴C点坐标为(﹣8,),∴AC=6﹣=,∴△AOC的面积=AC•OB=××8=18.故选B.27.解:∵OA的中点是D,双曲线y=﹣经过点D,∴k=xy=﹣3,D点坐标为:(x,y),则A点坐标为:(2x,2y),∴△BOC的面积=|k|=3.又∵△AOB的面积=×2x×2y=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选:A.28.解:设D点的坐标是(x,y).∵点D是线段OB的中点,∴B点的坐标是(2x,2y);∵△OBC的面积等于4,∴×2x×2y=4,即xy=﹣2,∴k=﹣2;又∵点E在双曲线上,∴点E的坐标为(2x,);∴CE:BE=:(2y﹣)=:(2×﹣)=1:3;故选B.29.解:方法1:设B点坐标为(a,b),∵OD:DB=1:2,∴D点坐标为(a,b),根据反比例函数的几何意义,∴a•b=k,∴ab=9k①,∵BC∥AO,AB⊥AO,C在反比例函数y=的图象上,∴设C点横坐标为m,则C点坐标为(m,b)将(m,b)代入y=得,m=,BC=a﹣,又因为△OBC的高为AB,所以S△OBC=(a﹣)•b=3,所以(a﹣)•b=3,(a﹣)b=6,ab﹣k=6②,把①代入②得,9k﹣k=6,解得k=.方法2:延长BC交y轴于E,过D作x轴的垂线,垂足为F.由△OAB的面积=△OBE的面积,△ODF的面积=△OCE的面积,可知,△ODF的面积=梯形DFAB=△BOC的面积=,即k=,k=.故选B.30.解:由题意得:E、M、D位于反比例函数图象上,则S△OCE=,S△OAD=,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,则S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则++6=4k,k=2.故选B.。

2020年数学中考 专题复习 万能解题模型(一) 反比例函数中的面积问题

2020年数学中考 专题复习 万能解题模型(一) 反比例函数中的面积问题

万能解题模型(一)反比例函数中的面积问题前言:“一学就会,一考就废?”,正是因为考试后缺少了这个环节从小学到初中,学生们经历了无数次考试。

通过考试可以检测同学们对知识的理解、掌握情况,提高应试能力。

但对待考试,部分同学只关注自己的分数,而对试卷的分析和总结缺乏重视。

结果常常出现一些题在考试中屡次出现,但却一错再错的情况。

这样,学生们无法从考试中获益,考试也就失去了它的重要意义。

做好试卷分析和总结是十分有必要的。

那么,怎样做好试卷分析呢?我认为,应从下面两点做起:一.失分的原因主要有如下四方面:(1)考试心理:心理紧张,马虎大意;(2)知识结构:知识面窄,基础不扎实;(3)自身能力:审题不清,读不懂题意;(4)解题基本功:答题规范性差。

只有查出、找准原因,才能对症下药,从弱项方面加强训练,以提高成绩。

二.“扭转乾坤”的方法做题的过程中对每一道题要试图问如下几个问题?(1)怎样做出来的?——想解题方法;(2)为什么这样做?——思考解题原理;(3)怎样想到这种方法?——想解题的基本思路;(4)题目体现什么样的思想?——揭示本质,挖掘规律;(5)是否可将题目变化?——一题多变,拓宽思路;(6)题目是否有创新解法?——创新、求异思维。

转变,让我们从一轮复习开始。

按照上面两点认真完成后面练习题。

希望每一位同学经过一轮复习后,能够扭转“一考就废”的局面,最后决胜中考。

类型1 单支双曲线上一点一垂直形成的三角形的面积S △AOP =12|k| S △ABC =12|k| S △ABC =12|k|1.(2019·枣庄)如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A ,B 分别在x 轴、y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数y =kx(x >0)的图象上.若AB =1,则k 的值为(A)A .1B.22C. 2 D .2类型2 单支双曲线上一点两垂直形成的矩形面积S 四边形PMON =|k| S 四边形ACDE =S 四边形EFGB2.如图,A ,B 两点在双曲线y =4x 上,分别经过A ,B 两点向x 轴、y 轴作垂线段,已知S 阴影=1,则S 1+S 2=(D)A .3B .4C .5D .6类型3 双曲线上不在同一象限上两点一垂线形成的三角形的面积S △ABM =|k| S △ABM =|k|S △CDE =S △ACD +S △ADE =12AD·|y C -y E | S △ABC =S △BCD +S △ACD =12CD·|x B -x A |3.(2019·黄冈)如图,一直线经过原点O ,且与反比例函数y =kx(k>0)相交于点A 、点B ,过点A 作AC ⊥y 轴,垂足为C ,连接BC.若△ABC 面积为8,则k =8.类型4 双曲线上不在同一象限上两点两垂线形成的三角形或四边形的面积S △APP′=2|k| S ▱AMBN =2|k|4.如图,A ,B 是函数y =2x的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则(B)A .S =2B .S =4C .2<S <4D .S >45.(2019·郴州)如图,点A ,C 分别是正比例函数y =x 的图象与反比例函数y =4x的图象的交点,过A 点作AD ⊥x轴于点D ,过C 点作CB ⊥x 轴于点B ,则四边形ABCD 的面积为8.类型5 双曲线上在同一象限上任意两点与原点形成的三角形的面积作AE ⊥x 轴于点E ,交OB 于点M ,BF ⊥x 轴于点F ,S △OAM =S 四边形MEFB ,S △AOB =S 直角梯形AEFB .6.如图,AB 是反比例函数y =3x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是1和3,则S △AOB=4.类型6 两条双曲线与一条平行于坐标轴的直线所形成的几何图形的面积S 矩形ABCD =|k 1-k 2| S ▱ABCD =|k 1-k 1| S △AOB =12|k 1-k 2| S △ABC =S △AOB =12|k 1|+12|k 2|7.(2019·鸡西)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OABC 的顶点A 在反比例函数y =1x 上,顶点B 在反比例函数y =5x上,点C 在x 轴的正半轴上,则平行四边形OABC 的面积是(C) A.32 B.52 C .4 D .68.如图,在平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交y =3x (x >0),y =kx(x <0)的图象于B ,C 两点.若△ABC 的面积为2,则k 的值为-1.9.(2019·株洲)如图所示,在平面直角坐标系xOy 中,点A ,B ,C 为反比例函数y =kx(k >0)上不同的三点,连接OA ,OB ,OC ,过点A 作AD ⊥y 轴于点D ,过点B ,C 分别作BE ,CF 垂直x 轴于点E ,F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1,S 2,S 3,则(B)A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 2310.(2019·本溪)如图,在平面直角坐标系中,等边△OAB 和菱形OCDE 的边OA ,OE 都在x 轴上,点C 在OB 边上,S △ABD =3,反比例函数y =kx(x >0)的图象经过点B ,则k。

专题:反比例函数中的面积问题

专题:反比例函数中的面积问题

微专题 反比例函数中的面积问题
模型一 一点一垂线
反比例函数图象上一点与坐标轴垂线、另一坐标轴上一点(含原点)围成的三 角形面积= |k|.
1
S△ABC= 2 |k|
S△ABC=12 |k|
1
S△AOC= 2 |k|
1. 如图,点A在反比例函数y=- 4 的图象上,AM⊥y轴于点M,点P是x轴上的一
方法一:S△EOF=S△EOD-S△FOD. 方法二:作EM⊥x轴于点M,交OF于点B,FA⊥x轴于点A,则S△OEB=S四边形 BMAF(划归到模型一),则S△EOF=S直角梯形EMAF.
类型一 两交点在反比例函数同一支上
Байду номын сангаас
方法一:当
BE CE

BFFA=m时,则S四边形OFBE=m|k|.
方法二:作EM⊥x轴于点M,
A. 1
B. m-1
C. 2
D. m
第3题图
模型四 两点两垂线
反比例函数与正比例函数的交点及由交点向坐标轴所作两条垂线围成的图形 面积=2|k|.
SABC 2 | k |
易得四边形ANBM是平行四边形, ∴S四边形ANBM=AM·NM=AM·2OM=2|k|
模型四 两点两垂线 反比例函数与正比例函数的交点及由交点向坐标轴所作两条垂线围成的图形
= =
1
2
1
OM·AM+12 OM·BC |k|+1 |k|=|k|
22
S△ABM=S△ADM+S△MDB

1 2
MD·|yB-yA|
S△ABM=S△BMO+S△AMO

1 2
MO·|xB-xA|
3. 如图,直线y=mx与双曲线y=k (k≠0)交于点A,B,过点A作

反比例函数中的面积问题经典难题复习巩固

反比例函数中的面积问题经典难题复习巩固

反比例函数中的面积问题一、导入:《飞翔的蜘蛛》信念是一种无坚不催的力量,当你坚信自己能成功时,你必能成功。

一天,我发现,一只黑蜘蛛在后院的两檐之间结了一张很大的网。

难道蜘蛛会飞?要不,从这个檐头到那个檐头,中间有一丈余宽,第一根线是怎么拉过去的?后来,我发现蜘蛛走了许多弯路--从一个檐头起,打结,顺墙而下,一步一步向前爬,小心翼翼,翘起尾部,不让丝沾到地面的沙石或别的物体上,走过空地,再爬上对面的檐头,高度差不多了,再把丝收紧,以后也是如此。

温馨提示:蜘蛛不会飞翔,但它能够把网凌结在半空中。

它是勤奋、敏感、沉默而坚韧的昆虫,它的网制得精巧而规矩,八卦形地张开,仿佛得到神助。

这样的成绩,使人不由想起那些沉默寡言的人和一些深藏不露的智者。

于是,我记住了蜘蛛不会飞翔,但它照样把网结在空中。

奇迹是执着者造成的。

二、知识点回顾由于反比例函数解析式及图象的特殊性,很多中考试题都将反比例函数与面积结合起来进行考察。

这种考察方式既能考查函数、反比例函数本身的基础知识内容,又能充分体现数形结合的思想方法,考查的题型广泛,考查方法灵活,可以较好地将知识与能力融合在一起。

下面就反比例函数中与面积有关的问题的四种类型归纳如下:利用反比例函数中|k|的几何意义求解与面积有关的问题设P为双曲线上任意一点,过点P作x轴、y轴的垂线PM、PN,垂足分别为M、N,则两垂线段与坐标轴所围成的的矩形PMON的面积为S=|PM|×|PN|=|y|×|x|=|xy|∴xy=k 故S=|k| 从而得结论1:过双曲线上任意一点作x轴、y轴的垂线,所得矩形的面积S为定值|k|对于下列三个图形中的情形,利用三角形面积的计算方法和图形的对称性以及上述结论,可得出对应的面积的结论为:结论2:在直角三角形ABO中,面积S=结论3:在直角三角形ACB中,面积为S=2|k|结论4:在三角形AMB中,面积为S=|k|三、专题讲解考点一已知面积,求反比例函数的解析式(或比例系数k)【例1】如图,直线OA与反比例函数的图象在第一象限交于A点,AB⊥x轴于点B,△OAB的面积为2,则k=.分析:由图象知,k>0,由结论及已知条件得∴k=4(2)如图,已知双曲线()经过矩形的边的中点,且四边形的面积为2,则.分析:连结OB,∵E、F分别为AB、BC的中点∴而由四边形OEBF的面积为2得解得k=2评注:第①小题中由图形所在象限可确定k>0,应用结论可直接求k值。

万能解题模型(一) 反比例函数中的面积问题

万能解题模型(一) 反比例函数中的面积问题

万能解题模型(一) 反比例函数中的面积问题万能解题模型(一):反比例函数中的面积问题类型1:单支双曲线上一点一垂直形成的三角形的面积设单支双曲线方程为 $y=\frac{k}{x}$,点$A(x_1,y_1)$ 为单支双曲线上的一点,点 $P(x_1,0)$ 为$A$ 点向 $x$ 轴作垂线段的底部交点,则 $\triangle AOP$ 的面积为 $S=\frac{1}{2}x_1y_1$,同时 $\triangle ABC$ 的面积为 $S=\frac{1}{2}x_1\cdot\frac{k}{x_1}=\frac{1}{2}k$,因此$\triangle AOP$ 和 $\triangle ABC$ 面积的比值为$\frac{S_{\triangle AOP}}{S_{\triangleABC}}=\frac{\frac{1}{2}x_1y_1}{\frac{1}{2}k}=\frac{y_1}{k} $,即 $S_{\triangle AOP}=|k|\cdot S_{\triangle ABC}$。

类型2:单支双曲线上一点两垂直形成的矩形面积设单支双曲线方程为 $y=\frac{k}{x}$,点$P(x_1,y_1)$ 为单支双曲线上的一点,$AC$ 和 $DE$ 分别为$P$ 点向 $x$ 轴和 $y$ 轴作垂线段的线段,$B$ 点为 $AC$ 和$DE$ 的交点,则四边形 $PMON$ 的面积为 $S=|x_1y_1|$,同时四边形 $ACDE$ 的面积为$S=\frac{1}{2}|x_1|\cdot|y_1|=\frac{1}{2}S_{\square PMON}$,因此四边形 $PMON$ 和四边形 $ACDE$ 面积的比值为$\frac{S_{\square PMON}}{S_{\squareACDE}}=\frac{2S}{|x_1|\cdot|y_1|}=2|k|$,即 $S_{\square PMON}=|k|\cdot S_{\square ACDE}$。

与反比例函数的图象有关的面积问题

与反比例函数的图象有关的面积问题

1
解析 由反比例函数的图象关于原点对称的性质
知 : 图中两个阴影部分 面积的和 恰好 是一个 圆的面 积 ,
而已知圆与 x轴相切 , A点纵坐标为 2,即 圆的半径为 2, 所求面积 = 22π = 4π.
例 3 ( 07年荆州 中考 ) 如图 3,边 长为 4 的正 方形
AB CD 的对称中心是坐标原点 O, AB ∥x轴 , BC∥y轴 , 反
足为 C , 过 点 B 作 y 轴 的 垂 线 , 垂 足 为 D. 记 △AOC , △BOD 的面积分别为 S1 和 S2 ,则 S1 和 S2 的大小关系怎 样?
解析 在如图 1 中 ,设点 A ( x1 , y1 ) , B ( x2 , y2 ) ,则
S1
=
1 2
x1 y1 , S2
=
Rt△AOD中 , 因为 ∠AOD = 30°,所 以 , AO = 2 y,根 据勾 股
定理得 :
AO2 = OD2 + AD2 ,即 4 y2 = x2 + y2 ,即 x2 = 3 y2

由点
A ( x,
y) 在双曲线
y
=
3 x;
( x > 0 ) 上知 : xy =
3,
于是 x2 y2 =3,
8, 选 D.
图 1 图 2
例 2 (改编题 ) 已知 ,如图 2,正比例函数 y = k1 x与
反比例函数
y=
k2 的图 象相交于 x
A, B 两点
( k1
> 0, k2
>
0) , A点坐标为 ( 4, 2) ,分别以 A、B 为圆心 的圆与 x轴相
切 ,则图中两个阴影部分面积的和为

69 反比例函数中的有关面积问题

69 反比例函数中的有关面积问题

反比例函数中的有关面积问题一、反比例函数k 的几何意义1.反比例函数k 的几何意义:如图,在反比例函数图象上任选一点,向两坐标轴作垂线,垂线与坐标轴所围成矩形的面积为k 。

如图二,所围成三角形的面积为2k二、利用k 的几何意义进行面积转化1.如图,直线AB 与反比例函数k y x =(0k ≠)交于A 、B 两点,与x 、y 轴的交点分别为C 、D ,那么OAB OCD OBD OAC S S S S ∆∆∆∆=--,此方法是绝大部分学生选用的方法。

但是,从效率来讲,就比较低2.如图,过点A 、B 作x 轴的垂线,垂足分别为E 、F ,则根据k 的几何意义可得,OBF OAE S S ∆∆=,而OBF OAB OAE ABFE S S S S ∆∆∆+=+梯形,所以OAB ABFE S S ∆=梯形,此方法的好处,在于方便,快捷,不易出错。

【针对训练】1、如图,△BOD 都是等腰直角三角形,过点B 作AB ⊥OB 交反比例函数y =(x >0)于点A ,过点A 作AC ⊥BD 于点C ,若S △BOD ﹣S △ABC =3,则k 的值为.解:设A 点坐标为(a ,b ),∵△ABC 和△BOD 都是等腰直角三角形,∴BC =AC ,OD =BD∵S △BOD ﹣S △ABC =3,OD 2﹣AC 2=3,OD 2﹣AC 2=6,∴(OD +AC )(OD ﹣AC )=6,∴a •b =6,∴k =6.故答案为6.2、如图,△OAC 和△BAD 都是等腰直角三角,∠ACO =∠ADB =90°,反比例函数y =的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD =.解:设△OAC 和△BAD 的直角边长分别为a 、b ,则点B 的坐标为(a +b ,a ﹣b ).∵点B在反比例函数y=的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=8.∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×8=4.故答案为:4.3、如图,一次函数y=x﹣3的图象与反比例函数y═kx(k≠0)的图象交于点A与点B(a,﹣4).(1)求反比例函数的表达式;(2)若动点P是第一象限内双曲线上的点(不与点A重合),连接OP,且过点P作y轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求出点P的坐标.【答案】(1)y=4x;(2)点P的坐标为(5,45)或(1,4)或(2,2).【解析】解:(1)将B(a,﹣4)代入一次函数y=x﹣3中得:a=﹣1∴B(﹣1,﹣4)将B(﹣1,﹣4)代入反比例函数y═kx(k≠0)中得:k=4∴反比例函数的表达式为y=4x;(2)如图:设点P的坐标为(m,4m)(m>0),则C(m,m﹣3)∴PC=|4m﹣(m﹣3)|,点O到直线PC的距离为m∴△POC的面积=12m×|4m﹣(m﹣3)|=3解得:m=5或﹣2或1或2∵点P不与点A重合,且A(4,1)∴m≠4又∵m>0∴m=5或1或2∴点P的坐标为(5,45)或(1,4)或(2,2).4、如图所示,函数y1=kx+b的图象与函数(x<0)的图象交于A(a﹣2,3)、B(﹣3,a)两点.(1)求函数y 1、y 2的表达式;(2)过A 作AM ⊥y 轴,过B 作BN ⊥x 轴,试问在线段AB 上是否存在点P ,使S △PAM =3S △PBN ?若存在,请求出P 点坐标;若不存在,请说明理由.【详解】解:(1)∵A 、B 两点在函数(x <0)的图象上,∴3(a ﹣2)=﹣3a =m ,∴a =1,m =﹣3,∴A (﹣1,3),B (﹣3,1),∵函数y 1=kx+b 的图象过A 、B 点,∴,解得k =1,b =4∴y 1=x+4,y 2=;(2)由(1)知A (﹣1,3),B (﹣3,1),∴AM =BN =1,∵P 点在线段AB 上,∴设P 点坐标为(x ,x+4),其中﹣1≤x≤﹣3,则P 到AM 的距离为h A =3﹣(x+4)=﹣x ﹣1,P 到BN 的距离为h B =3+x ,∴S △PBN =BN•h B =×1×(3+x )=(x+3),S △PAM =AM•h A =×1×(﹣x ﹣1)=﹣(x+1),=3S△PBN,∵S△PAM∴﹣(x+1)=(x+3),解得x=﹣,且﹣1≤x≤﹣3,符合条件,∴P(﹣,),综上可知存在满足条件的点P,其坐标为(﹣,).【点睛】本题主要考查一次函数和反比例函数的交点问题,在(1)中掌握交点坐标满足两函数解析式是解题的关键,在(2)中用P点坐标分别表示出△PBN和△PAM的面积是解题的关键.5、如图,直线y1=k1x+b与双曲线y2=在第一象限内交于A、B两点,已知A(1,m),B(2,1).(1)k1=,k2=,b=.(2)直接写出不等式y2>y1的解集;(3)设点P是线段AB上的一个动点,过点P作PD⊥x轴于点D,E是y轴上一点,求△PED的面积S 的最大值.解:(1)∵A(1,m),B(2,1)在双曲线y2=上,∴k2=m=2×1=2,∴A(1,2),则,解得:,∴k1=﹣1,k2=2,b=3;故答案为:﹣1,2,3;(2)由图象得:不等式y2>y1的解集是:0<x<1或x>2;(3)设点P(x,﹣x+3),且1≤x≤2,∵PD=﹣x+3,OD=x,则,∵,∴当时,S有最大值,最大值为.6、如图,在平面直角坐标系xOy中,函数y=﹣x+5的图象与函数y=(k<0)的图象相交于点A,并与x轴交于点C,S△AOC=15.点D是线段AC上一点,CD:AC=2:3.(1)求k的值;(2)根据图象,直接写出当x<0时不等式>﹣x+5的解集;(3)求△AOD的面积.解:(1)y=﹣x+5,当y=0时,x=5,即OC=5,C点的坐标是(5,0),过A作AM⊥x轴于M,=15,∵S△AOC∴=15,解得:AM=6,即A点的纵坐标是6,把y=6代入y=﹣x+5得:x=﹣1,即A点的坐标是(﹣1,6),把A点的坐标代入y=得:k=﹣6;(2)当x<0时不等式>﹣x+5的解集是﹣1<x<0;=15,(3)∵CD:AC=2:3,S△AOC==5.∴△AOD的面积=S△AOC7、如图,反比例函数y=经过点D,且点D的坐标为(﹣,2).(1)求反比例函数的解析式;(2)如图,直线AB交x轴于点B,交y轴于点A,交反比例函数图象于另一点C,若3OA=4OB,求△BOC的面积.解:(1)∵反比例函数y=经过点D(﹣,2).∴k=﹣=﹣1,∴反比例函数的解析式为y=﹣;(2)设直线AB的解析式为y=ax+b,∴A(0,b),B(﹣,0),∴OA=b,OB=,∵3OA=4OB,∴3b=,∴a=,∴y=x+b,∵直线AB经过D(﹣,2),∴2=×(﹣)+b,∴b=,∴y=x+,B(﹣2,0),解得或,∴C(﹣,),=2×=.∴S△BOC8、如图,在平面直角坐标系中,反比例函数y=的图象过等边三角形BOC的顶点B,OC=2,点A在反比例函数图象上,连接AC、AO.(1)求反比例函数解析式;(2)若四边形ACBO的面积为3,求点A的坐标.解:(1)作BD⊥OC于D,如图,∵△BOC为等边三角形,∴OD=CD=OC=1,∴BD=OD=,∴B(﹣1,﹣),把B(﹣1,﹣)代入y=得k=﹣1×(﹣)=,∴反比例函数解析式为y=;(2)设A(t,),∵四边形ACBO的面积为3,∴×2×+×2×=3,解得t=,∴A点坐标为(,2).9、如图,△AOB在平面直角坐标xOy中,反比例函数y1=的图象经过点A,反比例函数y2=的图象经过点B,作直线x=1分别交y1,y2于C,D两点,已知A(2,3),B(3,1).(1)求反比例函数y1,y2的解析式;(2)求△COD的面积.解:(1)∵反比例函数y1=的图象经过点A(2,3),反比例函数y2=的图象经过点B(3,1),∴k1=2×3=6,k2=3×1=3,∴y1=,y2=.(2)由(1)可知两条曲线与直线x=1的交点为C(1,6),D(1,3),∴CD=6﹣3=3,=1=.∴S△COD10、正方形ABCD的顶点A(1,1),点C(3,3),反比例函数y=(x>0).(1)如图1,双曲线经过点D时求反比例函数y=(x>0)的关系式;(2)如图2,正方形ABCD向下平移得到正方形A′B′C′D′,边A'B'在x轴上,反比例函数y=(x>0)的图象分别交正方形A′B′C′D′的边C'D′、边B′C′于点F、E,①求△A'EF的面积;②如图3,x轴上一点P,是否存在△PEF是等腰三角形,若存在直接写出点P坐标,若不存在明理由.解:(1)∵点A(1,1),点C(3,3),∴点D(1,3),将点D的坐标代入反比例函数表达式得:k=3,故反比例函数表达式为:y=;(2)平移后点A′、B′、C′、D′的坐标分别为:(1,0)、(3,0),(3,2)、(1,2),则平移后点E纵坐标为3,则点E(3,1),同理点F(,2),﹣S△A′B′E﹣S△A′D′F﹣S△EFC′=2×2×2×﹣2×1﹣××1=;△A'EF的面积=S正方形A′B′C′D′(3)点E、F的坐标分别为:(3,1)、(,2),设点P(m,0),则EF2=(3﹣)2+(2﹣1)2=,EP2=(m﹣3)2+1,PF2=(m﹣)2+4,当EF=EP时,即=(m﹣3)2+1,解得:m=或;当EF=PF时,同理可得:m=(舍去负值);当EP=PF时,同理可得:m=,故点P的坐标为(,0)或(,0)或(,0)或(,0).11、如图,单位长度为1的网格坐标系中,一次函数y=kx+b与坐标轴交于A、B两点,反比例函数y=(x>0)经过一次函数上一点C(2,a).(1)求反比例函数解析式,并用平滑曲线描绘出反比例函数图象;(2)依据图象直接写出当x>0时不等式kx+b>的解集;(3)若反比例函数y=与一次函数y=kx+b交于C、D两点,使用直尺与2B铅笔构造以C、D为顶点的矩形,且使得矩形的面积为10.解:(1)∵一次函数y=kx+b过点A(0,4),点B(8,0),∴,∴,∴一次函数解析式为:y=﹣x+4;∵点C在一次函数图象上,∴a=﹣×2+4=3,∵反比例函数y=(x>0)经过点C(2,3),∴m=6,∴反比例函数解析式为:y=,图象如图所示:(2)∵反比例函数y=与一次函数y=﹣x+4交于C、D两点,∴=﹣x+4,∴x1=2,x2=6,∴点D(6,1),由图象可得:当2<x<6时,y=kx+b的图象在y=图象的上方,∴不等式kx+b>的解集为2<x<6;(3)如图,若以CD为边,则矩形ABDC,矩形A'B'DC为所求,若以CD为对角线,则矩形DEDF为所求.12、如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)若点P在y轴上,是否存在点P,使△ABP是以AB为一直角边的直角三角形?若存在,求出所有符合条件的P点坐标;若不存在,请说明理由.解:(1)把点A(1,a)代入y=﹣x+3,得a=2,∴A(1,2),把A(1,2)代入反比例函数,∴k=1×2=2;∴反比例函数的表达式为;(2)∵一次函数y=﹣x+3的图象与x轴交于点C,∴C(3,0),设P(x,0),∴PC=|3﹣x|,=|3﹣x|×2=5,∴S△APC∴x=﹣2或x=8,∴P的坐标为(﹣2,0)或(8,0);(3)存在,理由如下:联立,解得:或,∴B点坐标为(2,1),∵点P在y轴上,∴设P(0,m),∴AB==,AP=,PB=,若BP为斜边,∴BP2=AB2+AP2,即=2+,解得:m=1,∴P(0,1);若AP为斜边,∴AP2=PB2+AB2,即=+2,解得:m=﹣1,∴P(0,﹣1);综上所述:P(0,1)或P(0,﹣1).13、如图,过原点的直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,点A在第二象限,且点A的横坐标为﹣1,点D在x轴负半轴上,连接AD交反比例函数图象于另一点E,AC为∠BAD的平分线,过点B作AC的垂线,垂足为C,连接CE,若AD=2DE,△AEC的面积为.(1)根据图象回答:当x取何值时,y1<y2;(2)求△AOD的面积;(3)若点P的坐标为(m,k),在y轴的轴上是否存在一点M,使得△OMP是直角三角形,若存在,请直接写出点M的坐标;若不存在,请说明理由.解:(1)∵直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,且点A的横坐标为﹣1,∴点A,点B关于原点对称,∴点B的横坐标为1,∴当x取﹣1<x<0或x>1时,y1<y2;(2)连接OC,OE,由图象知,点A,点B关于原点对称,∴OA=OB,∵AC⊥CB,∴∠ACB=90°,∴OC=AB=AO,∴∠OAC=∠OCA,∵AC为∠BAD的平分线,∴∠OAC=∠DAC,∴∠OCA=∠DAC,∴AD∥OC,∴S △AEO =S △ACE =,∵AD =2DE ,∴AE =DE ,∴S △AOD =2S △AOE =3;(3)作EF ⊥x 轴于F ,作AH ⊥x 轴于H ,则EF ∥AH ,∵AD =2DE ,∴DE =EA ,∵EF ∥AH ,∴==1,∴DF =FH ,∴EF 是△DHA 的中位线,∴EF =AH ,∵S △OEF =S △OAH =﹣,∴OF •EF =OH •HA ,∴OH =OF ,∴OH =HF ,∴DF =FH =HO =DO ,∴S △OAH =S △ADO =3=1,∴﹣=1,∴k=﹣2,∴y=﹣,∵点A在y=﹣的图象上,∴把x=﹣1代入得,y=2,∴A(﹣1,2),∵点A在直线y=mx上,∴m=﹣2,∴P(﹣2,﹣2),在y轴上找到一点M,使得△OMP是直角三角形,当∠OMP=90°时,PM⊥y轴,则OM=2,∴点M的坐标为(0.﹣2);当∠OPM=90°时,过P作PG⊥y轴于G,则△OPM是等腰直角三角形,∴OM=2PG=4,∴点M的坐标为(0.﹣4);综上所述,点M的坐标为(0.﹣2)或(0,﹣4).。

反比例函数面积问题

反比例函数面积问题

反比例函数面积问题
反比例函数面积问题通常是指与反比例函数相关的图形面积的计算
问题。

例如,给定反比例函数y=k/x的图像与坐标轴所围成的区域,要求该区域的面积。

解决这类问题通常需要应用积分学知识,因为反比例函数的图像通常是一个双曲线,与坐标轴围成的区域是一个不规则图形。

通过积分,我们可以求出这个不规则图形的面积。

具体地,如果要求反比例函数y=k/x在第一象限内与x轴、y轴所围成的区域面积,可以先求出该函数在第一象限内的图像与x轴之间的面积,然后再乘以2(因为反比例函数在第一、三象限内是对称的)。

这个面积可以通过定积分来计算,积分区间是从0到正无穷大,被积函数是y=k/x。

需要注意的是,由于反比例函数的图像在x轴和y轴上都趋于无穷大,
因此所求得的面积也是无穷大的。

但是,在某些特定情况下,例如给定一个特定的矩形区域,我们可以通过计算该矩形区域内反比例函数图像的面积来得到一个有限的数值。

总之,反比例函数面积问题需要根据具体情况进行具体分析,通常需要应用积分学知识和几何知识来解决。

以上是对于反比例函数面积问题5的回答,希望对你有所帮助。

万能解题模型(一) 反比例函数中的面积问题

万能解题模型(一) 反比例函数中的面积问题

万能解题模型(一)反比例函数中的面积问题类型1单支双曲线上一点一垂直形成的三角形的面积S△AOP=12|k| S△ABC=12|k| S△ABC=12|k|1.(2019·枣庄)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A,B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上.若AB=1,则k的值为(A)A.1B.2 2C. 2D.2类型2单支双曲线上一点两垂直形成的矩形面积S四边形PMON=|k|S四边形ACDE=S四边形EFGB2.如图,A,B两点在双曲线y=4x上,分别经过A,B两点向x轴、y轴作垂线段,已知S阴影=1,则S1+S2=(D)A.3 B.4 C.5 D.6类型3双曲线上不在同一象限上两点一垂线形成的三角形的面积S△ABM=|k| S△ABM=|k|S△CDE=S△ACD+S△ADE=12AD·|y C-y E| S△ABC=S△BCD+S△ACD=12CD·|x B-x A|3.(2019·黄冈)如图,一直线经过原点O,且与反比例函数y=kx(k>0)相交于点A、点B,过点A作AC⊥y轴,垂足为C,连接BC.若△ABC面积为8,则k=8.类型4双曲线上不在同一象限上两点两垂线形成的三角形或四边形的面积S△APP′=2|k|S▱AMBN=2|k|4.如图,A,B是函数y=2x的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积记为S,则(B)A.S=2 B.S=4C.2<S<4 D.S>45.(2019·郴州)如图,点A,C分别是正比例函数y=x的图象与反比例函数y=4x的图象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD的面积为8.类型5双曲线上在同一象限上任意两点与原点形成的三角形的面积作AE ⊥x 轴于点E ,交OB 于点M ,BF ⊥x 轴于点F ,S △OAM =S 四边形MEFB ,S △AOB =S 直角梯形AEFB .6.如图,AB 是反比例函数y =3x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是1和3,则S △AOB=4.类型6 两条双曲线与一条平行于坐标轴的直线所形成的几何图形的面积S 矩形ABCD =|k 1-k 2| S ▱ABCD =|k 1-k 1| S △AOB =12|k 1-k 2| S △ABC =S △AOB =12|k 1|+12|k 2|7.(2019·鸡西)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OABC 的顶点A 在反比例函数y =1x 上,顶点B 在反比例函数y =5x上,点C 在x 轴的正半轴上,则平行四边形OABC 的面积是(C) A.32 B.52 C .4 D .68.如图,在平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交y =3x (x >0),y =kx(x <0)的图象于B ,C 两点.若△ABC 的面积为2,则k 的值为-1.9.(2019·株洲)如图所示,在平面直角坐标系xOy 中,点A ,B ,C 为反比例函数y =kx(k >0)上不同的三点,连接OA ,OB ,OC ,过点A 作AD ⊥y 轴于点D ,过点B ,C 分别作BE ,CF 垂直x 轴于点E ,F ,OC 与BE 相交于点M,记△AOD、△BOM、四边形CMEF的面积分别为S1,S2,S3,则(B)A.S1=S2+S3B.S2=S3C.S3>S2>S1D.S1S2<S2310.(2019·本溪)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=3,反比例函数y=kx(x>0)的图象经过点B,则k的值为3.。

反比例函数专题一、k的几何意义解与面积相关问题

反比例函数专题一、k的几何意义解与面积相关问题

∴点A,C的坐标分别为(-1,3),(3,-1).
专题训练
(3)若点P是y轴上一动点,且S△APC=5,求点P的坐标. 解:设点P的坐标为(0,m),直线y=-x+2与y轴的交点
为M,则M的坐标为(0,2).
∵S△APC=S△AMP+S△CMP=
1 2
×PM×(|-1|+|3|)=5,
∴PM= 5 ,即|m-2|= 5 .∴m= 9 或m=- 1 .
解:

ìïïïíïïïî
y y
= =
- x+ 6, x
7,

祆 镲 镲 眄 镲 镲 铑xy11
= =
1, x2 6,y2
= =
6, 1.
∴点D的坐标为(6,1).
当x=2时,反比例函数图象上的点为(2,3),
直线上的点为(2,5),此时可得整点为(2,4);
当x=3时,反比例函数图象上的点为(3,2),
a 的图象上, x
∴a=3×2=6,∴反比例函数的表达式为y=
6
.
x
∵B(3,2),∴EF=2.∵BD⊥y轴,OC=CA,
∴AE=EF= 1 AF,∴AF=4,∴点A的纵坐标为4.
2 ∵点A在反比例函数y=
6 的图象上,
∴点将AA的( 横3 坐, 4标),为B(332,,2∴)的xA坐( 32标,代4)入. y=kx+b,得
专题训练
题型2 利用对称性求面积 7.如图是由四条曲线围成的广告标志,建立平面直角坐
标=系6x ,.现双用曲四线根对钢应条的固函定数这解四析条式曲分线别,为这y=种-钢条6x ,加y工 成矩形产品按面积计算,每单位面积25元,请你帮助 工人师傅计算一下,所需钢条一共花多少钱?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数
面积问题专题(一)
【围矩形】
1.如图所示,点B 是反比例函数图象上一点,过点B 分别作x 轴、y 轴的垂线,
如果构成的矩形面积是4,那么反比例函数的解析式是( )
A .
B .
C .
D . 2.反比例函数
的图象如图所示,则k 的值可能是( ) A . ﹣1 B . C . 1 D . 2 3.如图,A 、B 是双曲线上的点,分别过A 、B 两点作x 轴、y 轴的垂线段.S 1,S 2,S 3分别表示图中三个矩形的面积,若S 3=1,且S 1+S 2=4,则k 值为 ( )
A . 1
B . 2
C . 3
D .
4 4.如图,在反比例函数y=(x >0)的图象上,有点P 1、P 2、P 3、P 4,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为S 1、S 2、S 3,则S 1+S 2+S 3=( )
A . 1
B . 1.5
C . 2
D .
无法确定 5.如图,两个反比例函数y=和y=(其中k 1>0>k 2)在第一象限内的图象是C 1,第二、四象限内的图象是C 2,设点P 在C 1上,PC ⊥x 轴于点M ,交C 2于点C ,PA ⊥y 轴于点N ,交C 2于点A ,AB ∥PC ,CB ∥AP 相交于点B ,则四边形ODBE 的面积为( )
A . |k 1﹣k 2|
B .
C . |k 1•k 2|
D . 【围三角形】 6.如图,A 、C 是函数y=的图象上的任意两点,过A 作x 轴的垂线,垂足为B ,过C 作y 轴的垂线,垂足为D ,记Rt △AOB 的面积为S 1,Rt △COD 的面积为S 2,则( )
A . S 1>S 2
B . S 1<S 2
C . S 1=S 2
D . S 1和S 2的大小关系不能确定
7.如图,过y 轴上任意一点p ,作x 轴的平行线,与反比例函数
的图象交于A 点,若B 为x 轴上任意一点,连接AB ,PB 则△APB 的面积为( )
A . 1
B . 2
C . 3
D .
4 1题 2题
3题
4题 5题
6题 7题
8.如图,A 是反比例函数图象上一点,过点A 作AB ⊥x 轴于点B ,点P 在y 轴上,△ABP
的面积为1,则k 的值为( )
A . 1
B . 2
C . ﹣1
D . ﹣2 9.反比例函数y= 与y=在第一象限的图象如图所示,作一条平行于x 轴
的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为( )
A .
B . 2
C . 3
D .
1 10.如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数y=﹣和y=的图象交于A 、B 两点.若点C 是y 轴上任意一点,连接AC 、BC ,则△ABC 的面积
为( )
11.双曲线y 1=与y 2=在第一象限内的图象如图.作一条平行于x 轴的直线交y 1,y 2于
B 、A ,连OA ,过B 作B
C ∥OA ,交x 轴于C ,若四边形OABC 的面积为3,则k=( )
A . 2
B . 4
C . 3
D . 5
12.如图,直线l 和双曲线交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、
B 、P 分别向x 轴作垂线,垂足分别为
C 、
D 、
E ,连接OA 、OB 、0P ,设△AOC 的面积为S 1、△BOD 的面积为S 2、△POE 的面积为S 3,则( )
A . S 1<S 2<S 3
B . S 1>S 2>S 3
C . S 1=S 2>S 3
D . S 1=S 2<S 3
13.如图是反比例函数和在第一象限内的图象,在上取点M 分别作两坐标轴的垂线交
于点A 、B ,连接OA 、OB ,则图中阴影部分的面积为 _________ .
【对称点】
14.如图,直线y=kx (k >0)与双曲线y=交于A ,B 两点,BC ⊥x 轴于C ,连接AC 交
y 轴于D ,下列结论:①A 、B 关于原点对称;②△ABC 的面积为定值;③D 是AC 的中点;
④S △AOD =.其中正确结论的个数为( )
A . 1个
B . 2个
C . 3个
D . 4个 15.如图,直y=mx 与双曲线y=交于点A ,B .过点A 作AM ⊥x 轴,垂足为点M ,连
接BM .若S △ABM =1,则k 的值是( )
A . 1
B . m ﹣1
C . 2
D . m
A . 3
B . 4
C . 5
D .
10 8题
9
16.正比例函数y=x与反比例函数y=的图象相交于A、C两点.AB⊥x轴于B,CD⊥y轴于D(如图),则四边形ABCD的面积为()
A.1B.C.2D.
17.如图,A,C是函数y=(k≠0)的图象上关于原点对称的任意两点,AB,CD垂直于x轴,垂足分别为B,D,那么四边形ABCD的面积S是()
A.B.2k C.4k D.k
18.如图,反比例函数y=﹣的图象与直线y=﹣x的交点为A,B,过点A作y轴的平行线与过点B作x轴的平行线相交于点C,则△ABC的面积为()
A.8B.6C.4D.2
【三角形叠梯形】
19.如图,点A和B是反比例函数y=(x>0)图象上任意两点,过A,B分别作y轴的垂
线,垂足为C和D,连接AB,AO,BO,△ABO的面积为8,则梯形CABD的面积为()A.6B.7C.8D.10
20.如图,已知△ABO的顶点A和AB边的中点C都在双曲线y=(x>0)的一个分支上,点B在x轴上,CD⊥OB于D,若△AOC的面积为3,则k的值为()A.2B.3C.4D.
21.如图所示,A、B是双曲线上任意两点,过A、B两点分别作y轴
的垂线,垂足分别为C、D,连接AB,直线OB、OA分别交双曲线于点E、F,设梯形ABCD的面积和△EOF的面积分别为S1、S2,则S1与S2的大小关系是()
A.S1=S2B.S1>S2C.S1<S2D.不能确定
【截矩形】
22.如图,过点P(2,3)分别作PC⊥x轴于点C,PD⊥y轴于点D,PC、PD分别交反
比例函数y=(x>0)的图象于点A、B,则四边形BOAP的面积为()A.3B.3.5 C.4D.5
23.如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D.若梯
形ODBC的面积为3,则k=_________.
24.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于
点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与
PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确
结论的序号是()
A.①②③B.②③④C.①③④D.①②④
25.两个反比例函数和(k1>k2>0)在第一象限内的图象如图,P在C1上,作PC、PD垂直于坐标
轴,垂线与C2交点为A、B,则下列结论,其中正确的是()
①△ODB与△OCA的面积相等;
②四边形PAOB的面积等于k1﹣k2
③PA与PB始终相等;
④当点A是PC的中点时,点B一定是PD的中点.
A.①②B.①②④C.①④D.①③④
【截直角三角形】
26.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且
与直角边AB相交于点C.若点A的坐标为(﹣8,6),则△AOC的面积为()
A.20 B.18 C.16 D.12
27.如图,已知双曲线经过Rt△OAB斜边OA的中点D,且与直角边AB相交于点C.则△AOC的面积为
()
A.9B.6C.4.5 D.3
28.如图,已知矩形ABCO的一边OC在x轴上,一边OA在y轴上,双曲线交OB的中点
于D,交BC边于E,若△OBC的面积等于4,则CE:BE的值为()
A.1:2 B.1:3 C.1:4 D.无法确定
29.如图,已知梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,过点C的双曲线
交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值()
A.等于2 B.等于C.等于D.无法确定
30.如图,反比例函数的图象经过矩形OABC对角线的交点M,分别与
AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为()
A.1B.2C.3D.4。

相关文档
最新文档