2019-2020学年浙江省杭州市余杭区九年级(上)期末数学试卷 (解析版)

合集下载

浙江省杭州市余杭区上学期期末考试九年级数学试卷(解析版)

浙江省杭州市余杭区上学期期末考试九年级数学试卷(解析版)

浙江省杭州市余杭区2019-2019学年上学期期末考试九年级数学试卷一、选择题1.(3分)sin30°的值是()A.B.C.D.【专题】常规题型.【分析】根据特殊角的三角函数值可得答案.【解答】解:sin30°=故选:A.【点评】此题主要考查了特殊角的三角函数值,关键是掌握30°、45°、60°角的各种三角函数值.2.(3分)下列事件中,属于必然事件的是()A.打开电视机正在播放广告B.投掷一枚质地均匀的硬币100次,正面向上的次数为50次C.任意画一个三角形,其内角和为180°D.任意一个二次函数图象与x轴必有交点【专题】常规题型.【分析】直接利用必然事件以及随机事件的定义分别分析得出答案.【解答】解:A、打开电视机正在播放广告,是随机事件,故此选项错误;B、投掷一枚质地均匀的硬币100次,正面向上的次数为50次,是随机事件,故此选项错误;C、意画一个三角形,其内角和为180°,是必然事件,故此选项正确;D、任意一个二次函数图象与x轴必有交点,是随机事件,故此选项错误;故选:C.【点评】此题主要考查了随机事件,正确把握相关事件的定义是解题关键.3.(3分)函数y=x2+2x﹣4的顶点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【专题】常规题型;二次函数图象及其性质.【分析】把二次函数化为顶点式则可求得顶点的坐标,则可求得答案.【解答】解:∵y=x2+2x-4=(x+1)2-5,∴抛物线顶点坐标为(-1,-5),∴顶点在第三象限,故选:C.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中对称轴为x=h,顶点坐标为(h,k).4.(3分)如图,C是圆O上一点,若圆周角∠ACB=36°,则圆心角∠AOB的度数是()A.18°B.36°C.54°D.72°【专题】圆的有关概念及性质.【分析】根据圆周角定理计算即可;【解答】解:∵∠AOB=2∠ACB,∠ACB=36°,∴∠AOB=72°,故选:D.【点评】本题考查圆周角定理,解题的关键是记住在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.(3分)已知AB=2,点P是线段AB上的黄金分割点,且AP>BP,则AP的长为()A.B.C.D.【专题】几何图形.6.(3分)已知(1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x﹣m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y3<y1<y2【专题】常规题型.【分析】求出抛物线的对称轴为直线x=-2,然后根据二次函数的增减性和对称性解答即可.【解答】∵a=-2<0,∴x=-2时,函数值最大,又∵1到-2的距离比-4到-2的距离大,∴y1<y3<y2.故选:C.【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性和对称性,求出对称轴是解题的关键.7.(3分)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC 相似的是()A.B.C.D.【专题】网格型.【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【点评】此题考查三角形相似判定定理的应用.8.(3分)如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6 B.C.8 D.【专题】常规题型.【分析】根据题意作出合适的辅助线,然后根据垂径定理、勾股定理即可求得OP的长,本题得以解决.【解答】解:作OE⊥AB交AB与点E,作OF⊥CD交CD于点F,如右图所示,则AE=BE,CF=DF,∠OFP=∠OEP=90°,又∵圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,∴∠FPE=90°,OB=10,BE=8,∴四边形OEPF是矩形,OE=6,同理可得,OF=6,∴EP=6,故选:B.【点评】本题考查垂径定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.9.(3分)如图,抛物线与x轴交于A、B两点,以线段AB为直径的半圆与抛物线在第二象限的交点为C,与y轴交于D点,设∠BCD=α,则的值为()A.sin2α B.cos2α C.tan2α D.tan﹣2α【分析】首先连接AD,BD,由圆周角定理可得∠BAD=∠BCD=α,又由AB是半圆的直径,可得∠ADB=90°,然后根据同角的余角相等,求得∠ODB=∠BAD=α,再利用三角函数的定义,求得OB与OA,【解答】解:连接AD,BD,∴∠BAD=∠BCD=α,∵AB是半圆的直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠ODB+∠OBD=90°,∴∠ODB=∠BAD=α,【点评】此题考查了圆周角定理、直角三角形的性质以及三角函数的知识.此题综合性较强,难度较大,解题的关键是准确作出辅助线,利用数形结合思想求解.10.(3分)一堂数学课上老师给出一题:“已知抛物线与x轴交于点A(﹣1,0),B(,0)(点A在点B的左侧),与y轴交于点C,若△ABC为等腰三角形,试求出满足条件的k值”.学生求出k值的答案有①;;②;③;④2.则本题满足条件的k的值为()A.①②④B.①③④C.②D.①②③④【分析】画出图形分三种情形分别求解即可.【点评】本题考查抛物线与x轴的交点、等腰三角形的判定和性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题11.(4分)若7x=3y,则=.【专题】计算题.【分析】等式两边都除以7y即可得解.【点评】本题考查了比例的性质,主要是两内项之积等于两外项之积的应用,比较简单.12.(4分)在Rt△ABC中,∠C=90°,sinB=,则tanB=.【专题】计算题;解直角三角形及其应用.【点评】本题主要考查锐角的三角函数,解题的关键是掌握正弦函数和正切函数的定义.13.(4分)为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复或发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为个.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解得:n=20,故答案为:20.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.14.(4分)如图,AB是圆O的直径,∠A=30°,BD平分∠ABC,CE⊥AB于E,若CD=6,则CE的长为.【专题】圆的有关概念及性质.【分析】首先证明∠D=∠CBD=30°,推出CD=CB=6,在Rt△ECB中,根据EC=BC•sin60°即可解决问题.【解答】解:∵AB是直径,∴∠ACB=90°,∵∠A=30°,∴∠D=∠A=30°,∠ABC=60°,∵BD平分∠ABC,【点评】本题考查圆周角定理、垂径定理、等腰三角形的判定和性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(4分)若函数y=(a﹣2)x2﹣4x+a+1的图象与x轴有且只有一个交点,则a的值为.【专题】方程思想.【分析】直接利用抛物线与x轴相交,b2-4ac=0,进而解方程得出答案.【解答】解:∵函数y=(a-2)x2-4x+a+1的图象与x轴有且只有一个交点,当函数为二次函数时,b2-4ac=16-4(a-2)(a+1)=0,解得:a1=-2,a2=3,当函数为一次函数时,a-2=0,解得:a=2.故答案为:-2或2或3.【点评】此题主要考查了抛物线与x轴的交点,正确得出关于a的方程是解题关键.16.(4分)如图,矩形ABCD的长为6,宽为4,以D为圆心,DC为半径的圆弧与以BC 为直径的半圆O相交于点F,连接CF并延长交BA的延长线于点H,FH•FC=.【专题】圆的有关概念及性质.【分析】连接BF、OF、OD,OD交CH于K.首先证明OD垂直平分线段CF,利用面积法求出CK、FK,利用勾股定理求出OK,利用三角形的中位线定理求出BF,再利用相似三角形的性质即可解决问题;【解答】解:连接BF、OF、OD,OD交CH于K.∵DF=DC,OF=OC,∴OD垂直平分线段CF,【点评】本题考查相似三角形的判定和性质、矩形的性质、圆周角定理、线段的垂直平分线的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.三、解答题17.(6分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)求乙投放的两袋垃圾不同类的概率.【专题】常规题型;概率及其应用.【分析】(1)直接利用概率公式求出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【解答】解:(1)∵垃圾要按A,B,C、D类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A类:厨余垃圾的概率为:;(2)记这四类垃圾分别为A、B、C、D,画树状图如下:由树状图知,乙投放的垃圾共有16种等可能结果,其中乙投放的两袋垃圾不同类的有12种结果,所以乙投放的两袋垃圾不同类的概率为=.【点评】此题主要考查了树状图法求概率,正确利用列举出所有可能是解题关键.18.(8分)如图,一艘舰艇在海面下600米A处测得俯角为30°前下方的海底C处有黑匣子信号发出,继续在同一深度直线航行2019米后再次在B点处测得俯角为60°前下方的海底C处有黑匣子信号发出,求海底黑匣子C处距离海面的深度(结果保留根号)【专题】三角形.【分析】易证∠BAC=∠BCA,所以有BA=BC.然后在直角△BCF中,利用正弦函数求出CF即可解决问题..【解答】解:由C点向AB作垂线,交AB的延长线于F点,并交海面于H点.已知AB=2019(米),∠BAC=30°,∠FBC=60°,∵∠BCA=∠FBC﹣∠BAC=30°,∴∠BAC=∠BCA.∴BC=BA=2019(米).在Rt△BFC中,FC=BC•sin60°=2019×=1000(米).∴CH=CF+HF=100+600(米).答:海底黑匣子C点处距离海面的深度约为(1000+600)米.【点评】本题考查了仰俯角问题,解决此类问题的关键是正确的将仰俯角转化为直角三角形的内角并选择正确的边角关系解直角三角形,要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.19.(8分)如图,弧AB的半径R为6cm,弓形的高CD=h 为3cm.求弧AB的长和弓形ADB的面积.【专题】圆的有关概念及性质.【分析】首先求得弦心距CO是6-3=3,则在直角三角形中,根据锐角三角函数,可以求得∠AOB=60°×2=120°.再根据弧长公式即可计算.【解答】解:由题意:CO=R﹣h=6﹣3=3(cm)在△BCO中,∵cos∠COB===,∴∠COB=60°,∴∠AOB=60°×2=120°,则==4π(cm).S弓形ADB=S扇形AOB﹣S△AOB=﹣•6•3=12π﹣9.【点评】本题考查扇形的面积公式、弧长公式、锐角三角函数、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(10分)如图,已知二次函数图象的顶点坐标为C(2,0),直线y=x+m与二次函数的图象交于A,B两点,其中点A在y轴上,B点(8,9).(1)求二次函数的表达式;(2)Q为线段AB上一动点(不与A,B重合),过点Q作y轴的平行线与二次函数交于点P,设线段PQ长为h,点Q横坐标为x.求①h与x之间的函数关系式;②△ABP面积的最大值.【专题】综合题.【分析】(1)设顶点式y=a(x-2)2,然后把B点坐标代入求出a即可得到抛物线解析式;(2)①把B点坐标代入y=x+m中求出m得到直线AB的解析式为y=x+1,设P (x,14x2-x+1)(0<x<8),则Q(x,x+1),用Q点的纵坐标减去P点的纵坐标可得到h与x的关系式;②根据三角形面积公式,利用S△ABP=S△APQ+S△BPQ得到S△ABP=4(14x2-2x),然后利用二次函数的性质解决问题.【解答】解:(1)设抛物线解析式为y=a(x﹣2)2,把B(8,9)代入得a(8﹣2)2=9,解得a=,∴抛物线解析式为y=(x﹣2)2,即y=x2﹣x+1;(2)①把B(8,9)代入y=x+m得8+m=9,解得m=1,所以直线AB的解析式为y=x+1,设P(x,x2﹣x+1)(0<x<8),则Q(x,x+1),∴h=x+1﹣(x2﹣x+1)=﹣x2+2x(0<x<8);②S△ABP=S△APQ+S△BPQ=•PQ•8=﹣4(x2﹣2x)=﹣x2+8x=﹣(x﹣4)2+16,当x=4时,△ABP面积有最大值,最大值为16.【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质.21.(10分)如图,四边形ABCD中,∠A=∠B=90°,P是线段AB上的一个动点.(1)若AD=2,BC=6,AB=8,且以A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,求AP的长;(2)若AD=a,BC=b,AB=m,则当a,b,m满足什么关系时,一定存在点P使△ADP∽△BPC?并说明理由.【专题】计算题.【分析】(1)分两种情形构建方程求解即可;整理得:x2-mx+ab=0,由题意△≥0,即可解决问题;【解答】解:(1)设AP=x.∵以A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,①当=时,=,解得x=2或8.②当=时,=,解得x=2,∴当A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,AP的值为2或8;(2)设PA=x,∵△ADP∽△BPC,整理得:x2﹣mx+ab=0,由题意△≥0,∴m2﹣4ab≥0.∴当a,b,m满足m2﹣4ab≥0时,一定存在点P使△ADP∽△BPC.【点评】本题考查相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考常考题型.22.(12分)已知二次函数y=x2+2bx+c(1)若b=c,是否存在实数x,使得相应的y的值为1?请说明理由;(2)若b=c﹣2,y在﹣2≤x≤2上的最小值是﹣3,求b的值.【专题】常规题型;分类讨论.【分析】(1)令y=1,判断所得方程的判别式大于0即可求解;(2)求得函数的对称轴是x=-b,然后分成-b≤-2,-2<-b<2和-b≥2三种情况进行讨论,然后根据最小值是-3,即可解方程求解.【解答】解:(1)由y=1得x2+2bx+c=1,∴x2+2bx+c﹣1=0∵△=4b2﹣4b+4=(2b﹣1)2+3>0,则存在两个实数,使得相应的y=1;(2)由b=c﹣2,则抛物线可化为y=x2+2bx+b+2,其对称轴为x=﹣b,①当x=﹣b≤﹣2时,则有抛物线在x=﹣2时取最小值为﹣3,此时﹣3=(﹣2)2+2×(﹣2)b+b+2,解得b=3;②当x=﹣b≥2时,则有抛物线在x=2时取最小值为﹣3,此时﹣3=22+2×2b+b+2,解得b=﹣,不合题意,舍去,③当﹣2<﹣b<2时,则=﹣3,化简得:b2﹣b﹣5=0,解得:b1=(不合题意,舍去),b2=.综上:b=3或.【点评】本题考查了二次函数的性质以及函数的最值,注意讨论对称轴的位置是本题的关键.23.(12分)已知:如图,AB是圆O的直径,CD是圆O的弦,AB⊥CD,E为垂足,AE=CD=8,F是CD延长线上一点,连接AF交圆O于G,连接AD、DG.(1)求圆O的半径;(2)求证:△ADG∽△AFD;(3)当点G是弧AD的中点时,求△ADG得面积与△AFD的面积比.【专题】综合题.【分析】(1)先表示出OE=8-R,再求出CE=4,利用勾股定理求出R,即可得出结论;(2)利用同角的余角相等,判断出∠ADG=∠F,即可得出结论;(3)先利用勾股定理求出AD,进而得出DF=AD,再利用勾股定理求出AG,即可得出DG,最后用相似三角形的面积比等于相似比的平方即可得出结论.【解答】解:(1)如图1,连接OC,设⊙O的半径为R,∵AE=8,∴OE=8﹣R,∵直径AB⊥CD,∴∠CEO=90°,CE=CD=4,在Rt△CEO中,根据勾股定理得,R2﹣(8﹣R)2=16,∴R=5,即:⊙O的半径为5;(2)如图2,连接BG,∴∠ADG=∠ABG,∵AB是⊙O的直径,∴∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠ADG+∠BAG=90°,∵AB⊥CD,∴∠BAG+∠F=90°,∴∠ADG=∠F,∵∠DAG=∠FAD,∴△ADG∽△AFD;(3)如图3,在Rt△ADE中,AE=8,DE=CD=4,根据勾股定理得,AD=4,连接OG交AD于H,∵点G是的中点,∴AH=AD=2,OG⊥AD,在Rt△AOH中,根据勾股定理得,OH=,在Rt△AHG中,HG=OG﹣OH=5﹣,根据勾股定理得,AG2=AH2+HG2=50﹣10,∵点G是的中点,∴DG=AG=50﹣10,∴∠DAG=∠ADG,由(2)知,∠ADG=∠F,∴∠DAG=∠F,∴DF=AD=4,由(2)知,△ADG∽△AFD,∴=()2===.【点评】此题是圆的综合题,主要考查了垂径定理,勾股定理,圆的性质,相似三角形的判定和性质,解(2)的关键是利用勾股定理建立方程,解(2)的关键是判断出∠ADG=∠F,解(3)的关键是求出DG.。

2019-2020浙江省余杭区实验学校九年级数学上册期末模拟试卷1解析版

2019-2020浙江省余杭区实验学校九年级数学上册期末模拟试卷1解析版
A. B. C. D.
9.如图,正方形ABCD中,E为BC的中点,CG⊥DE于G,BG延长交CD于点F,CG延长交BD于点H,交AB于N.下列结论:①DE=CN;② ;③S△DEC=3S△BNH;④∠BGN=45°;⑤ .其中正确结论的个数有()
A. 2个B. 3个C. 4个D. 5个
10.如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c> 时,x>2;④当1<x<3时,x2+(b﹣1)x+c<0,其中正确的序号是()
(1)求新坡面 的坡角及 的长;
(2)原坡面底部 的正前方 米处 是护墙 ,为保证安全,体育管理部门规定,坡面底部至少距护墙 米。请问新的设计方案能否通过,试说明理由(参考数据: )
23.已知:如图,在 中, , , , 是斜边 的中点,以 为顶点,作 , 的两边交边 于点 、 (点 不与点 重合)
(1)求销售量 与第 天之间的函数关系式;
(2)求在草莓上市销售的30天中,每天的销售利润 与第 天之间的函数关系式;(日销售利润=日销售额﹣日维护费)
(3)求日销售利润 的最大值及相应的 .
22.速滑运动受到许多年轻人的喜爱。如图,四边形 是某速滑场馆建造的滑台,已知 ,滑台的高 为 米,且坡面 的坡度为 .后来为了提高安全性,决定降低坡度,改造后的新坡面AC的坡度为 .
A. AE∥BC B. ∠ADE=∠BDC C. ΔBDE是等边三角形D. ΔADE的周长是9.5
5.如图,DE是△ABC的中位线,已知△ABC的面积为8 ,则△ADE的面积为( ) .
A. 2 B. 4 C. 6 D. 8

2019-2020学年浙教版九年级上期末考试数学试卷及答案解析

2019-2020学年浙教版九年级上期末考试数学试卷及答案解析

2019-2020学年浙教版九年级上期末考试数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列抛物线中,与y轴交点坐标为(0,3)的是()A.y=(x﹣3)2B.y=x2﹣3C.y=2x2﹣3x D.y=x2﹣2x+3 2.如图所示是一个旋转对称图形,若将它绕自身中心旋转一定角度之后不能与原图重合,则这个角度可能是()A.60°B.90°C.120°D.180°3.已知一个扇形的弧长为3π,所含的圆心角为120°,则半径为()A.9B.3C.D.4.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2﹣2D.y=(x+1)2﹣25.有两辆车按1,2编号,方方和成成两人可以任意选坐一辆车.则两人同坐1号车的概率为()A.B.C.D.6.已知点(﹣2,y1),(,y2),(,y3)在函数y=﹣(x﹣1)2的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,已知在△ABC中,AB=14,BC=12,AC=10,D是AC上一点,过点D画一条直线l,把△ABC分成两部分,使其中的一个三角形与△ABC相似,这样的直线有几条()A.2B.3C.3或4D.48.甲、乙两人同时从A地出发,步行15km到B地,甲比乙每小时多走1km,结果甲比乙早到半小时,两人每小时各走几千米?设甲每小时走xkm,则可列出的方程为()A.B.C.D.9.已知反比例函数的图象经过点P(4,﹣1),则该反比例函数的图象所在的象限是()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限10.如图,在矩形ABCD中,AB=3,BC=5,点E在对角线AC上,连接BE,作EF⊥BE,垂足为E,直线EF交线段DC于点F,则=()A.B.C.D.二.填空题(共6小题,满分30分,每小题5分)11.(5分)醴陵市农科站在相同条件下经试验发现蚕豆种子的发芽率为97.5%,请估计醴陵地区1000斤蚕豆种子中不能发芽的大约有斤.12.(5分)若△ABC∽△A′B′C′,∠A=50°,∠C=110°,则∠B′的度数为.13.(5分)如图,隧道的截面是抛物线型,抛物线的解析式为y=﹣2+4.隧道是单行道(车从正中间通过),为安全考虑,车顶与隧道顶部的垂直距离不少于0.5m,若货运汽车的宽为2米,则车安全通过隧道的限高为米.。

浙江省杭州市余杭区上学期期末考试九年级数学试卷(解析版)

浙江省杭州市余杭区上学期期末考试九年级数学试卷(解析版)

浙江省杭州市余杭区2019-2019学年上学期期末考试九年级数学试卷一、选择题1.(3分)sin30°的值是()A.B.C.D.【专题】常规题型.【分析】根据特殊角的三角函数值可得答案.【解答】解:sin30°=故选:A.【点评】此题主要考查了特殊角的三角函数值,关键是掌握30°、45°、60°角的各种三角函数值.2.(3分)下列事件中,属于必然事件的是()A.打开电视机正在播放广告B.投掷一枚质地均匀的硬币100次,正面向上的次数为50次C.任意画一个三角形,其内角和为180°D.任意一个二次函数图象与x轴必有交点【专题】常规题型.【分析】直接利用必然事件以及随机事件的定义分别分析得出答案.【解答】解:A、打开电视机正在播放广告,是随机事件,故此选项错误;B、投掷一枚质地均匀的硬币100次,正面向上的次数为50次,是随机事件,故此选项错误;C、意画一个三角形,其内角和为180°,是必然事件,故此选项正确;D、任意一个二次函数图象与x轴必有交点,是随机事件,故此选项错误;故选:C.【点评】此题主要考查了随机事件,正确把握相关事件的定义是解题关键.3.(3分)函数y=x2+2x﹣4的顶点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【专题】常规题型;二次函数图象及其性质.【分析】把二次函数化为顶点式则可求得顶点的坐标,则可求得答案.【解答】解:∵y=x2+2x-4=(x+1)2-5,∴抛物线顶点坐标为(-1,-5),∴顶点在第三象限,故选:C.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中对称轴为x=h,顶点坐标为(h,k).4.(3分)如图,C是圆O上一点,若圆周角∠ACB=36°,则圆心角∠AOB的度数是()A.18°B.36°C.54°D.72°【专题】圆的有关概念及性质.【分析】根据圆周角定理计算即可;【解答】解:∵∠AOB=2∠ACB,∠ACB=36°,∴∠AOB=72°,故选:D.【点评】本题考查圆周角定理,解题的关键是记住在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.(3分)已知AB=2,点P是线段AB上的黄金分割点,且AP>BP,则AP的长为()A.B. C.D.【专题】几何图形.6.(3分)已知(1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x﹣m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y3<y1<y2【专题】常规题型.【分析】求出抛物线的对称轴为直线x=-2,然后根据二次函数的增减性和对称性解答即可.【解答】∵a=-2<0,∴x=-2时,函数值最大,又∵1到-2的距离比-4到-2的距离大,∴y1<y3<y2.故选:C.【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性和对称性,求出对称轴是解题的关键.7.(3分)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.【专题】网格型.【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【点评】此题考查三角形相似判定定理的应用.8.(3分)如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6 B.C.8 D.【专题】常规题型.【分析】根据题意作出合适的辅助线,然后根据垂径定理、勾股定理即可求得OP的长,本题得以解决.【解答】解:作OE⊥AB交AB与点E,作OF⊥CD交CD于点F,如右图所示,则AE=BE,CF=DF,∠OFP=∠OEP=90°,又∵圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,∴∠FPE=90°,OB=10,BE=8,∴四边形OEPF是矩形,OE=6,同理可得,OF=6,∴EP=6,故选:B.【点评】本题考查垂径定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.9.(3分)如图,抛物线与x轴交于A、B两点,以线段AB为直径的半圆与抛物线在第二象限的交点为C,与y轴交于D点,设∠BCD=α,则的值为()A.sin2α B.cos2α C.tan2α D.tan﹣2α【分析】首先连接AD,BD,由圆周角定理可得∠BAD=∠BCD=α,又由AB是半圆的直径,可得∠ADB=90°,然后根据同角的余角相等,求得∠ODB=∠BAD=α,再利用三角函数的定义,求得OB与OA,【解答】解:连接AD,BD,∴∠BAD=∠BCD=α,∵AB是半圆的直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠ODB+∠OBD=90°,∴∠ODB=∠BAD=α,【点评】此题考查了圆周角定理、直角三角形的性质以及三角函数的知识.此题综合性较强,难度较大,解题的关键是准确作出辅助线,利用数形结合思想求解.10.(3分)一堂数学课上老师给出一题:“已知抛物线与x轴交于点A(﹣1,0),B(,0)(点A在点B的左侧),与y轴交于点C,若△ABC为等腰三角形,试求出满足条件的k值”.学生求出k值的答案有①;;②;③;④2.则本题满足条件的k的值为()A.①②④B.①③④C.② D.①②③④【分析】画出图形分三种情形分别求解即可.【点评】本题考查抛物线与x轴的交点、等腰三角形的判定和性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题11.(4分)若7x=3y,则=.【专题】计算题.【分析】等式两边都除以7y即可得解.【点评】本题考查了比例的性质,主要是两内项之积等于两外项之积的应用,比较简单.12.(4分)在Rt△ABC中,∠C=90°,sinB=,则tanB=.【专题】计算题;解直角三角形及其应用.【点评】本题主要考查锐角的三角函数,解题的关键是掌握正弦函数和正切函数的定义.13.(4分)为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复或发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为个.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解得:n=20,故答案为:20.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.14.(4分)如图,AB是圆O的直径,∠A=30°,BD平分∠ABC,CE⊥AB于E,若CD=6,则CE的长为.【专题】圆的有关概念及性质.【分析】首先证明∠D=∠CBD=30°,推出CD=CB=6,在Rt△ECB中,根据EC=BC•sin60°即可解决问题.【解答】解:∵AB是直径,∴∠ACB=90°,∵∠A=30°,∴∠D=∠A=30°,∠ABC=60°,∵BD平分∠ABC,【点评】本题考查圆周角定理、垂径定理、等腰三角形的判定和性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(4分)若函数y=(a﹣2)x2﹣4x+a+1的图象与x轴有且只有一个交点,则a的值为.【专题】方程思想.【分析】直接利用抛物线与x轴相交,b2-4ac=0,进而解方程得出答案.【解答】解:∵函数y=(a-2)x2-4x+a+1的图象与x轴有且只有一个交点,当函数为二次函数时,b2-4ac=16-4(a-2)(a+1)=0,解得:a1=-2,a2=3,当函数为一次函数时,a-2=0,解得:a=2.故答案为:-2或2或3.【点评】此题主要考查了抛物线与x轴的交点,正确得出关于a的方程是解题关键.16.(4分)如图,矩形ABCD的长为6,宽为4,以D为圆心,DC 为半径的圆弧与以BC为直径的半圆O相交于点F,连接CF并延长交BA的延长线于点H,FH•FC=.【专题】圆的有关概念及性质.【分析】连接BF、OF、OD,OD交CH于K.首先证明OD 垂直平分线段CF,利用面积法求出CK、FK,利用勾股定理求出OK,利用三角形的中位线定理求出BF,再利用相似三角形的性质即可解决问题;【解答】解:连接BF、OF、OD,OD交CH于K.∵DF=DC,OF=OC,∴OD垂直平分线段CF,【点评】本题考查相似三角形的判定和性质、矩形的性质、圆周角定理、线段的垂直平分线的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.三、解答题17.(6分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)求乙投放的两袋垃圾不同类的概率.【专题】常规题型;概率及其应用.【分析】(1)直接利用概率公式求出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【解答】解:(1)∵垃圾要按A,B,C、D类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A类:厨余垃圾的概率为:;(2)记这四类垃圾分别为A、B、C、D,画树状图如下:由树状图知,乙投放的垃圾共有16种等可能结果,其中乙投放的两袋垃圾不同类的有12种结果,所以乙投放的两袋垃圾不同类的概率为=.【点评】此题主要考查了树状图法求概率,正确利用列举出所有可能是解题关键.18.(8分)如图,一艘舰艇在海面下600米A处测得俯角为30°前下方的海底C处有黑匣子信号发出,继续在同一深度直线航行2019米后再次在B点处测得俯角为60°前下方的海底C处有黑匣子信号发出,求海底黑匣子C处距离海面的深度(结果保留根号)【专题】三角形.【分析】易证∠BAC=∠BCA,所以有BA=BC.然后在直角△BCF中,利用正弦函数求出CF即可解决问题..【解答】解:由C点向AB作垂线,交AB的延长线于F点,并交海面于H点.已知AB=2019(米),∠BAC=30°,∠FBC=60°,∵∠BCA=∠FBC﹣∠BAC=30°,∴∠BAC=∠BCA.∴BC=BA=2019(米).在Rt△BFC中,FC=BC•sin60°=2019×=1000(米).∴CH=CF+HF=100+600(米).答:海底黑匣子C点处距离海面的深度约为(1000+600)米.【点评】本题考查了仰俯角问题,解决此类问题的关键是正确的将仰俯角转化为直角三角形的内角并选择正确的边角关系解直角三角形,要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.19.(8分)如图,弧AB的半径R为6cm,弓形的高CD=h 为3cm.求弧AB的长和弓形ADB的面积.【专题】圆的有关概念及性质.【分析】首先求得弦心距CO是6-3=3,则在直角三角形中,根据锐角三角函数,可以求得∠AOB=60°×2=120°.再根据弧长公式即可计算.【解答】解:由题意:CO=R﹣h=6﹣3=3(cm)在△BCO中,∵cos∠COB===,∴∠COB=60°,∴∠AOB=60°×2=120°,则==4π(cm).S弓形ADB=S扇形AOB﹣S△AOB=﹣•6•3=12π﹣9.【点评】本题考查扇形的面积公式、弧长公式、锐角三角函数、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(10分)如图,已知二次函数图象的顶点坐标为C(2,0),直线y=x+m与二次函数的图象交于A,B两点,其中点A在y轴上,B点(8,9).(1)求二次函数的表达式;(2)Q为线段AB上一动点(不与A,B重合),过点Q作y轴的平行线与二次函数交于点P,设线段PQ长为h,点Q横坐标为x.求①h与x之间的函数关系式;②△ABP面积的最大值.【专题】综合题.【分析】(1)设顶点式y=a(x-2)2,然后把B点坐标代入求出a即可得到抛物线解析式;(2)①把B点坐标代入y=x+m中求出m得到直线AB的解析式为y=x+1,设P(x,14x2-x+1)(0<x<8),则Q(x,x+1),用Q点的纵坐标减去P点的纵坐标可得到h与x的关系式;②根据三角形面积公式,利用S△ABP=S△APQ+S△BPQ得到S△ABP=4(14x2-2x),然后利用二次函数的性质解决问题.【解答】解:(1)设抛物线解析式为y=a(x﹣2)2,把B(8,9)代入得a(8﹣2)2=9,解得a=,∴抛物线解析式为y=(x﹣2)2,即y=x2﹣x+1;(2)①把B(8,9)代入y=x+m得8+m=9,解得m=1,所以直线AB的解析式为y=x+1,设P(x,x2﹣x+1)(0<x<8),则Q(x,x+1),∴h=x+1﹣(x2﹣x+1)=﹣x2+2x(0<x<8);②S△ABP=S△APQ+S△BPQ=•PQ•8=﹣4(x2﹣2x)=﹣x2+8x=﹣(x﹣4)2+16,当x=4时,△ABP面积有最大值,最大值为16.【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质.21.(10分)如图,四边形ABCD中,∠A=∠B=90°,P是线段AB 上的一个动点.(1)若AD=2,BC=6,AB=8,且以A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,求AP的长;(2)若AD=a,BC=b,AB=m,则当a,b,m满足什么关系时,一定存在点P使△ADP∽△BPC?并说明理由.【专题】计算题.【分析】(1)分两种情形构建方程求解即可;整理得:x2-mx+ab=0,由题意△≥0,即可解决问题;【解答】解:(1)设AP=x.∵以A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,①当=时,=,解得x=2或8.②当=时,=,解得x=2,∴当A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,AP的值为2或8;(2)设PA=x,∵△ADP∽△BPC,整理得:x2﹣mx+ab=0,由题意△≥0,∴m2﹣4ab≥0.∴当a,b,m满足m2﹣4ab≥0时,一定存在点P使△ADP∽△BPC.【点评】本题考查相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考常考题型.22.(12分)已知二次函数y=x2+2bx+c(1)若b=c,是否存在实数x,使得相应的y的值为1?请说明理由;(2)若b=c﹣2,y在﹣2≤x≤2上的最小值是﹣3,求b的值.【专题】常规题型;分类讨论.【分析】(1)令y=1,判断所得方程的判别式大于0即可求解;(2)求得函数的对称轴是x=-b,然后分成-b≤-2,-2<-b<2和-b≥2三种情况进行讨论,然后根据最小值是-3,即可解方程求解.【解答】解:(1)由y=1得x2+2bx+c=1,∴x2+2bx+c﹣1=0∵△=4b2﹣4b+4=(2b﹣1)2+3>0,则存在两个实数,使得相应的y=1;(2)由b=c﹣2,则抛物线可化为y=x2+2bx+b+2,其对称轴为x=﹣b,①当x=﹣b≤﹣2时,则有抛物线在x=﹣2时取最小值为﹣3,此时﹣3=(﹣2)2+2×(﹣2)b+b+2,解得b=3;②当x=﹣b≥2时,则有抛物线在x=2时取最小值为﹣3,此时﹣3=22+2×2b+b+2,解得b=﹣,不合题意,舍去,③当﹣2<﹣b<2时,则=﹣3,化简得:b2﹣b﹣5=0,解得:b1=(不合题意,舍去),b2=.综上:b=3或.【点评】本题考查了二次函数的性质以及函数的最值,注意讨论对称轴的位置是本题的关键.23.(12分)已知:如图,AB是圆O的直径,CD是圆O的弦,AB⊥CD,E为垂足,AE=CD=8,F是CD延长线上一点,连接AF 交圆O于G,连接AD、DG.(1)求圆O的半径;(2)求证:△ADG∽△AFD;(3)当点G是弧AD的中点时,求△ADG得面积与△AFD的面积比.【专题】综合题.【分析】(1)先表示出OE=8-R,再求出CE=4,利用勾股定理求出R,即可得出结论;(2)利用同角的余角相等,判断出∠ADG=∠F,即可得出结论;(3)先利用勾股定理求出AD,进而得出DF=AD,再利用勾股定理求出AG,即可得出DG,最后用相似三角形的面积比等于相似比的平方即可得出结论.【解答】解:(1)如图1,连接OC,设⊙O的半径为R,∵AE=8,∴OE=8﹣R,∵直径AB⊥CD,∴∠CEO=90°,CE=CD=4,在Rt△CEO中,根据勾股定理得,R2﹣(8﹣R)2=16,∴R=5,即:⊙O的半径为5;(2)如图2,连接BG,∴∠ADG=∠ABG,∵AB是⊙O的直径,∴∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠ADG+∠BAG=90°,∵AB⊥CD,∴∠BAG+∠F=90°,∴∠ADG=∠F,∵∠DAG=∠FAD,∴△ADG∽△AFD;(3)如图3,在Rt△ADE中,AE=8,DE=CD=4,根据勾股定理得,AD=4,连接OG交AD于H,∵点G是的中点,∴AH=AD=2,OG⊥AD,在Rt△AOH中,根据勾股定理得,OH=,在Rt△AHG中,HG=OG﹣OH=5﹣,根据勾股定理得,AG2=AH2+HG2=50﹣10,∵点G是的中点,∴DG=AG=50﹣10,∴∠DAG=∠ADG,由(2)知,∠ADG=∠F,∴∠DAG=∠F,∴DF=AD=4,由(2)知,△ADG∽△AFD,∴=()2===.【点评】此题是圆的综合题,主要考查了垂径定理,勾股定理,圆的性质,相似三角形的判定和性质,解(2)的关键是利用勾股定理建立方程,解(2)的关键是判断出∠ADG=∠F,解(3)的关键是求出DG.。

浙江省余杭区重点中学2019-2020学年九年级(上)期末数学试卷(含解析)

浙江省余杭区重点中学2019-2020学年九年级(上)期末数学试卷(含解析)

2019-2020浙江省余杭区重点中学九年级数学上册期末试卷一、选择题(每小题3分,共30分)1.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有( ) A. 24 B. 36 C. 40 D. 902.如图,在平面直角坐标系中,点 A 的坐标为 (3,4) ,那么 cosα 的值是( )A. 34B. 43C. 45D. 353.如图,OA ⊥OB ,等腰直角三角形CDE 的腰CD 在OB 上,∠ECD =45°,将三角形CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则 OC CD的值为( )A. 12B. √22C. 13D. √334.已知△ABC ∽△A ´B ´C ´,且△ABC 与△A ´B ´C ´的周长比为 1:2 ,则△ABC 与△A ´B ´C ´的面积比为( ) A. 1:2 B. 2:1 C. 1:4 D. 4:15.已知,抛物线 y =ax 2+bx +c 与x 轴的公共点是(-6,0),(2,0),则这条抛物线的对称轴是直线( )A . x =1B . x =−2C . x =−1D . x =26.如图,在平面直角坐标系中,已知点 A(−2,4) , B(−8,−2) ,以原点 O 为位似中心,相似比为 12 ,把 ΔA BB 缩小,则点 A 的对应点 A ′ 的坐标( )A. (−1,2)B. (−9,18)C. (−9,18)或(9,−18)D. (−1,2)或(1,−2)7.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A. asinx+bsinxB. acosx+bcosxC. asinx+bcosx.D. acosx+bsinx8.如图,扇形AOB的圆心角为90°,四边形OCDE是边长为1的正方形,点C、E、D分别在OA、OB、AB上,过A作AF⊥ED交ED的延长线于点F,那么图中阴影部分的面积为().B. √2-1C. 2- √2D. √2A. √229.如图,在正方形ABCD中,ΔBPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②ΔDFP∼ΔBPH;③ΔPFD∼ΔPDB;④DP2=PH⋅PC.其中正确的个数是()A. 1B. 2C. 3D. 410.二次函数y=ax2+bc(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①抛物线与x轴的另一个交点是(5,0);②4a-2b+c>0:③4a+b=0;④当x>-1时,y的值随κ值的增大而增大。

【40套试卷合集】浙江省杭州余杭区六校联考2019-2020学年数学九上期末模拟试卷含答案

【40套试卷合集】浙江省杭州余杭区六校联考2019-2020学年数学九上期末模拟试卷含答案

2019-2020学年九上数学期末模拟试卷含答案注意事项:1、试题的答案书写在答题卡上,不得在试卷上直接作答。

2、作答前认真阅读答题卡上的注意事项。

参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-。

一、选择题(本大题12个小题,每小题4分,共计48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上对应题目的正确答案标号涂黑。

1、在12.5,,0,23-这四个数中,是正整数的是( ) A 、 2.5-B 、13C 、0D 、22、下列运算正确的是( ) A 、1052a a a +=B 、()437aa =C 、()222x y x y -=-D 、()336x x x ⋅-=-3、如图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是( )4、如图,已知//AB CD ,若15,55E C ∠=∠=,则A ∠的度数为( )A 、25B 、40C 、35D 、455、不等式组2251x x >-⎧⎨-≤⎩的解集在数轴上表示正确的是( )6、下列说法正确的是( )A 、在一个只装有白球和红球的袋中摸球,摸出红球是必然事件B 、了解湖南卫视《爸爸去哪儿》的收视率情况适合用抽样调查份某周,我市每天的最高气温(单位:℃)分别是10,9,10,6,11,12,13,则这组数据的极差是5℃D 、如果甲组数据的方差22S =甲,乙组数据的方差21.6S =乙,那么甲组数据比乙组数据稳定7、如图,AB 为O 的直径,C 、D 为O 上两点,60ABC ∠=,则D ∠的度数为( ) A 、60 B 、30 C 、45 D 、758、某人驾车从A 地沿高速公路前往B 地,中途在服务区停车熄火休息了一段时间。

出发时油箱中剩油40升,到达B 地后发现油箱中剩油4升,则从A 地出发后到达B 地的过程中,油箱所剩油量y (升)与时间t (小时)之间的函数图像大致是( )9、如图,在菱形ABCD 中,3,cos 5DE AB A ⊥=,则tan DBE ∠的值( ) A 、12B 、2C 、2D 、510、用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第10个图案需要的黑色五角星的个数是( )A 、15B 、16C 、17D 、1811、如图,点A 是反比例函数3y x=-在第二象限图象上一点,点B 是反比例函数4y x=在第一象限图象上一点,直线AB y与轴交于点C ,且AC BC =,连接OA 、OB ,则AOB ∆的面积是( ) A 、3 B 、3.5 C 、7D 、7.512、二次函数()20y ax bx ca =++≠的图象如图所示,且经过点()1,0-,则下列结论中,正确的是( ) A 、0b >B 、a c b +>C 、240b ac -< D 、a c <二、填空题:(本大题6个小题,每小题4分,共24分)请将答案直接填在答题卡...中对应的横线上。

2019-2020学年浙教版九年级数学上册期末综合检测试卷(有答案)

2019-2020学年浙教版九年级数学上册期末综合检测试卷(有答案)
则任意摸出一张卡片,摸到黑色卡片的概率是 =0.08;
(2)盒子里蓝色卡片的个数是:50﹣12﹣16﹣4=18.
27.【答案】解:(1)每次游戏可能出现的所有结果列表如下:
表格中共有9种等可能的结果,
则数字之积为3的倍数的有五种,
其概率为 ;数字之积为5的倍数的有三种,
其概率为 = .
(2)这个游戏对双方不公平.
A.∠ABD=∠C B.∠ADB=∠ABC C. D.
3.抛物线y=3x2, y=-3x2, y= x2+3共有的性质是()
A.开口向上 B.对称轴是y轴 C.都有最高点 D.y随x值的增大而增大
4.已知二次函数y=kx2-7x-7的图象与x轴有两个交点,则k的取值范围为()
A.k>- B.k>- 且k≠0 C.k≥- D.k≥- 且k≠0
∴∠CFD=∠AED,
∵∠A=∠CDF,
∴△AED∽△DFC,
∴ ,即 = .
(2)当∠B+∠EGC=180°时, = 成立.
证明:∵四边形ABCD是平行四边形,
∴∠B=∠ADC,AD∥BC,
∴∠B+∠A=180°,
∵∠B+∠EGC=180°,
∴∠A=∠EGC=∠FGD,
∵∠FDG=∠EDA,
∴△DFG∽△DEA,
13.如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的 ,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为________.
14.已知二次函数y=ax2+bx+c的部分图像如图所示,则关于x的方程ax2+bx+c=0的两个根的和等于________.

浙江省杭州市余杭区2019届九年级上学期数学期末考试试卷

浙江省杭州市余杭区2019届九年级上学期数学期末考试试卷

第1页,总25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………浙江省杭州市余杭区2019届九年级上学期数学期末考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 六 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. 寒假即将来临,小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明选择到甲社区参加实践活动的可能性为( ) A . B . C . D .2. 圆的面积公式S=πR 2中,S 与R 之间的关系是( )A . S 是R 的正比例函数B . S 是R 的一次函数C . S 是R 的二次函数D . 以上答案都不对3. 如图,在线段 上有一点 ,在 的同侧作等腰 和等腰 ,且 , ,,直线与线段 ,线段分别交于点,对于下列结论:①∽ ;②∽;③;④若,则.其中正确的是( )答案第2页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . ①②③④B . ①②③C . ①③④D . ①②4. 如图,抛物线 的开口向上,与 轴交点的横坐标分别为和3,则下列说法错误的是( )A . 对称轴是直线B . 方程 的解是,C . 当 时,D . 当, 随 的增大而增大5. 将二次函数 的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( ) A . B . C . D .6. 如图,在平面直角坐标系中,直线与 轴交于点 ,与 轴交于点 ,点 是 的中点,绕点 按顺时针旋转,且,的一边交 轴于点 ,开始时另一边 经过点 ,点 坐标为 ,当 旋转过程中,射线 与 轴的交点由点 到点 的过程中,则经过点 三点的圆的圆心所经过的路径长为( )。

2019-2020学年浙江省杭州市九年级上册期末数学试卷

2019-2020学年浙江省杭州市九年级上册期末数学试卷

2019-2020学年浙江省杭州市九年级上册期末数学试卷题号一二三总分得分第I卷(选择题)一、选择题(本大题共10小题,共30.0分)1.已知x=y,则下面变形错误的是()A. x+a=y+aB. 2x=2yC. x+y=0D. 2x−1=2y−12.抛物线y=5x2向右平移2个单位,再向上平移3个单位,得到的新抛物线的顶点坐标是()A. (2,3)B. (−2,3)C. (2,−3)D. (−2,−3)3.由6个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数据表示该位置的小正方体的个数,则该几何体的左视图为()A. B. C. D.4.如图,□ABCD中,E是边BC上的点,AE交BD于点F,如果BE:BC=2:3,那么下列各式错误的是()A. BEEC =2 B. ECAD=13C. EFAE=23D. BFDF=235.若二次函数y=2x2的图象经过点P(1,a),则a的值为()A. 12B. 1C. 2D. 46.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=3,按图中虚线剪下的三角形与△ABC不相似的是()A.B.C.D.7.如图,已知点A的坐标为(3,6),点B的坐标为(0,n)(0<n≤6),作AC⊥AB,交x轴于点C,M,0),则PM的最小为BC的中点.若点P的坐标为(32值为()A. 3B. 3√178C. 4√55D. 6√558.如图,BC是⊙O的直径,若AC⏜度数是50°,则∠ACB的度数是()A. 25°B. 40°C. 65°D. 130°9.如图,已知PA、PB切⊙O于A、B两点,CD切⊙O于E,△PCD的周长为20,sin∠APB=45,则⊙O的半径()A. 4B. 5C. 6D. 710.在直角坐标系中,点A的坐标为(3,0),点B是y轴上的一点,点C是第一象限内一点,且AC=2,设tan∠BOC=m,则m的最小值是()A. 1B. √52C. √5D. √3第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)11.若三角形三边之比为3:5:7,与它相似的三角形的最长边是21cm,则其余两边之和是______ cm.12.已知圆锥的母线长为3,底面半径为1,则把此圆锥沿母线剪开,平展后得到的扇形的圆心角为________度.13.如图,四边形ABCD内接于⊙O,AB是直径,连接BD。

2019-2020学年度第一学期浙教版九年级数学期末考试题(附答案)

2019-2020学年度第一学期浙教版九年级数学期末考试题(附答案)

2019-2020学年度第一学期浙教版九年级数学期末考试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.在﹣1,0,,3.010010001…,中任取一个数,取到无理数的概率是()A. B. C. D.2.如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点.若AE= ,∠EAF=135°,则以下结论正确的是()A. DE=1B. tan∠AFO=C. AF=D. 四边形AFCE的面积为3.如图,⊙O 中,弦AB、CD 相交于点P,∠A=40°,∠APD=75°,则∠B=()A. 15°B. 40°C. 75°D. 35°4.二次函数y=ax²+bx+2(a≠0)的图像经过点(-1,1)则代数1-a+b的值为()A. -3B. -1C. 2D. 55.以下说法正确的是()A. 在同一年出生的400人中至少有两人的生日相同B. 一个游戏的中奖率是1%,买100张奖券,一定会中奖C. 一副扑克牌中,随意抽取一张是红桃K,这是必然事件D. 一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是6.如图,在平面直角坐标系中,点A(-1,m)在直线y=2x+3上,连接OA,将线段OA绕点O顺时针旋转90°,点A的对应点B恰好落在直线y=-x+b上,则b的值为( )A. -2B. 1C.D. 27.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF 的长为()A. 5B. 6C. 7D. 88.如图,半径为1的圆中,圆心角为120°的扇形面积为()A. B. C. π D.9.如图,分别是边上的点,,若,则的长是().A. 1B. 2C. 3D. 410.已知过点、和的抛物线的图象大致为A. B. C. D.二、填空题(共6题;共24分)11.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=________.12.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是________.13.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,若OA2﹣AB2=8,则k的值为________.14.如图,在平面直角坐标系中,抛物线y= 与直线交于A、B,直线AB交于y轴于点C,点P为线段OB上一个动点(不与点O、B重合),当△OPC为等腰三角形时,点P的坐标:________.15.如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是________.16.如图,已知△ABO顶点A(-3,6),以原点O为位似中心,把△ABO缩小到原来的,则与点A对应的点A'的坐标是________.三、解答题(共8题;共66分)17.小丽和小明将在下周的星期一到星期三这三天中各自任选一天担任值日工作,请用画树状图或列表格的方法,求小丽和小明在同一天值日的概率.18.如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均在小正方形的顶点上.(1)以点O为位似中心,在网格图中作△A′B′C′(在位似中心的同侧)和△ABC位似,且位似比为1 2;(2)连结(1)中的AA′,求四边形AA′C′C的周长(结果保留根号).19.如图, 是的边的中点,过延长线上的点作的垂线, 为垂足, 与的延长线相交于点,点在上, , ∥.(1)证明:;(2)证明:点是的外接圆的圆心;20.如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.21.商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件,据此规律,请回答:(1)当每件商品售价定为140元时,每天可销售多少件商品?商场获得的日盈利是多少?(2)在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元,商场日盈利可达1500元?(3)商家应把商品的单价定为多少元时,可获得最大利润,并求出此时的利润为多少?22.如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(-1,2),AB⊥x轴于点E,正比例函数y=mx的图像与反比例函数的图像相交于A,P两点。

2019—2020年最新浙教版九年级数学上学期期末考试检测题及答案解析.doc

2019—2020年最新浙教版九年级数学上学期期末考试检测题及答案解析.doc

第一学期九年级期末模拟检测数学试题卷一、选择题(共10小题,每小题4分,满分40分)1.若,则的值为()A.B.C.D.2.已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y13.⊙O的弦AB的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为()A.4cm B.5cm C.8cm D.10cm4.如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC的度数为()A.50° B.80° C.90° D.100°5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD 的长为()A.1 B.C.2 D.6.设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M 的坐标可能是()A.(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)7.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.8.如图,⊙O是△ABC的外接圆,BC的中垂线与相交于D点,若∠B=74°,∠C=46°,则的度数为()A.23° B.28° C.30° D.37°9.如图1,一个电子蜘蛛从点A出发匀速爬行,它先沿线段AB爬到点B,再沿半圆经过点M爬到点C.如果准备在M、N、P、Q四点中选定一点安装一台记录仪,记录电子蜘蛛爬行的全过程.设电子蜘蛛爬行的时间为x,电子蜘蛛与记录仪之间的距离为y,表示y与x函数关系的图象如图2所示,那么记录仪可能位于图1中的()A.点M B.点N C.点P D.点Q10.甲,乙,丙三位先生是同一家公司的职员,他们的夫人,M,N,P也都是这家公司的职员,知情者介绍说:“M的丈夫是乙的好友,并在三位先生中最年轻;丙的年龄比P的丈夫大”.根据该知情者提供的信息,我们可以推出三对夫妇分别是()A.甲﹣M,乙﹣N,丙﹣P B.甲﹣M,乙﹣P,丙﹣NC.甲﹣N,乙﹣P,丙﹣M D.甲﹣P,乙﹣N,丙﹣M二、填空题(共6小题,每小题5分,满分30分)11.(5分)已知线段a=3,b=27,则a,b的比例中项线段长等于.12.(5分)在A地与B地之间共有4条行走的道路,甲、乙两人分别从A,B 两地同时出发,相向而行.如果他们都任意选择一条道路行走,那么他们在途中相遇的概率是.13.(5分)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为.14.(5分)如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为m.15.(5分)九(3)班同学作了关于私家车乘坐人数的统计,在100辆私家车中,统计结果如表:根据以上结果,估计调查一辆私家车而它载有超过2名乘客的概率为.16.(5分)如图,把数字1,2,3,…,9分别填入图中的9个圈内,要求△ABC和△DEF的每条边上三个圈内的数字之和等于18,给出符合要求的填法.三、解答题(共8小题,满分80分)17.(8分)计算:3tan30°+cos245°﹣2sin60°.18.(8分)如图,在离铁塔150m的A处,用测倾仪测得塔顶的仰角为30°12′,测倾仪高AD为1.52m,求铁塔高BC(精确到0.1m).(参考数据:sin30°12′=0.5030,cos30°12′=0.8643,tan30°12′=0.5820)19.(8分)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,求n的值;(2)在一个摸球游戏中,若有2个白球,小明用画树状图的方法寻求他两次摸球(摸出一球后,不放回,再摸出一球)的所有可能结果,如图是小明所画的正确树状图的一部分,补全小明所画的树状图,并求两次摸出的球颜色不同的概率.20.(8分)如图,A,P,B,C是⊙O上的四点,且满足∠BAC=∠APC=60°.(1)问△ABC是否为等边三角形?为什么?(2)若⊙O的半径OD⊥BC于点E,BC=8,求⊙O的半径长.21.(10分)某书店销售儿童书刊,一天可售出20套,每套盈利40元,为了扩大销售,增加盈利,尽快减少库存,书店决定采取降价措施,若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求y关于x的函数解析式(化为一般形式);(2)当每套书降价多少元时,书店可获最大利润?最大利润为多少?22.(12分)如图1,有两个分别涂有黄色和蓝色的Rt△ABC和Rt△A′B′C′,其中∠C=∠C′=90°,∠A=60°,∠A′=45°.思考:能否分别作一条直线分割这两个三角形,使△ABC所分割成的两个黄色三角形与△A′B′C′所分割成的两个蓝色三角形分别对应相似.(1)如图2,作直线CD,C′D,分别交AB于点D,交A′B′于点D′,∠BCD=45°,∠B′C′D′=30°,问△BCD与△B′C′D′、△ACD与△A′C′D′是否相似?并选择其中相似的一对三角形,说明理由.(2)如图3,作直线AD,B′D′,分别交BC于点D,交A′C′于点D′,若△ACD 与△B′C′D′、△ABD与△A′B′D′均相似,求∠CAD,∠C′B′D′的度数(直接写出答案)23.(12分)如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与C2关联.(1)已知抛物线①:y=﹣2x2+4x+3与②:y=2x2+4x﹣1,请判断抛物线①与抛物线②是否关联,并说明理由;(2)将抛物线C1:y=﹣2x2+4x+3沿x轴翻折,再向右平移m(m>0)个单位,得到抛物线C2,若抛物线C1与C2关联,求m的值;(3)点A为抛物线C1:y=﹣2x2+4x+3的顶点,点B为抛物线C1关联的抛物线的顶点(点B位于x轴的下方),是否存在以AB为斜边的等腰直角三角形ABC,使其直角顶点C在x轴上?若存在,求出C点的坐标;若不存在,请说明理由.24.(14分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,点D为边BC 的中点,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)当DP⊥AB时,求CQ的长;(2)当BP=2,求CQ的长;(3)连结AD,若AD平分∠PDQ,求DP,DQ的长.参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.若,则的值为()A.B.C.D.【考点】比例的性质.【分析】用b表示a,代入求解即可.【解答】解:∵=,∴a=b,即==.故选A.【点评】本题主要考查了简单的比例问题,能够熟练掌握.2.已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y1【考点】二次函数图象上点的坐标特征.【分析】求出抛物线的对称轴,结合开口方向画出草图,根据对称性解答问题.【解答】解:抛物线y=﹣2x2﹣8x+m的对称轴为x=﹣2,且开口向下,x=﹣2时取得最大值.∵﹣4<﹣1,且﹣4到﹣2的距离大于﹣1到﹣2的距离,根据二次函数的对称性,y3<y1.∴y3<y1<y2.∴故选C.【点评】此题考查了二次函数的性质,通常根据开口方向、对称轴,结合草图即可判断函数值的大小.3.⊙O的弦AB的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为()A.4cm B.5cm C.8cm D.10cm【考点】垂径定理.【分析】根据垂径定理,先求出弦长的一半,再利用勾股定理即可求出.【解答】解:如图∵AE=AB=4cm∴OA===5cm.故选B.【点评】本题主要考查半弦、半径、弦心距所构成直角三角形的计算,利用勾股定理求解.4.如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC的度数为()A.50° B.80° C.90° D.100°【考点】三角形的外接圆与外心;三角形内角和定理;圆周角定理.【分析】由⊙O是△ABC的外接圆,∠A=50°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数.【解答】解:∵⊙O是△ABC的外接圆,∠A=50°,∴∠BOC=2∠A=100°.故选D.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD 的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.6.设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M 的坐标可能是()A.(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)【考点】二次函数的性质.【分析】根据二次函数的解析式可得出直线l的方程为x=3,点M在直线l上则点M的横坐标一定为3,从而选出答案.【解答】解:∵二次函数y=(x﹣3)2﹣4图象的对称轴为直线x=3,∴直线l上所有点的横坐标都是3,∵点M在直线l上,∴点M的横坐标为3,故选B.【点评】本题考查了二次函数的性质,解答本题的关键是掌握二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴是x=h.7.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.【考点】平行线分线段成比例.【分析】根据AH=2,HB=1求出AB的长,根据平行线分线段成比例定理得到=,计算得到答案.【解答】解:∵AH=2,HB=1,∴AB=3,∵l1∥l2∥l3,∴==,故选:D.【点评】本题考查平行线分线段成比例定理,掌握定理的内容、找准对应关系列出比例式是解题的关键.8.如图,⊙O是△ABC的外接圆,BC的中垂线与相交于D点,若∠B=74°,∠C=46°,则的度数为()A.23° B.28° C.30° D.37°【考点】三角形的外接圆与外心;线段垂直平分线的性质;圆心角、弧、弦的关系.【分析】首先连接OB,OC,AO,设DO交BC于点E,由∠B=74°,∠C=46°,即可求得∠BAC的度数,又由△ABC的边BC的垂直平分线与△ABC的外接圆相交于点D,根据圆周角定理,即可求得∠AOB与∠BOE的度数,继而求得答案.【解答】解:如图,连接OB,OC,AO,设DO交BC于点E,∵OD是△ABC的边BC的垂直平分线,∴∠BOE=∠BOC,∵∠BAC=∠BOC,∴∠BOE=∠BAC,∵∠ABC=74°,∠ACB=46°,∴∠BOE=∠BAC=180°﹣∠ABC﹣∠ACB=60°,∴∠BOD=180°﹣∠BOE=180°﹣60°=120°,∵∠AOB=2∠ACB=92°,∴的度数为:92°,∴的度数为:120°﹣92°=28°.故选:B.【点评】此题考查了圆周角定理以及线段垂直平分线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9.如图1,一个电子蜘蛛从点A出发匀速爬行,它先沿线段AB爬到点B,再沿半圆经过点M爬到点C.如果准备在M、N、P、Q四点中选定一点安装一台记录仪,记录电子蜘蛛爬行的全过程.设电子蜘蛛爬行的时间为x,电子蜘蛛与记录仪之间的距离为y,表示y与x函数关系的图象如图2所示,那么记录仪可能位于图1中的()A.点M B.点N C.点P D.点Q【考点】动点问题的函数图象.【分析】根据函数的增减性:不同的观察点获得的函数图象的增减性不同,可得答案.【解答】解:A、从A点到M点y随x而减小一直减小到0,故A不符合题意;B、从A到B点y随x的增大而减小,从B到C点y的值不变,故B不符合题意;C、从A到AB的中点y随x的增大而减小,从AB的中点到M点y随x的增大而增大,从M点到C点y随x的增大而减小,故C符合题意;D、从A到M点y随x的增大而增大,从M点到C点y随x的增大而减小,故D不符合题意;故选:C.【点评】本题考查了动点问题的函数图象,利用观察点与动点P之间距离的变化关系得出函数的增减性是解题关键.10.甲,乙,丙三位先生是同一家公司的职员,他们的夫人,M,N,P也都是这家公司的职员,知情者介绍说:“M的丈夫是乙的好友,并在三位先生中最年轻;丙的年龄比P的丈夫大”.根据该知情者提供的信息,我们可以推出三对夫妇分别是()A.甲﹣M,乙﹣N,丙﹣P B.甲﹣M,乙﹣P,丙﹣NC.甲﹣N,乙﹣P,丙﹣M D.甲﹣P,乙﹣N,丙﹣M【考点】推理与论证.【分析】根据已知M的丈夫是乙的好友,并在三位先生中最年轻;丙的年龄比P的丈夫大,即可得出M的丈夫一定不是乙,进而得出P的丈夫以及甲的丈夫进而求出即可.【解答】解:∵甲,乙,丙三位先生是同一家公司的职员,他们的夫人,M,N,P也都是这家公司的职员,且M的丈夫是乙的好友,并在三位先生中最年轻,∴M的丈夫一定不是乙,一定是甲或丙,∵丙的年龄比P的丈夫大,∴P与丙一定不是夫妻,且M的丈夫一定是甲,则P的丈夫是乙,N的丈夫是丙.故选:B.【点评】此题主要考查了推理与论证,根据题意得出M与P的丈夫是解题关键.二、填空题(共6小题,每小题5分,满分30分)11.已知线段a=3,b=27,则a,b的比例中项线段长等于9 .【考点】比例线段.【分析】根据比例中项的定义直接列式求值,问题即可解决.【解答】解:设a、b的比例中项为x,∵a=4,b=8,∴=,∴a,b的比例中项线段长等于9,故答案为:9.【点评】本题主要考查了比例线段.根据比例的性质列方程求解即可.解题的关键是掌握比例中项的定义,如果a:b=b:c,即b2=ac,那么b叫做a与c的比例中项.12.在A地与B地之间共有4条行走的道路,甲、乙两人分别从A,B两地同时出发,相向而行.如果他们都任意选择一条道路行走,那么他们在途中相遇的概率是.【考点】列表法与树状图法.【分析】画树状图展示所有16种等可能的结果数,再找出选择一条道路的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中选择一条道路的结果数为4,所以他们在途中相遇的概率==.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.13.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B (1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1 .【考点】二次函数的性质.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.也考查了二次函数图象与一次函数图象的交点问题.14.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为 1.5 m.【考点】相似三角形的应用.【分析】因为光线是平行的,所以在题中有一组相似三角形,根据对应边成比例,列方程即可解答.【解答】解:∵BE∥AD,∴△CBE∽△CAD,∴EC:CD=BC:AC,∴1.2:3=1:AC,∴AC=2.5m,∴AB=AC﹣BC=1.5m.故答案为:1.5.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出窗户的高.15.九(3)班同学作了关于私家车乘坐人数的统计,在100辆私家车中,统计结果如表:根据以上结果,估计调查一辆私家车而它载有超过2名乘客的概率为.【考点】列表法与树状图法. 【分析】先利用表中数据计算出一辆私家车载有超过2名乘客的频率,然后利用频率估计概率求解.【解答】解: =,估计调查一辆私家车而它载有超过2名乘客的概率为. 故答案为.【点评】本题考查了列表法与树状图法,利用频率估计概率是求实际生活中某事件概率的常用方法.16.如图,把数字1,2,3,…,9分别填入图中的9个圈内,要求△ABC 和△DEF 的每条边上三个圈内的数字之和等于18,给出符合要求的填法.【考点】规律型:图形的变化类.【分析】把填入A ,B ,C 三处圈内的三个数之和记为x ;D ,E ,F 三处圈内的三个数之和记为y ;其余三个圈所填的数位之和为z .结合图形和已知条件得到方程组,进而求得y=24,再进一步分析即可.【解答】解:把填入A,B,C三处圈内的三个数之和记为x;D,E,F三处圈内的三个数之和记为y;其余三个圈所填的数位之和为z.显然有x+y+z=1+2+…+9=45①,图中六条边,每条边上三个圈中之数的和为18,所以有z+3y+2x=6×18=108②,②﹣①,得x+2y=108﹣45=63③,把AB,BC,CA每一边上三个圈中的数的和相加,则可得2x+y=3×18=54④,联立③,④,解得x=15,y=24,继而解之z=6.在1,2,3,…,9中三个数之和为24的仅为7,8,9,所以在D,E,F三处圈内,只能填7,8,9三个数,共有6种不同填法.显然,当这三个圈中的数一旦确定,根据题目要求,其余六个圈内的数也随之确定,符合要求的填法之一如图:.【点评】此题考查数字的变化类,解题要特别注意三角形的顶点的数字的重复使用,能够根据各边的数字之和列方程组求解.三、解答题(共8小题,满分80分)17.计算:3tan30°+cos 245°﹣2sin60°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=3×+()2﹣2×=+﹣=.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.18.如图,在离铁塔150m 的A 处,用测倾仪测得塔顶的仰角为30°12′,测倾仪高AD 为1.52m ,求铁塔高BC (精确到0.1m ).(参考数据:sin30°12′=0.5030,cos30°12′=0.8643,tan30°12′=0.5820)【考点】解直角三角形的应用-仰角俯角问题.【分析】过点A 作AE ⊥BC ,E 为垂足,再由锐角三角函数的定义求出BE 的长,由BC=BE+CE 即可得出结论.【解答】解:过点A 作AE ⊥BC ,E 为垂足,在△ABE 中,∵tan30°12′==,∴BE=150×tan30°12′≈87.30,∴BC=BE+CE=87.30+1.52≈88.8(m).答:铁塔的高BC约为88.8m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.19.一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,求n的值;(2)在一个摸球游戏中,若有2个白球,小明用画树状图的方法寻求他两次摸球(摸出一球后,不放回,再摸出一球)的所有可能结果,如图是小明所画的正确树状图的一部分,补全小明所画的树状图,并求两次摸出的球颜色不同的概率.【考点】利用频率估计概率;列表法与树状图法.【分析】(1)利用频率估计概率,则摸到绿球的概率为0.25,根据概率公式得到=0.25,然后解方程即可;(2)先画树状图展示所有12种等可能的结果数,再找出两次摸出的球颜色不同的结果数,然后根据概率公式求解.【解答】解:(1)利用频率估计概率得到摸到绿球的概率为0.25,则=0.25,解得n=2,故答案为2;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的球的颜色不同的结果共有10 种,所以两次摸出的球颜色不同的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.20.如图,A,P,B,C是⊙O上的四点,且满足∠BAC=∠APC=60°.(1)问△ABC是否为等边三角形?为什么?(2)若⊙O的半径OD⊥BC于点E,BC=8,求⊙O的半径长.【考点】圆周角定理;等边三角形的判定与性质;垂径定理.【分析】(1)先根据圆周角定理得出∠ABC的度数,再直接根据三角形的内角和定理进行解答即可;(2)连接OB,由等边三角形的性质可知,∠OBD=30°,根据BC=8利用直角三角形的性质即可得出结论.【解答】解:(1)△ABC是等边三角形:理由:∵∠BAC=∠APC=60°,又∵∠APC=∠ABC,∴∠ABC=60°,∴∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣60°﹣60°=60°,∴△ABC是等边三角形;(2)解:如图,连接OB,∵△ABC为等边三角形,⊙O为其外接圆,∴O为△ABC的外心,∴BO平分∠ABC,∴∠OBD=30°,∴OE=,OB=,【点评】本题考查了圆周角定理、等边三角形的判定,垂径定理,解直角三角形等知识,将各知识点有机结合,旨在考查同学们的综合应用能力.21.(10分)(2015秋•绍兴期末)某书店销售儿童书刊,一天可售出20套,每套盈利40元,为了扩大销售,增加盈利,尽快减少库存,书店决定采取降价措施,若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求y关于x的函数解析式(化为一般形式);(2)当每套书降价多少元时,书店可获最大利润?最大利润为多少?【考点】二次函数的应用.【分析】(1)根据题意设出每天降价x元以后,准确表示出每天书刊的销售量,列出利润y关于降价x的函数关系式(2)运用配方法求出二次函数最值.【解答】解:(1)设每套书降价x元时,所获利润为y元,则每天可出售(20+2x)套.由题意得:y=(40﹣x)(20+2x)=﹣2x2+80x﹣20x+800=﹣2x2+60x+800.(2)y=﹣2x2+60x+800=﹣2(x﹣15)2+1250,∵﹣2<0,∴当x=15时,y取得最大值1250;即当将价15元时,该书店可获得最大利润,最大利润为1250元.【点评】此题考查了二次函数及一元二次方程在现实生活中的应用问题;解题的关键是准确列出二次函数解析式,灵活运用函数的性质解题.22.(12分)(2015秋•绍兴期末)如图1,有两个分别涂有黄色和蓝色的Rt △ABC和Rt△A′B′C′,其中∠C=∠C′=90°,∠A=60°,∠A′=45°.思考:能否分别作一条直线分割这两个三角形,使△ABC所分割成的两个黄色三角形与△A′B′C′所分割成的两个蓝色三角形分别对应相似.(1)如图2,作直线CD,C′D,分别交AB于点D,交A′B′于点D′,∠BCD=45°,∠B′C′D′=30°,问△BCD与△B′C′D′、△ACD与△A′C′D′是否相似?并选择其中相似的一对三角形,说明理由.(2)如图3,作直线AD,B′D′,分别交BC于点D,交A′C′于点D′,若△ACD 与△B′C′D′、△ABD与△A′B′D′均相似,求∠CAD,∠C′B′D′的度数(直接写出答案)【考点】相似形综合题.【分析】思考:在图1中,可以分别作一条直线分割这两个三角形,使△ABC所分割成的两个黄色三角形与△A′B′C′所分割成的两个蓝色三角形分别对应相似.根据相似三角形的判定方法即可证明.(1)如图2中,△BCD与△B′C′D′、△ACD与△A′C′D′相似,理由同上.(2)如图3中,当∠CAD=∠C′B′D′=15°时,△ACD与△B′C′D′、△ABD与△A′B′D′均相似.【解答】解:思考:在图1中,可以分别作一条直线分割这两个三角形,使△ABC 所分割成的两个黄色三角形与△A′B′C′所分割成的两个蓝色三角形分别对应相似.作CD平分∠ACB交AB于D,作∠A′C′D′=60°JIAO A′B′于D′.则△ACD∽△C′A′D′,△BCD∽△C′B′D′.理由:∵∠A=∠A′C′D′=60°,∠ACD=∠A′=45°,∴△ACD∽△C′A′D′,∵∠B=∠B′C′D′,∠BCD=∠B′,∴△BCD∽△C′B′D′.(1)如图2中,△BCD与△B′C′D′、△ACD与△A′C′D′相似,理由同上.(2)如图3中,当∠CAD=∠C′B′D′=15°时,△ACD与△B′C′D′、△ABD与△A′B′D′均相似.理由:∵∠C=∠C′=90°,∠CAD=∠C′B′D′=15°,∴△ACD∽△B′C′D′,∵∠B=∠A′B′D′=30°,∠DAB=∠A′=45°,∴△BAD∽△B′A′D′.【点评】本题考查相似三角形的判定和性质、直角三角形的性质,解题的关键是灵活运用相似三角形的判定方法,学会取特殊角解决问题,属于中考常考题型.23.(12分)(2015秋•绍兴期末)如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与C2关联.(1)已知抛物线①:y=﹣2x2+4x+3与②:y=2x2+4x﹣1,请判断抛物线①与抛物线②是否关联,并说明理由;(2)将抛物线C1:y=﹣2x2+4x+3沿x轴翻折,再向右平移m(m>0)个单位,得到抛物线C2,若抛物线C1与C2关联,求m的值;(3)点A为抛物线C1:y=﹣2x2+4x+3的顶点,点B为抛物线C1关联的抛物线的顶点(点B位于x轴的下方),是否存在以AB为斜边的等腰直角三角形ABC,使其直角顶点C在x轴上?若存在,求出C点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据两抛物线的关联依次判断即可;(2)根据两抛物线关联的定义直接列式得出结论;(3)分当点C位于AD左侧和当点C位于AD右侧,借助关联的意义设出点C坐标,表示出点B坐标代入抛物线解析式即可求出点C坐标.【解答】解:(1)由①知,y=﹣2(x﹣1)2+5,∴抛物线①:y=﹣2x2+4x+3的顶点坐标为(1,5),把x=1代入抛物线②:y=2x2+4x﹣1,得y=5,∴抛物线①的顶点在抛物线②上,又由②y=2(x+1)2﹣3,∴抛物线②的顶点坐标为(﹣1,﹣3),把x=﹣1代入抛物线①中,得,y=﹣3,∴抛物线②的顶点在抛物线①上,∴抛物线①与抛物线②关联.(2)抛物线y=﹣2x2+4x+3沿x轴翻折后抛物线为y=2x2﹣4x﹣3,即:y=2(x﹣1)2﹣5,设平移后的抛物线解析式为y=2(x﹣1﹣m)2﹣5,把x=1,y=5代入得2(1﹣1﹣m)2﹣5=5,∴m=±,∵m>0,∴m=,(3)①当点C位于AD左侧时,过点A作AD⊥x轴于D,过点B作BE⊥x轴于E,如图1,∴△ACD≌△CBE,∴CE=AD,BE=CD设C(c,0),∵点B在x轴下方,∴点B的纵坐标为c﹣1;Ⅰ、当点C在x轴负半轴上时,即:c<0,∴B(c+5,c﹣1),把B(c+5,c﹣1),代入y=﹣2(x﹣1)2+5中得,2c2+17c+26=0,∴c=﹣2或c=﹣,∴C(﹣2,0)或(﹣,0),Ⅱ、当点C在x轴正半轴上时,即:0<c<1把B(5﹣c,c﹣1),代入y=﹣2(x﹣1)2+5中得,2c2﹣15c+26=0,∴c=(不符合题意,舍),②当点C位于AD右侧时,设C(c,0),同①的方法得出B(c﹣5,1﹣c),将B(c﹣5,1﹣c)代入y=﹣2(x﹣1)2+5中得,2c2﹣25c+68=0,∴c=4或c=,∴C(4,0)或(,0),即:点C的坐标为:(﹣2,0)或(﹣,0)或(4,0)或(,0).【点评】此题是二次函数综合题,主要考查了新定义,全等三角形的判定和性质,解一元二次方程,分类讨论的思想,理解两抛物线关联是解本题的关键.24.(14分)(2015秋•绍兴期末)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,点D为边BC的中点,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)当DP⊥AB时,求CQ的长;(2)当BP=2,求CQ的长;(3)连结AD,若AD平分∠PDQ,求DP,DQ的长.【考点】相似形综合题.【分析】(1)首先证明DQ∥AB,根据平行线等分线段定理即可解决问题.(2)分两种情形①如图2中,当点P在线段AB上时,作DM⊥AB,DN⊥AC,垂足分别为M、N,由△PDM∽△QDN,得==,推出QN=PM,推出PM=BM﹣PB=3﹣2=1,推出QN=即可解决问题.②如图3中,当点P在AB的延长线上时,根据PM=5,QN=,CQ=QN+CN计算即可.(3)如图4中,作AM⊥DP于M,AN⊥DQ于N.首先证明四边形AMDN是正方形,由APM≌△AQN,推出PM=NQ,推出PD+DQ=(PM+MD)+(DN﹣QN)=2DM=AD=5,由(2)可知PD:QD=4:3,由此即可计算.【解答】解:(1)如图1中,∵DP⊥AB,DQ⊥DP,∴DQ∥AB,∵BD=DC,∴CQ=AQ=4.(2)①如图2中,当点P在线段AB上时,作DM⊥AB,DN⊥AC,垂足分别为M、N,则四边形AMDN是矩形,DM、DN分别是△ABC的中位线,DM=4,DN=3,∵∠PDQ=∠MDN=90°,∴∠PDM=∠QDN,∵∠DNQ∠DMP=90°,∴△PDM∽△QDN,∴==,∴QN=PM,∵PM=BM﹣PB=3﹣2=1,∴QN=,∴CQ=QN+CN=+4=.②如图3中,当点P在AB的延长线上时,PM=5,QN=,CQ=QN+CN=4+=,综上所述,当BP=2,求CQ的长为或.(3)如图4中,作AM⊥DP于M,AN⊥DQ于N.∵AD平分∠PDQ,∴AM=AN,∵∠AMD=∠AND=∠MDN=90°,∴四边形AMDN是矩形,∵AM=AN,∴四边形AMDN是正方形,∴∠MAN=90°,DM=DN,∵∠BAC=∠MAN=90°,∴∠PAM=∠NAQ,∴△APM≌△AQN,∴PM=NQ,∵AB=6,AC=8,∴BC===10,AD=5,∵PD+DQ=(PM+MD)+(DN﹣QN)=2DM=AD=5。

最新精选精选杭州市余杭区九年级(上)期末数学试卷(含答案)(已审阅)

最新精选精选杭州市余杭区九年级(上)期末数学试卷(含答案)(已审阅)

2019-2019学年浙江省杭州市九年级(上)期末数学试卷一、选择题1.(3分)sin30°的值是()A.B.C.D.2.(3分)下列事件中,属于必然事件的是()A.打开电视机正在播放广告B.投掷一枚质地均匀的硬币100次,正面向上的次数为50次C.任意画一个三角形,其内角和为180°D.任意一个二次函数图象与x轴必有交点3.(3分)函数y=x2+2x﹣4的顶点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)如图,C是圆O上一点,若圆周角∠ACB=36°,则圆心角∠AOB的度数是()A.18°B.36°C.54° D.72°5.(3分)已知AB=2,点P是线段AB上的黄金分割点,且AP>BP,则AP的长为()A.B.C.D.6.(3分)已知(1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x﹣m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y3<y1<y27.(3分)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC 相似的是()A.B.C.D.8.(3分)如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6 B.C.8 D.9.(3分)如图,抛物线与x轴交于A、B两点,以线段AB为直径的半圆与抛物线在第二象限的交点为C,与y轴交于D点,设∠BCD=α,则的值为()A.sin2α B.cos2α C.tan2α D.tan﹣2α10.(3分)一堂数学课上老师给出一题:“已知抛物线与x轴交于点A(﹣1,0),B(,0)(点A在点B的左侧),与y轴交于点C,若△ABC为等腰三角形,试求出满足条件的k值”.学生求出k值的答案有①;;②;③;④2.则本题满足条件的k 的值为()A.①②④B.①③④C.②D.①②③④二、填空题11.(4分)若7x=3y,则=.12.(4分)在Rt△ABC中,∠C=90°,sinB=,则tanB=.13.(4分)为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复或发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为个.14.(4分)如图,AB是圆O的直径,∠A=30°,BD平分∠ABC,CE⊥AB于E,若CD=6,则CE的长为.15.(4分)若函数y=(a﹣2)x2﹣4x+a+1的图象与x轴有且只有一个交点,则a的值为.16.(4分)如图,矩形ABCD的长为6,宽为4,以D为圆心,DC为半径的圆弧与以BC为直径的半圆O相交于点F,连接CF并延长交BA的延长线于点H,FH•FC=.三、解答题17.(6分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)求乙投放的两袋垃圾不同类的概率.18.(8分)如图,一艘舰艇在海面下600米A处测得俯角为30°前下方的海底C处有黑匣子信号发出,继续在同一深度直线航行2000米后再次在B点处测得俯角为60°前下方的海底C处有黑匣子信号发出,求海底黑匣子C处距离海面的深度(结果保留根号)19.(8分)如图,弧AB的半径R为6cm,弓形的高CD=h 为3cm.求弧AB的长和弓形ADB 的面积.20.(10分)如图,已知二次函数图象的顶点坐标为C(2,0),直线y=x+m与二次函数的图象交于A,B两点,其中点A在y轴上,B点(8,9).(1)求二次函数的表达式;(2)Q为线段AB上一动点(不与A,B重合),过点Q作y轴的平行线与二次函数交于点P,设线段PQ长为h,点Q横坐标为x.求①h与x之间的函数关系式;②△ABP面积的最大值.21.(10分)如图,四边形ABCD中,∠A=∠B=90°,P是线段AB上的一个动点.(1)若AD=2,BC=6,AB=8,且以A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,求AP的长;(2)若AD=a,BC=b,AB=m,则当a,b,m满足什么关系时,一定存在点P使△ADP∽△BPC?并说明理由.22.(12分)已知二次函数y=x2+2bx+c(1)若b=c,是否存在实数x,使得相应的y的值为1?请说明理由;(2)若b=c﹣2,y在﹣2≤x≤2上的最小值是﹣3,求b的值.23.(12分)已知:如图,AB是圆O的直径,CD是圆O的弦,AB⊥CD,E为垂足,AE=CD=8,F是CD延长线上一点,连接AF交圆O于G,连接AD、DG.(1)求圆O的半径;(2)求证:△ADG∽△AFD;(3)当点G是弧AD的中点时,求△ADG得面积与△AFD的面积比.参考答案一、选择题1.A.2.C.3.C.4.D5.B6.C7.B8.B9.C.10.B.二、填空题11..12..13.20.14.3.15.﹣2或2或3.16..三、解答题17.解:(1)∵垃圾要按A,B,C、D类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A类:厨余垃圾的概率为:;(2)记这四类垃圾分别为A、B、C、D,画树状图如下:由树状图知,乙投放的垃圾共有16种等可能结果,其中乙投放的两袋垃圾不同类的有12种结果,所以乙投放的两袋垃圾不同类的概率为=.18.解:由C点向AB作垂线,交AB的延长线于F点,并交海面于H点.已知AB=2000(米),∠BAC=30°,∠FBC=60°,∵∠BCA=∠FBC﹣∠BAC=30°,∴∠BAC=∠BCA.∴BC=BA=2000(米).在Rt△BFC中,FC=BC•sin60°=2000×=1000(米).∴CH=CF+HF=100+600(米).答:海底黑匣子C点处距离海面的深度约为(1000+600)米.19.解:由题意:CO=R﹣h=6﹣3=3(cm)在△BCO中,∵cos∠COB===,∴∠COB=60°,∴∠AOB=60°×2=120°,则==4π(cm).S弓形ADB=S扇形AOB﹣S△AOB=﹣•6•3=12π﹣9.20.解:(1)设抛物线解析式为y=a(x﹣2)2,把B(8,9)代入得a(8﹣2)2=9,解得a=,∴抛物线解析式为y=(x﹣2)2,即y=x2﹣x+1;(2)①把B(8,9)代入y=x+m得8+m=9,解得m=1,所以直线AB的解析式为y=x+1,设P(x,x2﹣x+1)(0<x<8),则Q(x,x+1),∴h=x+1﹣(x2﹣x+1)=﹣x2+2x(0<x<8);=S△APQ+S△BPQ=•PQ•8=﹣4(x2﹣2x)=﹣x2+8x=﹣(x﹣4)2+16,②S△ABP当x=4时,△ABP面积有最大值,最大值为16.21.解:(1)设AP=x.∵以A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,①当=时,=,解得x=2或8.②当=时,=,解得x=2,∴当A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,AP的值为2或8;(2)设PA=x,∵△ADP∽△BPC,∴=,∴=,整理得:x2﹣mx+ab=0,由题意△≥0,∴m2﹣4ab≥0.∴当a,b,m满足m2﹣4ab≥0时,一定存在点P使△ADP∽△BPC.22.解:(1)由y=1得x2+2bx+c=1,∴x2+2bx+c﹣1=0∵△=4b2﹣4b+4=(2b﹣1)2+3>0,则存在两个实数,使得相应的y=1;(2)由b=c﹣2,则抛物线可化为y=x2+2bx+b+2,其对称轴为x=﹣b,①当x=﹣b≤﹣2时,则有抛物线在x=﹣2时取最小值为﹣3,此时﹣3=(﹣2)2+2×(﹣2)b+b+2,解得b=3;②当x=﹣b≥2时,则有抛物线在x=2时取最小值为﹣3,此时﹣3=22+2×2b+b+2,解得b=﹣,不合题意,舍去,③当﹣2<﹣b<2时,则=﹣3,化简得:b2﹣b﹣5=0,解得:b1=(不合题意,舍去),b2=.综上:b=3或.23.解:(1)如图1,连接OC,设⊙O的半径为R,∵AE=8,∴OE=8﹣R,∵直径AB⊥CD,∴∠CEO=90°,CE=CD=4,在Rt△CEO中,根据勾股定理得,R2﹣(8﹣R)2=16,∴R=5,即:⊙O的半径为5;(2)如图2,连接BG,∴∠ADG=∠ABG,∵AB是⊙O的直径,∴∠AGB=90°,∴∠ABG+∠BAG=90°,∴∠ADG+∠BAG=90°,∵AB⊥CD,∴∠BAG+∠F=90°,∴∠ADG=∠F,∵∠DAG=∠FAD,∴△ADG∽△AFD;(3)如图3,在Rt△ADE中,AE=8,DE=CD=4,根据勾股定理得,AD=4,连接OG交AD于H,∵点G是的中点,∴AH=AD=2,OG⊥AD,在Rt△AOH中,根据勾股定理得,OH=,在Rt△AHG中,HG=OG﹣OH=5﹣,根据勾股定理得,AG2=AH2+HG2=50﹣10,∵点G是的中点,∴DG=AG=50﹣10,∴∠DAG=∠ADG,由(2)知,∠ADG=∠F,∴∠DAG=∠F,∴DF=AD=4,由(2)知,△ADG∽△AFD,∴=()2===.。

2019-2020学年浙教版九年级上学期期末数学试卷(含答案)

2019-2020学年浙教版九年级上学期期末数学试卷(含答案)

2019-2020学年九年级(上)期末数学试卷一、选择题(本题有10小题,每小题4分,共40分)1.小明同学在街头观察出下列四种汽车标志,其中是中心对称图形的是()A.B.C.D.2.下列事件中是必然事件的是()A.从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球B.小丹骑自行车上学,轮胎被钉子扎坏C.小红期末考试数学成绩得满分D.画一个三角形,其内角和是180°3.判断一元二次方程x2+2x﹣6=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断4.抛物线y=(x﹣3)2+2的顶点坐标是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(3,2)5.为了展示台州市的自然、人文风光,提高城市知名度,更好地彰显马拉松体育精神,台州市连续三年举办马拉松邀请赛,参加人数逐年增加,2015年参加人数约是10000人,到2017年增加到15000人.设参加人数每年增长率为x,由题意,所列方程正确的是()A.10000(1+x)=15000B.10000(1+x)2=15000C.10000(1+2x)=15000D.15000(1+x)2=100006.如图,反比例函数(x>0)的图象上一动点B,点A是x轴上一个定点.当点B的横坐标逐渐变大的过程中,△OAB的面积()A.不变B.逐渐变大C.逐渐变小D.无法判断7.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50°B.60°C.70°D.80°8.如图,点P是直线l外一个定点,点A为直线l上一个定点,点P关于直线l的对称点记为P1,将直线l绕点A顺时针旋转30°得到直线l′,此时点P2与点P关于直线l′对称,则∠P1AP2等于()A.30°B.45°C.60°D.75°9.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,则菱形ABCD沿x轴正方向平移的距离()A.B.C.D.10.当1≤x≤2时,函数y=(x﹣a)2+1有最小值2,则a的所有可能取值为()A.0或2B.1或3C.1或2D.0或3二、填空题(本题有6小题,每小题5分,共30分)11.请你写出一个有一根为0的一元二次方程:.12.盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出红色笔芯的概率是.13.若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为.14.如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,CD=10,EM=25,则⊙O的半径.15.如图,正△ABC在正方形EFGH内,顶点A与E重合,点B在EF上,将正△ABC沿正方形EFGH的内壁作无滑动的滚动.已知正△ABC边长为1,正方形EFGH边长为2,当滚动一周回到原位置时,点C运动的路径长为.16.正方形ABCD,边长为4,E是边BC上的一动点,连DE,取DE中点G,将GE绕E 顺时针旋转90°到EF,连接CF,当CE为时,CF取得最小值.三、解答题(本题有8小题,共80分)17.解下列方程(1)4x2﹣81=0(2)x2﹣x﹣1=018.在平面直角坐标系中,△ABC的位置如图,网格中小正方形的边长为1,点A坐标为(1,2),请解答下列问题:(1)直接写出点B,C两点的坐标;(2)将△ABC向下平移3个单位得到△A1B1C1,作出平移后的△A1B1C1;(3)作出△ABC绕点O的逆时针旋转90°,得到△A2B2C2,作出旋转后的△A2B2C2.19.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸取一个小球.利用树形图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球标号的和等于4.20.如图,正比例函数y1=x的图象与反比例函数(k≠0)的图象相交于A、B两点,点A的纵坐标为2.(1)求反比例函数的解析式;(2)求出点B的坐标,并根据函数图象,写出当y1>y2时,自变量x的取值范围.21.某商场购进某种商品时的单价是40元,根据市场调查:在一段时间内,销售单价是60元时,销售量是300件,而销售单价每涨1元,就会少售出10件.(1)设该种商品的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润W元,并把结果填写在表格中:(2)在(1)的条件下,若商场获得了4000元销售利润,求该商品销售单价x应定为多少元?(3)当定价多少时,该商场获得的最大利润,最大利润是多少元?22.如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,AD∥BC,连接OD,AC.(1)求证:△ABC∽△DCA;(2)若AC=2,BC=4,求DO的长.23.如图1,已知抛物线y=x2+bx﹣3(b是常数)与x轴交与A,B两点,与y轴交于点C,且点A坐标为(﹣1,0).(1)求该拋物线的解析式和对称轴;(2)如图2,抛物线的对称轴与x轴交于点D,在对称轴上找一个点E,使△OAC与△ODE相似,直接写出点E的坐标;(3)如图3,平行于x轴的直线与抛物线交于P(x1,y1),Q(x2,y2)两点,与直线BC交于点N(x3,y3).若x1<x2<x3时,结合图象,求x1+x2+x3的取值范围.24.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB及线段AB外一点C,我们称∠ACB为点C关于线段AB的视角.如图2,点Q在直线l上运动,当点Q关于线段AB的视角最大时,则称这个最大的“视角”为直线l关于线段AB的“视角”.(1)如图3,在平面直角坐标系中,A(0,4),B(2,2),点C坐标为(﹣2,2),点C关于线段AB的视角为度,x轴关于线段AB的视角为度;(2)如图4,点M是在x轴上,坐标为(2,0),过点M作线段EF⊥x轴,且EM=MF=1,当直线y=kx(k≠0)关于线段EF的视角为90°,求k的值;(3)如图5,在平面直角坐标系中,P(,2),Q(+1,1),直线y=ax+b(a >0)与x轴的夹角为60°,且关于线段PQ的视角为45°,求这条直线的解析式.参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分)1.小明同学在街头观察出下列四种汽车标志,其中是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形;B、不是中心对称图形;C、是中心对称图形;D、不是中心对称图形;故选:C.2.下列事件中是必然事件的是()A.从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球B.小丹骑自行车上学,轮胎被钉子扎坏C.小红期末考试数学成绩得满分D.画一个三角形,其内角和是180°【解答】解:A、从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球是随机事件;B、小丹骑自行车上学,轮胎被钉子扎坏是随机事件;C、小红期末考试数学成绩得满分是随机事件;D、画一个三角形,其内角和是180°是必然事件;故选:D.3.判断一元二次方程x2+2x﹣6=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断【解答】解:△=4+24>0,故选:A.4.抛物线y=(x﹣3)2+2的顶点坐标是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(3,2)【解答】解:∵y=(x﹣3)2+2,∴该函数的顶点坐标是(3,2),故选:D.5.为了展示台州市的自然、人文风光,提高城市知名度,更好地彰显马拉松体育精神,台州市连续三年举办马拉松邀请赛,参加人数逐年增加,2015年参加人数约是10000人,到2017年增加到15000人.设参加人数每年增长率为x,由题意,所列方程正确的是()A.10000(1+x)=15000B.10000(1+x)2=15000C.10000(1+2x)=15000D.15000(1+x)2=10000【解答】解:设参加人数每年增长率为x,根据题意即可列出方程1000(1+x)2=15000.故选:B.6.如图,反比例函数(x>0)的图象上一动点B,点A是x轴上一个定点.当点B的横坐标逐渐变大的过程中,△OAB的面积()A.不变B.逐渐变大C.逐渐变小D.无法判断【解答】解:由图可知,反比例函数y=的函数值y随x的增大而减小,所以,点B的横坐标逐渐变大则,点B的纵坐标逐渐减小,∵△AOB的底边OA不变,∴面积随点B的纵坐标的变化而变化,∴△OAB的面积将逐渐减小.故选:C.7.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50°B.60°C.70°D.80°【解答】解:∵∠BOD=100°,∴∠A=∠BOD=50°,∵∠B=60°,∴∠C=180°﹣∠A﹣∠B=70°.故选:C.8.如图,点P是直线l外一个定点,点A为直线l上一个定点,点P关于直线l的对称点记为P1,将直线l绕点A顺时针旋转30°得到直线l′,此时点P2与点P关于直线l′对称,则∠P1AP2等于()A.30°B.45°C.60°D.75°【解答】解:如图,∵点P关于直线l的对称点记为P1,点P2与点P关于直线l′对称,∴∠P1AD=∠PAD,∠PAC=∠P1AC,∵∠BAC=30°,∴∠DAC=150°,∴∠DAP1+P2AC=150°,∠DAP1+∠P2AB=150°﹣30°=120°,∴∠P1AP2=180°﹣120°=60°,故选:C.9.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,则菱形ABCD沿x轴正方向平移的距离()A.B.C.D.【解答】解:过点D作x轴的垂线,垂足为F,∵点D的坐标为(4,3),∴OF=4,DF=3,∴OD=5,∴AD=5,∴点A坐标为(4,8),∴k=xy=4×8=32,∴反比例函数为y=,将菱形ABCD沿x轴正方向平移,使得点D落在函数y=(x>0)的图象D′点处,过点D′作x轴的垂线,垂足为F′.∵DF=3,∴D′F′=3,∴点D′的纵坐标为3,∵点D′在y=(x>0)的图象上∴3=,解得:x=,即OF′=,∴FF′=﹣4=,∴菱形ABCD平移的距离为,故选:B.10.当1≤x≤2时,函数y=(x﹣a)2+1有最小值2,则a的所有可能取值为()A.0或2B.1或3C.1或2D.0或3【解答】解:函数y=(x﹣a)2+1在x=a时取得最小值1,而当1≤x≤2时,函数y=(x﹣a)2+1有最小值2,∴a<1或a>2,四选项中满足此条件的只有0或3,故选:D.二、填空题(本题有6小题,每小题5分,共30分)11.请你写出一个有一根为0的一元二次方程:x2﹣4x=0.【解答】解:设方程的另一根为4,则根据因式分解法可得方程为x(x﹣4)=0,即x2﹣4x=0;本题答案不唯一.12.盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出红色笔芯的概率是.【解答】解:因为全部是3+2=5支笔,3支红色笔芯,所以从中任意拿出一支笔芯,拿出红色笔芯的概率是.故答案为13.若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为y=(x﹣2)2+3.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向上平移2个单位,再向右平移3个单位得到的点的坐标为(2,3),所以平移后抛物线的解析式为y=(x﹣2)2+3.故答案为:y=(x﹣2)2+3.14.如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,CD=10,EM=25,则⊙O的半径13.【解答】解:连接OC,∵M是⊙O弦CD的中点,根据垂径定理:EM⊥CD,又CD=10则有:CM=CD=5,设圆的半径是x米,在Rt△COM中,有OC2=CM2+OM2,即:x2=52+(25﹣x)2,解得:x=13,故答案为:13.15.如图,正△ABC在正方形EFGH内,顶点A与E重合,点B在EF上,将正△ABC沿正方形EFGH的内壁作无滑动的滚动.已知正△ABC边长为1,正方形EFGH边长为2,当滚动一周回到原位置时,点C运动的路径长为π.【解答】解:如图,如图点C的运动轨迹是图中的红线.路径长=3×+2×=2π+π=π,故答案为π.16.正方形ABCD,边长为4,E是边BC上的一动点,连DE,取DE中点G,将GE绕E顺时针旋转90°到EF,连接CF,当CE为时,CF取得最小值.【解答】解:作GM⊥BC于M,FN⊥BC于N,如图所示:则GM∥CD,∵四边形ABCD是正方形,∴BC=CD=4,∵G是DE的中点,∴GM是△CDE是中位线,∴CM=EM,GM=CD=2,由旋转的性质得:EF=EG,∠GEF=90°,即∠GEM+∠FEN=90°,∵∠GEM+∠EGM=90°,∴∠EGM=∠FEN,在△GEM和△EFN中,,∴△GEM≌△EFN(AAS),∴GM=EN=2,EM=FN,设CE=x,则CM=EM=FN=x,在Rt△CFN中,由勾股定理得:CF2=CN2+FN2=(x﹣2)2+(x)2=x2﹣4x+4=(x ﹣)2+,∴当x=时,CF的最小值==;故答案为:.三、解答题(本题有8小题,共80分)17.解下列方程(1)4x2﹣81=0(2)x2﹣x﹣1=0【解答】解:(1)∵4x2﹣81=0,∴x2=,∴x=±;(2)∵x2﹣x﹣1=0,∴a=1,b=﹣1,c=﹣1,∴△=1+4=5,∴x=18.在平面直角坐标系中,△ABC的位置如图,网格中小正方形的边长为1,点A坐标为(1,2),请解答下列问题:(1)直接写出点B,C两点的坐标;(2)将△ABC向下平移3个单位得到△A1B1C1,作出平移后的△A1B1C1;(3)作出△ABC绕点O的逆时针旋转90°,得到△A2B2C2,作出旋转后的△A2B2C2.【解答】解:(1)由图知,点B的坐标为(4,3)、C(5,1);(2)如图所示,△A1B1C1即为所求.(3)如图所示,△A2B2C2即为所求.19.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸取一个小球.利用树形图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球标号的和等于4.【解答】解:(1)如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号相同的有4种,所有两次摸出的小球标号相同的概率为=;(2)因为两次取出的小球标号的和等于4的有3种,所以其概率为.20.如图,正比例函数y1=x的图象与反比例函数(k≠0)的图象相交于A、B两点,点A的纵坐标为2.(1)求反比例函数的解析式;(2)求出点B的坐标,并根据函数图象,写出当y1>y2时,自变量x的取值范围.【解答】解:(1)设A点的坐标为(m,2),代入y1=x得:m=2,∴点A的坐标为(2,2),∴k=2×2=4,∴反比例函数的解析式为y2=;(2)当y1=y2时,x=,解得:x=±2,∴点B的坐标为(﹣2,﹣2),则由图象可知,当y1>y2时,自变量x的取值范围是:﹣2<x<0或x>2.21.某商场购进某种商品时的单价是40元,根据市场调查:在一段时间内,销售单价是60元时,销售量是300件,而销售单价每涨1元,就会少售出10件.(1)设该种商品的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y 件和销售该品牌玩具获得利润W元,并把结果填写在表格中:(2)在(1)的条件下,若商场获得了4000元销售利润,求该商品销售单价x应定为多少元?(3)当定价多少时,该商场获得的最大利润,最大利润是多少元?【解答】解:(1)由题意得,销售量为:300﹣10(x﹣60)=900﹣10x,销售获服装得利润为:(x﹣40)(900﹣10x)=﹣10x2+1300x﹣36000;(2)列方程得:﹣10x2+1300x﹣36000=4000,解得:x1=50,x2=80.答:玩具销售单价为50元或80元时,可获得4000元销售利润;(3)w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+6250,所以当定价为65元时的利润最大,最大利润为6250元.故答案为:900﹣10x,﹣10x2+1300x﹣36000.22.如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,AD∥BC,连接OD,AC.(1)求证:△ABC∽△DCA;(2)若AC=2,BC=4,求DO的长.【解答】解:(1)证明:如图,连接OC,∵CD与⊙O相切∴∠OCD=90°,∴∠DCA+∠OCA=90°,∵AB为直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∴∠DCA=∠BCO,∵OC=OB,∴∠BCO=∠CBO,∴∠ABC=∠DCA,∴△ABC∽△DCA;(2)∵△ABC∽△DCA,∴=,∴=,∴DA=5,在Rt△ADC中,DC===3,在Rt△ABC中,AB==6,∴CO=3,在Rt△OCD中,OD==3,∴DO的长为3.23.如图1,已知抛物线y=x2+bx﹣3(b是常数)与x轴交与A,B两点,与y轴交于点C,且点A坐标为(﹣1,0).(1)求该拋物线的解析式和对称轴;(2)如图2,抛物线的对称轴与x轴交于点D,在对称轴上找一个点E,使△OAC与△ODE相似,直接写出点E的坐标;(3)如图3,平行于x轴的直线与抛物线交于P(x1,y1),Q(x2,y2)两点,与直线BC交于点N(x3,y3).若x1<x2<x3时,结合图象,求x1+x2+x3的取值范围.【解答】解:(1)∵抛物线y=x2+bx﹣3(b是常数)与x轴交与A,B两点,∴0=1﹣b﹣3∴b=﹣2,∴抛物线解析式为:y=x2﹣2x﹣3,当y=0时,x1=﹣1,x2=3,∴B(3,0)∴对称轴为直线x=1;(2)∵抛物线y=x2﹣2x﹣3与y轴交于点C,∴点C(0,﹣3),且点A坐标为(﹣1,0),∴OA=1,OB=3,∵△OAC与△ODE相似,且∠AOC=∠ODE=90°,∴或,∴DE=3或,∴点E(1,﹣3)或(1,3)或(1,)或(1,﹣),(3)∵点B(3,0),点C(0,﹣3)∴直线BC的解析式为:y=x﹣3,∵平行于x轴的直线与抛物线交于P(x1,y1),Q(x2,y2)两点,∴点P,点Q关于对称轴对称,∴x1+x2=2,∵x1<x2<x3,∴直线PQ在AB的上方,∴x3>3,∴x1+x2+x3>5.24.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB及线段AB外一点C,我们称∠ACB为点C关于线段AB的视角.如图2,点Q在直线l上运动,当点Q关于线段AB的视角最大时,则称这个最大的“视角”为直线l关于线段AB的“视角”.(1)如图3,在平面直角坐标系中,A(0,4),B(2,2),点C坐标为(﹣2,2),点C关于线段AB的视角为45度,x轴关于线段AB的视角为45度;(2)如图4,点M是在x轴上,坐标为(2,0),过点M作线段EF⊥x轴,且EM=MF=1,当直线y=kx(k≠0)关于线段EF的视角为90°,求k的值;(3)如图5,在平面直角坐标系中,P(,2),Q(+1,1),直线y=ax+b(a >0)与x轴的夹角为60°,且关于线段PQ的视角为45°,求这条直线的解析式.【解答】解:(1)如图3,连接AC,则∠ABC=45°;设M是x轴的动点,当点M运动到点O时,∠AOB=45°,该视角最大,由此可见:当△ABC为等腰三角形时,视角最大;故答案为:45,45;(2)如图4,以点M为圆心,长度1为半径作圆M,当圆与直线y=kx相切时,直线y=kx(k≠0)关于线段EF的视角为90°,即∠EQF=90°,则MQ⊥直线,OQ=1,OM=2,故直线的倾斜角为30°,故k=;(3)直线PQ的倾斜角为45°,分别作点Q、P作x轴、y轴的平行线交于点R,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′(﹣1,1),直线y=ax+b(a>0)与x轴的夹角为60°,则直线的表达式为:y=x+b,将点Q′的坐标代入上式并解得:直线的表达式为:y=x+﹣2。

2019-2020学年浙江省杭州市余杭区九年级(上)期末数学试卷 (解析版)

2019-2020学年浙江省杭州市余杭区九年级(上)期末数学试卷 (解析版)

2019-2020学年浙江省杭州市余杭区九年级(上)期末数学试卷一、选择题(共10小题). 1.(3分)cos60︒的值等于( ) A .12B .22C .32D .332.(3分)若23a b =,则下列比列式正确的是( ) A .23a b= B .23a b= C .23b a = D .23a b= 3.(3分)下列图形中,是相似形的是( ) A .所有平行四边形 B .所有矩形C .所有菱形D .所有正方形4.(3分)如图,正五边形ABCDE 内接于O ,则ABD ∠的度数为( )A .60︒B .72︒C .78︒D .144︒5.(3分)对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下: 抽取件数(件) 50 100 150 200 500 800 1000 合格频数4288141176445724901若出售1500件衬衣,则其中的次品最接近( )件. A .100B .150C .200D .2406.(3分)如图,AB 是半圆O 的直径,40BAC ∠=︒,则D ∠的度数是( )A .140︒B .135︒C .130︒D .125︒7.(3分)已知点(3,)A m -,(3,)B m ,2(1,1)C m n -++在同一个函数的图象上,这个函数可能是( )A.2y x=+B.2yx=-C.22y x=+D.22y x=--8.(3分)如图,AB与CD相交于点E,点F在线段BC上,且////AC EF DB.若5BE=,3BF=,AE BC=,则DECE的值为()A.23B.12C.35D.259.(3分)二位同学在研究函数2(3)()(y a x x aa=+-为实数,且0)a≠时,甲发现当01a<<时,函数图象的顶点在第四象限;乙发现方程2(3)()50a x xa+-+=必有两个不相等的实数根.则()A.甲、乙的结论都错误B.甲的结论正确,乙的结论错误C.甲、乙的结论都正确D.甲的结论错误,乙的结论正确10.(3分)如图,在ABC∆中,90C∠=︒,5AB=,4BC=.点D为边AC上的动点,作菱形DEFG,使点E、F在边AB上,点G在边BC上.若这样的菱形能作出2个,则AD 的取值范围是()A.369378AD<B.1575837AD<C.575337AD<D.51538AD二、填空题:本题有6个小题,每小题4分,共24分.11.(4分)一个布袋里放有5个红球,3个球黄球和2个黑球,它们除颜色外其余都相同,则任意摸出一个球是黑球的概率是.12.(4分)如图,点A,B,C都在O上130AOC∠=︒,40ACB∠=︒,AOB∠=,弧BC=.13.(4分)已知二次函数2246y x x =-++,用配方法化为2()y a x m k =-+的形式为 ,这个二次函数图象的顶点坐标为 .14.(4分)在Rt ABC ∆中,:1:2AC BC =,则sin B = .15.(4分)如图,在ABC ∆中,90ACB ∠=︒,点D ,E 分别在边AC ,BC 上,且CDE B ∠=∠,将CDE ∆沿DE 折叠,点C 恰好落在AB 边上的点F 处.若2AC BC =,则DECF的值为 .16.(4分)如图,AB 为O 的直径,弦CD AB ⊥于点E ,点F 在圆上,且DF CD =,2BE =,8CD =,CF 交AB 于点G ,则弦CF 的长为 ,AG 的长为 .三、解答题;本大题有7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)如图,为测量一条河的宽度,某学习小组在河南岸的点A 测得河北岸的树C 在点A 的北偏东60︒方向,然后向东走10米到达B 点,测得树C 在点B 的北偏东30︒方向,试根据学习小组的测量数据计算河宽.18.(8分)如图,某科技馆展大厅有A,B两个入口,C,D,E三个出口,小钧的任选一个入口进入展宽大厅,参观结束后任选一个出口离开.(1)若小钧已进入展览大厅,求他选择从出口C离开的概率.(2)求小购选择从入口A进入,从出口E离开的概率,(请用列表或画树状图求解)19.(8分)如图为一座桥的示意图,已知桥洞的拱形是抛物线.当水面宽为12m时,桥洞顶部离水面4m.(1)建立平面直角坐标系,并求该抛物线的函数表达式.(2)若水面上升1m,水面宽度将减少多少?20.(10分)如图,在ABC=,以AB为直径作半圆O,交BC于点D,交AC∆中,AB AC于点E.(1)求证:BD CD=.(2)若弧50∠的度数.DE=︒,求C(3)过点D作DF AB⊥于点F,若8=,求弧BD的长.AF BFBC=,321.(10分)如图,在ABC=,连结∆中,点D,E分别在边AC,AB上且AE AB AD ACDE,BD.(1)求证:ADE ABC∽.∆∆(2)若点E为AB中点,:6:5∆的面积.AD AE=,ABC∆的面积为50,求BCD22.(12分)已知二次函数24(y ax bx a =+-,b 是常数,且0)a ≠的图象过点(3,1)-. (1)试判断点(2,22)a -是否也在该函数的图象上,并说明理由. (2)若该二次函数的图象与x 轴只有一个交点,求该函数的表达式. (3)已知二次函数的图象过1(x ,1)y 和2(x ,2)y 两点,且当1223xx 时,始终都有12y y >,求a 的取值范围.23.(12分)如图,在正方形ABCD 中,点E 在边CD 上(不与点C ,D 重合),连结AE ,BD 交于点F .(1)若点E 为CD 中点,25AB =,求AF 的长. (2)若tan 2AFB ∠=,求DFBF的值. (3)若点G 在线段BF 上,且2GF BG =,连结AG ,CG ,DEx DC=,四边形AGCE 的面积为1S ,ABG ∆的面积为2S ,求12S S 的最大值.参考答案一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中.只有一个选项是符合题目要求的. 1.(3分)cos60︒的值等于( ) A .12B .22C .32D .33解:1cos602︒=. 故选:A .2.(3分)若23a b =,则下列比列式正确的是( ) A .23a b= B .23a b= C .23b a = D .23a b= 解:23a b =, ∴23b a =, 故选:C .3.(3分)下列图形中,是相似形的是( ) A .所有平行四边形 B .所有矩形C .所有菱形D .所有正方形解:A 、所有平行四边形,属于形状不唯一确定的图形,不一定相似,故错误; B 、所有矩形,属于形状不唯一确定的图形,不一定相似,故错误; C 、所有菱形,属于形状不唯一确定的图形,不一定相似,故错误;D 、所有正方形,形状相同,但大小不一定相同,符合相似定义,故正确.故选:D .4.(3分)如图,正五边形ABCDE 内接于O ,则ABD ∠的度数为( )A .60︒B .72︒C .78︒D .144︒解:五边形ABCDE 为正五边形, (52)1801085ABC C -⨯︒∴∠=∠==︒,CD CB =,180108362CBD ︒-︒∴∠==︒, 72ABD ABC CBD ∴∠=∠-∠=︒,故选:B .5.(3分)对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下: 抽取件数(件) 50 100 150 200 500 800 1000 合格频数4288141176445724901若出售1500件衬衣,则其中的次品最接近( )件. A .100 B .150C .200D .240解:42881411764457249011500(1)151.6501001502005008001000++++++⨯-=++++++件故选:B .6.(3分)如图,AB 是半圆O 的直径,40BAC ∠=︒,则D ∠的度数是( )A .140︒B .135︒C .130︒D .125︒解:AB 是半圆O 的直径,90ACB ∴∠=︒,90904050B BAC ∴∠=︒-∠=︒-︒=︒, 180B D ∠+∠=︒, 18050130D ∴∠=︒-︒=︒.故选:C .7.(3分)已知点(3,)A m -,(3,)B m ,2(1,1)C m n -++在同一个函数的图象上,这个函数可能是( ) A .2y x =+ B .2y x=-C .22y x =+D .22y x =--解:(3,)A m -,(3,)B m ,∴点A 与点B 关于y 轴对称;由于2y x =+不关于y 轴对称,2y x=-的图象关于原点对称,因此选项A 、B 错误; 20n >, 21m n m ∴++>;由(3,)A m -,2(1,1)C m n -++可知,在对称轴的右侧,y 随x 的增大而减小, 对于二次函数只有0a <时,在对称轴的右侧,y 随x 的增大而减小, D ∴选项正确故选:D .8.(3分)如图,AB 与CD 相交于点E ,点F 在线段BC 上,且////AC EF DB .若5BE =,3BF =,AE BC =,则DECE的值为( )A .23B .12 C .35D .25解:设CF x =, //EF AC , ∴BF BECF AE =, ∴353x x =+, 解得92x =, 92CF ∴=, //EF DB ,32932DE BF CE CF ===. 故选:A .9.(3分)二位同学在研究函数2(3)()(y a x x a a=+-为实数,且0)a ≠时,甲发现当01a <<时,函数图象的顶点在第四象限;乙发现方程2(3)()50a x x a+-+=必有两个不相等的实数根.则( )A .甲、乙的结论都错误B .甲的结论正确,乙的结论错误C .甲、乙的结论都正确D .甲的结论错误,乙的结论正确解:由函数2(3)()y a x x a =+-可知,函数与x 轴的两个交点的横坐标分别是3-和2a,∴函数顶点的横坐标为232a -+,01a <<,∴23122a -+>-, ∴函数的顶点不一定在第四象限,故甲的结论错误;2(3)()50a x x a +-+=可以化为2(32)10ax a x +--=,△222420(32)49849()099a a a a a =-+=-+=-+>,2(3)()50a x x a∴+-+=必有两个不相等的实数根,故乙的结论正确; 故选:D .10.(3分)如图,在ABC ∆中,90C ∠=︒,5AB =,4BC =.点D 为边AC 上的动点,作菱形DEFG ,使点E 、F 在边AB 上,点G 在边BC 上.若这样的菱形能作出2个,则AD 的取值范围是( )A .369378AD< B .1575837AD <C .575337AD <D .51538AD解:如图1中,当四边形DEFG 是正方形时,设正方形的边长为x .在Rt ABC ∆中,90C ∠=︒,5AB =,4BC =,2222543AC AB BC ∴=-=-=,则35CD x =,54AD x =, AD CD AC +=, ∴35354x x +=, 6037x ∴=, 336537CD x ∴==, 观察图象可知:36037CD <时,菱形的个数为0.如图2中,当四边形DAEG 是菱形时,设菱形的边长为m .//DG AB , ∴CD DGAC AB =, ∴335m m-=, 解得158m =, 159388CD ∴=-=,如图3中,当四边形DEBG 是菱形时,设菱形的边长为n .//DG AB , ∴CG DG CB AB =, ∴445n n -=, 209n ∴=, 2016499CG ∴=-=, 2220164()()993CD ∴=-=, 观察图象可知:当36037CD <或433CD <时,菱形的个数为0,当3637CD =或9483CD <时,菱形的个数为1,当369378CD <时,菱形的个数为2.此时1575837AD < 故选:B . 二、填空题:本题有6个小题,每小题4分,共24分.11.(4分)一个布袋里放有5个红球,3个球黄球和2个黑球,它们除颜色外其余都相同,则任意摸出一个球是黑球的概率是 5. 解:在一个布袋里放有5个红球,3个球黄球和2个黑球,它们除了颜色外其余都相同, ∴从布袋中任意摸出一个球是黑球的概率为:215325=++. 故答案为:15. 12.(4分)如图,点A ,B ,C 都在O 上130AOC ∠=︒,40ACB ∠=︒,AOB ∠= 80︒ ,弧BC = .解:224080AOB ACB ∠=∠=⨯︒=︒,1308050BOC AOC AOB ∴∠=∠-∠=︒-︒=︒,∴BC 的度数为50︒.故答案为80︒,50︒.13.(4分)已知二次函数2246y x x =-++,用配方法化为2()y a x m k =-+的形式为 22(1)8y x =--+ ,这个二次函数图象的顶点坐标为 .解:2222462(2)62(1)8y x x x x x =-++=--+=--+,∴顶点(1,8).故答案为:22(1)8y x =--+,(1,8).14.(4分)在Rt ABC ∆中,:1:2AC BC =,则sin B 55或12. 解:①当90C ∠=︒时,设AC x =,2BC x =,由勾股定理,得22(2)5AB x x =+=.由三角函数的正弦等于对边比斜边,得5sin 5AC B AB x=== ②当90A ∠=︒时,1sin 2AC B BC ==. 综上所述,sin B 5或12. 512. 15.(4分)如图,在ABC ∆中,90ACB ∠=︒,点D ,E 分别在边AC ,BC 上,且CDE B ∠=∠,将CDE ∆沿DE 折叠,点C 恰好落在AB 边上的点F 处.若2AC BC =,则DE CF 的值为 4.解:如图,设DE 交CF 于O .设OD a =.由翻折可知:DC DF =,EC EF =,DE ∴垂直平分线段CF ,90DOC ∴∠=︒,OC OF =,CDE B ∠=∠,tan tan CDO B ∴∠=∠, ∴2OC AC OD BC ==, 2OC OF a ∴==,4CF a =,90ECO DCO ∠+∠=︒,90DCO CDO ∠+∠=︒,ECO CDO ∴∠=∠,tan 2OE ECO OC∴∠==, 4OE a ∴=,5DE a =,∴5544DE a CF a ==, 故答案为54. 16.(4分)如图,AB 为O 的直径,弦CD AB ⊥于点E ,点F 在圆上,且DF CD =,2BE =,8CD =,CF 交AB 于点G ,则弦CF 的长为 485,AG 的长为 .解:连结BC ,DF ,OC ,连结DO 并延长交CF 于点H ,弦CD AB ⊥于点E ,8CD =,142CE CD ∴==, 设OC x =,则2OE x =-,222OE CE OC +=,222(2)4x x ∴-+=,解得5x =,5OC ∴=,523OE ∴=-=,DF CD =,DF CD ∴=,CFD COB ∠=∠,DH CF ⊥,90FHD OEC ∴∠=∠=︒,DHF CEO ∴∆∆∽, ∴DF DH FH OC CE OE ==, ∴8543DH FH ==, 245FH ∴=,325DH =, 4825CF FH ∴==, 327555OH DH OD =-=-=, CFD COB BOD ∠=∠=∠,BOD GOH ∠=∠,GOH DFH ∴∠=∠,90GHO OEC ∠=∠=︒,GHO CEO ∴∆∆∽,∴OG OH OC OE =, ∴7553OG =, 73OG ∴=, 78533AG OA OG ∴=-=-=. 故答案为:485,83. 三、解答题;本大题有7个小题,共66分,解答应写出文字说明、证明过程或演算步骤.17.(6分)如图,为测量一条河的宽度,某学习小组在河南岸的点A 测得河北岸的树C 在点A 的北偏东60︒方向,然后向东走10米到达B 点,测得树C 在点B 的北偏东30︒方向,试根据学习小组的测量数据计算河宽.解:由题意得,30CAB ∠=︒,60CBD ∠=︒,30ACB CBD CAB ∴∠=∠-∠=︒,CAB ACB ∴∠=∠,10BC AB ∴==,CD BD ⊥,353CD BC ∴== 答:河宽为5318.(8分)如图,某科技馆展大厅有A ,B 两个入口,C ,D ,E 三个出口,小钧的任选一个入口进入展宽大厅,参观结束后任选一个出口离开.(1)若小钧已进入展览大厅,求他选择从出口C 离开的概率.(2)求小购选择从入口A 进入,从出口E 离开的概率,(请用列表或画树状图求解)解:(1)他选择从出口C 离开的概率为13;(2)画树形图如图得:由树形图可知所有可能的结果有6种,其中选择从入口A 进入,从出口E 离开的只有1种结果,∴选择从入口A 进入,从出口E 离开的概率为16. 19.(8分)如图为一座桥的示意图,已知桥洞的拱形是抛物线.当水面宽为12m 时,桥洞顶部离水面4m . (1)建立平面直角坐标系,并求该抛物线的函数表达式.(2)若水面上升1m ,水面宽度将减少多少?解:以C 为坐标原点建立坐标系,则(6,4)A --,(6B ,4)(0C -,0) 设2y ax =,把(6,4)B -代入上式,3640a +=,解得:19a =-, 219y x ∴=-;令3y =-得:2139x -=-, 解得:33x =±,∴若水面上升1m ,水面宽度将减少1263-.20.(10分)如图,在ABC ∆中,AB AC =,以AB 为直径作半圆O ,交BC 于点D ,交AC 于点E .(1)求证:BD CD =.(2)若弧50DE =︒,求C ∠的度数.(3)过点D 作DF AB ⊥于点F ,若8BC =,3AF BF =,求弧BD 的长.【解答】(1)证明:如图,连接AD .AB 是圆O 的直径,AD BD ∴⊥.又AB AC =,BD CD ∴=.(2)解:弧50DE =︒,50EOD ∴∠=︒.1252DAE DOE ∴∠=∠=︒. 由(1)知,AD BD ⊥,则90ADB ∠=︒,902565ABD ∴∠=︒-︒=︒.AB AC =,65C ABD ∴∠=∠=︒.(3)8BC =,BD CD =,4BD ∴=.设半径OD x =.则2AB x =.由3AF BF =可得3342AF AB x ==,1142BF AB x ==, AD BD ⊥,DF AB ⊥,2BD BF AB ∴=,即21422x x =. 解得4x =.4OB OD BD ∴===,OBD ∴∆是等边三角形,60BOD ∴∠=︒.∴弧BD 的长是:60441803ππ⨯=.21.(10分)如图,在ABC ∆中,点D ,E 分别在边AC ,AB 上且AE AB AD AC =,连结DE ,BD .(1)求证:ADE ABC ∆∆∽.(2)若点E 为AB 中点,:6:5AD AE =,ABC ∆的面积为50,求BCD ∆的面积.【解答】(1)证明:AE AB AD AC =,::AE AC AD AB ∴=,A A ∠=∠,ADE ABC ∴∆∆∽.(2)解:点E 为AB 中点,AE BE ∴=,:6:5AD AE =,∴设6AD x =,则5AE x =,10AB x =,AE AB AD AC =, 5102563AE AB x x AC x AD x ∴===, 73CD AC AD x ∴=-=, ∴725CD AC =, ABC ∆的面积为50,BCD ∴∆的面积7501425=⨯=. 22.(12分)已知二次函数24(y ax bx a =+-,b 是常数,且0)a ≠的图象过点(3,1)-.(1)试判断点(2,22)a -是否也在该函数的图象上,并说明理由.(2)若该二次函数的图象与x 轴只有一个交点,求该函数的表达式.(3)已知二次函数的图象过1(x ,1)y 和2(x ,2)y 两点,且当1223x x 时,始终都有12y y >,求a 的取值范围.解:(1)将点(3,1)-代入解析式,得31a b +=, 2(13)4y ax a x ∴=+--,将点(2,22)a -代入24y ax bx =+-,得42(13)42222a a a a +--=--≠-, ∴点(2,22)a -不在抛物线图象上;(2)二次函数的图象与x 轴只有一个交点,∴△2(13)160a a =-+=,1a ∴=-或19a =-, 244y x x ∴=-+-或214493y x x =-+-; (3)抛物线对称轴312a x a -=, 当0a >,31223a a -时,35a ; 当0a <,31223a a -时,35a (舍去); ∴当35a 满足所求; 23.(12分)如图,在正方形ABCD 中,点E 在边CD 上(不与点C ,D 重合),连结AE ,BD 交于点F .(1)若点E 为CD 中点,25AB =,求AF 的长. (2)若tan 2AFB ∠=,求DF BF的值. (3)若点G 在线段BF 上,且2GF BG =,连结AG ,CG ,DE x DC =,四边形AGCE 的面积为1S ,ABG ∆的面积为2S ,求12S S 的最大值.解:(1)点E 为CD 中点,25AB AD CD ===, 5DE ∴=,222055AE AD DE ∴=+=+=, //AB CD ,ABF EDF ∴∆∆∽,∴12DE EF AB AF ==, 2AF EF ∴=,且5AF EF +=, 103AF ∴=; (2)如图1,连接AC ,四边形ABCD 是正方形,AB BC CD AD ∴===,2BD =,AO BD ⊥,AO BO CO DO ===,22AO DO BO AB ∴===, tan 2AO AFB OF∠==, 1224OF AO AB ∴==, 24DF OD OF AB ∴=-=,324BF OB OF AB =+=, ∴13DF BF =; (3)如图2,设AB CD AD a ===,则2BD a =,DE x DC=, DE xa ∴=,21122ADE S AD DE xa ∆∴=⨯⨯=, ABF EDF ∆∆∽, ∴DE DF x AB BF==, DF x BF ∴=,21112ABF S a x ∆∴=+, 2GF BG =,22136(1)ABG ABF a S S S x ∆∆∴===+, AB CB =,ABG CBG ∠=∠,BG BG =, ()ABG CBG SAS ∴∆≅∆ABG CBG S S ∆∆∴=,1S ∴=四边形AGCE 的面积2221226(1)a a xa x =--⨯+∴22121193343()24S x x x S =-++=--+ ∴当12x =时,12S S 的最大值为194.。

2019-2020学年度浙教版九年级数学上册期末考试题(有答案)

2019-2020学年度浙教版九年级数学上册期末考试题(有答案)

2019-2020学年度浙教版九年级数学上册期末考试题(有答案) 学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)∥BC ,若BM=4AM ,MN=1,则BC 的长是( )A 、6B 、5C 、4D 、32.已知二次函数y=a (x ﹣2)2+c ,当x=x 1时,函数值为y 1;当x=x 2时,函数值为y 2,若|x 1﹣2|>|x 2﹣2|,则下列表达式正确的是( ).A .y 1+y 2>0B .y 1﹣y 2>0C .a (y 1﹣y 2)>0D .a (y 1+y 2)>03.下列说法中,不成立的是( )A .弦的垂直平分线必过圆心B .弧的中点与圆心的连线垂直平分这条弧所对的弦C .垂直于弦的直线经过圆心,且平分这条弦所对的弧D .垂直于弦的直径平分这条弦4.下列各式中,y 是x 的二次函数的是( )A .21(0)y mx m =+≠B .2y ax bx c =++C .22(2)y x x =--D .31y x =-5.已知二次函数y=a (x ﹣2)2+c ,当x=x 1时,函数值为y 1;当x=x 2时,函数值为y 2,若|x 1﹣2|>|x 2﹣2|,则下列表达式正确的是( )A .y 1+y 2>0B .y 1﹣y 2>0C .a (y 1﹣y 2)>0D .a (y 1+y 2)>06.抛物线y=﹣3x 2﹣x+4与坐标轴的交点个数是( )A .3B .2C .1D .07.抛物线()21y x =-与y 轴的交点坐标是A .(0,1);B .(1,0);C .(0,-1);D .(0,0).8.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A=22.5°,OC=4,CD 的长为( )A ..4 C . D .89.一个扇形的弧长是20πcm ,面积是240πcm 2,那么扇形的圆心角是( )A .120° B.150° C.210° D.240°10.周长相等的正三角形、正四边形、正六边形的面积S 3、S 4、S 6间的大小关系是( )A .S 3>S 4>S 6B .S 6>S 4>S 3C .S 6>S 3>S 4D .S 4>S 6>S 311.如图,已知△ABC ,P 为AB 上一点,连接CP ,以下条件中不能判定△ACP ∽△ABC 的是( )A .∠ACP=∠B B .∠APC=∠ACBC .AC AB AP AC =D .BC CP AB AC = 评卷人 得分二、填空题(题型注释)“剪刀”的概率是 .13.不透明袋子中有1个红球、2个黄球,这些球除颜色外无其他差别,从袋子中随机摸出1个球后放回,再随机摸出1个球,两次摸出的球都是黄球的概率是 .14.如图,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30°, 则点O 到CD 的距离OE= .ED CBAO 15.如图,在四边形ABCD 中,P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,AD=BC ,∠PEF=18°,则∠PFE 的度数是 度.16.圆心角为120°,弧长为12π的扇形半径为 .17.如图,点G 为△ABC 的重心,GE ∥BC ,BC=12,则GE= .18.如图,∠BAC=120°,AD 平分∠BAC ,且AD=4,点P 是射线AB 上一动点,连接DP ,△PAD 的外接圆于AC 交于点Q ,则线段QP 的最小值是 .19.一人乘雪橇沿坡比110米,则此人下降的高度为米.20.将边长为4的正方形ABCD向右倾斜,边长不变,∠ABC逐渐变小,顶点A、D及对角线BD的中点N分别运动列A′、D′和N′的位置,若∠A′BC=30°,则点N到点N′的运动路径长为.三、计算题(题型注释),以A为圆心,5为半径作圆A,点C在⊙A上,过点C作CD∥AB交⊙A于点D(点D在C右侧),联结BC、AD.(1)若CD=6,求四边形ABCD的面积;(2)设CD=x,BC=y,求y与x的关系式及x的取值范围;(3)设BC的中点为M,AD的中点为N,MN∥CD,线段MN交⊙A于点E,联结CE,当CD取何值时,CE∥AD.22.如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x 轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E.(1)求抛物线的表达式;(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;(3)如图2,过点F作FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,垂足为N ,连接MN ,直线AC 分别交x 轴,y 轴于点H ,G ,试求线段MN 的最小值,并直接写出此时m 的值.23.如图1,直线l :y=34x+m 与x 轴、y 轴分别交于点A 和点B (0,﹣1),抛物线y=12x 2+bx+c 经过点B ,与直线l 的另一个交点为C (4,n ).(1)求n 的值和抛物线的解析式;(2)点D 在抛物线上,DE ∥y 轴交直线l 于点E ,点F 在直线l 上,且四边形DFEG 为矩形(如图2),设点D 的横坐标为t (0<t <4),矩形DFEG 的周长为p ,求p 与t 的函数关系式以及p 的最大值;(3)将△AOB 绕平面内某点M 旋转90°或180°,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A 1的横坐标.24.如图,抛物线y=x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P ,当点P 在该抛物线上滑动到什么位置时,满足S △PAB =8,并求出此时P 点的坐标.四、解答题(题型注释) +c 的图象经过点(2,1),(0,1).(1)求该二次函数的表达式及函数图象的顶点坐标和对称轴;(2)若点P 12,3(y a +),Q22,4(y a +)在抛物线上,试判断y1与y2的大小.(写出判断的理由)26.小明在课外学习时遇到这样一个问题:定义:如果二次函数21111(a 0)y a x b x c =++≠与22222(a 0)y a x b x c =++≠满足120a a +=,12b b =,120c c +=,则称这两个函数互为“旋转函数”.求函数232y x x =--的“旋转函数”.小明是这样思考的:由函数232y x x =--可知,11a =,13b =-,12c =-,根据120a a +=,12b b =,120c c +=,求出2a ,2b ,2c ,就能确定这个函数的“旋转函数”. 请参考小明的方法解决下面问题:(1)直接写出函数232y x x =--的“旋转函数”;(2)若函数2335y x mx =-+-与23y x nx n =-+互为“旋转函数”,求2015415m n +()的值;(3)已知函数1142y x x =-+()(﹣)的图象与x 轴交于点A 、B 两点(A 在B 的左边),与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是A 1,B 1,C 1,试证明经过点A 1,B 1,C 1的二次函数与函数1142y x x =-+()(﹣)互为“旋转函数”。

浙江省杭州市余杭区2019-2020学年九年级上学期期末数学试题

浙江省杭州市余杭区2019-2020学年九年级上学期期末数学试题
14.在Rt△ABC中,AC:BC=1:2,则sinB=______.
15.如图,在△ABC中,∠ACB=90°,点D、E分别在边AC、BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处,若AC=2BC,则 的值为____.
16.如图,AB为 的直径,弦CD⊥AB于点E,点F在圆上,且 = ,BE=2,CD=8,CF交AB于点G,则弦CF的长度为__________,AG的长为____________.
三.解答题
17.如图,为测量一条河的宽度,某学习小组在河南岸的点A测得河北岸的树C在点A的北偏东60°方向,然后向东走10米到达B点,测得树C在点B的北偏东30°方向,试根据学习小组的测量数据计算河宽.
18.如图,某科技物展览大厅有A、B两个入口,C、D、E三个出口.小昀任选一个入口进入展览大厅,参观结束后任选一个出口离开.
(1)若小昀已进入展览大厅,求他选择从出口C离开的概率.
(2)求小昀选择从入口A进入,从出口E离开的概率.(请用列表或画树状图求解)
19.如图一座拱桥的示意图,已知桥洞的拱形是抛物线.当水面宽为12m时,桥洞顶部离水面4m.、
(1)建立平面直角坐标系,并求该抛物线 函数表达式;
(2)若水面上升1m,水面宽度将减少多少?
(3)已知二次函数的图像过( , )和( , )两点,且当 < 时,始终都有 > ,求a的取值范围.
23.如图,在正方形ABCD中,点E在边CD上(不与点C,D重合),连接AE,BD交于点F.
(1)若点E为CD中点,AB=2 ,求AF 长.
(2)若 ∠AFB=2,求 的值.
(3)若点G在线段BF上,且GF=2BG,连接AG,CG,设 =x,四边形AGCE的面积为 , ABG的面积为 ,求 的最大值.

2024届浙江省杭州余杭区数学九上期末统考试题含解析

2024届浙江省杭州余杭区数学九上期末统考试题含解析

2024届浙江省杭州余杭区数学九上期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.方程230x x +-=的两根分别是12x x 、,则12x x +等于 ( )A .1B .-1C .3D .-32.下面四组线段中不能成比例线段的是( )A . 3、6、2、4B . 4、6、5、10C .1?、2、3、6D . 25、15、4、233.关于x 的一元二次方程x 2+ax ﹣1=0的根的情况是( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 4.若反比例函数y=k x 的图象经过点(2,3),则它的图象也一定经过的点是( ) A .()3,2-- B .()2,3- C .()3,2- D .()2,3-5.如图,在△ABC 中,DE∥BC 交AB 于D ,交AC 于E ,错误的结论是( ).A .AD AE DB EC = B .AB AC AD AE = C .AC EC AB DB = D .AD DE DB BC= 6.如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 为( )A .13B .2C 2D 22 7.已知在Rt △ABC 中,∠C =90°,BC =5,那么AB 的长为( )A .5sin AB .5cos AC .D .8.如图,AB 是⊙O 的切线,B 为切点,AO 与⊙O 交于点C ,若∠BAO=40°,则∠OCB 的度数为( )A .40°B .50°C .65°D .75°9.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,那么下列说法正确的是( )A .a >0,b >0,c >0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c >010.如图,已知D 是ABC 中的边BC 上的一点,BAD C ∠=∠,ABC ∠的平分线交边AC 于E ,交AD 于F ,那么下列结论中错误的是( )A .△BAC ∽△BDAB .△BFA ∽△BEC C .△BDF ∽△BECD .△BDF ∽△BAE二、填空题(每小题3分,共24分) 11.如图,在Rt ABC 中,90B ∠=︒,D 为BC 边上一点,已知4=AD ,60ADB ∠=︒,45C ∠=︒,则AC =____________.12.不透明布袋里有5个红球,4个白球,往布袋里再放入x 个红球,y 个白球,若从布袋里摸出白球的概率为13,则y 与x 之间的关系式是_____. 13.如图,矩形ABCD 的边AB 上有一点E ,ED ,EC 的中点分别是G ,H ,AD =4 cm ,DC =1 cm ,则△EGH 的面积是______cm 1.14.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.15.如图,P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点,ΔPEF 、ΔPDC 、ΔPAB 的面积分别为S 、S 1、S 1.若S=1,则S 1+S 1= .16.写出一个你认为的必然事件_________.17.Rt △ABC 中,∠ABC=90°,AB=3,BC=4,过点B 的直线把△ABC 分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.18.若()11,A x y ,()22,B x y ,()33,C x y 是反比例函数3y x =图象上的点,且1230x x x <<<,则1y 、2y 、3y 的大小关系是__________.三、解答题(共66分)19.(10分)如图①,矩形ABCD 中,2,5,1AB BC BP ===,090MPN ∠=,将MPN ∠绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB (或AD )于点E ,PN 交边AD (或CD )于点F .当PN 旋转至PC 处时,MPN ∠的旋转随即停止.(1)特殊情形:如图②,发现当PM 过点A 时,PN 也恰好过点D ,此时ABP ∆是否与PCD ∆相似?并说明理由; (2)类比探究:如图③,在旋转过程中,PE PF的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE t =时,EPF ∆的面积为S ,试用含t 的代数式表示S ;①在旋转过程中,若1t =时,求对应的EPF ∆的面积;②在旋转过程中,当EPF ∆的面积为4.2时,求对应的t 的值.20.(6分)在一个不透明的盒子里装有三个标记为1,2,3的小球(材质、形状、大小等完全相同),甲先从中随机取出一个小球,记下数字为x 后放回,同样的乙也从中随机取出一个小球,记下数字为y ,这样确定了点P 的坐标(,)x y . (1)请用列表或画树状图的方法写出点P 所有可能的坐标;(2)求点P 在函数22()1y x =-+的图象上的概率.21.(6分)佩佩宾馆重新装修后,有50间房可供游客居住,经市场调查发现,每间房每天的定价为140元,房间会全部住满,当每间房每天的定价每增加10元时,就会有一间房空闲,如果游客居住房间,宾馆需对每间房每天支出40元的各项费用.设每间房每天的定价增加x 元,宾馆获利为y 元.(1)求y 与x 的函数关系式(不用写出自变量的取值范围) ;(2)物价部门规定,春节期间客房定价不能高于平时定价的2倍,此时每间房价为多少元时宾馆可获利8000元?22.(8分)如图,△OAP 是等腰直角三角形,∠OAP =90°,点A 在第四象限,点P 坐标为(8,0),抛物线y =ax 2+bx+c经过原点O 和A 、P 两点.(1)求抛物线的函数关系式.(2)点B 是y 轴正半轴上一点,连接AB ,过点B 作AB 的垂线交抛物线于C 、D 两点,且BC =AB ,求点B 坐标; (3)在(2)的条件下,点M 是线段BC 上一点,过点M 作x 轴的垂线交抛物线于点N ,求△CBN 面积的最大值.23.(8分)ABC 中,∠ACB =90°,AC =BC ,D 是BC 上一点,连接AD ,将线段AD 绕着点A 逆时针旋转,使点D 的对应点E 在BC 的延长线上。

2019-2020学年浙教版数学九年级上册期末综合达标测试卷(有答案)-优选

2019-2020学年浙教版数学九年级上册期末综合达标测试卷(有答案)-优选

期末综合达标测试卷(满分:120分 时间:120分钟)一、选择题(每小题3分,共30分)1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( B )A .4个B .3个C .2个D .1个2.如图,在△ABC 中,D 、E 两点分别在BC 、AC 边上.若BD =CD ,∠B =∠CDE ,DE =2,则AB 的长为( A )第2题A .4B .5C .6D .73.如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB 的度数为( A )第3题A .25°B .30°C .40°D .50°4.如图,在△ABC 中,∠B =90°,AB =6,BC =8,将△ABC 沿DE 折叠,使点C 落在AB 边上的点C ′处,并且C ′D ∥BC ,则CD 的长是( A )第4题A .409B .509C .154D .2545.一个布袋里装有3个红球、2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是红球的概率是( C )A .15B .25C .35D .236.在同一坐标系中,一次函数y =ax +b (a ≠0)与二次函数y =bx 2+a (b ≠0)的图象可能是( C )7.如图,AB 为⊙O 的直径,弦DC ⊥AB 于点E ,∠DCB =30°,EB =3,则弦DC 的长度为( D )第7题A .3 3B .4 3C .5 3D .6 38.如图,在四边形ABCD 中,E 、F 分别在AD 和BC 上,AB ∥EF ∥DC ,且DE =3,DA =5,CF =4,则FB 等于( B )第8题A .32B .83C .5D .69.在一个不透明的盒子中,装有2个白球和1个红球,这些球除颜色外其余都相同,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,应在该盒子中再添加红球( B )A .2个B .3个C .4个D .5个10.已知关于x 的方程a x-x 2+2x -3=0只有一个实数根,则实数a 的取值范围是( C ) A .a >0 B .a <0 C .a ≠0D .a 为一切实数二、填空题(每小题4分,共32分)11.给出下列四个函数:①y =-x ;②y =x ;③y =1x;④y =x 2(x <0).其中,y 随x 的增大而减小的函数有 ①④ .(写出正确答案的序号)12.如图,D 、E 两点分别在△ABC 的边AB 、AC 上,DE 与BC 不平行,当满足条件__∠ADE =∠C (答案不唯一)__(写出一个即可)时,△ADE ∽△ACB .第12题13.如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠COD =34°,则∠AEO 的度数是__51°__ .第13题14.如图,△ABC 中,点D 、E 分别在边AB 、BC 上,DE ∥AC .若BD =4,DA =2,BC =5,则EC = 53.第14题15.在一个暗箱里放有m 个除颜色外其他完全相同的球,这m 个球中绿球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到绿球的频率稳定在25%,那么可以推算出m 大约是__12__.16.出售某种文具盒,若每个获利x 元,一天可售出(6-x )个,则当x =__3__元时,一天出售该种文具盒的总利润最大.17.一个扇形的圆心角为120°,弧长为6π,则此扇形的半径为__9__ .18.如图,在△ABC 中,∠C =90°,BC =16 cm ,AC =12 cm ,点P 从点B 出发,沿BC 以2 cm/s 的速度向点C 移动,点Q 从点C 出发,以1 cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为t s ,当t =6411或24时,△CPQ 与△CBA 相似.第18题三、解答题(共58分)19.(8分)在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1,2,3,现从中任意摸出一个小球,将其上面的数字作为点M 的横坐标,将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M 的纵坐标.(1)写出点M 坐标的所有可能的结果; (2)求点M 在直线y =x 上的概率;(3)求点M 的横坐标与纵坐标之和是偶数的概率. 解:(1)列表如下:由表可知,点M ,(2,3),(3,1),(3,2),(3,3). (2)由表可得,点M 在直线y =x 上的结果有(1,1),(2,2),(3,3),共3个,∴所求概率P =39=13.(3)点M 的横、纵坐标之和为偶数的结果有(1,1),(1,3),(2,2),(3,1),(3,3),共5个,∴所求概率P =59. 20.(8分)如图,AB =3AC ,BD =3AE ,BD ∥AC ,点B 、A 、E 在同一条直线上.第20题(1)求证:△ABD ∽△CAE ;(2)如果AC =BD ,AD =22BD ,设BD =a ,求BC 的长.(1)证明:∵BD ∥AC ,点B 、A 、E 在同一条直线上,∴∠DBA =∠CAE .又∵AB AC =BDAE=3,∴△ABD ∽△CAE .(2)解:∵AB =3AC =3BD ,AD =22BD ,∴AD 2+BD 2=8BD 2+BD 2=9BD 2=AB 2, ∴∠D =90°.由(1)得∠E =∠D =90°.∵AE =13BD ,EC =13AD =223BD ,AB =3BD ,∴在Rt △BCE 中,BC 2=(AB +AE )2+EC 2=12BD 2=12a 2,∴BC =23a .21.(9分)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 于点E ,交BC 于点D .求证:第21题(1)D 是BC 的中点; (2)△BEC ∽△ADC ; (3)BC 2=2AB ·CE .证明:(1)∵AB 是⊙O 的直径,∴∠ADB =90°,即AD 是底边BC 上的高.又∵AB =AC ,∴△ABC 是等腰三角形,∴D 是BC 的中点. (2)∵∠CBE 与∠CAD 是同弧所对的圆周角,∴∠CBE =∠CAD .又∵∠BCE =∠ACD ,∴△BEC ∽△ADC . (3)由△BEC ∽△ADC ,知CD AC =CEBC,即CD ·BC =AC ·CE .∵D 是BC 的中点,∴CD =12BC .又∵AB =AC ,∴12BC ·BC =AB ·CE ,即BC 2=2AB ·CE .22.(9分)如图,已知AB 是半圆O 的直径,点P 是半圆上一点,连结BP ,并延长BP 到点C ,使PC =PB ,连结AC .(1)求证:AB =AC ;(2)若AB =4,∠ABC =30°,求阴影部分的面积.第22题(1)证明:连结AP .∵AB 是半圆O 的直径,∴∠APB =90°,∴AP ⊥BC .又∵PC =PB ,∴△ABC 是等腰三角形,即AB =AC . (2)解:∵∠APB =90°,AB =4,∠ABC =30°,∴AP =12AB =2,∴BP=AB 2-AP 2=2 3.连结OP .∵∠ABC =30°,∴∠PAB =60°,∴∠POB =120°.∵点O 是AB 的中点,∴S ΔPOB =12S ΔPAB =12×12AP ·PB =14×2×23=3,∴S阴影=S 扇形BOP -S ΔPOB=120π×22360-3=43π- 3.23.(10分)某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y (单位:元)与销售价x (单位:元/件)之间的函数解析式; (2)当销售价定为45元时,计算月销售量和销售利润;(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10 000元,销售价应定为多少? (4)当销售价定为多少元时会获得最大利润?并求出最大利润.解:(1)由题意,得y =(x -30)[600-10(x -40)]=-10x 2+1300x -30 000. (2)当x =45时,600-10(x -40)=550,y =550×(45-30)=8250.即月销售量和销售利润分别为550件,8250元. (3)当y =10 000时,即10 000=-10x 2+1300x -30 000,解得x 1=50,x 2=80.当x =80时,600-10×(80-40)=200<300(不合题意,舍去),故销售价应定为50元. (4)y =-10x 2+1300x -30 000=-10(x -65)2+12 250,故当x =65时,y 有最大值.即当销售价定为65元时获得最大利润,最大利润为12 250元.24.(14分)如图,已知抛物线y =12x 2+bx +c 与y 轴相交于点C ,与x 轴相交于A 、B 两点,点A的坐标为(2,0),点C 的坐标为(0,-1).(1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△CDE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形?若存在,求点P 的坐标;若不存在,说明理由.第24题解:(1)将A 、C 的坐标代入y =12x 2+bx +c ,易得二次函数的解析式为y =12x 2-12x -1. (2)设点D的坐标为(m,0)(0<m <2),则OD =m ,AD =2-m .由△ADE ∽△AOC ,得AD AO =DE OC .∴2-m 2=DE1,∴DE =2-m 2,∴△CDE 的面积为12×2-m 2×m =-14(m -1)2+14.当m =1时,△CDE 的面积最大,此时点D 的坐标为(1,0). (3)存在.易求得直线BC 的解析式为y =-x -1.在Rt △AOC 中,∠AOC =90°,OA =2,OC =1,∴AC = 5.∵OB =OC ,∴∠BCO =45°.①当PC =AC =5时,设P (k ,-k -1).过点P 作PH ⊥y 轴于点H ,如图1,则∠HCP =∠BCO =45°,CH =PH =|k |.在Rt △PCH 中,k 2+k 2=()52,解得k 1=102,k 2=-102.∴点P 坐标为⎝ ⎛⎭⎪⎫102,-102-1或⎝ ⎛⎭⎪⎫-102,102-1;②当AC =AP =5时,设P (k ,-k -1).过点P 作PG ⊥x 轴于点G ,如图2.AG =|2-k |,GP =|-k -1|.在Rt △APG 中,由AG 2+PG 2=AP 2,可得k 1=1,k 2=0(舍去),∴P (1,-2);③当PC =AP 时,设P (k ,-k -1).过点P 作PQ ⊥y 轴于点Q ,PL ⊥x 轴于点L ,如图3,∴L (k,0),∴△QPC 为等腰直角三角形,PQ =CQ =k ,∴CP =PA =2k .在Rt △APL 中,AL =|k -2|,PL =|-k -1|,∴(2k )2=(k -2)2+(k +1)2,解得k =52,∴P ⎝ ⎛⎭⎪⎫52,-72.综上所述,点P 的坐标为⎝ ⎛⎭⎪⎫102,-102-1或⎝ ⎛⎭⎪⎫-102,102-1或(1,-2)或⎝ ⎛⎭⎪⎫52,-72.图1图2图3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年浙江省杭州市余杭区九年级(上)期末数学试卷一、选择题(共10小题). 1.(3分)cos60︒的值等于( ) A .12B .22C .32D .332.(3分)若23a b =,则下列比列式正确的是( ) A .23a b= B .23a b= C .23b a = D .23a b= 3.(3分)下列图形中,是相似形的是( ) A .所有平行四边形 B .所有矩形C .所有菱形D .所有正方形4.(3分)如图,正五边形ABCDE 内接于O ,则ABD ∠的度数为( )A .60︒B .72︒C .78︒D .144︒5.(3分)对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下: 抽取件数(件) 50 100 150 200 500 800 1000 合格频数4288141176445724901若出售1500件衬衣,则其中的次品最接近( )件. A .100B .150C .200D .2406.(3分)如图,AB 是半圆O 的直径,40BAC ∠=︒,则D ∠的度数是( )A .140︒B .135︒C .130︒D .125︒7.(3分)已知点(3,)A m -,(3,)B m ,2(1,1)C m n -++在同一个函数的图象上,这个函数可能是( )A.2y x=+B.2yx=-C.22y x=+D.22y x=--8.(3分)如图,AB与CD相交于点E,点F在线段BC上,且////AC EF DB.若5BE=,3BF=,AE BC=,则DECE的值为()A.23B.12C.35D.259.(3分)二位同学在研究函数2(3)()(y a x x aa=+-为实数,且0)a≠时,甲发现当01a<<时,函数图象的顶点在第四象限;乙发现方程2(3)()50a x xa+-+=必有两个不相等的实数根.则()A.甲、乙的结论都错误B.甲的结论正确,乙的结论错误C.甲、乙的结论都正确D.甲的结论错误,乙的结论正确10.(3分)如图,在ABC∆中,90C∠=︒,5AB=,4BC=.点D为边AC上的动点,作菱形DEFG,使点E、F在边AB上,点G在边BC上.若这样的菱形能作出2个,则AD 的取值范围是()A.369378AD<B.1575837AD<C.575337AD<D.51538AD二、填空题:本题有6个小题,每小题4分,共24分.11.(4分)一个布袋里放有5个红球,3个球黄球和2个黑球,它们除颜色外其余都相同,则任意摸出一个球是黑球的概率是.12.(4分)如图,点A,B,C都在O上130AOC∠=︒,40ACB∠=︒,AOB∠=,弧BC=.13.(4分)已知二次函数2246y x x =-++,用配方法化为2()y a x m k =-+的形式为 ,这个二次函数图象的顶点坐标为 .14.(4分)在Rt ABC ∆中,:1:2AC BC =,则sin B = .15.(4分)如图,在ABC ∆中,90ACB ∠=︒,点D ,E 分别在边AC ,BC 上,且CDE B ∠=∠,将CDE ∆沿DE 折叠,点C 恰好落在AB 边上的点F 处.若2AC BC =,则DECF的值为 .16.(4分)如图,AB 为O 的直径,弦CD AB ⊥于点E ,点F 在圆上,且DF CD =,2BE =,8CD =,CF 交AB 于点G ,则弦CF 的长为 ,AG 的长为 .三、解答题;本大题有7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)如图,为测量一条河的宽度,某学习小组在河南岸的点A 测得河北岸的树C 在点A 的北偏东60︒方向,然后向东走10米到达B 点,测得树C 在点B 的北偏东30︒方向,试根据学习小组的测量数据计算河宽.18.(8分)如图,某科技馆展大厅有A,B两个入口,C,D,E三个出口,小钧的任选一个入口进入展宽大厅,参观结束后任选一个出口离开.(1)若小钧已进入展览大厅,求他选择从出口C离开的概率.(2)求小购选择从入口A进入,从出口E离开的概率,(请用列表或画树状图求解)19.(8分)如图为一座桥的示意图,已知桥洞的拱形是抛物线.当水面宽为12m时,桥洞顶部离水面4m.(1)建立平面直角坐标系,并求该抛物线的函数表达式.(2)若水面上升1m,水面宽度将减少多少?20.(10分)如图,在ABC=,以AB为直径作半圆O,交BC于点D,交AC∆中,AB AC于点E.(1)求证:BD CD=.(2)若弧50∠的度数.DE=︒,求C(3)过点D作DF AB⊥于点F,若8=,求弧BD的长.AF BFBC=,321.(10分)如图,在ABC=,连结∆中,点D,E分别在边AC,AB上且AE AB AD ACDE,BD.(1)求证:ADE ABC∽.∆∆(2)若点E为AB中点,:6:5∆的面积.AD AE=,ABC∆的面积为50,求BCD22.(12分)已知二次函数24(y ax bx a =+-,b 是常数,且0)a ≠的图象过点(3,1)-. (1)试判断点(2,22)a -是否也在该函数的图象上,并说明理由. (2)若该二次函数的图象与x 轴只有一个交点,求该函数的表达式. (3)已知二次函数的图象过1(x ,1)y 和2(x ,2)y 两点,且当1223xx 时,始终都有12y y >,求a 的取值范围.23.(12分)如图,在正方形ABCD 中,点E 在边CD 上(不与点C ,D 重合),连结AE ,BD 交于点F .(1)若点E 为CD 中点,25AB =,求AF 的长. (2)若tan 2AFB ∠=,求DFBF的值. (3)若点G 在线段BF 上,且2GF BG =,连结AG ,CG ,DEx DC=,四边形AGCE 的面积为1S ,ABG ∆的面积为2S ,求12S S 的最大值.参考答案一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中.只有一个选项是符合题目要求的. 1.(3分)cos60︒的值等于( ) A .12B .22C .32D .33解:1cos602︒=. 故选:A .2.(3分)若23a b =,则下列比列式正确的是( ) A .23a b= B .23a b= C .23b a = D .23a b= 解:23a b =, ∴23b a =, 故选:C .3.(3分)下列图形中,是相似形的是( ) A .所有平行四边形 B .所有矩形C .所有菱形D .所有正方形解:A 、所有平行四边形,属于形状不唯一确定的图形,不一定相似,故错误; B 、所有矩形,属于形状不唯一确定的图形,不一定相似,故错误; C 、所有菱形,属于形状不唯一确定的图形,不一定相似,故错误;D 、所有正方形,形状相同,但大小不一定相同,符合相似定义,故正确.故选:D .4.(3分)如图,正五边形ABCDE 内接于O ,则ABD ∠的度数为( )A .60︒B .72︒C .78︒D .144︒解:五边形ABCDE 为正五边形, (52)1801085ABC C -⨯︒∴∠=∠==︒,CD CB =,180108362CBD ︒-︒∴∠==︒, 72ABD ABC CBD ∴∠=∠-∠=︒,故选:B .5.(3分)对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下: 抽取件数(件) 50 100 150 200 500 800 1000 合格频数4288141176445724901若出售1500件衬衣,则其中的次品最接近( )件. A .100 B .150C .200D .240解:42881411764457249011500(1)151.6501001502005008001000++++++⨯-=++++++件故选:B .6.(3分)如图,AB 是半圆O 的直径,40BAC ∠=︒,则D ∠的度数是( )A .140︒B .135︒C .130︒D .125︒解:AB 是半圆O 的直径,90ACB ∴∠=︒,90904050B BAC ∴∠=︒-∠=︒-︒=︒, 180B D ∠+∠=︒, 18050130D ∴∠=︒-︒=︒.故选:C .7.(3分)已知点(3,)A m -,(3,)B m ,2(1,1)C m n -++在同一个函数的图象上,这个函数可能是( ) A .2y x =+ B .2y x=-C .22y x =+D .22y x =--解:(3,)A m -,(3,)B m ,∴点A 与点B 关于y 轴对称;由于2y x =+不关于y 轴对称,2y x=-的图象关于原点对称,因此选项A 、B 错误; 20n >, 21m n m ∴++>;由(3,)A m -,2(1,1)C m n -++可知,在对称轴的右侧,y 随x 的增大而减小, 对于二次函数只有0a <时,在对称轴的右侧,y 随x 的增大而减小, D ∴选项正确故选:D .8.(3分)如图,AB 与CD 相交于点E ,点F 在线段BC 上,且////AC EF DB .若5BE =,3BF =,AE BC =,则DECE的值为( )A .23B .12 C .35D .25解:设CF x =, //EF AC , ∴BF BECF AE =, ∴353x x =+, 解得92x =, 92CF ∴=, //EF DB ,32932DE BF CE CF ===. 故选:A .9.(3分)二位同学在研究函数2(3)()(y a x x a a=+-为实数,且0)a ≠时,甲发现当01a <<时,函数图象的顶点在第四象限;乙发现方程2(3)()50a x x a+-+=必有两个不相等的实数根.则( )A .甲、乙的结论都错误B .甲的结论正确,乙的结论错误C .甲、乙的结论都正确D .甲的结论错误,乙的结论正确解:由函数2(3)()y a x x a =+-可知,函数与x 轴的两个交点的横坐标分别是3-和2a,∴函数顶点的横坐标为232a -+,01a <<,∴23122a -+>-, ∴函数的顶点不一定在第四象限,故甲的结论错误;2(3)()50a x x a +-+=可以化为2(32)10ax a x +--=,△222420(32)49849()099a a a a a =-+=-+=-+>,2(3)()50a x x a∴+-+=必有两个不相等的实数根,故乙的结论正确; 故选:D .10.(3分)如图,在ABC ∆中,90C ∠=︒,5AB =,4BC =.点D 为边AC 上的动点,作菱形DEFG ,使点E 、F 在边AB 上,点G 在边BC 上.若这样的菱形能作出2个,则AD 的取值范围是( )A .369378AD< B .1575837AD <C .575337AD <D .51538AD解:如图1中,当四边形DEFG 是正方形时,设正方形的边长为x .在Rt ABC ∆中,90C ∠=︒,5AB =,4BC =,2222543AC AB BC ∴=-=-=,则35CD x =,54AD x =, AD CD AC +=, ∴35354x x +=, 6037x ∴=, 336537CD x ∴==, 观察图象可知:36037CD <时,菱形的个数为0.如图2中,当四边形DAEG 是菱形时,设菱形的边长为m .//DG AB , ∴CD DGAC AB =, ∴335m m-=, 解得158m =, 159388CD ∴=-=,如图3中,当四边形DEBG 是菱形时,设菱形的边长为n .//DG AB , ∴CG DG CB AB =, ∴445n n -=, 209n ∴=, 2016499CG ∴=-=, 2220164()()993CD ∴=-=, 观察图象可知:当36037CD <或433CD <时,菱形的个数为0,当3637CD =或9483CD <时,菱形的个数为1,当369378CD <时,菱形的个数为2.此时1575837AD < 故选:B . 二、填空题:本题有6个小题,每小题4分,共24分.11.(4分)一个布袋里放有5个红球,3个球黄球和2个黑球,它们除颜色外其余都相同,则任意摸出一个球是黑球的概率是 5. 解:在一个布袋里放有5个红球,3个球黄球和2个黑球,它们除了颜色外其余都相同, ∴从布袋中任意摸出一个球是黑球的概率为:215325=++. 故答案为:15. 12.(4分)如图,点A ,B ,C 都在O 上130AOC ∠=︒,40ACB ∠=︒,AOB ∠= 80︒ ,弧BC = .解:224080AOB ACB ∠=∠=⨯︒=︒,1308050BOC AOC AOB ∴∠=∠-∠=︒-︒=︒,∴BC 的度数为50︒.故答案为80︒,50︒.13.(4分)已知二次函数2246y x x =-++,用配方法化为2()y a x m k =-+的形式为 22(1)8y x =--+ ,这个二次函数图象的顶点坐标为 .解:2222462(2)62(1)8y x x x x x =-++=--+=--+,∴顶点(1,8).故答案为:22(1)8y x =--+,(1,8).14.(4分)在Rt ABC ∆中,:1:2AC BC =,则sin B 55或12. 解:①当90C ∠=︒时,设AC x =,2BC x =,由勾股定理,得22(2)5AB x x =+=.由三角函数的正弦等于对边比斜边,得5sin 5AC B AB x=== ②当90A ∠=︒时,1sin 2AC B BC ==. 综上所述,sin B 5或12. 512. 15.(4分)如图,在ABC ∆中,90ACB ∠=︒,点D ,E 分别在边AC ,BC 上,且CDE B ∠=∠,将CDE ∆沿DE 折叠,点C 恰好落在AB 边上的点F 处.若2AC BC =,则DE CF 的值为 4.解:如图,设DE 交CF 于O .设OD a =.由翻折可知:DC DF =,EC EF =,DE ∴垂直平分线段CF ,90DOC ∴∠=︒,OC OF =,CDE B ∠=∠,tan tan CDO B ∴∠=∠, ∴2OC AC OD BC ==, 2OC OF a ∴==,4CF a =,90ECO DCO ∠+∠=︒,90DCO CDO ∠+∠=︒,ECO CDO ∴∠=∠,tan 2OE ECO OC∴∠==, 4OE a ∴=,5DE a =,∴5544DE a CF a ==, 故答案为54. 16.(4分)如图,AB 为O 的直径,弦CD AB ⊥于点E ,点F 在圆上,且DF CD =,2BE =,8CD =,CF 交AB 于点G ,则弦CF 的长为 485,AG 的长为 .解:连结BC ,DF ,OC ,连结DO 并延长交CF 于点H ,弦CD AB ⊥于点E ,8CD =,142CE CD ∴==, 设OC x =,则2OE x =-,222OE CE OC +=,222(2)4x x ∴-+=,解得5x =,5OC ∴=,523OE ∴=-=,DF CD =,DF CD ∴=,CFD COB ∠=∠,DH CF ⊥,90FHD OEC ∴∠=∠=︒,DHF CEO ∴∆∆∽, ∴DF DH FH OC CE OE ==, ∴8543DH FH ==, 245FH ∴=,325DH =, 4825CF FH ∴==, 327555OH DH OD =-=-=, CFD COB BOD ∠=∠=∠,BOD GOH ∠=∠,GOH DFH ∴∠=∠,90GHO OEC ∠=∠=︒,GHO CEO ∴∆∆∽,∴OG OH OC OE =, ∴7553OG =, 73OG ∴=, 78533AG OA OG ∴=-=-=. 故答案为:485,83. 三、解答题;本大题有7个小题,共66分,解答应写出文字说明、证明过程或演算步骤.17.(6分)如图,为测量一条河的宽度,某学习小组在河南岸的点A 测得河北岸的树C 在点A 的北偏东60︒方向,然后向东走10米到达B 点,测得树C 在点B 的北偏东30︒方向,试根据学习小组的测量数据计算河宽.解:由题意得,30CAB ∠=︒,60CBD ∠=︒,30ACB CBD CAB ∴∠=∠-∠=︒,CAB ACB ∴∠=∠,10BC AB ∴==,CD BD ⊥,353CD BC ∴== 答:河宽为5318.(8分)如图,某科技馆展大厅有A ,B 两个入口,C ,D ,E 三个出口,小钧的任选一个入口进入展宽大厅,参观结束后任选一个出口离开.(1)若小钧已进入展览大厅,求他选择从出口C 离开的概率.(2)求小购选择从入口A 进入,从出口E 离开的概率,(请用列表或画树状图求解)解:(1)他选择从出口C 离开的概率为13;(2)画树形图如图得:由树形图可知所有可能的结果有6种,其中选择从入口A 进入,从出口E 离开的只有1种结果,∴选择从入口A 进入,从出口E 离开的概率为16. 19.(8分)如图为一座桥的示意图,已知桥洞的拱形是抛物线.当水面宽为12m 时,桥洞顶部离水面4m . (1)建立平面直角坐标系,并求该抛物线的函数表达式.(2)若水面上升1m ,水面宽度将减少多少?解:以C 为坐标原点建立坐标系,则(6,4)A --,(6B ,4)(0C -,0) 设2y ax =,把(6,4)B -代入上式,3640a +=,解得:19a =-, 219y x ∴=-;令3y =-得:2139x -=-, 解得:33x =±,∴若水面上升1m ,水面宽度将减少1263-.20.(10分)如图,在ABC ∆中,AB AC =,以AB 为直径作半圆O ,交BC 于点D ,交AC 于点E .(1)求证:BD CD =.(2)若弧50DE =︒,求C ∠的度数.(3)过点D 作DF AB ⊥于点F ,若8BC =,3AF BF =,求弧BD 的长.【解答】(1)证明:如图,连接AD .AB 是圆O 的直径,AD BD ∴⊥.又AB AC =,BD CD ∴=.(2)解:弧50DE =︒,50EOD ∴∠=︒.1252DAE DOE ∴∠=∠=︒. 由(1)知,AD BD ⊥,则90ADB ∠=︒,902565ABD ∴∠=︒-︒=︒.AB AC =,65C ABD ∴∠=∠=︒.(3)8BC =,BD CD =,4BD ∴=.设半径OD x =.则2AB x =.由3AF BF =可得3342AF AB x ==,1142BF AB x ==, AD BD ⊥,DF AB ⊥,2BD BF AB ∴=,即21422x x =. 解得4x =.4OB OD BD ∴===,OBD ∴∆是等边三角形,60BOD ∴∠=︒.∴弧BD 的长是:60441803ππ⨯=.21.(10分)如图,在ABC ∆中,点D ,E 分别在边AC ,AB 上且AE AB AD AC =,连结DE ,BD .(1)求证:ADE ABC ∆∆∽.(2)若点E 为AB 中点,:6:5AD AE =,ABC ∆的面积为50,求BCD ∆的面积.【解答】(1)证明:AE AB AD AC =,::AE AC AD AB ∴=,A A ∠=∠,ADE ABC ∴∆∆∽.(2)解:点E 为AB 中点,AE BE ∴=,:6:5AD AE =,∴设6AD x =,则5AE x =,10AB x =,AE AB AD AC =, 5102563AE AB x x AC x AD x ∴===, 73CD AC AD x ∴=-=, ∴725CD AC =, ABC ∆的面积为50,BCD ∴∆的面积7501425=⨯=. 22.(12分)已知二次函数24(y ax bx a =+-,b 是常数,且0)a ≠的图象过点(3,1)-.(1)试判断点(2,22)a -是否也在该函数的图象上,并说明理由.(2)若该二次函数的图象与x 轴只有一个交点,求该函数的表达式.(3)已知二次函数的图象过1(x ,1)y 和2(x ,2)y 两点,且当1223x x 时,始终都有12y y >,求a 的取值范围.解:(1)将点(3,1)-代入解析式,得31a b +=, 2(13)4y ax a x ∴=+--,将点(2,22)a -代入24y ax bx =+-,得42(13)42222a a a a +--=--≠-, ∴点(2,22)a -不在抛物线图象上;(2)二次函数的图象与x 轴只有一个交点,∴△2(13)160a a =-+=,1a ∴=-或19a =-, 244y x x ∴=-+-或214493y x x =-+-; (3)抛物线对称轴312a x a -=, 当0a >,31223a a -时,35a ; 当0a <,31223a a -时,35a (舍去); ∴当35a 满足所求; 23.(12分)如图,在正方形ABCD 中,点E 在边CD 上(不与点C ,D 重合),连结AE ,BD 交于点F .(1)若点E 为CD 中点,25AB =,求AF 的长. (2)若tan 2AFB ∠=,求DF BF的值. (3)若点G 在线段BF 上,且2GF BG =,连结AG ,CG ,DE x DC =,四边形AGCE 的面积为1S ,ABG ∆的面积为2S ,求12S S 的最大值.解:(1)点E 为CD 中点,25AB AD CD ===, 5DE ∴=,222055AE AD DE ∴=+=+=, //AB CD ,ABF EDF ∴∆∆∽,∴12DE EF AB AF ==, 2AF EF ∴=,且5AF EF +=, 103AF ∴=; (2)如图1,连接AC ,四边形ABCD 是正方形,AB BC CD AD ∴===,2BD =,AO BD ⊥,AO BO CO DO ===,22AO DO BO AB ∴===, tan 2AO AFB OF∠==, 1224OF AO AB ∴==, 24DF OD OF AB ∴=-=,324BF OB OF AB =+=, ∴13DF BF =; (3)如图2,设AB CD AD a ===,则2BD a =,DE x DC=, DE xa ∴=,21122ADE S AD DE xa ∆∴=⨯⨯=, ABF EDF ∆∆∽, ∴DE DF x AB BF==, DF x BF ∴=,21112ABF S a x ∆∴=+, 2GF BG =,22136(1)ABG ABF a S S S x ∆∆∴===+, AB CB =,ABG CBG ∠=∠,BG BG =, ()ABG CBG SAS ∴∆≅∆ABG CBG S S ∆∆∴=,1S ∴=四边形AGCE 的面积2221226(1)a a xa x =--⨯+∴22121193343()24S x x x S =-++=--+ ∴当12x =时,12S S 的最大值为194.。

相关文档
最新文档