运筹学习题课

合集下载

运筹学习题.doc

运筹学习题.doc

习题课1(1) 假定一个成年人每天需要从食物中获取3000卡路里热量,55克蛋白质和800毫克钙。

如果市场上只有四种食品可供选择,它们每千克所含热量和营养成份以及市场价格如下表所示。

问如何选择才能满足营养的前提下使购买食品解:设x j (j=1,2,3,4)为第j 种食品每天的购买量,则配餐问题数学模型为 minz=10x 16x 23x 32x 4⎢⎢⎢⎢⎢⎣⎡=≥≥+++≥+++≥+++)4,3,2,1(08005003002004005510206050300020090080010000.432143214321j x x x x x x x x x x x x x tx j(2) 将以下线性规划问题转化为标准形式 Min f = 3.6 x1 - 5.2 x2 + 1.8 x3 s. t. 2.3 x1 + 5.2 x2 - 6.1 x3 ≤15.7 4.1 x1 + 3.3 x3 ≥8.9 x1 + x2 + x3 = 38 x1 , x2 , x3 ≥ 0解:首先,将目标函数转换成极大化: 令 z = -f = -3.6x1+5.2x2-1.8x3其次考虑约束,有2个不等式约束,引进松弛变量x4,x5 ≥0。

于是,我们可以得到以下标准形式的线性规划问题: Max z = - 3.6 x1 + 5.2 x2 - 1.8 x3 s.t. 2.3x1+5.2x2-6.1x3+x4= 15.7 4.1x1+3.3x3-x5= 8.9 x1+x2+x3= 38x1 ,x2 ,x3 ,x4 ,x5 ≥ 0(3)用图解法求解下列线性规划问题本例中目标函数与凸多边形的切点是B (2,5),则X *=(2,5)为最优解,m a x Z =20(4) 找出下列线性规划问题的全部基解,基可行解,并找出最优解基本解:X 1=(0,1,4,12,18)’ X 2=(4,0,0,12,6)’ X 3=(6,0,-2,12,0)’ X 4 =(4,3,0,6,0)’ X 5=(0,6,4,0,6)’ X 6=(2,6,2,0,0)’ X 7=((4,6,0,0,-6)’ X 8=(0,9,4,-6,0)’ 其中基本可行解为: X 1, X 2, X 4, X 5 ,X 6 最优解为X *=X 6 =(2,6,2,0,0)’ Z *=36⎪⎪⎩⎪⎪⎨⎧≥≥≤≤+≤++=04155162325max 211212121x x x x x x x x x z ⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤≤++=018236453max 21212121x x x x x x x x z习题课2(1) 用单纯形表求解LP问题Max z = 1500 x1 + 2500 x2s.t. 3 x1 + 2 x2 + x3 = 652 x1 + x2 + x4 = 403 x2 + x5 = 75x1 , x2 , x3 , x4 , x5 ≥0最优解x1 = 5 x2 = 25 x4 = 5(松弛标量,表示B设备有5个机时的剩余)最优值z* = 70000(2)用单纯形法解线性规划问题(唯一解)解:化为标准型列出单纯形表Z*=17/2, X*=(7/2,3/2, 15/2,0,0)’⎪⎪⎩⎪⎪⎨⎧≥=++=++=+++++=-0524261550002max 515214213254321x x x x x x x x x x x x x x z习题课3(1) 用单纯形法求解线性规划问题化成标准形式有加入人工变量则为列出单纯形表 ⎪⎪⎩⎪⎪⎨⎧≥≥≥=+≥-+-≤+++-=000931243max 3213232132131x x x x x x x x x x x x x z ⎪⎪⎩⎪⎪⎨⎧≥=+=--+-=++++++-=-093124003max 5132532143215431x x x x x x x x x x x x x x x z ⎪⎪⎩⎪⎪⎨⎧≥=++=+--+-=+++--+++-=-093124003max 71732653214321765431x x x x x x x x x x x x x Mx Mx x x x x z人工变量已不在基变量中,X*=(0,5/2,3/2,0,0,0,0)’ Z*=3/2注意:(1)在L P 问题的最优解中,人工变量都处在非基变量位置(即取0值),则原问题有最优解,且去掉人工变量后的解为原问题的最优解。

数据模型与决策(运筹学)课后习题和案例答案(6)

数据模型与决策(运筹学)课后习题和案例答案(6)

CHAPTER 7NETWORK OPTIMIZATION PROBLEMS Review Questions7.1-1 A supply node is a node where the net amount of flow generated is a fixed positive number.A demand node is a node where the net amount of flow generated is a fixed negativenumber. A transshipment node is a node where the net amount of flow generated is fixed at zero.7.1-2 The maximum amount of flow allowed through an arc is referred to as the capacity of thatarc.7.1-3 The objective is to minimize the total cost of sending the available supply through thenetwork to satisfy the given demand.7.1-4 The feasible solutions property is necessary. It states that a minimum cost flow problemwill have a feasible solution if and only if the sum of the supplies from its supply nodesequals the sum of the demands at its demand nodes.7.1-5 As long as all its supplies and demands have integer values, any minimum cost flowproblem with feasible solutions is guaranteed to have an optimal solution with integervalues for all its flow quantities.7.1-6 Network simplex method.7.1-7 Applications of minimum cost flow problems include operation of a distribution network,solid waste management, operation of a supply network, coordinating product mixes atplants, and cash flow management.7.1-8 Transportation problems, assignment problems, transshipment problems, maximum flowproblems, and shortest path problems are special types of minimum cost flow problems. 7.2-1 One of the company’s most important distribution centers (Los Angeles) urgently needs anincreased flow of shipments from the company.7.2-2 Auto replacement parts are flowing through the network from the company’s main factoryin Europe to its distribution center in LA.7.2-3 The objective is to maximize the flow of replacement parts from the factory to the LAdistribution center.7.3-1 Rather than minimizing the cost of the flow, the objective is to find a flow plan thatmaximizes the amount flowing through the network from the source to the sink.7.3-2 The source is the node at which all flow through the network originates. The sink is thenode at which all flow through the network terminates. At the source, all arcs point awayfrom the node. At the sink, all arcs point into the node.7.3-3 The amount is measured by either the amount leaving the source or the amount entering thesink.7.3-4 1. Whereas supply nodes have fixed supplies and demand nodes have fixed demands, thesource and sink do not.2. Whereas the number of supply nodes and the number of demand nodes in a minimumcost flow problem may be more than one, there can be only one source and only onesink in a standard maximum flow problem.7.3-5 Applications of maximum flow problems include maximizing the flow through adistribution network, maximizing the flow through a supply network, maximizing the flow of oil through a system of pipelines, maximizing the flow of water through a system ofaqueducts, and maximizing the flow of vehicles through a transportation network.7.4-1 The origin is the fire station and the destination is the farm community.7.4-2 Flow can go in either direction between the nodes connected by links as opposed to onlyone direction with an arc.7.4-3 The origin now is the one supply node, with a supply of one. The destination now is theone demand node, with a demand of one.7.4-4 The length of a link can measure distance, cost, or time.7.4-5 Sarah wants to minimize her total cost of purchasing, operating, and maintaining the carsover her four years of college.7.4-6 When “real travel” through a network can end at more that one node, a dummy destinationneeds to be added so that the network will have just a single destination.7.4-7 Quick’s management must consider trade-offs between time and cost in making its finaldecision.7.5-1 The nodes are given, but the links need to be designed.7.5-2 A state-of-the-art fiber-optic network is being designed.7.5-3 A tree is a network that does not have any paths that begin and end at the same nodewithout backtracking. A spanning tree is a tree that provides a path between every pair of nodes. A minimum spanning tree is the spanning tree that minimizes total cost.7.5-4 The number of links in a spanning tree always is one less than the number of nodes.Furthermore, each node is directly connected by a single link to at least one other node. 7.5-5 To design a network so that there is a path between every pair of nodes at the minimumpossible cost.7.5-6 No, it is not a special type of a minimum cost flow problem.7.5-7 A greedy algorithm will solve a minimum spanning tree problem.17.5-8 Applications of minimum spanning tree problems include design of telecommunicationnetworks, design of a lightly used transportation network, design of a network of high- voltage power lines, design of a network of wiring on electrical equipment, and design of a network of pipelines.Problems7.1a)b)c)1[40] 6 S17 4[-30] D1 [-40] D2 [60] 5 8S2 6[-30] D37.2a)supply nodestransshipment nodesdemand nodesb)[200] P1560 [150]425 [125][0] W1505[150]490 [100]470 [100][-150]RO1[-200]RO2P2 [300]c)510 [175]600 [200][0] W2390 [125]410[150] 440[75]RO3[-150]7.3a)supply nodestransshipment nodesdemand nodesV1W1F1V2V3W2 F21P1W1RO1RO2P2W2RO3[-50] SE3000[20][0]BN5700[40][0]HA[50]BE 4000 6300[40][30] [0][0]NY2000[60]2400[20]3400[10] 4200[80][0]5900[60]5400[40]6800[50]RO[0]BO[0]2500[70]2900[50]b)c)7.4a)LA 3100 NO 6100 LI 3200 ST[-130] [70] [30] [40] [130]1[70]11b)c) The total shipping cost is $2,187,000.7.5a)[0][0] 5900RONY[60] 5400[0] 2900 [50]4200 [80][0] [40] 6800 [50]BO[0] 2500LA 3100 NO 6100 LI 3200 ST [-130][70][30] [40][130]b)c)SEBNHABERONYNY(80) [80] (50) [60](30)[40] ROBO (40)(50) [50] (70)[70]11d)e)f) $1,618,000 + $583,000 = $2,201,000 which is higher than the total in Problem 7.5 ($2,187,000). 7.6LA(70) NO[50](30)LI (30) ST[70][30] [40]There are only two arcs into LA, with a combined capacity of 150 (80 + 70). Because ofthis bottleneck, it is not possible to ship any more than 150 from ST to LA. Since 150 actually are being shipped in this solution, it must be optimal. 7.7[-50] SE3000 [20] [0] BN 5700 [40][0] HA[50] BE4000 6300[40][0] NY2000 [60] 2400 [20][30] [0]5900RO [60]17.8 a) SourcesTransshipment Nodes Sinkb)7.9 a)AKR1[75]A [60]R2[65] [40][50][60] [45]D [120] [70]B[55]E[190]T [45][80] [70][70]R3CF[130][90]SE PT KC SL ATCHTXNOMES S F F CAb)Oil Fields Refineries Distribution CentersTXNOPTCACHATAKSEKCME c)SLSFTX[11][7] NO[5][9] PT[8] [2][5] CA [4] [7] [8] [7] [4] [6][8] CH [7][5][9] [4] ATAK [3][6][6][12] SE KC[8][9][4][8] [7] [12] [11]MESL [9]SF[15][7]d)3Shortest path: Fire Station – C – E – F – Farming Community 7.11 a)A70D40 60O60 5010 B 20 C5540 10 T50E801c)Shortest route: Origin – A – B – D – Destinationd)Yese)Yes7.12a)31,00018,000 21,00001238,000 10,000 12,000b)17.13a) Times play the role of distances.B 2 2 G5ACE 1 31 1b)7.14D F1. C---D: Cost = 14.E---G: Cost = 5E---F: Cost = 1 *choose arbitrarilyD---A: Cost = 4 2.E---G: Cost = 5 E---B: Cost = 7 E---B: Cost = 7 F---G: Cost = 7 E---C: Cost = 4 C---A: Cost = 5F---G: Cost = 7C---B: Cost = 2 *lowestF---C: Cost = 3 *lowest5.E---G: Cost = 5 F---D: Cost = 4 D---A: Cost = 43. E---G: Cost = 5 B---A: Cost = 2 *lowestE---B: Cost = 7 F---G: Cost = 7 F---G: Cost = 7 C---A: Cost = 5F---D: Cost = 46.E---G: Cost = 5 *lowestC---D: Cost = 1 *lowestF---G: Cost = 7C---A: Cost = 5C---B: Cost = 2Total = $14 million7.151. B---C: Cost = 1 *lowest 4. B---E: Cost = 72. B---A: Cost = 4 C---F: Cost = 4 *lowestB---E: Cost = 7 C---E: Cost = 5C---A: Cost = 6 D---F: Cost = 5C---D: Cost = 2 *lowest 5. B---E: Cost = 7C---F: Cost = 4 C---E: Cost = 5C---E: Cost = 5 F---E: Cost = 1 *lowest3. B---A: Cost = 4 *lowest F---G: Cost = 8B---E: Cost = 7 6. E---G: Cost = 6 *lowestC---A: Cost = 6 F---G: Cost = 8C---F: Cost = 4C---E: Cost = 5D---A: Cost = 5 Total = $18,000D---F: Cost = 57.16B 34 2E HA D 2 G I K3C F 12J34B41E6A C41G2 FD1. F---G: Cost = 1 *lowest 6. D---A: Cost = 62. F---C: Cost = 6 D---B: Cost = 5F---D: Cost = 5 D---C: Cost = 4F---I: Cost = 2 *lowest E---B: Cost = 3 *lowestF---J: Cost = 5 F---C: Cost = 6G---D: Cost = 2 F---J: Cost = 5G---E: Cost = 2 H---K: Cost = 7G---H: Cost = 2 I---K: Cost = 8G---I: Cost = 5 I---J: Cost = 33. F---C: Cost = 6 7. B---A: Cost = 4F---D: Cost = 5 D---A: Cost = 6F---J: Cost = 5 D---C: Cost = 4G---D: Cost = 2 *lowest F---C: Cost = 6G---E: Cost = 2 F---J: Cost = 5G---H: Cost = 2 H---K: Cost = 7I---H: Cost = 2 I---K: Cost = 8I---K: Cost = 8 I---J: Cost = 3 *lowestI---J: Cost = 3 8. B---A: Cost = 4 *lowest4. D---A: Cost = 6 D---A: Cost = 6D---B: Cost = 5 D---C: Cost = 4D---E: Cost = 2 *lowest F---C: Cost = 6D---C: Cost = 4 H---K: Cost = 7F---C: Cost = 6 I---K: Cost = 8F---J: Cost = 5 J---K: Cost = 4G---E: Cost = 2 9. A---C: Cost = 3 *lowestG---H: Cost = 2 D---C: Cost = 4I---H: Cost = 2 F---C: Cost = 6I---K: Cost = 8 H---K: Cost = 7I---J: Cost = 3 I---K: Cost = 85. D---A: Cost = 6 J---K: Cost = 4D---B: Cost = 5 10. H---K: Cost = 7D---C: Cost = 4 I---K: Cost = 8E---B: Cost = 3 J---K: Cost = 4 *lowestE---H: Cost = 4F---C: Cost = 6F---J: Cost = 5G---H: Cost = 2 *lowest Total = $26 millionI---H: Cost = 2I---K: Cost = 8I---J: Cost = 37.17a) The company wants a path between each pair of nodes (groves) that minimizes cost(length of road).b)7---8 : Distance = 0.57---6 : Distance = 0.66---5 : Distance = 0.95---1 : Distance = 0.75---4 : Distance = 0.78---3 : Distance = 1.03---2 : Distance = 0.9Total = 5.3 miles7.18a) The bank wants a path between each pair of nodes (offices) that minimizes cost(distance).b) B1---B5 : Distance = 50B5---B3 : Distance = 80B1---B2 : Distance = 100B2---M : Distance = 70B2---B4 : Distance = 120Total = 420 milesHamburgBostonRotterdamSt. PetersburgNapoliMoscowA IRFIELD SLondonJacksonvilleBerlin RostovIstanbulCases7.1a) The network showing the different routes troops and supplies may follow to reach the Russian Federation appears below.PORTSb)The President is only concerned about how to most quickly move troops and suppliesfrom the United States to the three strategic Russian cities. Obviously, the best way to achieve this goal is to find the fastest connection between the US and the three cities.We therefore need to find the shortest path between the US cities and each of the three Russian cities.The President only cares about the time it takes to get the troops and supplies to Russia.It does not matter how great a distance the troops and supplies cover. Therefore we define the arc length between two nodes in the network to be the time it takes to travel between the respective cities. For example, the distance between Boston and London equals 6,200 km. The mode of transportation between the cities is a Starlifter traveling at a speed of 400 miles per hour * 1.609 km per mile = 643.6 km per hour. The time is takes to bring troops and supplies from Boston to London equals 6,200 km / 643.6 km per hour = 9.6333 hours. Using this approach we can compute the time of travel along all arcs in the network.By simple inspection and common sense it is apparent that the fastest transportation involves using only airplanes. We therefore can restrict ourselves to only those arcs in the network where the mode of transportation is air travel. We can omit the three port cities and all arcs entering and leaving these nodes.The following six spreadsheets find the shortest path between each US city (Boston and Jacksonville) and each Russian city (St. Petersburg, Moscow, and Rostov).The spreadsheets contain the following formulas:Comparing all six solutions we see that the shortest path from the US to Saint Petersburg is Boston → London → Saint Petersburg with a total travel time of 12.71 hours. The shortest path from the US to Moscow is Boston → London → Moscow with a total travel time of 13.21 hours. The shortest path from the US to Rostov is Boston →Berlin → Rostov with a total travel time of 13.95 hours. The following network diagram highlights these shortest paths.-1c)The President must satisfy each Russian city’s military requirements at minimum cost.Therefore, this problem can be solved as a minimum-cost network flow problem. The two nodes representing US cities are supply nodes with a supply of 500 each (wemeasure all weights in 1000 tons). The three nodes representing Saint Petersburg, Moscow, and Rostov are demand nodes with demands of –320, -440, and –240,respectively. All nodes representing European airfields and ports are transshipment nodes. We measure the flow along the arcs in 1000 tons. For some arcs, capacityconstraints are given. All arcs from the European ports into Saint Petersburg have zero capacity. All truck routes from the European ports into Rostov have a transportation limit of 2,500*16 = 40,000 tons. Since we measure the arc flows in 1000 tons, the corresponding arc capacities equal 40. An analogous computation yields arc capacities of 30 for both the arcs connecting the nodes London and Berlin to Rostov. For all other nodes we determine natural arc capacities based on the supplies and demands at the nodes. We define the unit costs along the arcs in the network in $1000 per 1000 tons (or, equivalently, $/ton). For example, the cost of transporting 1 ton of material from Boston to Hamburg equals $30,000 / 240 = $125, so the costs of transporting 1000 tons from Boston to Hamburg equals $125,000.The objective is to satisfy all demands in the network at minimum cost. The following spreadsheet shows the entire linear programming model.HamburgBoston Rotterdam St.Petersburg+500-320Napoli Moscow A IRF IELDSLondon -440Jacksonville Berlin Rostov+500-240Istanbul The total cost of the operation equals $412.867 million. The entire supply for SaintPetersburg is supplied from Jacksonville via London. The entire supply for Moscow is supplied from Boston via Hamburg. Of the 240 (= 240,000 tons) demanded by Rostov, 60 are shipped from Boston via Istanbul, 150 are shipped from Jacksonville viaIstanbul, and 30 are shipped from Jacksonville via London. The paths used to shipsupplies to Saint Petersburg, Moscow, and Rostov are highlighted on the followingnetwork diagram.PORTSd)Now the President wants to maximize the amount of cargo transported from the US tothe Russian cities. In other words, the President wants to maximize the flow from the two US cities to the three Russian cities. All the nodes representing the European ports and airfields are once again transshipment nodes. The flow along an arc is againmeasured in thousands of tons. The new restrictions can be transformed into arccapacities using the same approach that was used in part (c). The objective is now to maximize the combined flow into the three Russian cities.The linear programming spreadsheet model describing the maximum flow problem appears as follows.The spreadsheet shows all the amounts that are shipped between the various cities. The total supply for Saint Petersburg, Moscow, and Rostov equals 225,000 tons, 104,800 tons, and 192,400 tons, respectively. The following network diagram highlights the paths used to ship supplies between the US and the Russian Federation.PORTSHamburgBoston Rotterdam St.Petersburg+282.2 -225NapoliMoscowAIRFIELDS-104.8LondonJacksonvilleBerlin Rostov +240 -192.4Istanbule)The creation of the new communications network is a minimum spanning tree problem.As usual, a greedy algorithm solves this type of problem.Arcs are added to the network in the following order (one of several optimal solutions):Rostov - Orenburg 120Ufa - Orenburg 75Saratov - Orenburg 95Saratov - Samara 100Samara - Kazan 95Ufa – Yekaterinburg 125Perm – Yekaterinburg 857.2a) There are three supply nodes – the Yen node, the Rupiah node, and the Ringgit node.There is one demand node – the US$ node. Below, we draw the network originatingfrom only the Yen supply node to illustrate the overall design of the network. In thisnetwork, we exclude both the Rupiah and Ringgit nodes for simplicity.b)Since all transaction limits are given in the equivalent of $1000 we define the flowvariables as the amount in thousands of dollars that Jake converts from one currencyinto another one. His total holdings in Yen, Rupiah, and Ringgit are equivalent to $9.6million, $1.68 million, and $5.6 million, respectively (as calculated in cells I16:K18 inthe spreadsheet). So, the supplies at the supply nodes Yen, Rupiah, and Ringgit are -$9.6 million, -$1.68 million, and -$5.6 million, respectively. The demand at the onlydemand node US$ equals $16.88 million (the sum of the outflows from the sourcenodes). The transaction limits are capacity constraints for all arcs leaving from thenodes Yen, Rupiah, and Ringgit. The unit cost for every arc is given by the transactioncost for the currency conversion.Jake should convert the equivalent of $2 million from Yen to each US$, Can$, Euro, and Pound. He should convert $1.6 million from Yen to Peso. Moreover, he should convert the equivalent of $200,000 from Rupiah to each US$, Can$, and Peso, $1 million from Rupiah to Euro, and $80,000 from Rupiah to Pound. Furthermore, Jake should convert the equivalent of $1.1 million from Ringgit to US$, $2.5 million from Ringgit to Euro, and $1 million from Ringgit to each Pound and Peso. Finally, he should convert all the money he converted into Can$, Euro, Pound, and Peso directly into US$. Specifically, he needs to convert into US$ the equivalent of $2.2 million, $5.5 million, $3.08 million, and $2.8 million Can$, Euro, Pound, and Peso, respectively. Assuming Jake pays for the total transaction costs of $83,380 directly from his American bank accounts he will have $16,880,000 dollars to invest in the US.c)We eliminate all capacity restrictions on the arcs.Jake should convert the entire holdings in Japan from Yen into Pounds and then into US$, the entire holdings in Indonesia from Rupiah into Can$ and then into US$, and the entire holdings in Malaysia from Ringgit into Euro and then into US$. Without the capacity limits the transaction costs are reduced to $67,480.d)We multiply all unit cost for Rupiah by 6.The optimal routing for the money doesn't change, but the total transaction costs are now increased to $92,680.e)In the described crisis situation the currency exchange rates might change every minute.Jake should carefully check the exchange rates again when he performs thetransactions.The European economies might be more insulated from the Asian financial collapse than the US economy. To impress his boss Jake might want to explore other investment opportunities in safer European economies that provide higher rates of return than US bonds.。

《运筹学》精品课程习题集

《运筹学》精品课程习题集

《运筹学》精品课程习题集精品课程建设小组二○○六年六月三十日目录第一章线性规划 (1)第二章运输问题 (9)第三章整数规划 (14)第四章目标规划 (20)第五章动态规划 (21)第六章图与网络分析 (24)第七章存储论 (27)第八章对策论 (28)第一章 线性规划1、将下列线性规划问题化为标准型(1) max Z = 3x 1+ 5x 2- 4x 3+ 2x 4⎪⎪⎩⎪⎪⎨⎧≥=+≥+≤++0x , x , x 9 5x -3x -4x x -13 2x -2x 3x -x 18 3x x -6x 2x s.t.421432143214321 (2) min f = 3x1+ x2+ 4x3+ 2x4 ≤ 1⎪⎪⎩⎪⎪⎨⎧≤≥=++≥+≤+0 x 0, x , x15 2x 3x -4x 2x 7- x -2x 2x -3x 51- 2x - x -3x 2x s.t. 4214214321 43213 (3) min F=x1+x2+x3+x4⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥+≥+≥+≥+0x ,x ,x ,x 7x x 8x x 6x x 5x x s.t.432143222141 (4) 3213min x x x F -+=⎪⎪⎩⎪⎪⎨⎧≤≤≥≥0x ,x ,x 4x +5x +x -22x +x -3x +x +x ..32132121321t s 2、求出下列不等式组所定义的多面体的所有基本解和基本可行解(极点):⎪⎩⎪⎨⎧≥≥++≥++0 x ,x ,x 12 4x 3x 2x -6 3x 3x 2x 3213213213、用图解法求解下列线性规划问题⎪⎪⎩⎪⎪⎨⎧≥≤≤≤+=0x ,x 3 x 122x +3x 6 x -2x ..max )1(211212121t s X X Z⎪⎩⎪⎨⎧≥≥≥++-=0 x ,x 155x -3x 56 7x 4x ..3min )2(21212121t s x x Z4、在以下问题中,列出所有的基,指出其中的可行基,基础可行解以及最优解。

运筹学考试练习题(天津大学)

运筹学考试练习题(天津大学)

07级工管运筹学期末习题课一、考虑线性规划问题〔P max 0z CXAX bX ==⎧⎨≥⎩(1) 若12,X X 均为〔P 的可行解,[0,1]λ∈,证明12(1)X X λλ+-也是〔P 的可行解;(2) 写出〔P 的对偶模型〔仍用矩阵式表示。

二、有三个线性规划:<Ⅰ> [Min] z =CX <Ⅱ> [Min] z '=C 'X <Ⅲ> [Min] z =CX 约束条件AX =b 约束条件AX =b 约束条件AX =b X ≥0 X ≥0 X ≥0已知X *是<Ⅰ>的最优解,X '*是<Ⅱ>的最优解,X *是<Ⅲ>的最优解,Y *是<Ⅰ>的对偶问题的最优解,试证:〔1()()'-'-≤**C C X X 0; <2> C X X Y b b ()()***-≤-。

三、已知线性规划问题当1t =2t =0时,用单纯形法求得最终表如下:要求:1. 确定23222113*********,,,,,,,,,,a a a a a a b b c c c 的值;2. 当2t =0时,1t 在什么围变化上述最优解不变;3. 当1t =0时,2t 在什么围变化上述最优基不变。

四、某公司准备以甲、乙、丙三种原料生产A 、B 、C 、D 四种型号的产品,每一单位产品对各原料的消耗系数、价格系数及原料成本等已知条件如下表:1x 2x 3x 4x 5x3x 5/20 1/2 1 1/2 0 1x 5/2 1 -1/2 0 -1/6 1/3 j j z c --4-4-21.为解决"在现有原料量限制下,如何安排A、B、C、D四种产品的产量,使总利润〔这里利润简化为销售收入与原料成本之差最大"这一问题,可建立一线性规划模型,令x1、x2、x3、x4依次表示各型号产品的计划产量,试列出这个模型,并记该模型为模型1;2.利用一解线性规划的程序解上述问题〔模型1,得到的部分结果如下:OBJECTIVE FUNCTION V ALUE1> 19923.08V ARIABLEV ALUE REDUCED COSTX1 230.769226 0.000000X2 100.000000 0.000000X3 1238.461548 0.000000X4 0.000000 4.384615ROW SLACK OR SURPLUSDUAL PRICES2> 0.000000 1.3846153> 0.000000 1.2307694> 0.000000 4.000000RANGES IN WHICH THE BASIS IS UNCHANGEDRIGHTHANDSIDERANGESROW CURRENT ALLOWABLE ALLOWABLERHS INCREASEDECREASE2 5500.000000 1499.999878 4025.0000003 3500.000000 500.000000 749.9999394 2000.000000 6192.307617 250.000000根据以上计算结果,分析并回答以下问题:〔1最优生产方案和最大总利润是什么?按此方案生产,现有的原料是否还有剩余?哪一种有剩余?余多少?〔2如果市场上甲原料的价格为4.5〔百元/公斤,那么从市场上购得1000公斤的甲原料扩大生产是否合算〔即总利润是否增加?为什么?〔3若D产品的价格系数增大到34〔百元/公斤,原最优解会否发生变化?为什么?〔4在原考虑的A、B、C、D四种型号产品基础上,如果又提出产品E,它对甲、乙、丙的消耗系数分别为5、6、2,价格系数为74〔百元/公斤,那么原最优方案是否要改变,为什么?〔5若在本题已有已知条件基础上,还要考虑各产品的生产准备费用〔视为固定成本,其中A产品的生产准备费为1000〔百元,B产品的生产准备费为800〔百元,C产品的生产准备费为950〔百元,D产品的生产准备费为750〔百元,而且由于某些原因,A、B、C三种产品至多生产其中的两种。

运筹学基础及应用课后习题答案(第一二章习题解答)

运筹学基础及应用课后习题答案(第一二章习题解答)

运筹学基础及应用课后习题答案(第一二章习题解答)第一章:线性规划一、选择题1. 线性规划问题中,目标函数可以是()A. 最大化B. 最小化C. A和B都对D. A和B都不对答案:C解析:线性规划问题中,目标函数可以是最大化也可以是最小化,关键在于问题的实际背景。

2. 在线性规划问题中,约束条件通常表示为()A. 等式B. 不等式C. A和B都对D. A和B都不对答案:C解析:线性规划问题中的约束条件通常包括等式和不等式两种形式。

二、填空题1. 线性规划问题的基本假设是______。

答案:线性性2. 线性规划问题中,若决策变量个数和约束条件个数相等,则该问题称为______。

答案:标准型线性规划问题三、计算题1. 求解以下线性规划问题:Maximize Z = 2x + 3ySubject to:x + 2y ≤ 83x + 4y ≤ 12x, y ≥ 0答案:最优解为 x = 4, y = 2,最大值为 Z = 14。

解析:画出约束条件的图形,找到可行域,再求目标函数的最大值。

具体步骤如下:1) 将约束条件化为等式,画出直线;2) 找到可行域的顶点;3) 将顶点代入目标函数,求解最大值。

第二章:非线性规划一、选择题1. 以下哪个方法适用于求解非线性规划问题()A. 单纯形法B. 拉格朗日乘数法C. 柯西-拉格朗日乘数法D. A和B都对答案:B解析:非线性规划问题通常采用拉格朗日乘数法求解,单纯形法适用于线性规划问题。

2. 非线性规划问题中,以下哪个条件不是K-T条件的必要条件()A. 梯度条件B. 正则性条件C. 互补松弛条件D. 目标函数为凸函数答案:D解析:K-T条件包括梯度条件、正则性条件和互补松弛条件,与目标函数是否为凸函数无关。

二、填空题1. 非线性规划问题中,若目标函数和约束条件都是凸函数,则该问题称为______。

答案:凸非线性规划问题2. 非线性规划问题中,K-T条件是求解______的必要条件。

运筹学第三版课后习题答案 (2)

运筹学第三版课后习题答案 (2)

运筹学第三版课后习题答案第一章:引论1.1 课后习题习题1a)运筹学是一门应用数学的学科,旨在解决实际问题中的决策和优化问题。

它包括数学模型的建立、问题求解方法的设计等方面。

b)运筹学可以应用于各个领域,如物流管理、生产计划、流程优化等。

它可以帮助组织提高效率、降低成本、优化资源分配等。

c)运筹学主要包括线性规划、整数规划、指派问题等方法。

习题2运筹学的应用可以帮助组织提高效率、降低成本、优化资源分配等。

它可以帮助制定最佳的生产计划,优化供应链管理,提高运输效率等。

运筹学方法的应用还可以帮助解决紧急情况下的应急调度问题,优化医疗资源分配等。

1.2 课后习题习题1运筹学方法可以应用于各个领域,如物流管理、生产计划、供应链管理、流程优化等。

在物流管理中,可以使用运筹学方法优化仓储和运输的布局,提高货物的运输效率。

在生产计划中,可以使用运筹学方法优化产品的生产数量和生产周期,降低生产成本。

在供应链管理中,可以使用运筹学方法优化订单配送和库存管理,提高供应链的效率。

在流程优化中,可以使用运筹学方法优化业务流程,提高整体效率。

习题2在物流管理中,可以使用运筹学方法优化车辆的调度和路线规划,以提高运输效率和降低成本。

在生产计划中,可以使用运筹学方法优化生产线的安排和产品的生产量,以降低生产成本和提高产能利用率。

在供应链管理中,可以使用运筹学方法优化供应链各个环节的协调和调度,以提高整体效率和减少库存成本。

在流程优化中,可以使用运筹学方法优化业务流程的排布和资源的分配,以提高流程效率和客户满意度。

第二章:线性规划基础2.1 课后习题习题1线性规划是一种数学优化方法,用于解决包含线性约束和线性目标函数的优化问题。

其一般形式为:max c^T*xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束矩阵,b是约束向量。

习题2使用线性规划方法可以解决许多实际问题,如生产计划、供应链管理、资源分配等。

运筹学基础(中文版第10版)哈姆迪塔哈课后习题答案解析

运筹学基础(中文版第10版)哈姆迪塔哈课后习题答案解析

运筹学基础(中文版第10版)哈姆迪塔哈课后习题答案解析第一章线性规划模型1.1 线性规划的基本概念1.请解释线性规划模型的基本要素以及线性规划模型的一般形式。

答:- 线性规划模型的基本要素包括决策变量、目标函数、约束条件。

- 线性规划模型的一般形式如下:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙSubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 01.2 线性规划模型的几何解释1.请说明线性规划模型的几何解释。

答:线性规划模型在几何上可以表示为一个多维空间中的凸多面体(可行域),目标函数为该多面体上的一条直线,通过不同的目标函数系数向量c,可以得到相应的最优解点。

通过多面体的边界和顶点,可以确定最优解点的位置。

如果可行域是无限大的,则最优解点可以在其中的任何位置。

1.3 线性规划模型求解方法1.简要说明线性规划模型的两种求解方法。

答:线性规划模型可以通过以下两种方法进行求解: - 图形法:根据可行域的几何特征,通过图形方法确定最优解点的位置。

- 单纯形法:通过迭代计算,逐步靠近最优解点。

单纯形法是一种高效的求解线性规划问题的方法。

第二章单变量线性规划2.1 单变量线性规划模型1.请给出单变量线性规划模型的一般形式。

答:Max/Min Z = cxSubject to:ax ≤ bx ≥ 02.2 图形解法及其应用1.请解释图形解法在单变量线性规划中的应用。

答:图形解法可以直观地帮助我们确定单变量线性规划模型的最优解。

通过绘制目标函数和约束条件的图像,可以确定最优解点的位置。

对于单变量线性规划模型,图形解法特别简单,只需要绘制一条直线和一条水平线,求解它们的交点即可得到最优解点的位置。

《运筹学》(第二版)课后习题参考答案

《运筹学》(第二版)课后习题参考答案
表1—17 家具生产工艺耗时和利润表
生产工序
所需时间(小时)
每道工序可用时间(小时)
1
2
3
4
5
成型
3
4
6
2
3
3600
打磨
4
3
5
6
4
3950
上漆
2
3
3
4
3
2800
利润(百元)
2.7
3
4.5
2.5
3
解:设 表示第i种规格的家具的生产量(i=1,2,…,5),则
s.t.
通过LINGO软件计算得: .
11.某厂生产甲、乙、丙三种产品,分别经过A,B,C三种设备加工。已知生产单位产品所需的设备台时数、设备的现有加工能力及每件产品的利润如表2—10所示。
-10/3
-2/3
0
故最优解为 ,又由于 取整数,故四舍五入可得最优解为 , .
(2)产品丙的利润 变化的单纯形法迭代表如下:
10
6
0
0
0
b
6
200/3
0
1
5/6
5/3
-1/6
0
10
100/3
1
0
1/6
-2/3
1/6
0
0
100
0
0
4
-2
0
1
0
0
-20/3
-10/3
-2/3
0
要使原最优计划保持不变,只要 ,即 .故当产品丙每件的利润增加到大于6.67时,才值得安排生产。
答:(1)唯一最优解:只有一个最优点;
(2)多重最优解:无穷多个最优解;
(3)无界解:可行域无界,目标值无限增大;

运筹学课后习题及答案

运筹学课后习题及答案

运筹学课后习题及答案运筹学是一门应用数学的学科,旨在通过数学模型和方法来解决实际问题。

在学习运筹学的过程中,课后习题是非常重要的一部分,它不仅可以帮助我们巩固所学的知识,还可以提升我们的解决问题的能力。

下面,我将为大家提供一些运筹学课后习题及答案,希望对大家的学习有所帮助。

1. 线性规划问题线性规划是运筹学中的一个重要分支,它旨在寻找线性目标函数下的最优解。

以下是一个线性规划问题的例子:Max Z = 3x + 4ySubject to:2x + 3y ≤ 10x + y ≥ 5x, y ≥ 0解答:首先,我们可以画出约束条件的图形,如下所示:```y^|5 | /| /| /| /|/+-----------------10 x```通过观察图形,我们可以发现最优解点是(3, 2),此时目标函数取得最大值为Z = 3(3) + 4(2) = 17。

2. 整数规划问题整数规划是线性规划的一种扩展,它要求变量的取值必须是整数。

以下是一个整数规划问题的例子:Max Z = 2x + 3ySubject to:x + y ≤ 52x + y ≤ 8x, y ≥ 0x, y为整数解答:通过计算,我们可以得到以下整数解之一:x = 2, y = 3此时,目标函数取得最大值为Z = 2(2) + 3(3) = 13。

3. 网络流问题网络流问题是运筹学中的另一个重要分支,它研究的是在网络中物体的流动问题。

以下是一个网络流问题的例子:有一个有向图,其中有三个节点S、A、B和一个汇点T。

边的容量和费用如下所示:S -> A: 容量为2,费用为1S -> B: 容量为3,费用为2A -> T: 容量为1,费用为1B -> T: 容量为2,费用为3A -> B: 容量为1,费用为1解答:通过使用最小费用最大流算法,我们可以找到从源点S到汇点T的最小费用流量。

在该例中,最小费用为5,最大流量为3。

清华版《运筹学》(第三版)课后习题详解、...

清华版《运筹学》(第三版)课后习题详解、...

解:用决策变量 x1, x2 , x3 , x4 , x5 , x6 分别表示 2:00~6:00, 6:00~10:00 ,10:00~14:
00 ,14:00~18:00,18:00~22:00, 22:00~ 2:00 时间段的服务员人数。
其数学模型可以表述为: min Z = x1 + x2 + x3 + x4 + x5 + x6
x1 + x6 >= 3 x1 + x2 >= 9 x2 + x3 >= 12 x3 + x4 >= 5 x4 + x5 >= 18 x5 + x6 >= 4 x1, x2 , x3, x4 , x5 , x6 ≥ 0
3、现要截取 2.9 米、2.1 米和 1.5 米的元钢各 100 根,已知原材料的长度是 7.4 米,问应如 何下料,才能使所消耗的原材料最省。试构造此问题的数学模型。
(0, 0, 0, 5, 2, 6)T ,Z=5。
初始单纯行表为:
cj
2
-1
1
1
CB
XB
x1
x2
x3
x4
1
x4
-1
1
1
1
0
x5
1
1
0
0
0
0
b
x5
x6
0
0
5
1
0
2
0
x6
2
1
1
0
0
1
6
σj
3
-2
0
0
0
0 z=0
(2)非基变量 x2 , x3 仍然取零, x1 由 0 变为 1,即 x1 =1, x2 =0, x3 =0,代入约束条件得一个可 行解 X= (1, 0, 0, 6,1, 4)T 。其目标函数值为 Z=8

【优质】运筹学第三版课后习题答案-推荐word版 (13页)

【优质】运筹学第三版课后习题答案-推荐word版 (13页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==运筹学第三版课后习题答案篇一:运筹学第3版熊伟编著习题答案运筹学(第3版)习题答案第1章线性规划 P36第2章线性规划的对偶理论 P74 第3章整数规划 P88 第4章目标规划P105第5章运输与指派问题P142 第6章网络模型 P173 第7章网络计划 P195 第8章动态规划 P218 第9章排队论 P248 第10章存储论P277 第11章决策论P304第12章多属性决策品P343 第13章博弈论P371 全书420页第1章线性规划1.1 工厂每月生产A、B、C三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.310和130.试建立该问题的数学模型,使每月利润最大.【解】设x1、x2、x3分别为产品A、B、C的产量,则数学模型为maxZ?10x1?14x2?12x3?1.5x1?1.2x2?4x3?2500?3x?1.6x?1.2x?140023?1? ?150?x1?250??260?x2?310?120?x3?130???x1,x2,x3?01.2 建筑公司需要用5m长的塑钢材料制作A、B两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:问怎样下料使得(1)用料最少;(2)余料最少.【解设xj(j=1,2,…,10)为第j种方案使用原材料的根数,则(1)用料最少数学模型为minZ??xjj?110?2x1?x2?x3?x4?800??x2?2x5?x6?x7?1200 ??x3?x6?2x8?x9?600?x?2x?2x?3x?9007910?4??xj?0,j?1,2,?,10(2)余料最少数学模型为minZ?0.5x2?0.5x3?x4?x5?x6?x8?0.5x10?2x1?x2?x3?x4?800??x2?2x5?x6?x7?1200??x3?x6?2x8?x9?600?x?2x?2x?3x?9007910?4??xj?0,j?1,2,?,101.3某企业需要制定1~6月份产品A的生产与销售计划。

天津大学-管理科学基础-运筹学-课后习题详解

天津大学-管理科学基础-运筹学-课后习题详解

C(Q)
1 Q
(C3
1 2
C1Q
Q R
KQ)
C3 Q
1 2
C1
Q R
K
Q
Q*Q*
Q1
C(1414) 2000 1 20 1414 100 102.83
1414 2
10000
C(2000) 2000 1 16 2000 80 82.6 2000 2 10000
C(2000) C(1414)
题7.2
方案 d1 d2 d3 d4
销量
50 100 150 200
0.2 50 100 0 -100 -200 0.4 100 100 200 100 0 0.3 150 100 200 300 200 0.1 200 100 200 300 400
各方案的期望值: f(d1)=100 f(d2)=0*0.2+200*0.8=160 f(d3)= -100*0.2 +100*0.4 +300*0.3 +300*0.1 =140 f(d4)= -200*0.2 +0*0.4 +200*0.3 +400*0.1 =60 取方案d2,购买100本。
2
2
5 11 5
E
6 6
11 I
4
4
00 1
26
B
3
2
C 4
2 22
H 6 J
10
G 7
K 7
3
8
L 4
9
12 12
15 15
19 19
TE 19,
2 14
2 47
2 78
2 89
T TE 20 19 0.33

运筹学课后习题及答案

运筹学课后习题及答案

运筹学课后习题及答案在运筹学这门课程中,课后习题是帮助学生巩固理论知识和提高解决实际问题能力的重要环节。

以下是一些典型的运筹学课后习题及答案,供学生参考和练习。

习题1:线性规划问题问题描述:一个工厂需要生产两种产品A和B,每种产品都需要使用机器1和机器2。

产品A每单位需要机器1工作3小时,机器2工作2小时;产品B每单位需要机器1工作2小时,机器2工作4小时。

机器1每天最多工作24小时,机器2每天最多工作20小时。

如果产品A每单位的利润是500元,产品B每单位的利润是600元。

假设工厂希望最大化利润,问应该生产多少单位的产品A和B?解答:首先,设产品A的产量为x,产品B的产量为y。

根据题目条件,我们可以得到以下两个约束条件:\[ 3x + 2y \leq 24 \]\[ 2x + 4y \leq 20 \]目标函数是利润最大化,即:\[ \text{Maximize} \ P = 500x + 600y \]通过图解法或单纯形法,我们可以得到最优解为x=4,y=3。

此时,利润最大化为\( P = 500 \times 4 + 600 \times 3 = 3800 \)元。

习题2:网络流问题问题描述:一个供水系统由多个泵站和水库组成,需要确保每个水库都有足够的水量供应。

已知每个泵站的供水能力以及每个水库的需求量。

如何分配泵站的供水量,以满足所有水库的需求?解答:首先,需要构建一个网络流图,其中节点代表泵站和水库,边代表供水路径。

每条边的容量表示泵站的供水能力,每条边的流量表示实际供水量。

目标是找到满足以下条件的网络流:- 每个泵站的总流出量等于其供水能力。

- 每个水库的总流入量等于其需求量。

- 网络中没有负流量。

使用最大流算法,如Ford-Fulkerson算法或Edmonds-Karp算法,可以找到满足上述条件的最大网络流。

习题3:整数规划问题问题描述:一个公司需要决定是否投资于三个不同的项目,每个项目都需要一定的资金和人力资源。

运筹学习题课

运筹学习题课

700
1000
得到本问题的数学模型为:
目标函数 min z 1000x1 800x2
约束条件
x1 1
0.8x1 x2 1.6
x1 2
x2 1.4
x1 , x2 0
培训问题
某工厂举办“技工”培训班,由受过培训合格的技 师负责培训,每名技师负责培训10名学员,培训一个月 为一期,根据以往经验,每10名学员有7名能成为合格 技工。合格技工全部留用,不合格不予留用。在今后三 个月内,厂方需要技工人数为:1月份100人,2月份150 人,3月份200人,已知年初有合格技工130人。工资支 付标准如下:正受训的学员,每人每月400,合格技工 中上班的每人每月1200,部份留用但暂时还不需要上班 的每人每月800。制订一个工资总额最小的培训方案。
生产存贮问题
一个合资食品企业面临某种食品一至四月的生产计划问题。四 个月的需求分别为4500吨、3000吨、5500吨、4000吨。目前(一月 初)该企业有100个熟练工人,正常工作时每人每月可以完成40吨, 每吨成本200元。由于市场需求浮动较大,该企业可通过以下方法 调节生产:
(1)利用加班增加生产,但加班生产每人每月不能超过10吨, 其成本为300元/吨。
(2)利用库存来调节,库存费用为60元/吨/月,最大库存能 力为1000吨。
请为该企业构造一个线性规划模型,在满足需求的前提下使四 个月总费用为最小。
假定该企业在一月初的库存为0,要求四月底库存为500吨。
生产与库存的优化安排问题
某工厂生产五种产品(i=1,…,5),上半年各月对每种产品的 最大市场需求量为dij(i=1,…,5;j=1,…,6)。已知每件产品的单 件售价为Si元,生产每件产品所需要工时为ai,单件成本为Ci 元;该工厂上半年各月正常生产工时为rj(j=1,…,6),各月内 允许的最大加班工时为rj′;Ci′为加班单件成本。又每月生产的 各 种 产 品 如 当 月 销 售 不 完 , 可 以 库 存 。 库 存 费 用 为 Hi( 元 / 件·月)。假设1月初所有产品的库存为零,要求6月底各产品 库存量分别为ki件。现要求为该工厂制定一个生产计划,在 尽可能利用生产能力的条件下,获取最大利润。

《运筹学(胡运权)》第五版课后习题答案

《运筹学(胡运权)》第五版课后习题答案
X1 5.000000 0.000000
X2 0.000000 2.000000
X3 3.000000 0.000000
X1,X2,X30.000000 0.000000
ROW SLACK OR SURPLUS DUAL PRICES
2) 0.000000 0.200000
3) 0.000000 0.600000
P1 P4
-1/3 0 0 11/6

P2 P3
0 1/2 2 0

5
P2 P4
0 -1/2 0 2

P3 P4
0 0 1 1

5
最优解A=(0 1/2 2 0)T和(0 0 1 1)T
49页13题
设Xij为第i月租j个月的面积
minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x13+6000x23+7300x14
x41+x42+x43+x44+x45=1
x11+x21+x22+x23=1
x12+x22+x32+x42=1
x13+x23+x33+x43=1
x14+x24+x34+x44=1
x15+x25+x35+x45=1
xij=1或0(i=1,2,3,4 j=1,2,3,4,5)
由excel计算得出;张游仰泳,王游蛙泳,赵游自由泳,预期总成绩为126.2s.
6x1+3x2+5x3+8x4≤45

最新运筹学(第三版课后习题答案第一章ppt课件

最新运筹学(第三版课后习题答案第一章ppt课件
布莱克—穆顿模式:冲突方格
9 高
关心 员工 5
× 缓和(1,9)
正视(9,9)×
妥协(5,5) ×
1
× 回避(1,1)

压制(9,1)×
12 低
3 45 关心工作
67
89 高 组织 行 为学
四、冲突管理
3.冲突管理策略(三):
布坎南组织冲突的“组织—协调”四阶段模型
布坎南关于组织冲突的组织——协调四阶段模型提到了实现激发冲突的几 种方法。
运筹学(第三版)课后习题答案 第一章
1.4 (1)
1.5
1.6
1.7 (1)
1.12


组文 渊


第十章 冲突与冲突管理


Organizational Behavior
本章内容
冲突的基本概念
• 概念、特征 • 类型
冲突产生的根源
• 杜布林 • 纳尔逊和奎克 • 罗宾斯
二、冲突产生的根源
2.纳尔逊和奎克对冲突根源的分析
专业化
相互依赖性

共用资源


目标差异

职权关系
地位矛盾 管辖权的模糊
在一个组织中,责任界限不清楚,当发 生了一件无法界定责任的事件时,员工 们就会倾向于“推卸责任”,或避免接 触这件事,这样,关于问题的责任就产 生了冲突。
组织 行 为学
二、冲突产生的根源
在这个过程中.一方努力去抵消 另一方的封锁行为,因为另一方的
封锁行为将妨碍他达到目标 或损害他的利益。
罗宾斯
组织 行 为学
一、冲突的基本概念
1.冲突的概念
冲突是否存在不仅是一个客观性问题,也是一个主观的知觉问题。 冲突产生的必要条件是,存在某种形式的对立或不相容以及相互作用。 冲突的主体可以是组织、群体或个人,冲突的客体可以是利益、权力、资 源、目标、方法、意见、价值观、感情、程序、信息、关系等。 冲突是一个过程,它是从人与人、人与群体、人与组织、群体与群体、组 织与组织之间的相互关系和相互作用过程中发展而来的。

运筹学课后习题答案第六版

运筹学课后习题答案第六版

运筹学课后习题答案第六版运筹学是一门应用数学学科,旨在研究如何在有限资源和约束条件下做出最佳决策。

它涉及到决策分析、优化理论、线性规划、整数规划、动态规划等多个领域。

在学习运筹学的过程中,课后习题是巩固知识和提高能力的重要途径。

本文将为大家提供《运筹学课后习题答案第六版》的相关内容。

第一章:决策分析决策分析是运筹学的基础,它主要涉及到决策的目标、决策的环境、决策的准则等方面。

在第一章的习题中,我们需要运用决策树、决策表、决策矩阵等方法来解决实际问题。

比如,一个公司需要决策是否要进军某个新市场,我们可以通过绘制决策树来分析各种可能的结果和概率,从而选择最佳的决策。

第二章:线性规划线性规划是运筹学中的重要工具,它主要涉及到线性目标函数和线性约束条件的最优化问题。

在第二章的习题中,我们需要运用单纯形法、对偶理论等方法来求解线性规划问题。

比如,一个工厂需要决策如何分配有限的资源以最大化利润,我们可以建立一个线性规划模型,然后通过单纯形法来求解最优解。

第三章:整数规划整数规划是线性规划的扩展,它主要涉及到目标函数和约束条件都是整数的最优化问题。

在第三章的习题中,我们需要运用分支定界法、割平面法等方法来求解整数规划问题。

比如,一个物流公司需要决策如何安排货物的配送路线以最小化成本,我们可以建立一个整数规划模型,然后通过分支定界法来求解最优解。

第四章:动态规划动态规划是一种用来解决多阶段决策问题的方法,它主要涉及到状态转移方程和最优子结构的求解。

在第四章的习题中,我们需要运用贝尔曼方程、最短路径算法等方法来求解动态规划问题。

比如,一个投资者需要决策在不同时间点买入和卖出股票以最大化收益,我们可以建立一个动态规划模型,然后通过贝尔曼方程来求解最优解。

第五章:网络优化网络优化是一种用来解决网络流问题的方法,它主要涉及到网络的建模和最大流最小割定理的求解。

在第五章的习题中,我们需要运用最大流算法、最小割算法等方法来求解网络优化问题。

运筹学习题课

运筹学习题课

1、靠近某河流有两个化工厂(参见附图),流经第一化工厂的河流流量为每天5003m ,在两个工厂之间有一条流量为200万3m 的支流。

第一化工厂每天排放有某种优化物质的工业污水2万3m ,第二化工厂每天排放该污水1.4万3m 。

从第一化工厂的出来的污水在流至第二化工厂的过程中,有20%可自然净化。

根据环保要求,河流中的污水含量不应大于0.2%。

这两个工厂的都需要各自处理一部分工业污水。

第一化工厂的处理成本是1000元/万3m ,第二化工厂的为800元/万3m 。

现在要问满足环保的条件下,每厂各应处理多少工业污水,才能使两个工厂的总的污水处理费用最少?解:这个问题可用数学模型来描述。

设第一化工厂和第二化工厂的污水处理量分别为每天1x 3m 和万3m ,从第一化工厂到第二化工厂之间,河流中的工业污水含量不要大于0.2%,由此可得近似关系式:1000/2500/21≤-)(x流经第二化工厂后,河流中的工业污水含量人要不大于0.2%,所以有:1000/2)200500/(]4.12%201[21≤+-+-⨯-)()()(x x 由于每个工厂每天处理污水的量不会大于每天的排放量,故有: 4.1,221≤≤x x这个问题的目标是要求两个工厂处理污水的总费用最小。

即:218001000x x Z +=最小,综合上述,这个环保问题可用数学模型表示为:(上式整理可得)目标函数:218001000m in x x Z +=约束条件:⎪⎪⎩⎪⎪⎨⎧≥≤≥+≤≤0,4.16.18.021212211x x x x x x2、将下列线性规划模型化为标准形式答案3、用图解法求解下面线性规划 min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++-++=无约束3213213213213210063244239232min x x x x x x x x x x x x x x x z ⎪⎪⎩⎪⎪⎨⎧≥=-++=--++=+-+++--=-06''3'32'44''22'39''''2''3'32''max 51332153321433213321x x x x x x x x x x x x x x x x x x x z可行解域为abcda ,最优解为b 点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学习题课一、选择题1.用图解法解线性规划时,以下几种情况中不可能出现的是( )。

A. 可行域有界,无有限最优解 B. 可行域无界,有唯一最优解 C. 可行域是空集,无可行解 D. 可行域有界,有多重最优解2.根据线性规划的互补松弛定理,安排生产的产品机会成本一定( )利润. A. 小于B. 等于C. 大于D. 大于等于3.已知某个含10个结点的树图,其中9个结点的次为1,1,3,1,1,1,3,1,3,则另一个结点的次为( )。

A. 3B. 2C. 1D. 以上三种情况均有可能 4.在求解整数规划问题时,不可能出现的是( )。

A. 唯一最优解 B. 无可行解C. 多重最佳解D. 无穷多个最优解5.1m n +-个变量构成一组基变量的充要条件是( )。

A. 1m n +-个变量恰好构成一个闭回路 B. 1m n +-个变量对应的系数列向量线性相关 C. 1m n +-个变量中部分变量构成一个闭回路D.1m n +-个变量不包含任何闭回路6.线性规划具有唯一最优解是指( )。

A. 最优表中存在常数项为零B. 可行解集合有界C. 最优表中存在非基变量的检验数为零D. 最优表中非基变量检验数全部非零 7.有6 个产地4个销地的产销平衡运输问题模型具有特征( )。

A. 有10个变量24个约束 B. 有24个变量10个约束 C. 有24个变量9约束 D. 有9个基变量10个非基变量 8.下列关于网络最大流的说法中,不正确的是( )。

A. 可行流*f 是最大流,当且仅当网络中存在关于*f 的增广链 B. 用标号法求解最大流问题,同时可得到一个最小截集 C. 最小截集的容量的大小影响网络总的输送量的提高 D.网络的最大流需满足容量条件和平衡条件9.如果一个线性规划问题有n 个变量,m 个约束方程()m n <,系数矩阵的行数为m ,则基可行解的个数最为( )。

A.mB.nC.mn CD.nm C10.在一个网络中,如果图形是连通且不含圈的,则这种图形称之为( )。

A. 点 B. 线 C. 树 D. 最小支撑树11.用表上作业法求解3个产地4个销地的运输问题,若某步求得空格32A B 的检验数为-2,下列说法中正确的是( )。

A. 增加空格32A B 处的运输量将使总成本降低B. 当前方案是最优运输方案C. 由3A 至2B 的运输量增加1个单位,可使总运费增加2D. 为使总运费更小,应使3A 至2B 的运输量减少212.若某线性规划问题存在基可行解,则该问题( )。

A. 一定有最优解B. 具有无界解C. 有非空的可行域D. 可能无可行解13.若μ是关于可行流f 的一条增广链,则在μ上有( )。

A. 对一切(,)i j v v μ+∈,有ij ij f c ≤B. 对一切(,)i j v v μ+∈,有ij ij f c > C. 对一切(,)i j v v μ-∈,有ij ij f c ≥D.对一切(,)i j v v μ-∈,有0ij f >14.设线性规划的约束条件为123124143224,,0x x x x x x x x ++=⎧⎪++=⎨⎪≥⎩,则基本可行解为 ( )。

A. (0, 0, 4, 3)B. (2, 0, 1, 0)C. (3, 4, 0, 0)D. (3, 0, 4, 0)15.关于动态规划问题的下列命题中错误的是( )。

A. 动态规划分阶段顺序不同,则结果不同B. 状态对决策有影响C. 动态规划中,定义状态时应保证在各个阶段中所做决策的相对独立性D. 动态规划的求解过程都可以用列表形式实现16.关于标准的M/M/1排队模型,下列说法错误的是( )。

A. 顾客源是有限的,且到达过程是平稳的B. 各顾客的服务时间相互独立,且服从相同的负指数分布C. 到达时间间隔和服务时间是相互独立的D. 单个队列,先到先服务,且对队长没有限制 17.下列说法不正确的是( )。

A. 顾客相继到达的时间间隔独立同负指数分布等价于输入过程为泊松流B. 标准的M/M/1模型中,顾客在系统中的逗留时间服从负指数分布C. 在M/M/1/N/∞模型中,当排队等待的顾客数为N-1时,再来的顾客将被拒绝进入系统D. 单服务台的排队模型中,排队长的期望值与队长的期望值相差1 18.在排队系统中,系统的状态概率P i 是指( )A .系统中有i 个顾客在等待服务B .系统可容纳的最大顾客数为iC .系统中有i 个顾客的可能性D .系统中有i 个顾客 19.在库存决策问题中,所谓存储策略是指( ) A .决定补充的间隔时间 B .决定需求和补充的数量C .决定补充的最小费用D .决定补充的间隔时间和每次补充的数量20.假设顾客的到达形成强度为λ的泊松流,则对于充分小的t ∆,下列哪项说法是不正确的?( )A .在[),t t t +∆最多只能有1个顾客到达B .在[),t t t +∆有2个以上顾客到达的概率为()o t ∆C .在[),t t t +∆有2个顾客到达的概率为1()t o t λ-∆+∆D .在[),t t t +∆恰有1个顾客到达的概率为()t o t λ∆+∆21.下列关于标准M/M/1排队模型中ρ的描述,那一项是不正确的?( ) A .它能刻画系统的繁忙程度 B .为保证排队长度有限,需满足1ρ≥ C .它是平均到达率和平均服务率之比 D .它表示系统的服务强度22.线性规划问题12121212min 34,4,22,0Z x x x x x x x x =++≥+≤≥、的解的情况为( )。

A. 无可行解B. 有唯一最优解C. 有多重最优解D. 有无界解23.关于线性规划模型的可行域,下面_B_的叙述正确( )。

A. 可行域必有无穷多个点B. 可行域必有界C. 可行域必然包括原点D. 可行域必是凸的24.表上作业法的基本思想和步骤与单纯形法类似,因而初始调运方案的给出就相当于找到一个( )。

A. 基B. 可行解C. 初始基本可行解D. 最优解 25.关于最小支撑树,以下叙述正确的是( )。

A. 最小支撑树是一个网络中连通所有点而边数最少的图 B. 最小支撑树是一个网络中连通所有的点,而权数最少的图 C. 一个网络中的最大权边必不包含在其最小支撑树 D. 一个网络的最小支撑树一般是不唯一的二、判断题1.对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定有最优解。

2.一个图G 是树的充分必要条件是该图为边数最少的无孤立点的图。

( )3.对于对偶单纯形法,其初始解必须是可行的。

( )4.设图G=(V,E)是一个树,p(G)≥2,则G中至少有两个悬挂点。

( )5.用图解法解线性规划问题,若在两个顶点同时得到最优解,则它们的连线上任意点都是最优解。

( )6.在树中不相邻的两个点间添上一条边,则恰好得到一个圈。

( )7.线性规划可行域无界,则具有无界解。

( )8.任意可行流的流量不小于最小割量。

( )9.网络最大流量是网络起点至终点的一条增广链上的最大流量。

( )10.可行解集有界非空时,则在顶点上至少有一点达到最优值。

( )11.按最小元素法求得运输问题的初始方案, 从任一非基格出发都存在唯一一个闭回路。

12.运输问题中用位势法求得的检验数不唯一。

( )13.假如一个线性规划问题含有6个变量和4个约束,则用动态规划方法求解时将划分为4个阶段,每个阶段的状态将由一个6维的向量组成。

( ) 14.动态规划中,定义状态时应保证在各个阶段中所做决策的相互独立性。

( )15.在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器与由3名工人联合看管15台机器相比,机器因故障等待工人维修的平均时间不变。

( )16.订货费用包括订购费用和货物的成本费用。

前者与订货数量有关,而与订货次数无关。

( )17.对同一个动态规划问题,应用顺推解法和逆推解法一定会得到相同的最优解。

( )18.在单时期的随机存贮模型中,计算时都不包括订货费用这一项。

原因是该项费用通常很小可忽略不计。

( )19.报童问题中损失最小的期望值和赢利最大的期望值是不同的,所以两者确定的Q 值也不相同。

( )20.相继到达的间隔时间是独立且相同的负指数分布,与输入过程为泊松流是等价的。

( )三、填空题1.用表上作业法求解m 个产地n 个销地的平衡运输问题,其方案表上数字格的个数为 个;若已计算出某空格的检验数为-3,若从该空格出发进行调整,设调整量为2,则调整后可使总运费下降 。

2.设线性规划问题max :{,0}cx Ax b x ≤≥有最优解,且最优解值0z >;如果c 和b 分别被1v >所乘,则改变后的问题(也有、不一定有)最优解;若有最优解,其最优解 (大于、小于、等于)z 。

3.设有线性规划问题[]{}min ,|,0f CX X R X AX b X =∈==≥,有一可行基B (为A 中的前m 列),记相应基变量为X π,价格系数为C B ,相应于非基变量为X N ,价格系数为C N ,则相应于B 的基本可行解为X= ;B 为最优基的条件是 。

4.线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___ 个非基变量的检验数为___ ___。

5.线性规划问题中,如果在约束条件中出现等式约束,通常用增加_ __的方法来产生初始可行基。

6.求最小支撑树问题,常用的方法有:避圈法和 _ __。

7.下图给出某城市部分道路的分布情况,现要沿道路铺埋输水管,为了使铺设的管线最短,要求按道路分布图的最小支撑树来设计管线,则所铺设管线的最小总长度应该是 。

8.某钻井队要从编号为1、2、3、4、5的五个井位中选择若干钻井探油,则“要么选择钻井2,要么选择钻井5” 可用i x 的线性表达式表示为 ,其中选择第i 号钻井时=1i x ,否则=0i x ,15i =⋯,,。

9.已知下表是制订生产计划问题的一LP 最优单纯形表(Max 型问题,约束条件均为“≤”型),其中345,,x x x 为松驰变量。

B Xb1x2x3x4x5x4x 3 0 0 -2 1 3 1x 4/3 1 0 -1/3 0 2/3 2x10 1 0 0 -1 j j c z --5-23则1B -= ;对偶问题的最优解*Y = 。

10.在单纯形迭代中,可以根据最终表中 变量不为零判断线性规划问题无解。

11.若某种资源的影子价格等于k ,在其他条件不变的情况下(假设原问题的最佳基不变),当该种资源增加3个单位时,相应的目标函数值将增加 。

12.线性规划的原问题的约束条件系数矩阵为A ,则其对偶问题的约束条件系数矩阵为 。

13.在表上作业法所得到的调运方案中,从某空格出发的闭回路的转角点所对应的变量必为 。

相关文档
最新文档