环境监测常用仪器分析方法原理及其应用
环境监测常用分析方法简介
环境监测常用分析方法简介环境样品的测试方法是在现代分析化学各个领域的测试技术和手段的基础上发展起来的,用于研究环境污染物的性质、来源、含量、分布状态和环境背景值。
随科学技术的不断发展,除经典的化学分析、各种仪器分析为环境分析监测服务外,一些新的测试手段和技术,如色谱-质谱联用、激光、中子活化法、遥感遥测技术也很快被广泛应用于环境污染的监测中,为了及时反映监测对象和取样时的真实情况,确切掌握环境污染连续变化的状况,许多小型现场监测仪器和大型自动监测系统也获得迅速的发展。
一、化学分析法是以特定的化学反应为基础的分析方法,分重量分析法和容量分析法两类。
重量法操作麻烦,对于污染物浓度低的,会产生较大误差,它主要用于大气中总悬浮颗粒、降尘量、烟尘、生产性粉尘及废水中悬浮固体、残渣、油类、硫酸盐、二氧化硅等的测定。
随着称量工具的改进,重量法得到进一步发展。
例如,近几年用微量测重法测定大气飘尘和空气中的汞蒸汽等。
容量法具有操作方便、快速、准确度高、应用范围广、费用低的特点,在环境监测中得到较多应用,但灵敏度不够高,对于测定浓度太低的污染物,也不能得到满意的结果。
它主要用于水中的酸碱度、NH3-N、COD、BOD、DO、Cr6+、硫离子、氰化物、氯化物、硬度、酚等的测定,及废气中铅的测定。
二、光学分析法是以光的吸收、辐射、散射等性质为基础的分析方法,主要有以下几种:(一)分光光度法是一种具有仪器简单、容易操作、灵敏度较高、测定成分广等特点的常用分析法。
可用于测定金属、非金属、无机和有机化合物等。
在国内外的环境监测分析法中占有很大的比重。
(二)原子吸收分光光度法是在待测元素的特征波长下,通过测量样品中待测元素基态原子(蒸气)对特征谱线吸收的程度,以确定其含量的一种方法。
此法操作简便、迅速、灵敏度高、选择性好、抗干扰能力强、测定元素范围广,是环境中痕量金属污染物测定的主要方法,可测定70多种元素,国内外都用作测定重金属的标准分析方法。
氧氮氢分析仪
氧氮氢分析仪氧氮氢分析仪是一种用于测量氧氮氢含量的仪器。
它在环境监测、工业生产等领域有着广泛的应用。
本文将从氧氮氢分析仪的原理、功能、应用以及未来发展等方面进行阐述。
首先,我们来了解一下氧氮氢分析仪的原理。
氧氮氢分析仪是利用化学反应原理进行测量的仪器。
它通过引入样品气体到仪器中,使其与试剂发生反应,并测量反应过程中产生的质谱信号。
根据质谱信号的大小,可以推算出样品中氧氮氢的含量。
这种分析方法准确性高,灵敏度好,广泛应用于各个领域。
氧氮氢分析仪具有多种功能。
首先,它可以实时监测环境中的氧氮氢含量。
在大气环境监测中,氧氮氢分析仪可以帮助我们了解大气中的污染物含量,监测空气质量。
其次,它可以用于工业生产过程中的气体监测。
在一些工业生产中,需要对氧氮氢含量进行严格控制,以确保产品的质量和安全性。
最后,氧氮氢分析仪还可以用于科学研究中的气体分析。
比如,在化学实验中,研究人员需要分析反应产生的气体的组成和含量,以便进一步研究反应机理。
除了以上功能,氧氮氢分析仪还有着广泛的应用领域。
首先,它在环境监测中的应用十分重要。
随着人们对环境污染问题的关注度提高,氧氮氢分析仪成为了环境监测的重要工具之一。
其次,它在工业领域也有着广泛的应用。
比如,在电子制造中,氧氮氢分析仪可以用于监测气体的纯度,以保证产品的质量。
此外,氧氮氢分析仪还可以应用于科学研究、医学诊断等领域。
未来,随着科学技术的不断发展,氧氮氢分析仪还有很大的发展空间。
首先,我们可以期待它在测量精度上的提高。
随着仪器制造技术的不断进步,氧氮氢分析仪的测量精度将会更加准确。
其次,我们可以期待它在应用领域的拓展。
目前,氧氮氢分析仪在环境监测、工业生产等方面已经有了广泛的应用,但还有许多其他领域可以发掘。
比如,在生命科学研究中,氧氮氢分析仪可以用于监测细胞培养过程中的气体变化,以便更好地了解细胞的生理活动。
总结起来,氧氮氢分析仪是一种用于测量氧氮氢含量的仪器,它通过化学反应原理进行测量,具有准确性高、灵敏度好等特点。
现代仪器分析与环境监测
现代仪器分析1.光学分析法分类:光谱法和非光谱法光谱法:以能源与物质相互作用引起原子、分子内部量子化能级之间跃迁所产生的光的吸收、发射、散射等波长与强度的变化关系为基础的光分析法,称为光谱法。
非光谱法:除了光谱法以外的光分析法。
主要有折射法、干涉法、衍射法、旋光法、和圆二色性法等。
2.原子发射光谱原理、仪器组成、光源种类及特点原子发射光谱原理:处于激发态的原子或离子在极短时间内,电子从激发态跃迁回基态或能量较低的激发态,电子以电磁辐射的形式将多余的能量释放出来,这一现象称之为原子发射或发光仪器组成:激发源、分光系统、检测系统光源种类及特点:(1)直流电弧DCA:分析绝对灵敏度高,辐射光强度大,背景较小,适合于分析痕量元素。
主要缺点是电弧游移不定,稳定性差,因此分析结果的再现性差(2)低压交流电弧ACA:电流具有脉冲性,电流密度比直流电弧大,稳定性高,弧温高激发能力强可对所有元素进行定性分析,电源方便线路简单(3)高压火花spark:高压火花激发出的主要是离子光谱,稳定性好,适用于低熔点、易挥发物质或难激发元素和高含量元素的定性分析,不适用痕量分析(4)电感耦合等离子体ICP:灵敏度高稳定性好,特别适合于液态样品分析,低污染干扰少。
缺点是消耗Ar气量大,费用高(5)微波等离子体3.原子吸收光谱原理,仪器组成、原子化器种类及特点原子吸收光谱原理:当通过基态原子的某辐射线所具有的能量或频率恰好符合该原子从基态跃迁到激发态所需的能量或频率时,该基态原子就会从入射辐射中吸收能量,产生原子吸收光谱仪器组成:光源、原子化器、分光系统、检测系统原子化器种类及特点:(1)火焰原子化器:优点是重现性好评,操作简便,缺点是喷雾气体对试样的严重稀释使原子化效率降低,灵敏度下降(2)石墨炉原子化器:原子化效率高,灵敏度高,特别适用于低含量样品分析,缺点是不易控制,设备复杂,费用较高(3)低温原子化4.紫外可见吸收光谱电子跃迁类型、助色团和生色团、红衣和蓝移、仪器组成、吸收池种类、朗伯比尔定律紫外可见吸收光谱电子跃迁类型:σ→σ*,n→σ*,π→π*,n→π*助色团:含有未成键n电子,本身不产生吸收峰,但与生色团相连时,能使生色团吸收峰向长波方向移动,吸收强度增强的杂原子集团称为助色团生色团:含有不饱和键,能吸收紫外、可见光产生π→π*或n→π*跃迁的基团称为生色团红移:π→π*跃迁吸收峰向长波方向移动;蓝移:n→π*跃迁产生的吸收峰向短波方向移动仪器组成:光源——单色器——吸收池——检测器——显示器吸收池种类:可见光区使用玻璃吸收池,紫外光区使用石英吸收池朗伯比尔定律:A=kcL(L液层厚度)5.氟离子选择电极、玻璃电极F-选择性电极是目前最成功的单晶膜电极,F-电极的内参比电极为Ag-AgCl丝,内参比溶液为0.1mol/LNaF与0.1mol/LNaCl混合液,电极可表示为Ag,AgCl|NaCl(0.1mol/L),NaF(0.1mol/L)|LaF3膜|F-试液。
仪器分析方法的原理及应用
仪器分析方法的原理及应用1. 仪器分析方法简介仪器分析是一种利用仪器设备进行化学分析的方法,与传统的化学分析方法相比,仪器分析具有快速、准确、灵敏和自动化等特点。
仪器分析方法广泛应用于各个领域,包括环境监测、医药研发、食品安全、材料分析等。
2. 仪器分析的原理仪器分析的原理基于物质的性质与测量信号的相关性。
常见的仪器分析方法包括光谱分析、电化学分析、质谱分析等。
2.1 光谱分析原理光谱分析是利用物质对特定波长的光的吸收、发射或散射现象进行分析的方法。
它基于物质与光的相互作用的特性,通过测量光的强度变化来推断样品中物质的含量或性质。
常见的光谱分析方法包括紫外可见光谱、红外光谱、拉曼光谱、荧光光谱等。
这些方法在不同波长范围内对样品进行激发或检测,通过测量不同波长的光信号来获取样品的信息。
2.2 电化学分析原理电化学分析是利用电化学方法进行分析的一种手段。
它基于物质在电场或电流作用下的电化学反应,通过测量电流、电压等电学信号来分析样品的组成和性质。
常见的电化学分析方法包括电解析、电位法、极谱法等。
这些方法通过测量电化学反应产生的电信号来确定样品中某种物质的含量、反应速率等信息。
2.3 质谱分析原理质谱分析是利用质谱仪对样品中不同离子的质量-电荷比进行分析的方法。
它基于物质在电磁场中消耗或释放能量的特性,通过测量样品中离子的质量-电荷比来分析样品的组成和结构。
质谱分析方法包括质谱仪、质谱质点法、质谱图谱法等。
这些方法通过将样品原子或分子离子化后,利用电场、磁场或进一步的离子反应分析样品成分。
3. 仪器分析方法的应用仪器分析方法在不同领域都有广泛的应用,下面列举了一些典型应用场景:•环境监测:利用光谱分析、电化学分析等方法,监测空气、水体、土壤等环境中污染物的含量,以及有害物质的来源和分布情况。
•医药研发:利用质谱分析、光谱分析等方法,对药物、活性成分进行结构分析和含量测定,以提高药物的疗效和稳定性。
•食品安全:利用光谱分析、电化学分析等方法,对食品中的添加剂、农残、重金属等进行检测,保障食品的安全和品质。
环境监测常用仪器分析方法(8类方法)
固定相是色谱柱的填充剂,可分为气固色谱固定 相和气液色谱固定相。
32
色谱柱分离条件的选择
气化温度:应以能将试样迅速气化而不分解为准, 一般高于色谱柱温度30—70℃。 柱温:提高色谱柱温度,可加速气相和液相的传 质过程,缩短分离时间,但过高将会降低固定液 的选择性,增加其挥发流失,一般选择近似等于 试样中各组分的平均沸点或稍低温度。
21
色谱法的分类
分类依据:固定相的形式
◦ 柱色谱法 ◦ 纸层析法 ◦ 薄层色谱法
分类依据:分离机制
◦ 吸附色谱法、分配色谱法、离子色谱法等
22
色谱法
应用
◦ 色谱法是现代分析中最有效、用得最多的分离分析方法 ◦ 痕量分析的主要手段
环境监测中,色谱法是有机污染物分离分析的主 要手段
◦ 气相色谱法、液相色谱法、高压液相色谱法、离子色谱 法使用较多
敏度。 ◦ 氢化物原子化器 ◦ 无火焰原子化法的测定精密度比火焰原子化法差。
16
3.离子交换法
有机离子交换剂(离子交换树脂)
◦ 是一种具有渗透性的三维网状高分子聚合物小球,在网 状结构的骨架上含有可电离的活性基团,与水样中的离 子发生交换反应。
◦ 分类(依据:官能团) ◦ 阳离子交换树脂 ◦ 阴离子交换树脂 ◦ 特殊离子交换树脂
17
无机离子交换剂
பைடு நூலகம்
强酸性阳离子交换树脂
阳离子交换树脂 R-SO3H树脂, 如国产732
弱酸性阳离子交换树脂
R-COOH, R-OH 树脂
有机离子交换剂 (离子交换树脂)
强碱性阴离子交换树脂
环境监测常用分析方法简介
环境监测常用分析方法简介环境样品的测试方法是在现代分析化学各个领域的测试技术和手段的基础上发展起来的,用于研究环境污染物的性质、来源、含量、分布状态和环境背景值。
随科学技术的不断发展,除经典的化学分析、各种仪器分析为环境分析监测服务外,一些新的测试手段和技术,如色谱-质谱联用、激光、中子活化法、遥感遥测技术也很快被广泛应用于环境污染的监测中,为了及时反映监测对象和取样时的真实情况,确切掌握环境污染连续变化的状况,许多小型现场监测仪器和大型自动监测系统也获得迅速的发展。
一、化学分析法是以特定的化学反应为基础的分析方法,分重量分析法和容量分析法两类。
重量法操作麻烦,对于污染物浓度低的,会产生较大误差,它主要用于大气中总悬浮颗粒、降尘量、烟尘、生产性粉尘及废水中悬浮固体、残渣、油类、硫酸盐、二氧化硅等的测定。
随着称量工具的改进,重量法得到进一步发展。
例如,近几年用微量测重法测定大气飘尘和空气中的汞蒸汽等。
容量法具有操作方便、快速、准确度高、应用范围广、费用低的特点,在环境监测中得到较多应用,但灵敏度不够高,对于测定浓度太低的污染物,也不能得到满意的结果。
它主要用于水中的酸碱度、NH3-N、COD、BOD、DO、Cr6+、硫离子、氰化物、氯化物、硬度、酚等的测定,及废气中铅的测定。
二、光学分析法是以光的吸收、辐射、散射等性质为基础的分析方法,主要有以下几种:(一)分光光度法是一种具有仪器简单、容易操作、灵敏度较高、测定成分广等特点的常用分析法。
可用于测定金属、非金属、无机和有机化合物等。
在国内外的环境监测分析法中占有很大的比重。
(二)原子吸收分光光度法是在待测元素的特征波长下,通过测量样品中待测元素基态原子(蒸气)对特征谱线吸收的程度,以确定其含量的一种方法。
此法操作简便、迅速、灵敏度高、选择性好、抗干扰能力强、测定元素范围广,是环境中痕量金属污染物测定的主要方法,可测定70多种元素,国内外都用作测定重金属的标准分析方法。
浅析现代仪器分析技术在环境监测中的应用
浅析现代仪器分析技术在环境监测中的应用摘要:如今人们的生活水平在不断提高,但环境污染问题却在一直加剧,自20世纪开始,八大公害事件一直到各种污染问题,逐渐被人们所重视,不管是工业污染还是生活垃圾污染,都对我们的生活造成影响,因此,在科学技术发展的同时,提倡进行环境检测,检测污染物的浓度,并进行分析,随着科学技术的发展,我国在环境监测领域已经有了显著的成就,但仍需不断的开发新技术,以保护人们的生活环境关键词:现代仪器;环境监测;应用引言:随着人类不断开发与认识自然,对所遇到的环境问题不断深入的同时,对环境污染物的行为、毒性、来源等研究也更为深入,对污染定性定量的分析技术要求更高。
环境监测不再局限于天平、滴定等仪器与技术,现代仪器分析技术已逐渐成为环境污染物监测的核心技术,为人们提供了更精确、更有价值的参考数据。
随着现代仪器分析技术大量地应用,环境监测与保护工作也不断推进。
1.环境监测的必要性环境监测指的是人类对周围环境状况监视性测定等一类活动。
人们对能够反映环境质量的主要指标进行定期、定点监测,以更好了解环境的污染状况,为制定环境保护目标提供依据。
现代工业快速发展,人民生活水平不断提高,环境状况也令人堪忧。
主要表现在:(1)人们环保意识淡薄环保意识。
(2)环境污染问题日益突出,雾霾天气、酸雨等空气污染,土壤盐碱化,湖泊富营养化等土壤与水体污染。
(3)生态问题不断涌现在工业生产过程中,对生物有害的物质未经过污染处理就排放到自然环境中,包括少数的突发污染和长时间累积污染事故等,给生活带来了一定的危害。
当前的环境污染问题具有涉及面广,影响深远;损害具有持续性,污染物的种类繁多;作用机制复杂,具潜伏性等特点,因此环境监测任务更重,对仪器要求更高。
2.环境分析中常用的仪器分析方法2.1紫外-可见分子吸收光谱法紫外可见分子吸收光谱法又叫做紫外可见光分光光度法。
它是通过光谱法进行监测的,当光谱的吸收值越大,其峰数与物质分子越密,它是定性研究的基础。
现代仪器分析技术在环境监测中的应用
现代仪器分析技术在环境监测中的应用一、前言现代仪器分析技术是一种高科技手段,它可以快速、准确地检测出环境中的各种有害物质。
比如我们可以通过大气采样器采集空气中的污染物,然后使用质谱仪、色谱仪等仪器对这些污染物进行分析,从而了解空气质量的状况。
同样我们也可以用类似的方法来监测水质、土壤等方面的污染情况。
当然要想让这些现代仪器发挥出最大的作用,我们还需要有专业的人员来进行操作和维护。
这就需要我们加强对相关人员的培训和管理,提高他们的专业素质和技术水平。
1. 环境监测的重要性及目的环境监测的重要性不言而喻,随着科技的发展和人类活动的不断增多,环境污染问题日益严重,空气污染、水污染、土壤污染等各类环境问题层出不穷。
这些污染物不仅对人类的身体健康造成威胁,还对生态环境造成了极大的破坏。
因此我们有责任也有义务对环境进行监测,及时发现和解决环境问题,确保人类和自然和谐共生。
那么现代仪器分析技术在环境监测中起到了怎样的作用呢?简单来说现代仪器分析技术可以帮助我们更准确、更快速地了解环境中的各种污染物的种类、数量和分布情况,从而为制定相应的环境保护政策和措施提供科学依据。
通过运用各种先进的仪器设备,如气相色谱仪、液相色谱仪、原子吸收光谱仪等,我们可以对大气中的有害气体、水中的重金属离子、土壤中的有毒物质等进行精确检测,为环境保护工作提供有力支持。
环境监测是我们保护地球家园的重要手段,而现代仪器分析技术则是实现环境监测目标的关键工具。
让我们共同努力,用科技的力量守护我们美丽的家园吧!2. 现代仪器分析技术的发展历程话说在很久很久以前,环境监测还是一件非常繁琐、费时费力的事情。
那时候人们只能通过观察天空的颜色、闻闻空气中的味道来判断环境是否受到污染。
然而随着科技的进步,人类逐渐掌握了一些简单的检测方法。
到了20世纪初,科学家们开始研究一些基于物理原理的检测方法,比如电化学分析法、光学分析法等。
这些方法虽然比以前的方法要先进很多,但是仍然有很多局限性。
气相色谱仪在环境监测中的应用
气相色谱仪在环境监测中的应用气相色谱仪是一种常用的分析仪器,广泛应用于环境监测领域。
它能够对气体和液体样品中的化合物进行分离和定量分析,具有高精度、高灵敏度和高选择性的优点。
本文将重点介绍气相色谱仪在环境监测中的应用。
一、VOCs的监测VOCs(挥发性有机化合物)是一类对环境和人体健康有潜在危害的化合物。
气相色谱仪可以通过分析空气中的VOCs浓度来评估环境质量以及判定是否存在污染源。
常用的便携式气相色谱仪可以实时监测各种VOCs的浓度,包括苯、甲醛、二甲苯等。
二、大气中的气体成分分析气相色谱仪还可用于大气中的气体成分分析。
例如,地球大气中的温室气体二氧化碳和甲烷的浓度分析。
利用气相色谱仪,可以准确测量这些气体的浓度变化,并用于气候变化研究和大气污染控制。
三、水体中的污染物分析气相色谱仪在水体环境监测中也具有重要应用。
它可以对水中的有机污染物进行分析和定量。
例如,利用气相色谱仪可以准确测量水中的苯类化合物、农药残留物和悬浮物等。
这种分析方法在饮用水安全监测和水环境保护中起到了至关重要的作用。
四、土壤中的残留物检测气相色谱仪还常用于土壤中农药、有机溶剂等残留物的检测。
土壤样品经过前处理后,可以通过气相色谱仪进行分离和定量分析。
这种方法可以帮助环境保护部门及时掌握土壤污染情况,制定科学的治理措施。
五、食品安全监测气相色谱仪在食品安全监测中也发挥了重要作用。
它可以对食品中的农药残留、食品添加剂、有害物质等进行分析。
通过气相色谱仪,可以检测到水果、蔬菜、肉类等食品中的化学残留物,保障了食品安全。
六、其他应用除了以上几个方面,气相色谱仪在环境监测中还有许多其他应用。
例如,分析大气颗粒物中的有机化合物和污染物,监测废水中的有机物浓度,检测土壤中的重金属污染等。
气相色谱仪的应用领域广泛,在环境工程和环境科学研究中具有重要地位。
总结:气相色谱仪在环境监测中发挥着重要作用。
它可以对VOCs、大气中的气体成分、水体中的污染物、土壤中的残留物、食品安全等进行准确的分析和监测。
环境监测常用分析方法简介
环境监测常用分析方法简介环境样品的测试方法是在现代分析化学各个领域的测试技术和手段的基础上发展起来的,用于研究环境污染物的性质、来源、含量、分布状态和环境背景值。
随科学技术的不断发展,除经典的化学分析、各种仪器分析为环境分析监测服务外,一些新的测试手段和技术,如色谱-质谱联用、激光、中子活化法、遥感遥测技术也很快被广泛应用于环境污染的监测中,为了及时反映监测对象和取样时的真实情况,确切掌握环境污染连续变化的状况,许多小型现场监测仪器和大型自动监测系统也获得迅速的发展。
一、化学分析法是以特定的化学反应为基础的分析方法,分重量分析法和容量分析法两类。
重量法操作麻烦,对于污染物浓度低的,会产生较大误差,它主要用于大气中总悬浮颗粒、降尘量、烟尘、生产性粉尘及废水中悬浮固体、残渣、油类、硫酸盐、二氧化硅等的测定。
随着称量工具的改进,重量法得到进一步发展。
例如,近几年用微量测重法测定大气飘尘和空气中的汞蒸汽等。
容量法具有操作方便、快速、准确度高、应用范围广、费用低的特点,在环境监测中得到较多应用,但灵敏度不够高,对于测定浓度太低的污染物,也不能得到满意的结果。
它主要用于水中的酸碱度、NH3-N、COD、BOD、DO、Cr6+、硫离子、氰化物、氯化物、硬度、酚等的测定,及废气中铅的测定。
二、光学分析法是以光的吸收、辐射、散射等性质为基础的分析方法,主要有以下几种:(一)分光光度法是一种具有仪器简单、容易操作、灵敏度较高、测定成分广等特点的常用分析法。
可用于测定金属、非金属、无机和有机化合物等。
在国内外的环境监测分析法中占有很大的比重。
(二)原子吸收分光光度法是在待测元素的特征波长下,通过测量样品中待测元素基态原子(蒸气)对特征谱线吸收的程度,以确定其含量的一种方法。
此法操作简便、迅速、灵敏度高、选择性好、抗干扰能力强、测定元素范围广,是环境中痕量金属污染物测定的主要方法,可测定70多种元素,国内外都用作测定重金属的标准分析方法。
仪器分析的应用和原理
仪器分析的应用和原理1. 仪器分析的概述仪器分析是一种专门应用于化学和材料科学领域的实验技术,通过使用各种仪器和设备,对物质的成分、结构和性质进行检测、分析和表征。
仪器分析广泛应用于生物医药、环境保护、食品安全、材料研发等领域。
2. 仪器分析的原理和分类仪器分析的原理基于物质与辐射、电磁波、电子束等相互作用的特性,并通过测量物质在这些相互作用中所产生的信号,获得关于物质组成和性质的信息。
根据测量的信号类型和原理,仪器分析可以分为光谱仪器、电化学分析仪器、色谱仪器等。
2.1 光谱仪器光谱仪器是利用物质在光谱范围内吸收、发射、散射光,来获得关于物质组成和性质的信息的仪器。
常见的光谱仪器包括紫外可见分光光度计、红外光谱仪、质谱仪等。
这些仪器可以用来分析物质的成分、结构、浓度等。
2.2 电化学分析仪器电化学分析仪器是利用物质在电化学过程中产生的电流、电势等电化学信号,来获得关于物质组成和性质的信息的仪器。
常见的电化学分析仪器包括电位计、电导率计、电解质测定仪等。
这些仪器可以用来分析物质的离子浓度、氧化还原能力等。
2.3 色谱仪器色谱仪器是利用物质在流经固定相或液相柱中时与固定相发生相互作用而分离的原理,来获得关于物质组成和性质的信息的仪器。
常见的色谱仪器包括气相色谱仪、液相色谱仪等。
这些仪器可以用来分离和分析物质的成分、纯度、相对含量等。
3. 仪器分析的应用举例仪器分析在各个领域都有广泛的应用,以下是几个典型的应用例子。
3.1 生物医药在生物医药领域,仪器分析被用于药物的合成、分离纯化和品质控制等方面。
例如,色谱仪器可以用于药物中成分的分离和检测,质谱仪器可以用于分析药物的结构和纯度。
3.2 环境保护在环境保护领域,仪器分析被用于监测和分析土壤、水体和大气中的污染物。
例如,气相色谱仪可以用于检测空气中的有害气体,光谱仪器可以用于测定水体中的重金属离子浓度。
3.3 食品安全在食品安全领域,仪器分析被用于检测和分析食品中的化学添加剂、农药残留和重金属等有害物质。
仪器分析在环境监测中的应用
仪器分析在环境监测中的意义
提供准确数据
仪器分析能够提供准确、可靠 的环境监测数据,为环境管理
和决策提供支持。
监测污染物
通过仪器分析可以监测大气、 水、土壤等环境中的污染物种 类和含量,评估环境质量。
预警和预测
利用仪器分析技术对环境进行长期、 连续的监测,可以及时发现环境问 题,预警和预测环境风险。
仪器分析在环境监测中的应用
目录
• 仪器分析概述 • 环境监测中的常用仪器 • 仪器分析在环境监测中的应用领域 • 仪器分析在环境监测中的优势与挑战 • 案例分析:仪器分析在环境监测中的实际
应用 • 结论与建议
01 仪器分析概述
仪器分析的定义与原理
定义
仪器分析是指利用特定的仪器设 备和实验技术,对物质进行定性 、定量分析的一种方法。
现场应用限制
部分仪器分析方法需要复杂的样品前 处理,难以直接应用于现场快速监测。
数据解读与利用
大量监测数据的解读和利用需要专业 的数据处理和分析能力,对环境监测 人员的综合素质要求较高。
发展趋势与展望
便携式与在线监测仪器的发展
随着技术的进步,未来环境监测仪器将更加便携、易操作,实现在线 实时监测。
部分仪器分析方法可以实现无损检测,即在 不破坏样品的情况下进行分析,有利于保护 环境和降低分析成本。
挑战与问题
仪器成本与维护
高精度分析仪器通常价格昂贵,且需 要定期维护和校准,对使用单位的经 济和技术能力要求较高。
专业人员需求
操作和维护现代分析仪器需要专业知 识和技能,对人员培训和管理提出更 高要求。
04 仪器分析在环境监测中的 优势与挑战
优势分析
高灵敏度与准确性
多参数同时检测
现代仪器分析技术在环境监测中的运用
现代仪器分析技术在环境监测中的运用摘要:近几年来,随着社会经济的高速增长,区域环境污染问题日益严峻,逐渐发展成为社会各个阶层关注的主要问题。
基于此,环境污染治理工作得到了高度重视,越来越多的环境监测仪器设备应用到了环境监测工作中,并随着时代的建设发展,对这些环境监测仪器设备的精准度提出了更高要求。
关键词:现代仪器;分析技术;环境监测;监测设备;应用分析引言在时代的发展过程中,环境污染问题成为人们日常生活中关注的重要问题,其不仅危害了人们自身的健康,还阻碍了社会的进步,对可持续发展理念的推广应用带来了诸多的不良影响,这就要求人们对环境污染问题进行治理和监测。
再加上社会的建设进度不断加快,传统的环境监测方式已经无法满足环境污染治理需求。
基于此,涌现出更多的监测仪器和监测设备,为环境污染治理工作的整体效果,提供了根本的保障。
一、环境监测工作的重要性从环境监测的理论层面分析可知,环境监测工作是指人类在日常生活中,对区域的环境整体情况进行综合化测定,全面了解区域环境污染的实际情况,为相关部门单位合理制定环境保护目标提供坚实基础。
目前,在社会经济高速发展的大背景下,工业化的快速发展导致环境污染问题更加严峻,其主要表现为以下几个方面:第一,人们缺少环保意识;第二,环境污染问题日益严峻,如雾霾天气等;第三,企业的工业化生产过程中所产生的各种有害物质,未经过有效处理便直接排放到环境中,导致环境污染问题多发。
无论从哪个方面进行分析,环境污染带来的不良影响日益严峻,再加上环境污染的范围较广,污染物质的种类较多,这就对环境监测工作提出了更高要求。
同时,经济的快速发展提高了人们的生活水平,但也对生活环境和生态平衡带来了诸多的不良影响,人们在日常生活中会发现诸多的环境污染现象,如水体污染问题、土壤污染问题、空气污染问题等,这些环境污染问题已经严重影响了人们的日常生活,甚至导致人们的实际生活空间不断缩小。
长此以往,会对人们的身体健康带来较大的影响。
仪器分析在环境监测中的应用_图文
3.色谱分析的应用
• 气相色谱分析法 • 高效液相色谱分析法 • 离子色谱分析法 • 超临色谱分析法 • 薄层色谱分析法
高压液相色谱仪
气相色谱仪
多毛细管电泳装置示意图
气相色谱分析法的应用
• 大气中元素的监测
⑴大气中微量-氧化碳的分析 汽车尾气中含有一氧化碳,工业锅炉和家用煤炉燃烧不完全放出一氧化碳,都污 染环境。大气中痕量一氧化碳常用转化法没定。国产SP-2307色谱仪具有转化装置, 使CO转化为CH4。 CO+3H2Ni催化/380℃→CH4+H2O 色谱柱固定相可用5A筛分子 ,GDX-104,Porpak Q等,以分子筛为例,13X或5A分子筛60~80目(先经500~550℃ 活化2小时)以氢气载气, 57ml/nin;氢焰检测器;空气400ml/min;尾吹氮气80ml/min 。柱长2m,内径2mm,柱温36℃,检测室130℃,转化炉380v;进样量1mm。可测大气中 ppm级一氧化碳。 ⑵空气中苯系物的分析 常用的方法是用长2m,内径3mm的柱子;内填充10%PEG20M/101白担体60~80目; 柱温120℃,汽化室 150℃,检测室150℃;载气氮流速60ml/min;57ml/nin;氢焰检测器; 氢35ml/min,空气400ml/min。对苯、甲苯、二甲苯分离很好。也可用非极性的阿皮 松或角鲨烷涂渍的柱子。若需对二甲苯三个异构体完全分离,可用有机皂土与邻苯 二甲酸二壬酯混合固定液涂在6201担体上,或采用有机皂土与双甘油混合固定液, 三个体都可得到很好的分离。6201为吸附剂,吸附温度-78℃,脱附100℃,浓缩100 倍,回收率100%,色谱柱40%N,N-双9_氰乙基)甲酰胺/6201,80~100目,柱温100℃氢 焰检测器,苯最小5ppb。
气相色谱仪检测环境中的有害气体
气相色谱仪检测环境中的有害气体气相色谱仪(GC)是一种常用的分析仪器,可用于分离和检测环境中的有害气体。
本文将介绍气相色谱仪的原理、应用以及其在环境监测中的重要性。
一、气相色谱仪原理气相色谱仪是以气相作为分离相的分析仪器,其基本原理是将样品信号分离为各个成分,进而进行定量分析。
气相色谱仪主要由进样器、色谱柱、检测器和数据处理系统组成。
首先,样品通过进样器引入色谱柱。
色谱柱中填充了一种或多种具有不同性质的固定相,如聚硅氧烷、聚酯酮等。
样品在色谱柱中传递时,不同组分会因为相互作用力的差异而以不同速度通过色谱柱。
接下来,样品到达检测器。
常见的检测器有火焰离子化检测器(FID)、热导检测器(TCD)和质谱检测器(MS)等。
这些检测器能够通过电流、温度或质谱分析等方式对样品进行定量检测。
最后,检测器将信号传送给数据处理系统进行分析和显示。
数据处理系统可以计算出样品中各个组分的相对浓度,并生成色谱图。
二、气相色谱仪应用气相色谱仪在环境监测中有着广泛的应用。
1. 空气质量监测空气中存在着大量的污染物,如挥发性有机物(VOCs)、有机气体和气象污染物等。
气相色谱仪可以对这些污染物进行分离和定量分析,从而评估空气质量,提供科学依据用于环境管理和保护。
2. 水体监测气相色谱仪也可以应用于水体中有害气体的监测。
例如,用于分析水体中有机污染物的含量,如苯、甲苯、二甲苯等。
这些有机污染物对环境和人体健康都有一定的危害性,因此准确的监测是非常必要的。
3. 土壤监测气相色谱仪广泛应用于土壤中有害气体的检测。
有机气体、有机污染物和挥发性有机物等都可以通过气相色谱仪进行分离和检测。
这对于评估土壤污染程度、指导土壤修复工作具有重要意义。
三、气相色谱仪在环境监测中的重要性气相色谱仪在环境监测中扮演着重要角色。
首先,气相色谱仪能够分离和定量分析复杂的样品。
环境中的有害气体通常是混合存在的,气相色谱仪可以将不同成分分离出来,实现对每种成分的独立分析,从而提高了监测的准确性和可靠性。
usepa5030c(2003)
主题:USEPA5030C(2003)分析方法及其应用1. 简介USEPA5030C(2003)是美国环保局(USEPA)发布的一项环境分析方法,该方法用于土壤、沉积物和固体样品中重金属和其他有机化合物的分析。
该方法对环境保护和监测具有重要意义,也在环境科学研究和工程实践中得到广泛应用。
2. 方法原理USEPA5030C(2003)方法主要是通过溶剂提取和分析仪器测定来获取样品中重金属和有机化合物的含量。
该方法主要包括以下步骤:(1)样品的制备:将样品研磨、干燥并粉碎,以获得均匀的样品。
(2)溶剂提取:使用适当的溶剂将目标化合物从样品中提取出来。
(3)仪器分析:使用分析仪器(如气相色谱-质谱联用仪器、液相色谱-质谱联用仪器等)测定样品中目标化合物的含量。
3. 应用领域USEPA5030C(2003)方法可广泛应用于环境监测、土壤污染评价、固体废物处理等领域。
常见的应用包括:(1)环境监测:对大气沉降物、水体底泥等环境样品中的污染物进行监测和分析。
(2)土壤污染评价:评估土壤中重金属和有机污染物的程度,为土壤修复和保护提供依据。
(3)固体废物处理:对固体废物中的有害物质进行分析,指导固体废物的安全处置和处理。
4. 方法优势USEPA5030C(2003)方法具有以下优势:(1)全面性:能够有效检测多种重金属和有机化合物。
(2)灵敏度高:能够对样品中微量的污染物进行准确测定。
(3)操作简便:样品制备和分析步骤相对简单,操作方便。
5. 方法发展与应用现状随着环境监测和污染防治的需求不断增长,USEPA5030C(2003)方法得到了不断的改进和应用扩展。
在国际上,许多国家和地区也采用了该方法进行环境分析。
在我国,该方法也得到了广泛应用,并已成为环境保护部门和科研机构的标准分析方法之一。
6. 结语USEPA5030C(2003)方法作为一种重要的环境分析方法,对于环境保护和监测具有重要的意义。
随着环境污染问题日益突出,该方法的应用将在未来得到进一步的拓展和深化,为保护地球环境作出更大的贡献。
分析仪器在环境质量监测中的应用案例
监测目的:了解空气质量状况,为 环境保护提供数据支持
监测流程:收集空气样本,进行预 处理,通过仪器分析,得出结果
添加标题
添加标题
添加标题
添加标题
监测方法:利用分析仪器检测空气 中的污染物浓度
案例介绍:某城市利用PM2.5监测 仪器,实时监测空气质量,为治理 空气污染提供数据支持
监测项目:溶解氧、浊度、pH 值等
,a click to unlimited possibilities
汇报人:
01
03
02
04
监测空气中的污染物,如二氧 化硫、一氧化碳等
监测空气中的悬浮颗粒物,如 PM2.5、PM10等
监测空气中的细菌、病毒等微 生物
监测空气中的臭氧、氮氧化物 等有害气体
监测水质的必要性:保障人类健康和生态平衡 分析仪器在监测水质中的作用:准确测定各项指标,提供可靠数据 监测水质的流程:采集水样、预处理、分析检测、数据处理 监测水质的未来发展方向:提高自动化和智能化水平,加强实时监测和预警系统建设
监测标准的制定和更新需要与国际接轨,提高监测数据的可比性和准确性。 规范监测方法和技术,确保监测数据的可靠性和一致性。 加强监测标准的宣传和推广,提高监测人员的素质和技能水平。 完善监测标准和规范的管理和监督机制,确保监测工作的科学性和公正性。
监测点位不足:需要增加监测点,提高覆盖面 数据传输与共享:需要建立高效的数据传输和共享机制 平台建设滞后:需要加强平台建设,提高数据处理和分析能力
智能化:新型分析仪器具备智能化特点,能够自动识别和调整参数,适应不同环境条件下的 监测需求。
集成化:集成化分析仪器将多种功能整合到一个系统中,实现多功能监测,提高监测效率。
环境监测技术仪器分析方法
环境监测技术仪器分析方法随着人类经济活动的不息进步,环境问题日益凸显,环境监测成为了保卫生态环境的重要手段。
环境监测技术仪器的进步和应用,为环境保卫工作提供了强有力的支持。
本文将介绍一些常见的环境监测技术仪器分析方法。
起首,气体分析仪是环境监测中常用的技术仪器之一。
它可以对大气中的各种气体成分进行快速准确的检测和分析。
气体分析仪的原理是利用化学传感器、光散射、红外吸纳等技术,通过探头接触气体,测量气体的浓度和成分。
这种仪器广泛应用于空气质量监测、工业废气排放监测等领域。
其次,水质分析仪是对水体进行监测和分析的重要工具。
水质分析仪可以快速检测水中的各种物理、化学参数,如pH值、溶解氧、浊度、电导率等。
水质分析仪的原理是利用电极、光电传感器等技术,通过对水样的测试,获得水质的相关数据。
这种仪器广泛应用于水源地、河流、湖泊等水域的水质监测和环境保卫中。
此外,土壤分析仪是用于土壤监测和分析的重要设备。
土壤分析仪可以测量土壤中的养分含量、酸碱度、有机质含量等参数,为土壤质量评判提供依据。
土壤分析仪的原理是利用光谱分析、电化学分析等技术,通过对土壤样品的处理和测试,得出土壤的相关指标。
这种仪器广泛应用于农田管理、土地利用规划等领域。
在环境监测技术仪器分析方法中,还有许多其他类型的仪器,如噪声分析仪、辐射监测仪等,它们在不同的环境场景下发挥着重要作用。
这些仪器不仅可以实时监测环境参数,还可以提供数据分析和处理功能,为环境保卫和治理提供科学依据。
综上所述,环境监测技术仪器分析方法在环境保卫中扮演着重要角色。
气体分析仪、水质分析仪、土壤分析仪等仪器的应用,为环境监测提供了可靠的技术支持。
随着技术的不息进步,仪器分析方法将进一步完善和进步,为环境保卫事业做出更大贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环境监测常用仪器分析方法原理及其应用
摘要:通过对环境监测中常用的几种仪器分析方法的基本原理及特点进行阐述,分析了它们在环境监测工作中的不同应用。
关键词:环境监测;仪器分析;分析方法
发达国家一两百年出现的环境问题,在我国近30多年来的快速发展中集中显现,呈现明显的结构型、压缩型、复合型特点,随着环境保护形势、任务发展的新要求,环境监测工作的地位越来越突出、越来越重要,“环保要有位置,监测首先要有声音,环境监测跟不上,环保就没有话语权”。
环境监测包括空气、水、土壤、固体废弃物、噪声、放射性、电磁辐射等的监测,无论是对环境质量、生态环境现状及变化趋势进行实时、准确的环境监测,还是对污染源及其治理进行日常监督监测,都需要大量的环境监测仪器,随着科学技术的不断进步,环境监测分析技术发展突飞猛进。
1、环境监测分析方法的分类
环境监测分析方法根据测定原理和使用仪器不同包括化学分析法和仪器分析法两种。
化学分析法主要包括重量分析法、滴定分析法等,这种方法是以分析天平、滴定管、容量瓶、移液管等为分析工具,在常量分析中是广泛应用的方法。
仪器分析法是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。
仪器分析具有用样量少、测定快速、灵敏、准确和自动化程度高的显著特点,常用来测定相对含量较低的微量、痕量组分,随着新的仪器分析方法不断出现,其应用也日益广泛,已逐渐成为环境污染监测的重要手段。
2、环境监测中常用的仪器分析方法
环境监测中应用较多的仪器分析方法有:分光光度法、原子荧光分析法、气相色谱法、离子色谱法等。
(1)分光光度法在环境监测中的应用
由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,分光光度法就是基于物质对光的选择性吸收而建立的,它是一种通过测定被测物质在特定波长处或一定波长范围内光的吸光度或发光强度,对该物质进行定性和定量分析的方法。
该法具有较高的精度,设备价廉轻便,操作简易,所以成为目前环境监测中较常用的方法。
常见的采用分光光度法分析的仪器主要有紫外分光光度计、可见分光光度计、红外分光光度计或原子吸收分光光度计等。
分光光度法灵敏度高,选择性好,可测元素多,目前广泛地应用于化工、冶
金、地质、医学、食品、制药等部门及环境监测系统。
在水质监测中,分光光度法可用来测定多种金属和非金属离子化合物,如汞、镉铜、锌、铬、砷、氨氮、总氮、总磷、挥发酚、硝酸盐氮、亚硝酸盐氮、氟化物等等;在土壤监测中,可测定总铬,镍,总砷,苯并[a]芘等;在环境空气监测中,分光光度法可测定二氧化硫,氮氧化物、臭氧、氟化物、甲醛、总悬浮颗粒物中污染组分(某些金属元素和非金属化合物,有机物的测定)等等,下面主要介绍一下用分光光度法对氨氮、总氮的测定。
水中的氨氮可以在一定条件下转化成亚硝酸盐,如长期饮用,水中的亚硝酸盐将和蛋白质结合形成亚硝胺,这是一种强致癌物质,对人体健康极为不利,还会造成水体富营养化,对水生生物造成毒害。
城市生活污水、某些工业废水(如焦化废水、合成氨化肥厂废水)等均是氨氮的主要来源,对氨氮的测定,常用纳氏试剂分光光度法 ,以游离态的氨或铵离子等形式存在的氨氮与纳氏试剂反应生成黄棕色络合物,该络合物颜色的深浅与氨氮的含量成正比,于波长420nm处测量吸光度,即可计算其含量。
总氮是水体中各种价态氮的化合物(包括包括NO3-、NO2-、NH4+等无机氮和蛋白质、氨基酸、有机胺等有机氮)中氮的总量,水中有机氮和各种无机氮化物含量增加,会使水中生物和微生物大量繁殖,消耗水中的溶解氧,使水体质量恶化。
若湖泊、水库中的氮含量超标,会造成浮游植物繁殖旺盛,出现水体富营养化状态,总氮含量是衡量水体受污染程度及富营养化下成都重要指标之一。
 对总氮的测定,常用碱性过硫酸钾消解紫外分光光度法,在120~124℃下,碱性过硫酸钾溶液使样品中氮化合物的氨转化为硝酸盐,采用紫外分光光度法于波长220nm和275nm处,分别测定吸光度A220和A275, 然后计算出校准吸光度A  (A=A220-2A275)  ,总氮(以N计)含量与校准吸光度A成正比,通过标准曲线计算样品中总氮含量。
(2)原子荧光分析法在环境监测中的应用
原子荧光分析是利用硼氢化钾或硼氢化钠作为还原剂,将样品溶液中的待分析元素还原为挥发性共价气态氢化物,然后借助载气将其倒入原子化器,在氩-氢火焰中原子化而形成基态原子。
基态原子吸收光源的能量而变成激发态,激发态原子在去活化过程中将吸收的能量以荧光的形式释放出来,此荧光信号的强弱与样品中待测元素的含量成线性关系,因此通过测量荧光强度就可以确定样品中被测元素的含量。
原子荧光分析法主要分析仪器是原子荧光光度计。
原子荧光分析法具有设备简单、灵敏度高、光谱干扰少、工作曲线线性范围宽、可以进行多元素测定等优点,在地质、冶金、石油、生物医学、地球化学、材料和环境科学等各个得到了广泛应用。
在环境监测中,该法常用于地表水、地下水以及废水中砷、汞的测定。
汞和砷均是严重危害环境和人体健康的毒性物质,环境中的汞主要来源于以汞为原料工业生产过程中产生的含汞废水、废气、废渣以及煤、石油的燃烧、含汞农药的使用等,砷主要来源于开采、焙烧、冶炼含砷矿石及生产含砷产品过程中产生的废水、废气、废渣。
用原子荧光分析法测定砷、汞的方法为:酸化过的样品溶液中的被测元素与还原剂反应,在氢化物发生系统
中生成氢化物或原子态元素(氢化砷、原子态汞),过量的氢气和气态氢化物或原子态元素与载气混合,进入原子化器,氢气和氩气在特制点火装置的作用下形成火焰,使待测元素原子化,基态原子受特种阴极灯光源的激发,产生原子荧光,通过检测原子荧光的相对强度,利用荧光强度在一定范围内与溶液中砷、汞含量成正比的关系,从而得到样品溶液中被测物质的含量。
在测定中,共存离子与化合物对测定不存在干扰。
(3)气相色谱法在环境监测中的应用
色谱法是一种重要的分离方法,当流动相中所含混合物经过固定相时,就会与固定相发生作用,由于不同物质在两相中具有不同的分配系数(或吸附系数、渗透性),当两相作相对运动时,不同组分在固定相中的滞留时间有长有短,这些物质在两相中进行多次反复分配,从几千次到数百万次,即使组分的分配系数只有微小的差异,随着流动相的移动也可以有明显的差距,最后使这些组分得以分离。
在色谱技术中,流动相为气体的叫气相色谱,流动相为液体的叫液相色谱。
常用的作为流动相的气体(载气)有氢气、氮气、氩气、氦气、二氧化碳气等,进行气相色谱分析的的仪器主要为气相色谱仪。
气相色谱法具有分离效率高、灵敏度高、分析速度快、分析需要样品量少、应用范围广等特点。
不仅可以分析气体样品,也可以分析在允许工作温度范围内汽化成气体的液体样品和固体样品,既可以分析有机物,也可以分析部分无机物,在化工、医药、食品、农药、环境监测、水质监测和自然科学研究等领域都有普遍的应用。
在环境监测中,气相色谱法主要应用于土壤残留农药的监测、生产车间及工作场所有害气体的监测、地表水及地下水中有毒物质的监测,可以用来分析常用监测方法不能检测出的多环芳烃、苯系物、PCB等强致癌物的状况。
 在环境监测领域中,习惯用“苯系物”一词代替单环芳烃,苯是毒性很高的致癌物质,而甲苯、乙苯、对二甲苯、间二甲苯、邻二甲苯、异丙苯、苯乙烯对人体和水生物均有不同程度的毒性,苯及其同系物作为重要溶剂及生产原料有着广泛的应用,在石油化工、油漆、涂料、农药、医药、有机化工等行业的排放污水中也含有较多的苯系物。
随着有毒有害有机污染物对空气、水、土壤的污染日益严重, 气相色谱法作为有机污染物监测的常用方法,正发挥着越来越重要的作用。
它可以同时检测工业废水及地表水样品中苯、甲苯、乙苯、对二甲苯、间二甲苯、邻二甲苯、异丙苯、苯乙烯等8种苯系物,检测方法为:采用SE-30毛细管柱, 用二硫化碳萃取样品中的苯系物,用氢火焰离子化检测器检测,通过绘制浓度—峰高的校准曲线,由色谱峰量出各组分的峰高,然后在各自的校准曲线上查出相应的待测物浓度,测定范围为0.05-12mg/L。
3、结束语
以上是环境监测特别是基层环境监测工作中常用到的几种仪器分析方法,除此之外,还有电位分析法、电导分析法、库伦分析法、极谱法等分析方法,每种分析方法各有其特性,随着环境污染监测业务的不断扩展和深入,多中易于操作且分析速度快、精确度高的仪器将会不断涌现,仪器分析在环境监测中的应用必
将得到快速发展。
参考文献:
(1)《环境仪器分析》钱沙华,韦进宝,中国环境科学出版社2004.11
(2)仪器分析在环境监测中的应用研究杨宏奎等《科技创新与生产力》2012.3
(3)气相色谱法在环境监测中的应用刘欣《皮革与化工》2008.8。